
CHAPTER 1

Algorithms on Words

1.0. Introduction

This chapter is an introductory chapter to the book. It gives general notions,
notation, and technical background. It covers, in a tutorial style, the main
notions in use in algorithms on words. In this sense, it is a comprehensive
exposition of basic elements concerning algorithms on words, automata
and transducers, and probability on words.

The general goal of “stringology” we pursue here is to manipulate strings
of symbols, to compare them, to count them, to check some properties, and
perform simple transformations in an effective and efficient way.

A typical illustrative example of our approach is the action of circular
permutations on words, because several of the aspects we mentioned above
are present in this example. First, the operation of circular shift is a trans-
duction which can be realized by a transducer. We include in this chapter a
section (Section 1.5) on transducers. Transducers will be used in Chapter 3.
The orbits of the transformation induced by the circular permutation are
the so-called conjugacy classes. Conjugacy classes are a basic notion in
combinatorics on words. The minimal element in a conjugacy class is a
good representative of a class. It can be computed by an efficient algorithm
(actually in linear time). This is one of the algorithms which appear in
Section 1.2. Algorithms for conjugacy are again considered in Chapter 2.
These words give rise to Lyndon words which have remarkable combina-
torial properties already emphasized in Lothaire (1997). We describe in
Section 1.2.5 the Lyndon factorization algorithm.

The family of algorithms on words has features which make it a specific
field within algorithmics. Indeed, algorithms on words are often of low
complexity but intricate and difficult to prove. Many algorithms have even
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2 1. Algorithms on Words

a linear time complexity corresponding to a single pass scanning of the
input word. This contrasts with the fact that correctness proofs of these
algorithms are frequently complex. A well-known example of this situation
is the Knuth–Morris–Pratt string searching algorithm (see Section 1.2.3).
This algorithm is compact, and apparently simple but the correctness proof
requires a sophisticated loop invariant.

The field of algorithms on words still has challenging open problems.
One of them is the minimal complexity of the computation of a longest
common subword of two words which is still unknown. We present in
Section 1.2.4 the classic quadratic dynamic programming algorithm. A
more efficient algorithm is mentioned in the Notes.

The field of algorithms on words is intimately related to formal mod-
els of computation. Among those models, finite automata and context-free
grammars are the most used in practice. This is why we devote a sec-
tion (Section 1.3) to finite automata and another one to grammars and syn-
tax analysis (Section 1.6). These models, and especially finite automata,
regular expressions, and transducers, are ubiquitous in the applications.
They appear in almost all chapters.

The relationship between words and probability theory is an old one.
Indeed, one of the basic aspects of probability and statistics is the study
of sequences of events. In the elementary case of a finite sample space,
such as in tossing a coin, the sequence of outcomes is a word. More gen-
erally, a partition of an arbitrary probability space into a finite number
of classes produces sequences over a finite set. Section 1.8 is devoted to
an introduction to these aspects. They are developed later in Chapters 6
and 7.

We have chosen to present the algorithms and the related properties in
a direct style. This means that there are no formal statements of theorems,
and consequently no formal proofs. Nevertheless, we give precise assertions
and enough arguments to show the correctness of algorithms and to evaluate
their complexity. In some cases, we use results without proof and we give
bibliographic indications in the Notes.

For the description of algorithms, we use a kind of programming lan-
guage that is close to the usual programming languages. Doing this, rather
than relying on a precise programming language, gives more flexibility and
improves readability.

The syntactic features of our programs concerning the control structure
and the elementary instructions, make the language similar to a language
such as Pascal. We take some liberty with real programs. In particular,
we often omit declarations and initializations of variables. The parameter
handling is C–like (no call by reference). In addition to arrays, we also
use implicitly data structures such as sets and stacks and pairs or triples of
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1.1. Words 3

variables to simplify notation. All functions are global, and there is nothing
resembling classes or other features of object-oriented programming. How-
ever, we use overloading for parsimony. The functions are referenced in the
text and in the index by their name, like LongestCommonPref ix() for
example.

1.1. Words

We briefly introduce the basic terminology on words. Let A be a finite
set usually called the alphabet. In practice, the elements of the alphabet
may be characters from some concrete alphabet, but also more complex
objects. They may themselves be words on another alphabet, as in the
case of syllables in natural language processing (presented in Chapter 3).
In information processing, any kind of record can be viewed as a symbol
in some huge alphabet. This has the consequence that some apparently
elementary operations on symbols, like the test for equality, often need a
careful definition and may require a delicate implementation.

We denote as usual by A∗ the set of words over A and by ε the empty
word. For a word w, we denote by |w| the length of w. We use the notation
A+ = A∗ − {ε}. The setA∗ is a monoid. Indeed, the concatenation of words
is associative, and the empty word is a neutral element for concatenation.
The set A+ is sometimes called the free semigroup over A, while A∗ is
called the free monoid.

A word w is called a factor (resp. a prefix, resp. a suffix) of a word u

if there exist words x, y such that u = xwy (resp. u = wy, resp. u = xw).
The factor (resp. the prefix, resp. the suffix) is proper if xy �= ε (resp.
y �= ε, resp. x �= ε). The prefix of length k of a word w is also denoted by
w[0 . . k − 1].

The set of words over a finite alphabet A can be conveniently seen
as a tree. Figure 1.1 represents {a, b}∗ as a binary tree. The vertices are
the elements of A∗. The root is the empty word ε. The sons of a node
x are the words xa for a ∈ A. Every word x can also be viewed as the
path leading from the root to the node x. A word x is a prefix of a word
y if it is an ancestor in the tree. Given two words x and y, the longest
common prefix of x and y is the nearest common ancestor of x and y in the
tree.

A word x is a subword of a word y if there are words u1, . . . , un and
v0, v1, . . . , vn such that x = u1 · · · un and y = v0u1v1 · · · unvn. Thus, x is
obtained from y by erasing some factors in y.

Given two words x and y, a longest common subword is a word z of
maximal length that is both a subword of x and y. There may exist several
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4 1. Algorithms on Words

ε

a b

aa ab ba bb

aaa aab aba abb baa bab bba bbb

· · · · · ·
Figure 1.1. The tree of the free monoid on two letters.

longest common subwords for two words x and y. For instance, the words
abc and acb have the common subwords ab and ac.

We denote by alph w the set of letters having at least one occurrence in
the word w.

The set of factors of a word x is denoted F (x). We denote by F (X ) the set
of factors of words in a setX ⊂ A∗. The reversal of a word w = a1a2 · · · an,
where a1, . . . , an are letters, is the word w̃ = anan−1 · · · a1. Similarly, for
X ⊂ A∗, we denote X̃ = {x̃ | x ∈ X }. A palindrome word is a word w such
that w = w̃. If |w| is even, then w is a palindrome if and only if w = xx̃

for some word x. Otherwise w is a palindrome if and only if w = xax̃ for
some word x and some letter a.

An integer p ≥ 1 is a period of a word w = a1a2 · · · an where ai ∈ A
if ai = ai+p for i = 1, . . . , n − p. The smallest period of w is called the
period or the minimal period of w.

A word w ∈ A+ is primitive if w = un for u ∈ A+ implies n = 1.
Two words x, y are conjugate if there exist words u, v such that x = uv

and y = vu. Thus conjugate words are just cyclic shifts of one another.
Conjugacy is thus an equivalence relation. The conjugacy class of a word
of length n and period p has p elements if p divides n and has n ele-
ments otherwise. In particular, a primitive word of length n has n distinct
conjugates.

1.1.1. Ordering

There are three order relations frequently used on words. We give the
definition of each of them.

The prefix order is the partial order defined by x ≤ y if x is a prefix
of y.
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1

10 11

100 101 110 111

1000 1001 1010 1011 1100 1101 1110 1111

· · · · · ·
Figure 1.2. The tree of integers in binary notation.

Two other orders, the radix order and the lexicographic order are re-
finements of the prefix order which are defined for words over an ordered
alphabet A. Both are total orders.

The radix order is defined by x ≤ y if |x| < |y| or |x| = |y| and x =
uax ′ and y = uby ′ with a, b letters and a ≤ b. If integers are represented in
base k without leading zeroes, then the radix order on their representations
corresponds to the natural ordering of the integers. If we allow leading
zeroes, the same holds provided the words have the same length (which can
always be achieved by padding).

For k = 2, the tree of words without leading zeroes is given in Figure 1.2.
The radix order corresponds to the order in which the vertices are met in a
breadth-first traversal. The index of a word in the radix order is equal to the
number represented by the word in base 2.

The lexicographic order, also called alphabetic order, is defined as
follows. Given two words x, y, we have x < y if x is a proper prefix of y

or if there exist factorizations x = uax ′ and y = uby ′ with a, b letters and
a < b. This is the usual order in a dictionary. Note that x < y in the radix
order if |x| < |y| or if |x| = |y| and x < y in the lexicographic order.

1.1.2. Distances

A distance over a set E is a function d that assigns to each element of E a
nonnegative number such that:

(i) d(u, v) = d(v, u),
(ii) d(u, w) ≤ d(u, v) + d(v, w) (triangular inequality)

(iii) d(u, v) = 0 if and only if u = v.
Several distances between words are used (see Figures 1.3 and 1.4). The
most common is the Hamming distance. It is only defined on words of equal
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6 1. Algorithms on Words

a b b a b a a b

a b a a b a b a

(a) Hamming distance

a b b a b a a b

a b a a b a b a

(b) Subword distance

Figure 1.3. The Hamming distance is 3 and the subword distance is 2.

b a a b a b b a a b b a b a a b a b b a b a a b b a a b a b b a

a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b

Figure 1.4. The Hamming distance of these two Thue–Morse blocks of
length 32 is equal to their length; their subword distance is only 6.

length. For two words u = a0 · · · an−1 and v = b0 · · · bn−1, where ai, bi are
letters, it is the number dH (u, v) of indices i with 0 ≤ i ≤ n − 1 such that
ai �= bi . In other terms

dH (u, v) = Card{i | 0 ≤ i ≤ n − 1 and ai �= bi}.
Thus the Hamming distance is the number of mismatches between u and v. It
can be verified that dH is indeed a distance. Observe that dH (u, v) = n − p

where p is the number of positions at which u and v coincide. In a more
general setting, a distance between letters is used instead of just counting
each mismatch as 1.

The Hamming distance takes into account the differences at the same
position. In this way, it can be used as a measure of modifications or
errors caused by a modification of a symbol by another one, but not of a
deletion or an insertion. Another distance is the subword distance which
is defined as follows. Let u be a word of length n and v be a word of
length m, and p be the length of a longest common subword of u and v.
The subword distance between u and v is defined as dS(u, v) = n + m −
2p. It can be verified that dS(u, v) is the minimal number of insertions
and suppressions that change u into v. The name indel (for insertion and
deletion) is used to qualify a transformation that is either an insertion or a
deletion.

A common generalization of the Hamming distance and the subword
distance is the edit distance. It takes into account the substitutions of a
symbol by another in additions to indels (see Problem 1.1.2).
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1.2. Elementary algorithms 7

A related distance is the prefix distance. It is defined as d(u, v) = n +
m − 2p where n = |u|, m = |v| and p is the length of the longest common
prefix of u and v. It can be verified that the prefix distance is actually the
length of the shortest path from u to v in the tree of the free monoid.

1.2. Elementary algorithms

In this section, we treat algorithmic problems related to the basic notions
on words: prefixes, suffixes, factors.

1.2.1. Prefixes and suffixes

Recall that a word x is a prefix of a word y if there is a word u such
that y = xu. It is said to be proper if u is nonempty. Checking whether x

is a prefix of y is straightforward. Algorithm LongestCommonPrefix
below returns the length of the longest common prefix of two words x

and y.

LongestCommonPrefix(x, y)
1 � x has length m, y has length n

2 i ← 0
3 while i < m and i < n and x[i] = y[i] do
4 i ← i + 1
5 return i

In the tree of a free monoid, the length of the longest common prefix of
two words is the height of the least common ancestor.

As mentioned earlier, the conceptual simplicity of the above algorithm
hides implementation details such as the computation of equality between
letters.

1.2.2. Overlaps and borders

We introduce first the notion of overlap of two words x and y. It captures the
amount of possible overlap between the end of x and the beginning of y. To
avoid trivial cases, we rule out the case where the overlap would be the whole
word x or y. Formally, the overlap of x and y is the longest proper suffix of
x that is also a proper prefix of y. For example, the overlap of abacaba and
acabaca has length 5. The border of a nonempty word w is the overlap of
w and itself. Thus it is the longest word u which is both a proper prefix and
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8 1. Algorithms on Words

a proper suffix of w. The overlap of x and y is denoted by overlap(x, y),
and the border of x by border(x). Thus border(x) = overlap(x, x).

As we shall see, the computation of the overlap of x and y is intimately
related to the computation of the border. This is due to the fact that the
overlap of x and y involves the computation of the overlaps of the prefixes
of x and y. Actually, one has overlap(xa, y) = border(xa) whenever x

is a prefix of y and a is a letter. Next, the following formula allows the
computation of the overlap of xa and y, where x, y are words and a is a
letter. Let z = overlap(x, y).

overlap(xa, y) =
{

za if za is a prefix of y,
border(za) otherwise.

Observe that border(za) = overlap(za, y) because z is a prefix of y. The
computation of the border is an interesting example of a nontrivial algorithm
on words. A naive algorithm would check, for each prefix of w, whether it is
also a suffix of w, and select the longest such prefix. This would obviously
require a time proportional to |w|2. We will see that it can be done in time
proportional to the length of the word. This relies on the following recursive
formula allowing the computation of the border of xa in terms of the border
of x, where x is a word and a is a letter. Let u = border(x) be the border of
x. Then for each letter a,

border(xa) =
{

ua if ua is a prefix of x,
border(ua) otherwise.

(1.2.1)

The following algorithm (Algorithm Border) computes the length of
the border of a word x of length m. It outputs an array b of m + 1 integers
such that b[j ] is the length of the border of x[0 . . j − 1]. In particular, the
length of border(x) is b[m]. It is convenient to set b[0] = −1. For example,
if x = abaababa, the array b is

0 1 2 3 4 5 6 7 8

b : −1 0 0 1 1 2 3 2 3

Border(x)
1 � x has length m, b has size m + 1
2 i ← 0
3 b[0] ← −1
4 for j ← 1 to m − 1 do
5 b[j ] ← i
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1.2. Elementary algorithms 9

6 � Here x[0 . . i − 1] = border(x[0 . . j − 1])
7 whilei ≥ 0 and x[j ] �= x[i] do
8 i ← b[i]
9 i ← i + 1

10 b[m] ← i

11 return b

This algorithm is an implementation of Formula (1.2.1). Indeed, the
body of the loop on j computes, in the variable i, the length of the border
of x[0 . . j ]. This value will be assigned to b[j ] at the next increase of j .
The inner loop is a translation of the recursive formula.

The algorithm computes the border of x (or the table b itself) in time
O(|x|). Indeed, the execution time is proportional to the number of com-
parisons of symbols performed at line 7. Each time a comparison is done,
the expression 2j − i increases strictly. In fact, either x[j ] = x[i] and
i, j both increase by 1, or x[j ] �= x[i], and j remains constant while
i decreases strictly (since b[i] < i). Since the value of the expression
is initially 0 and is bounded by 2|x|, the number of comparisons is at
most 2|x|.

The computation of the overlap of two words x, y will be done in the
next section.

1.2.3. Factors

In this section, we consider the problem of checking whether a word x

is a factor of a word y. This problem is usually referred to as a string
matching problem. The word x is called the pattern and y is the text. A
more general problem, referred to as pattern matching, occurs when x is
replaced by a regular expression X (see Section 1.4). The evaluation of
the efficiency of string matching or pattern matching algorithms depends
on which parameters are considered. In particular, one may consider the
pattern to be fixed (because several occurrences of the same pattern are
looked for in an unknown text), or the text to be fixed (because several
different patterns will be looked for in this text). When the pattern or the
text is fixed, it may be subject to a preprocessing. Moreover, the evaluation
of the complexity can take into account either only the computation time, or
both time and space. This may make a significant difference on very large
texts and patterns.

We begin with a naive quadratic string searching algorithm. To check
whether a word x is a factor of a word y, it is clearly enough to test for each
index j = 0, . . . , n − 1 if x is a prefix of the word y[j . . n − 1].
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10 1. Algorithms on Words

NaiveStringMatching(x, y)
1 � x has length m, y has length n

2 (i, j ) ← (0, 0)
3 while i < m and j < n do
4 if x[i] = y[j ] then
5 (i, j ) ← (i + 1, j + 1)
6 else j ← j − i + 1
7 i ← 0
8 return i = m

The number of comparisons required in the worst case is O(|x||y|). The
worst case is reached for x = amb and y = an. The number of comparisons
performed is in this case m(n − m − 1).

We shall see now that it is possible to search a word x inside another
word y in linear time, that is in time O(|x| + |y|). The basic idea is to use a
finite automaton recognizing the words ending with x. If we can compute
some representation of it in time O(|x|), then it will be straightforward to
process the word y in time O(|y|).

The wonderfully simple solution presented below uses the notion of
border of a word. Suppose that we are in the process of identifying x inside
y, the position i in x being placed in front of position j in y, as in the
naive algorithm. We can then set x = ubt where b = x[i] and y = wuaz

where a = y[j ]. If a = b, the process goes on with i + 1, j + 1. Otherwise,
instead of just moving x one place to the right (i.e. j = j − i + 1, i = 0),
we can take into account that the next possible position for x is determined
by the border of u. Indeed, we must have y = w′u′az and x = u′ct ′ with u′
both a prefix of u and a suffix of u since w′u′ = wu (see Figure 1.5). Hence
the next comparison to perform is between y[j ] and x[k] where k − 1 is
the length of the border of u.

j

y : w u a z

x : u b t

i

x : u′ c t ′

b[i]

Figure 1.5. Checking y[j ] against x[i]: if they are different, y[j ] is
checked against x[b[i]].
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1.2. Elementary algorithms 11

The algorithm is realized by the following program (Algorithm
SearchFactor). It returns the starting position of the first occurrence
of the word x inside the word y, and |y| if x is not a factor of y. It uses
an array b of |x| + 1 integers such that b[i] is the length of the border of
x[0 . . i − 1].

SearchFactor(x, y)
1 � x has length m, y has length n

2 � b is the array of length of borders of the prefixes of x

3 b ← Border(x)
4 (i, j ) ← (0, 0)
5 while i < m and j < n do
6 while i ≥ 0 and x[i] �= y[j ] do
7 i ← b[i]
8 (i, j ) ← (i + 1, j + 1)
9 return i = m

The time complexity is O(|x| + |y|). Indeed, the computation of the
array b can be done in time O(|x|) as in Section 1.2.2. Further, the analysis
of the algorithm given by the function SearchFactor is the same as that
for the function Border. The expression 2j − i increases strictly at each
comparison of two letters, and thus the number of comparisons is bounded
by 2|y|. Thus, the complete time required to check whether x is a factor of
y is O(|x| + |y|) as announced.

Computing the overlap of two word x, y can be done as follows. We
may suppose |x| < |y|. The value of overlap(x, y) is the final value of the
variable i in the algorithm SearchFactor applied to the pair (y, x).

1.2.4. Subwords

We now consider the problem of looking for subwords. The following
algorithm checks whether x is a subword of y. In contrast to the case of
factors, a greedy algorithm suffices to perform the check in linear time.

IsSubword(x, y)
1 � x has length m, y has length n

2 (i, j ) ← (0, 0)
3 while i < m and j < n do
4 ifx[i] = y[j ] then
5 i ←i + 1
6 j ←j + 1
7 return i = m
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12 1. Algorithms on Words

We denote by lcs(x, y) the set of longest common subwords (also called
longest common subsequences) of two words x and y. The computation of
the longest common subwords is a classical algorithm with many practical
uses. We present below a quadratic algorithm. It is based on the following
formula.

lcs(xa, yb) =
{

lcs(x, y)a if a = b,
max(lcs(xa, y), lcs(x, yb)) otherwise.

where max() stands for the union of the sets if their elements have equal
length, and for the set with the longer words otherwise.

In practice, one computes the length of the words in lcs(x, y). For this,
define an array M[i, j ] by M[i, j ] = k if the longest common subwords to
the prefixes of length i of x and j of y have length k. The previous formula
then translates into

M[i + 1, j + 1] =
{

M[i, j ] + 1 if a = b,
max(M[i + 1, j ], M[i, j + 1]) otherwise.

For instance, if x = abba and y = abab, the array M is the following.

a b a b

0 0 0 0 0

a 0 1 1 1 1

b 0 1 2 2 2

b 0 1 2 2 3

a 0 1 2 3 3

The first row and the first column of the array M are initialized at 0. The
following function computes the array M .

LcsLengthArray(x, y)
1 � x has length m and y has length n

2 for i ← 0 to m − 1 do
3 for j ← 0 to n − 1 do
4 if x[i] = y[j ] then
5 M[i + 1, j + 1] ← M[i, j ] + 1
6 else M[i + 1, j + 1] ← max(M[i + 1, j ], M[i, j + 1])
7 return M

The above algorithm has quadratic time and space complexity. Observe
that the length of the longest common subwords, namely the value M[m, n],
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1.2. Elementary algorithms 13

can be computed in linear space (but quadratic time) by computing the
matrix M row by row or column by column. To recover a word in the set
lcs(x, y), it is enough to walk backwards through the array M .

Lcs(x, y)
1 � result is a longest common word w

2 M ← LcsLengthArray(x, y)
3 (i, j, k) ← (m − 1, n − 1, M[m, n] − 1)
4 while k ≥ 0 do
5 if x[i] = y[j ] then
6 w[k] ← x[i]
7 (i, j, k) ← (i − 1, j − 1, k − 1)
8 else if M[i + 1, j ] < M[i, j + 1] then
9 i ← i − 1

10 else j ← j − 1
11 return w

1.2.5. Conjugacy and Lyndon words

Two words x, y are said to be conjugate if x = uv, y = vu, for some
words u, v. Thus two words are conjugate if they differ only by a cyclic
permutation of their letters.

To check whether x and y are conjugate, we can compare all possi-
ble cyclic permutations of x with y. This requires O(|x||y|) operations.
Actually we can do much better as follows. Indeed, x and y are conjugate
if and only if |x| = |y| and if x is a factor of yy. Indeed, if |x| = |y| and
yy = uxv, we have |y| ≤ |ux|, |xv| and thus there are words u′, v′ such that
x = v′u′ and y = uv′ = u′v. Since |x| = |y|, we have |u′| = |u|, whence
u = u′ and v = v′. This shows that x = vu, y = uv.

Hence, using the linear time algorithm SearchFactor of Sec-
tion 1.2.3, we can check in O(|x| + |y|) whether two words x, y are
conjugate.

Recall that a Lyndon word is a word which is strictly smaller than any
of its conjugates for the alphabetic ordering. In other terms, a word x is a
Lyndon word if for any factorization x = uv with u, v nonempty, one has
uv < vu. A Lyndon word is primitive.

Any primitive word has a conjugate which is a Lyndon word, namely its
least conjugate. Computing the smallest conjugate of a word is a practical
way to compute a standard representative of the conjugacy class of a word
(this is sometimes called canonization). This can be done in linear time by
the following algorithm, which is a modification of the algorithm Border
of Section 1.2.2. It is applied to a word x of length m. We actually use an
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14 1. Algorithms on Words

array containing x2, and call this array x. Of course, an array of length m

would suffice provided the indices are computed mod m.

CircularMin(x)
1 (i, j, k) ← (0, 1, 0)
2 b[0] ← −1
3 while k + j < 2m do
4 � Here x[k . . k + i − 1] = border(x[k . . k + j − 1])
5 if j − i = m then
6 return k

7 b[j ] ← i

8 while i ≥ 0 and x[k + j ] �= x[k + i] do
9 if x[k + j ] < x[k + i] then

10 (k, j ) ← (k + j − i, i)
11 i ← b[i]
12 (i, j ) ← (i + 1, j + 1)

Algorithm CircularMin looks like Algorithm Border. Indeed, if we
discard lines 5–6 and lines 9–10 in algorithm CircularMin, the variable
k remains 0 and we obtain an essentially equivalent algorithm (with a while
loop replacing the for loop). The key assertion of this algorithm is that
x[k . . k + i − 1] = border(x[k . . k + j − 1]), as indicated at line 4. This is
the same as the assertion in Algorithm Border for k = 0. The array b

contains the information on borders, in the sense that b[j ] is the length of
border(x[k . . k + j − 1]).

The value of k is the index of the beginning of a candidate for a least
conjugate of x (see Figure 1.6). If the condition at line 9 holds, a new
candidate has been found. The assignment at line 10 shifts the value of k by
j − i, and j is adjusted in such a way that the value of k + j is not modified.
The modifications of the value of k do not require the entire recomputation
of the array b. Indeed, the values b[j ′] for 0 ≤ j ′ < i serve both for the old
and the new candidate. For the same reason as for Algorithm Border, the
time complexity is linear in the size of x.

k k + j − i k + j

x :
x :

0 k + i

Figure 1.6. Checking whether x[k . . k + m − 1] is the least circular con-
jugate of x.
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1.3. Tries and automata 15

Any word admits a unique factorization as a nonincreasing product of
Lyndon words. In other words, for any word x, there is a factorization

x = �
n1
1 · · · �nr

r

where r ≥ 0, n1, . . . , nr ≥ 1, and �1 > · · · > �r are Lyndon words. We
discuss now an algorithm to compute this factorization.

The following program computes the pair (�1, n1) for x in linear time.
By iteration, it allows us to compute the Lyndon factorization in linear time.

LyndonFactorization(x)
1 � x has length m

2 (i, j ) ← (0, 1)
3 while j < m and x[i] ≤ x[j ] do
4 if x[i] < x[j ] then
5 i ← 0
6 else i ← i + 1
7 j ← j + 1
8 return (j − i, 	j/(j − i)
)

The idea of the algorithm is the following. Assume that at some step, we
have x = �npy, where � is a Lyndon word, n ≥ 1 and p is a proper prefix
of �. The pair (�, n) is a candidate for the value (�1, n1) of the factorization.
The relation with the values i, j of the program is given by j = |�np|,
j − i = |�|, n = 	j/(j − i)
. Let a = x[i], b = x[j ]. Then � = paq for
some word q, and x = �npbz. If a < b, then �′ = �npb is a Lyndon word.
The pair (�′, 1) becomes the new candidate. If a = b, then pb replaces p.
Finally, if a > b the pair (�, n) is the correct value of (�1, n1).

The above algorithm can also be used to compute the Lyndon word �

in the conjugacy class of a primitive word x. Indeed, � is the only Lyndon
word of length |x| that appears in the Lyndon factorization of xx. Thus,
Algorithm LyndonFactorization gives an alternative to Algorithm
CircularMin.

1.3. Tries and automata

In this section, we consider sets of words. These sets arise in a natural way in
applications. Dictionaries in natural language processing, or more generally
text processing in databases are typical examples. Another situation is when
one considers properties of words, and the sets satisfying such a property, for
example the set of all words containing a given pattern. We are interested in
the practical representation for retrieval and manipulation of sets of words.
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16 1. Algorithms on Words

The simplest case is that of finite, but possibly very large sets. General
methods for manipulation of sets may be used. This includes hash functions,
bit vectors, and various families of search trees. These general methods are
sometimes available in programming packages. We will be interested here
in methods that apply specifically to sets of words.

Infinite sets arise naturally in pattern matching. The natural way to
handle them is by means of two equivalent notions: regular expressions and
finite automata. We describe here in some detail these approaches.

1.3.1. Tries

A trie is the simplest nontrivial structure allowing the representation of
a finite set X of words. It has both the advantage of reducing the space
required to store the set of words and to allow a fast access to each element.

A trie R is a rooted tree. Each edge is labelled with a letter. The labels
have the property that two distinct edges starting in the same vertex have
distinct labels. A subset T of the set of vertices is called the set of terminal
vertices. The set X of words represented by the trie R is the set of labels
of paths from the root to a vertex in T . It is convenient to assume that
every vertex is on a path from the root to some vertex in T (since otherwise
the vertex could be removed). In particular, every leaf of the tree is a terminal
vertex.

Example 1.3.1. The trie represented on Figure 1.7 represents the set

X = {leader, let, letter, sent}.
The terminal vertices are doubly circled.

To implement a trie, we use a partial function Next(p, a) which gives the
vertex q such that the edge (p, q) is labelled a. The root of the tree is the
value of Root().
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Figure 1.7. A trie.
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1.3. Tries and automata 17

IsInTrie(w)
1 � checks if the word w of length n is in the trie
2 (i, p) ← LongestPrefixInTrie(w)
3 return i = n and p is a terminal vertex

Function IsInTrie returns true if the word w is in the set represented
by the trie. It uses the function LongestPrefixInTrie() to compute the
pair (i, p) where i is the length of the longest prefix of w which is the label
of a path in the trie, and p is the vertex reached by this prefix. For future
use, we give a slightly more general version of this function. It computes
the pair (i, p) where i is the length of the longest prefix of the suffix of w

starting in position j .

LongestPrefixInTrie(w, j )
1 � returns the length of the longest prefix of w[j . . n − 1]
2 � in the trie, and the vertex reached by this prefix
3 q ← Root()
4 for i ← j to n − 1 do
5 p ← q

6 q ← Next(q, w[i])
7 if q is undefined then
8 return (i − j, p)
9 return (n − j, q)

Searching for a word in a trie is done in linear time with respect to
the length of the word. It does not depend on the size of the trie. This is
the main advantage of this data structure. However, this is only true under the
assumption that the function Next can be computed in constant time. In
practice, if the alphabet is of large size, this might no longer be true.

To add a word to a trie amounts to the following simple function.

AddToTrie(w)
1 � adds the word w to the trie
2 (i, p) ← LongestPrefixInTrie(w, 0)
3 for j ← i to n − 1 do
4 q ← NewVertex()
5 Next(p, w[j ]) ← q

6 p ← q

7 Add q to the set of terminal vertices

We use a function NewVertex() to create a new vertex of the trie.
The function AddToTrie() is linear in the length of w, provided Next()
is in constant time.
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18 1. Algorithms on Words

To remove a word from a trie is easy if we have a function Father() giv-
ing the father of a vertex. The function can be tabulated during the construc-
tion of the trie (by adding the instruction Father(q) ← p just after line 5
in Algorithm AddToTrie(). The function Father() can also be computed
on the fly during the computation of LongestPrefixInTrie() at line 2
of Algorithm RemoveFromTrie(). Another possibility, avoiding the use
of the function Father(), is to write the function RemoveFromTrie()
recursively. We also use a Boolean function IsLeaf() to test whether a
vertex is a leaf or not.

RemoveFromTrie(w)
1 � removes the word w of length n from the trie
2 (i, p) ← LongestPrefixInTrie(w, 0)
3 � i should be equal to n

4 Remove p from the set of terminal vertices
5 while IsLeaf(p) and p is not terminal do
6 (i, p) ← (i − 1, Father(p))
7 Next(p, w[i]) ← −1

The use of a trie structure reduces the space needed to represent a set
of words, compared with a naive representation. If one wishes to further
reduce the size, it is possible to use an acyclic graph instead of a tree. The
result is an acyclic graph with labelled edges, an initial vertex, and a set of
terminal vertices. This is sometimes called a directed acyclic word graph
abbreviated as DAWG.

Example 1.3.2. We represent below (see Figure 1.8) a DAWG for the set

X = {leader, let, letter, sent}
of Example 1.3.1.

For a given finite set X of words, there is a unique minimal DAWG
representing X . This is a particular case of a statement concerning finite
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Figure 1.8. A directed acyclic word graph (DAWG).
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1.3. Tries and automata 19

automata that we shall see in the next section. The minimal DAWG is
actually the minimal deterministic automaton recognizing X , and standard
algorithms exist to compute it.

1.3.2. Automata

An automaton over an alphabet A is composed of a set Q of states, a finite
set E ⊂ Q × A∗ × Q of edges or transitions and two sets I, T ⊂ Q of
initial and terminal states. For an edge e = (p, w, q), the state p is the
origin, w is the label, and q is the end.

The automaton is often denoted A = (Q, E, I, T ), or also (Q, I, T )
when E is understood, or even A = (Q, E) if Q = I = T .

A path in the automaton A is a sequence

(p0, w1, p1), (p1, w2, p2), . . . , (pn−1, wn, pn)

of consecutive edges. Its label is the word x = w1w2 · · · wn. The path starts
at p0 and ends at pn. The path is often denoted

p0
x−→ pn.

A path is successful if it starts in an initial state and ends in a terminal state.
The set recognized by the automaton is the set of labels of its successful
paths.

A set is recognizable or regular if it is the set of words recognized by
some automaton.

The family of regular sets is both the simplest family of sets that admits
an algorithmic description. It is also the most widely used one, because of
its numerous closure properties.

A state p is accessible if there is a path starting in an initial state and
ending in p. It is coaccessible if there is a path starting in p and ending
in a terminal state. An automaton is trim if every state is accessible and
coaccessible.

An automaton is unambiguous if, for each pair of states p, q, and for
each word w, there is at most one path from p to q labelled with w.
An automaton is represented as a labelled graph. Initial (final) states are
distinguished by an incoming (outgoing) arrow.

Example 1.3.3. The automaton given in Figure 1.9 recognizes the set of
words on the alphabet {a, b} ending with aba. It is unambiguous and trim.

The definition of an automaton given above is actually an abstraction
which went up from circuits and sequential processes. In this context, an
automaton is frequently called a state diagram to mean that the states
represent possible values of time changing variables.
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20 1. Algorithms on Words

1 2

b

a

aba

Figure 1.9. A nondeterministic automaton.

1 2

a b

ε

Figure 1.10. A literal automaton for the set a∗b∗.

In some situations, this representation is not adequate. In particular, the
number of states can easily become too large. Indeed, the number of states
is in general exponential in the number of variables. A typical example is
the automaton which memorizes the n last input symbols. It has 2n states
on a binary alphabet but can be represented simply with n binary variables.
Observe however that this situation is not general. In particular, automata
occurring in linguistics or in bioinformatics cannot in general be represented
with such parsimony.

We have introduced here a general model of automata which allows
edges labelled by words. This allows in particular edges labelled by the
empty word. Such an edge is usually called an ε-transition. We will use
here two particular cases of this general definition. The first is that of a
synchronous automaton in which all edges are labelled by letters. In this
case, the length of a path equals the length of its label.

An automaton which is not synchronous is called asynchronous. Among
asynchronous automata, we use literal automata as a second class. These
have labels that are either letters or the empty word. In this case, the length
of a path is always at least equal to the length of its label.

Example 1.3.4. The automaton A of Figure 1.10 is asynchronous but
literal. It recognizes the set a∗b∗.

An automaton is deterministic if it is synchronous, it has a unique initial
state, and if, for each state p and each letter a, there is at most one edge
which starts at p and is labelled by a. The end state of the edge is denoted
by p · a. Clearly, a deterministic automaton is unambiguous. For any word
w, there is at most one path starting in p and labelled w. The end state of
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1 2b

a

b

Figure 1.11. The Golden mean automaton.

this is denoted p · w. Clearly, for any state p and any words u, v, one has

p · uv = (p · u) · v

provided the paths exist.
An automaton is complete if for any state p and any letter a there exists

an edge starting in p and labelled with a. Any automaton can be completed,
that is transformed into a complete automaton by adding one state (fre-
quently called the sink) and by adding transitions to this state whenever
they do not exist in the original automaton.

Example 1.3.5. The automaton given in Figure 1.11 is deterministic. It
recognizes the set of words having no occurrence of the factor aa. It is
frequently called the Golden mean automaton, because the number of words
of length n it recognizes is the Fibonacci number Fn (with the convention
F0 = 0 and F1 = 1).

An automaton is finite if its set of states is finite. Since the alphabet is
usually assumed to be finite, this means that the set of edges is finite.

A set of words X over A is recognizable if it can be recognized by a
finite automaton.

The implementation of a deterministic automaton with a finite set of
states Q, and over a finite alphabet A, uses the next-state function which is
the partial function Next(p, a) = p · a. In practice, the states are identified
with integers, and the next-state function is given either by an array or by a
set of edges (a, q) for each state p. The set may be either hashed, or listed, or
represented in some balanced tree structure. Other representations exist with
the aim of reducing the space while preserving the efficiency of the access.

The next-state function is extended to a function again called Next and
defined by Next(p, w) = p · w, for a word w. A practical implementation
has to choose a convenient way to represent the case where the function is
undefined.

Next(p, w)
1 � w has length n

2 for i ← 0 to n − 1 do
3 p ← Next(p, w[i])
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22 1. Algorithms on Words

4 if p is undefined then
5 break
6 return p

Example 1.3.6. For the Golden mean automaton, the next-state function
is represented by the following table (observe that 2 · a is undefined)

a b

1 2 1

2 1

For the implementation of nondeterministic automata, we restrict our-
selves to the case of a literal automaton which is the most frequent one. For
each state, the set of outgoing edges is represented by sets Next(p, a)
for each letter a, and Next(p, ε) for the ε-transitions. By definition
Next(p, a) = {q | (p, a, q) ∈ E}, and Next(p, ε) = {q | (p, ε, q) ∈ E},
where E denotes the set of edges. We denote by Initial the set of initial
states, and by Terminal the set of terminal states.

In order to check whether a word is accepted by a nondeterministic
automaton, one performs a search in the graph controlled by the word to
be processed. We treat this search in a breadth-first manner in the sense
that, for each prefix p of the word, we compute the set of states reachable
by p.

For this, we start with the implementation of the next-state function for
a set of states. We give a function Next(S, a) that computes the set of
states reachable from a state in S by a path consisting of an edge labelled by
the letter a followed by a path labelled ε. Another possible option groups
the ε-transitions before the edge labelled by a. This will be seen in the
treatment of the computation of a word.

Next(S, a)
1 � S is a set of states, and a is a letter
2 T ← ∅
3 for q ∈ S do
4 T ← T ∪ Next(q, a)
5 return Closure(T )

The function Closure(T ) computes the set of states accessible from
states in T by paths labelled ε. This is just a search in a graph, and it can
be performed either depth-first or breadth-first. The time complexity of the
function Next(S, a) is O(d · Card(S)), where d is the maximal out-degree
of a state.
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The function Next() extends to words as follows.

Next(S, w)
1 � S is a set of states, and w is a word of length n

2 T ← Closure(S)
3 for i ← 0 to n − 1 do
4 T ← Next(T , w[i])
5 return T

In order to test whether a word w is accepted by an automaton, it suffices
to compute the set S = Next(Initial, w), and to check whether S meets
the set of final states. This is done by the following function.

IsAccepted(w)
1 � S is a set of states
2 S ← Next(Initial, w)
3 return S ∩ Terminal �= ∅

The time complexity of the function Accept(w) is O(nmd), where m

is the number of states and d is the maximal out-degree of a state. Thus, in
all cases, the time complexity is O(nm2).

1.3.3. Determinization algorithm

Instead of exploring a nondeterministic automaton, one may compute an
equivalent deterministic automaton and perform the acceptance test on the
resulting deterministic automaton. This preprocessing is especially inter-
esting when the same automaton is going to be used on several inputs.
However, the size of the deterministic automaton may be exponential in the
size of the original, nondeterministic one, and the direct search may be the
unique realistic option.

We now show how to compute an equivalent deterministic automaton.
The states of the deterministic automaton are sets of states, namely the
sets computed by the function Next(). A practical implementation of the
algorithm will use an appropriate data structure for a collection of sets of
states. This can be a linked list or an array of sets. We only need to be able
to add elements, and to test membership.

The function Explore() essentially searches for the states that are
accessible in the automaton B under construction. As for any exploration,
several strategies are possible. We use a depth-first search realized by
recursive calls of the function Explore().
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24 1. Algorithms on Words

Explore(T , S,B)
1 � T is a collection of sets of states of A
2 � T is also the set of states of B
3 � S is an element of T
4 for each letter c do
5 U ← NextA(S, c)
6 NextB(S, c) ← U

7 if U �= ∅ and U /∈ T then
8 T ← T ∪ U

9 (T ,B) ← Explore(T , U,B)
10 return (T ,B)

We can now write the determinization algorithm.

NFAtoDFA(A)
1 � A is a nondeterministic automaton
2 B ← NewDFA()
3 I ← Closure(InitialA)
4 InitialB ← I

5 � T is a collection of sets of states of A
6 T ← I

7 (T ,B) ← Explore(T , I,B)
8 TerminalB ← {U ∈ T | U ∩ TerminalA �= ∅}
9 return B

The result of Algorithm NFAtoDFA is the deterministic automaton
B. Its set of states is the set T . In practice, it can be represented by a
set of integers coding the elements of T , as the collection T itself is no
longer needed. The complexity of Algorithm NFAtoDFA is proportional
to the size of the resulting deterministic automaton times the complexity of
testing membership in line 7.

Example 1.3.7. We show in a first example the computation of a deter-
ministic automaton equivalent to a nondeterministic one. We start with
the automaton A given in Figure 1.12. We have InitialA = {1, 2} and

1 2b

b

a

Figure 1.12. The nondeterministic automaton A.
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1,2 1b

a

b

Figure 1.13. The deterministic version B of A.

1, 2 2a b
b

Figure 1.14. A deterministic automaton for the set a∗b∗.

TerminalA = {1}. The next-state function is given by the following
table

a b

1 ∅ {1, 2}
2 {1} ∅

The collection T of sets of states of the resulting automaton com-
puted by Algorithm NFAtoDFA is T = {{1, 2}, {1}}. The automaton is
represented in Figure 1.13. It is actually the Golden mean automaton of
Example 1.3.5.

Example 1.3.8. As a second example, we consider the automaton A of
Example 1.3.4. We have InitialA = {1}, and Closure(InitialA) =
{1, 2}. The resulting deterministic automaton is given in Figure 1.14

Example 1.3.9. For any set K of words, let F (K) denote the set of factors
of the words in K. We are going to verify a formula involving the shuffle of
two sets of words. Formally, the shuffle operator x is defined inductively
on words by ux ε = ε x u = u and

ua x vb =
{

(ux v)a if a = b

(ua x v)b ∪ (ux vb)a otherwise.

The shuffle of two sets is the union of the shuffles of the words in the sets.
The formula is the following

F ((ab)∗) x F ((ab)∗) = F ((ab + ba)∗) . (1.3.1)

This equality is the basis of a card trick known as Gilbreath’s card trick (see
Notes).
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(a) F ((ab)∗)

1,1 1,2

2,1 2,2

a

a

a

b
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b

b

(b) F ((ab)∗)x F ((ab)∗)

Figure 1.15. Two automata, recognizing F ((ab)∗) and F ((ab)∗)x
F ((ab)∗).
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(a) After renaming
states.

1234

234

123

4

1
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b

a

ba

a

b

a

b

a

(b) Deterministic automaton.

Figure 1.16. On the right, a deterministic automaton recognizing the set
F ((ab)∗)x F ((ab)∗) which is recognized by the automaton on the left.

In order to prove this formula, we apply a general principle that is valid
for regular sets: to compute deterministic automata for each side of the
equation and to check that they are equivalent.

The set F ((ab)∗) is recognized by the automaton on the left of
Figure 1.15. It is easy to see that the set F ((ab)∗) x F ((ab)∗) is recognized
by the nondeterministic automaton on the right of Figure 1.15, realized
by forming pairs of states of the first automaton with action on either
component.

To compute a deterministic automaton, we first renumber the states as
indicated on the left of Figure 1.16. The result of the determinization is
shown on the right.

Next, an automaton recognizing (ab + ba)∗ is shown on the left of
Figure 1.17.

To recognize the set F ((ab + ba)∗), we make all states initial and
terminal in this automaton. The determinization algorithm is then applied
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1 2 3
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(a) An automaton recogniz-
ing the set F ((ab + ba)∗).
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(b) A deterministic automaton for this set.

Figure 1.17. Two automata recognizing the set F ((ab + ba)∗).

with the new initial state {1, 2, 3}. The result is shown on the right of
Figure 1.17. This automaton is clearly equivalent to the automaton of
Figure 1.16. This proves Formula 1.3.1.

1.3.4. Minimization algorithms

A given regular language S ⊂ A∗ may be recognized by several different
automata. There is however a unique one with a minimal number of states,
called the minimal automaton of S. We will give a description of the minimal
automaton and several algorithms allowing it to be computed.

The abstract definition is quite simple: the states are the nonempty sets
of the form x−1S for x ∈ A∗ where

x−1S = {y ∈ A∗ | xy ∈ S} .

The initial state is the set S itself (corresponding to x = ε) and the final
states are the sets x−1S with x ∈ S (or, equivalently, such that ε ∈ x−1S).
There is a transition from the state x−1S by letter a ∈ A to the state (xa)−1S.

Example 1.3.10. Let us consider the set Sn of words over A = {a, b} that
have a symbol a at the (n + 1)th position before the end for some n ≥ 0.
Formally, Sn = A∗aAn. For any x = a0a1 · · · am ∈ A∗, one has

x−1Sn = SnU
⋃

i∈P (x)

An−i

where P (x) = {i | 0 ≤ i ≤ n and am−i = a}. Thus the minimal automaton
of Sn has 2n+1 states since its set of states is the set of all subsets of
{0, 1, . . . , n}. The set S is also recognized by the nondeterministic auto-
maton of Figure 1.18. This example shows that the size of the minimal
automaton can be exponential, compared with the size of a nondeterministic
one.

https://doi.org/10.1017/CBO9781107341005.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.002


28 1. Algorithms on Words

0 1 2 . . . n n + 1

a, b

a a, b a, b

Figure 1.18. Recognizing the words which have the letter a at the n + 1th
position before the end.

A general method for computing the minimal automaton has three
steps.

(i) Compute a nondeterministic automaton (e.g., by the method explained
in the next section).

(ii) Apply the determinization algorithm of the preceding Section 1.3.3
and remove all states that are not accessible or coaccessible. The
resulting automaton is deterministic and trim.

(iii) Apply a minimization algorithm, as described below.
To minimize a deterministic automaton, one uses a sequence of refine-

ments of equivalence relations π0 ≥ π1 ≥ · · · ≥ πn in such a way that the
classes of πn are the states of the minimal automaton.

The equivalence relation πn is called the Nerode equivalence of the
automaton. It is characterized by

p ∼ q if and only if Lp = Lq,

where Lp is the set of words recognized by the automaton with initial
state p.

The sequence starts with the partition π0 in two classes separating the
terminal states from the other ones. Further, one has p ≡ q mod πk+1 if
and only if

p ≡ q mod πk and p · a ≡ q · a mod πk for all a ∈ A.

In the above condition, it is understood that p · a = ∅ if and only if q · a =
∅. A partition of a set with n elements can be simply represented by a
function assigning to each element x its class c(x).

The computation of the final partition is realized by the following
algorithm known as Moore’s algorithm.

MooreMinimization()
1 f ← InitialPartition()
2 do e ← f

3 � e is the old partition, f is the new one
4 f ← Refine(f )
5 while e �= f

6 return e
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The refinement is realized by the following function in which we de-
note by a−1e the equivalence p ≡ q mod a−1e if and only if p · a ≡ q · a

mod e. Again, it is understood that p · a is defined if and only if q · a is
defined.

Refine(e)
1 for a ∈ A do
2 g ← a−1e

3 e ← Intersection(e, g)
4 return e

The computation of the intersection of two equivalence relations on an
n-element set can be done in time O(n2) by brute force. A refinement using
a radix sort of the pairs of classes improves the running time to O(n). Thus,
the function Refine() runs in time O(nk) on an automaton with n states
on an alphabet with k symbols. The loop in the function Partition()
is executed at most n times since the sequence of successive partitions is
strictly decreasing. Moore’s algorithm itself thus computes in time O(n2k)
the minimal automaton equivalent to a given automaton with n states and k

letters.

Example 1.3.11. Let us consider the set S = (a + bc + ab + c)∗. A
nondeterministic automaton recognizing S is represented on the left of
Figure 1.19. The determinization algorithm produces the automaton on the
right of the figure.

Applying a renumbering of the states, we obtain the automaton on the
left of Figure 1.20. The minimization procedure starts with the partition

12 3

b

c

a, c

a

b

(a) A nondeterministic automaton.

1 13

2 12

c

a

a

c

ba
c

b

bc

(b) The determinized version.

Figure 1.19. Recognizing the set (a + bc + ab + c)∗
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1 3

2 4

c

a

a

c

ba
c

b

bc

(a) Renaming the states.

12 3

b

c

c a

a

b, c

(b) The minimal automaton.

Figure 1.20. The minimization algorithm

e = {1, 3, 4}{2}. Since a−1e = e, the action of letter a does not refine e. On
the contrary, b−1e = {1, 4}{2}{3} and thus e is refined to f = {1, 4}{2}{3}
which is found to be stable. Thus we obtain the minimal automaton repre-
sented on Figure 1.20 on the right.

There is a more complicated but more efficient algorithm, known as
Hopcroft’s algorithm, which can be used to minimize deterministic
automata. We assume that the automaton is complete.

The idea is to replace the global operation of intersection of two parti-
tions by the refinement of a partition by a single block. Let P be a set of
states, and let a be a letter. Let a−1P = {q | q · a ∈ P }. A set B of states
is refined into B ′ and B ′′ by the pair (P, a) if the sets B ′ = B ∩ a−1P and
B ′′ = B \ B ′ are both nonempty. Otherwise, B is said to be stable by the
pair (P, a).

The algorithm starts with the partition composed of the set T of terminal
states and its complement T c. It maintains a set S of pairs (P, a) formed of
a set of states and a letter.

The main loop selects a pair (P, a) from the set S. Then for each block B

of the current partition which is refined by (P, a) into B ′, B ′′, one performs
the following steps

1. replace B by B ′ and B ′′ in the current partition,
2. for each letter b,

(a) if (B, b) is in S, then replace (B, b) by (B ′, b) and (B ′′, b)
in S,

(b) otherwise add to S the pair (C, b) where C is the smaller of the
sets B ′ and B ′′.
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If, instead of choosing the smaller of the sets B ′ and B ′′, one adds both sets
(B ′, b) and (B ′′, b) to S, the algorithm becomes a complicated version of
Moore’s algorithm. The reason why one may dispense with one of the two
sets is that when a block B is stable by (P, a) and when P is partitioned into
P ′ and P ′′, then the refinement of B by (P ′, a) is the same as the refinement
by (P ′′, a). The choice of the smaller one is the essential ingredient to the
improvement of the time complexity from O(n2) to O(n log n).

This is described in the following algorithm.

HopcroftMinimization()
1 e ← {T , T c}
2 C ← the smaller of T and T c

3 for a ∈ A do
4 Add((C, a), S)
5 while S �= ∅ do
6 (P, a) ← First(S)
7 for B ∈ e such that B is refined by (P, a) do
8 B ′, B ′′ ← Refine(B, P, a)
9 BreakBlock(B, B ′, B ′′, e)

10 � breaks B into B ′, B ′′ in the partition e

11 Update(S, B, B ′, B ′′)

where Update() is the function that updates the set of pairs used to refine
the partition, defined as follows.

Update(S, B, B ′, B ′′)
1 C ← the smaller of B ′ and B ′′
2 for b ∈ A do
3 if (B, b) ∈ S then
4 Replace((B, b), S, (B ′, b), (B ′′, b))
5 else Add((C, b), S)

A careful implementation of the algorithm leads to a time complexity
in O(kn log n) on an automaton with n states over k letters. One of the key
points is the implementation of the function BreakBlock(B, B ′, B ′′, e)
which has to be implemented so as to run in time O(Card(B)). The func-
tion actually replaces B by B ′′ and adds a new block B ′. For this, one
traverses B (in linear time) and removes each element which is in B ′
from B in constant time and adds it to the new block, also in constant
time.

The states of a class are represented by a doubly linked list, one list for
each class of the partition (see Figure 1.21). This representation allows the
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0 1 2 3 4 5

class 1 2 0 2 0 2

0 1 2

card 2 1 3

(a) The classes and their size.

0 1 2

block

0 1 2 3 4 5

location

2

4

0 1

3

5

(b) The blocks of the partition.

Figure 1.21. A partition of Q = {0, . . . , 5}. The class of a state is the
integer in the array class. The size of a class is given in the array card.
The elements of a block are chained in a doubly-linked list pointed to by
the entry in the array block. Each cell in these lists can be retrieved in
constant time by its state using the pointer in the array location.

element to be removed from the list, and so also from the class, in constant
time. An array of pointers indexed by the states allows the retrieval of the
location of a state in its block in the partition.

In order to be able to check whether a block B is refined by a pair (P, a),
one maintains an array that counts, for each block B, the number of states
of a−1P that are found to be in B. The test of whether B is actually refined
checks whether this number is both nonzero and strictly less than Card B.
This requires that a table be maintained containing the number of elements
of the blocks in the current partition.

To summarize, an arbitrary deterministic finite automaton with n states
can be minimized in time O(n log n).

A trim automaton recognizing a finite set of words can be minimized
in linear time with respect to the size of the automaton. Let A be a finite
automaton with set of states Q recognizing a finite set of words. Since
the automaton is trim, it is acyclic. Thus we are faced again with DAWGs
already seen in Section 1.3.1.

The height h(q) of a state q is the length of the longest path in A starting
in q. Equivalently, it is the length of a longest word in the language Lq of
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words recognized by the automaton with initial state q. Of course, for any
edge (p, a, q) one has h(p) > h(q). Since the automaton is trim, its initial
state is the unique state of maximal height. The heights satisfy the formula

h(p) =
{

0 if p has no outgoing edge,
1 + max(p,a,q) h(q) otherwise.

In the second case, the maximum is taken over all edges starting in p.
Observe that this formula leads to an effective algorithm for computing
heights because the automaton has no cycle.

The parameters in the algorithm are the number n of states of A, the
number m of transitions, and the size k of the underlying alphabet. Of
course, m ≤ n · k. In practical situations like large dictionaries, the number
m is much smaller than the product. As we will see, the minimization
algorithm can be implemented in time O(n + m + k).

A word about the representation of A. Since there are few edges, a
convenient representation is to have, for each state p, a list of outgoing
edges, each represented by the pair (a, q) such that (p, a, q) is a transition.
States are numbered, so traversal, marking, copying, and sorting are done
by integers. Also, terminal states are represented in such a way that one
knows in constant time whether a state is terminal.

It is easily seen that two states q and q ′ can be merged into a single state
in the minimal automaton only if they have the same height. Therefore,
the Nerode equivalence is a refinement of the partition into states of equal
height.

Recall that the Nerode equivalence is defined by

p ∼ q if and only if Lp = Lq .

Recall also that

p ∼ q if and only if (p ∈ T ⇔ q ∈ T ) and p · a ∼ q · a for all a ∈ A
(1.3.2)

This formula shows that if the equivalence is known for all states up to
some height h − 1, it can be computed, by this formula, for states of height
h. To describe this in more detail, we associate, to each state q, a sequence
of data called its signature. It has the form

σ (q) = (s, a1, ν(q1), a2, ν(q2), . . . , ar , ν(qr ))

where s = 0 if q is a nonterminal state and s = 1 if q is a terminal state,
where (q, a1, q1), . . . , (q, ar, qr ) are the edges starting in q, and where ν(p)
is the class of the state p. We consider that classes of states are represented
by integers. We assume moreover that a1, . . . , ar are in increasing order.
This can be realized by a bucket sort in time O(n + m + k).
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Then Equation 1.3.2 means that

p ∼ q if and only if σ (p) = σ (q) .

Thus, a signature is a sequence of integers of length at most 1 + 2k,
(k = CardA) and each element in this sequence has a value bounded
by max(2, k, n). Observe that the sum of the lengths of all signatures is
bounded by 2m + n, where m is the number of transitions. In fact, the sig-
nature of state p is merely a representation of the transitions in the minimal
automaton starting in the state ν(p).

For computing the Nerode equivalence of the set Qh of states of height
h, one computes the set of signatures of states in Qh. This set is sorted by
a radix sort according to their signatures, viewed as vectors over integers.
Then states with equal signatures are consecutive in the sorted list and the
test σ (p) = σ (q) for equivalence can be done in linear time.

Here is the algorithm

AcyclicMinimization()
1 � ν[p] is the state corresponding to p in the minimal automaton
2 (Q0, . . . , QH ) ← PartitionByHeight(Q)
3 for p in Q0 do
4 ν[p] ← 0
5 k ← 0
6 for h ← 1 to H do
7 S ← Signatures(Qh, ν)
8 P ← RadixSort(Qh, S) � P is the sorted sequence Qh

9 p ← first state in P

10 ν[p] ← k

11 k ← k + 1
12 for each q in P \ p in increasing order do
13 if σ (q) = σ (p) then
14 ν[q] ← ν[p]
15 else ν[q] ← k

16 (k, p) ← (k + 1, q)
17 return ν

A usual topological sort can implement PartitionByHeight(Q) in
time O(n + m).

Each signature is then computed in time proportional to its size, so the
whole set of signatures is computed in time O(n + m). Each radix sort can
be done in time proportional to the sum of the sizes of the signatures, with
an overhead of one O(k) initialization of the buckets. So the total time for
the sort is also O(n + m + k).
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Figure 1.22. A trim automaton recognizing a finite set.

Observe that the test at line 13 is linear in the length of the signatures,
so the whole algorithm is in time O(k + n + m).

Example 1.3.12. Consider the automaton of Figure 1.22. The computa-
tion of the heights gives the follow partition:

Q0 = {4, 8}, Q1 ={3, 7}, Q2 ={2, 6, 10, 11}, Q3 = {1, 5, 9}, Q4 = {0}.
States of height 0 are always final states, and are merged into a class
numbered 0.

3 : 0a0b0
7 : 0a0b0

(a) Signatures of
states of height 1.

0 1 2 3 4 5 6 7 8 9 10 11
ν 1 0 1 0

(b) The corresponding states of the minimal automaton.

The states of height 1 have the signatures given above. Observe that in
a signature, the next state appearing in an edge is replaced by its class. This
can be done because the algorithm works by increasing height. These states
are merged into a class numbered 1.

The radix sort of the four states of height 2 gives the sequence
(10, 11, 2, 6), so 10, 11 are grouped into a class 2 and 2, 6 are grouped
into a class 3.

2 : 0a1b1
6 : 0a1b1

10 : 0a1b0
11 : 0a1b0

(c) Signatures of
states of height 2.

0 1 2 3 4 5 6 7 8 9 10 11
ν 3 1 0 3 1 0 2 2

(d) The corresponding states of the minimal automaton.
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Figure 1.23. The corresponding minimal automaton.

The states of height 3 all give singleton classes, because the signatures
are different. This is already clear because they have distinct lengths. In
other terms, a refinement of the algorithm could partition the states of the
same height into subclasses according to their width, that is the number of
edges starting in each state.

Thus, the minimal automaton has 8 states. It is given in Figure 1.23.

1 : 0a3b2
5 : 0a3
9 : 1a3b2c2

(a) Signatures of
states of height 3

0 1 2 3 4 5 6 7 8 9 10 11
ν 7 5 3 1 0 4 3 1 0 6 2 2

(b) The final state vector of the minimal automaton.

1.4. Pattern matching

The specification of simple patterns on words uses the notion of a regular
expression. It is an expression built using letters and a symbol representing
the empty word, and three operators:

• union, denoted by the symbol ‘+’,
• product, denoted by mere concatenation,
• star denoted by ‘*’.

These operators are used to denote the usual operations on sets of words.
The operations are the set union, set product

XY = {xy | x ∈ X , y ∈ Y}
and the star operation

X ∗ = {x1 · · · xn | n ≥ 0, x1, . . . , xn ∈ X } .

A regular expression defines a set of words W (e), by using recursively the
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(a) Empty set.

ε

(b) Empty word.

a

(c) Letter a.

Figure 1.24. Automata for the empty set, for the empty word, and for a
letter.

operations of union, product, and star.

W (e + f ) = W (e) ∪ W (f ), W (ef ) = W (e)W (f ), W (e∗) = W (e)∗.

Words in W (e) are said to match the expression e. The problem of checking
whether a word matches a regular expression is called a pattern matching
problem.

For instance, e = (a + b)∗abaab(a + b)∗ is a regular expression. The
set W (e) is the set of words on A = {a, b} having abaab as a factor.
More generally, for any word w, the words matching the regular expression
A∗wA∗ are those having w as a factor. Thus, the problem of checking
whether a word is a factor of another is a particular case of a pattern
matching problem. The same holds for subwords.

For each regular expression e, there exists a finite automaton recognizing
the set of words W (e). In other terms, W (e) is a regular set. A proof of this
assertion uses an algorithm for building such a finite automaton, inductively
on the structure of the expression. Several constructions exist that use
slightly different normalizations of automata or of expressions. The main
variations concern the use of ε-transitions. We now present a construction
which makes extensive use of ε-transitions. The main advantage is its
simplicity, and the small size of the resulting automaton.

One starts with simple automata recognizing respectively ε and a, for
any letter a. They are represented in Figure 1.24. One further uses a recur-
sive construction on automata with three constructs implementing union,
product, and star. The construction is indicated in Figure 1.25. It constructs
finite automata with several particular properties. First, each state has at
most two edges leaving it. If there are two edges, they have each an empty
label. Also, there is a unique initial state i and a unique terminal state t .
Finally, there is no edge entering i and no edge leaving t . We call such an
automaton a pattern matching automaton.

We use a specific representation of nondeterministic automata tailored
to the particular automata constructed by the algorithm. A conversion to
the representation described above is straightforward. First, an automaton
A has a state Initial (the initial state) and a state Terminal (the terminal
state). Then, there are two functions Next1() and Next2(). For each state
p, Next1(p) = (a, q) if there is an edge (p, a, q). If there is an edge
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Figure 1.25. Automata for union, product, and star.

(p, ε, q), then Next1(p) = (ε, q). If there is a second edge (p, ε, q ′), then
Next2(p) = (ε, q ′). If no edge starts from p, then Next(p) is undefined.

We use a function NewAutomaton() to create an automaton with just
one initial state and one terminal state and no edges. The function creating
an automaton recognizing a is given in Algorithm AutomatonLetter.

AutomatonLetter(a)
1 A ← NewAutomaton()
2 Next1(InitialA) ← (a, TerminalA)
3 return A

The automata recognizing the union, the product, and the star are
depicted in Figure 1.25. Boxes represent automata, up to their initial
and terminal state, which are drawn separately. All drawn edges are
ε-transitions. The implementation of the corresponding three functions
AutomataUnion(), AutomataProduct(), and Automaton-
Star() is straightforward.

AutomataUnion(A,B)
1 C ← NewAutomaton()
2 Next1(InitialC) ← (ε, InitialA)
3 Next2(InitialC) ← (ε, InitialB)
4 Next1(TerminalA) ← (ε, TerminalC)
5 Next1(TerminalB) ← (ε, TerminalC)
6 return C
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i t

a

b

b

a a

b

Figure 1.26. The automaton for the expression (a + b)∗b(a + 1)(a + b)∗.

The function AutomataProduct() uses a function Merge() that
merges two states into a single one.

AutomataProduct(A,B)
1 C ← NewAutomaton()
2 InitialC ← InitialA

3 TerminalC ← TerminalB

4 Merge(TerminalA, InitialB)
5 return C

AutomatonStar(A)
1 B ← NewAutomaton()
2 Next1(InitialB) ← (ε, InitialA)
3 Next2(InitialB) ← (ε, TerminalB)
4 Next1(TerminalA) ← (ε, InitialA)
5 Next1(TerminalA) ← (ε, TerminalB)
6 return C

The practical implementation of these algorithms on a regular expres-
sion is postponed to the next section. As an example, consider the automaton
in Figure 1.26. It has 21 states and 27 edges. The size of the pattern match-
ing automaton recognizing the set of words matching a regular expression
is linear in the size of the expression. Indeed, denote by n(e) the number of
states of the pattern matching automaton corresponding to the expression
e. Then

n(a) = 2 for each letter a

n(ε) = 2
n(e + f ) = n(e) + n(f ) + 2

n(ef ) = n(e) + n(f ) − 1
n(e∗) = n(e) + 2

Thus n(e) ≤ 2|e|, where |e| is the length of the expression e (discarding
the left and right parentheses). The number of edges is at most twice the
number of states. Thus the space complexity of the resulting algorithm is
linear in the size of the expression.
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To realize the run of such an automaton on a word w, one uses Algo-
rithm IsAccepted. We observe that in a pattern matching automaton, the
out-degree of a state is at most 2. Therefore, the time complexity of a call
IsAccepted(w) is O(nm), where n is the size of the regular expression
and m = |w|.

In some particular cases, the quadratic complexity O(nm) can be
replaced by O(n + m). This is the case in particular for the string matching
problem treated in Algorithm SearchFactor.

1.5. Transducers

Beyond formal languages, relations between words are a very natural con-
cept. We consider relations over words, but most of the general notions
work for relations over arbitrary sets.

Formally, a relation ρ between words over the alphabet A and words
over the alphabet B is just a subset of the Cartesian product A∗ × B∗. We
call it a relation from A∗ to B∗. Actually, such a relation can be viewed as
a partial function fρ from A∗ to the set P(B∗) of subsets of B∗ defined by

fρ(x) = {y ∈ B∗ | (x, y) ∈ ρ}, x ∈ A∗ .

The inverse of a relation σ from A∗ to B∗ is the relation σ−1 from B∗ to
A∗ defined by

σ−1 = {(v, u) | (u, v) ∈ σ }.
The composition of a relation σ from A∗ to B∗ and a relation τ from B∗
to C∗ is the relation from A∗ to C∗ defined by (x, z) ∈ σ ◦ τ if and only if
there exists y ∈ B∗ such that (x, y) ∈ σ and (y, z) ∈ τ . The reader should be
aware that the composition of relations goes the other way round compared
to the usual composition of functions. The function fσ◦τ defined by the
relation σ ◦ τ is fσ◦τ (x) = fτ (fσ (x)). One can overcome this unpleasant
aspect by writing the function symbol on the right of the argument.

A particular case of a relation ρ fromA∗ toB∗ is that of a partial function
from A∗ to B∗. In this case, fρ is a (partial) function from A∗ into B∗.

Example 1.5.1. Consider the relation γ ⊂ A∗ × A∗ defined by (x, y) ∈ γ

if and only if x and y are conjugate. Clearly, γ = γ −1. The image of a word
x is the set of conjugates of x.

Example 1.5.2. Consider the relation µ ⊂ A∗ × A∗ defined by

µ = {(a1a2 · · · an, anan−1 · · · a1) | a1, . . . , an ∈ A} .

Clearly, µ = µ−1 and µ ◦ µ is the identity relation.
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Example 1.5.3. For the relation ρ ⊂ A∗ × A∗ defined by doubling each
letter:

ρ = {(a1a2 · · · an, a
2
1a

2
2 · · · a2

n) | a1, . . . , an ∈ A}
the image of a word x = a1a2 · · · an is a2

1a
2
2 · · · a2

n. The inverse is only
defined on words of the form a2

1a
2
2 · · · a2

n.

The set of relations on words is subject to several additional operations. The
union of two relations ρ, σ ⊂ A∗ × B∗ is the set union ρ ∪ σ . The product
of ρ and σ ⊂ A∗ × B∗ is the relation

ρσ = {(ur, vs) | (u, v) ∈ ρ, (r, s) ∈ σ }.
The star of σ ⊂ A∗ × B∗ is the relation

σ ∗ = {(u1u2 · · · un, v1v2 · · · vn) | (ui, vi) ∈ σ, n ≥ 0}.
A relation from A∗ to B∗ is rational if it can be obtained from subsets of

(A ∪ {ε}) × (B ∪ {ε}) by a finite number of operations of union, product,
and star.

A rational relation that is a (partial) function is called a rational function.

Example 1.5.4. The doubling relation is rational since it can be written,
e.g., on the alphabet {a, b} as ((a, aa) ∪ (b, bb))∗. More generally, for any
morphism f fromA∗ toB∗, the relation ρ = {(x, f (x) | x ∈ A∗} is rational.
Indeed, ρ = (∪a∈A(a, f (a)))∗. Thus morphisms are rational functions.

In the same way that regular expressions correspond to automata, ra-
tional relations correspond to a kind of automata called transducers which
are just automata with output. Formally, a transducer over the alphabets A,
B is an automaton in which the edges are elements of Q × A∗ × B∗ × Q.
Thus each edge (p, u, v, q) has an input label u which is a word over the
alphabet A and an output label v which is a word over the output alphabet
B. The transducer is denoted (Q, E, I, T ) where Q is the set of states, E

the set of edges, I the set of initial states, and T the set of final states.
There are two “ordinary” automata corresponding to a given transducer.

The input automaton is obtained by using only the input label of each edge.
The output automaton is obtained by using only the output labels.

The terminology introduced for automata extends naturally to transduc-
ers. In particular, a path is labelled by a pair (x, y) formed of its input label
x and its output label y. Such a path from p to q is often denoted p −→x|y q.
Just as a finite automaton recognizes a set of words, a transducer recognizes
or realizes a relation. The algorithms of Section 1.4 can easily be adapted
to build a transducer corresponding to a given rational relation.
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input

q

output

Figure 1.27. A transducer reads the input and writes the output.

a | A

b | B

· · ·

Figure 1.28. From lowercase to uppercase.

As for automata, we allow in the definition of transducers the input and
output labels to be arbitrary, possibly empty, words. The behaviour of the
transducer can be viewed as a machine reading an input word and writing
an output word through two “heads” (see Figure 1.27). The mechanism is
asynchronous in the sense that the two heads may move at different speeds.

The particular case of synchronous transducers is important. A trans-
ducer is said to be synchronous if, for each edge, the input label and the
output label are letters. Not every rational relation can be realized by a
synchronous transducer. Indeed, if ρ is realized by a synchronous trans-
ducer, then ρ is length-preserving. This means that whenever (x, y) ∈ ρ,
then |x| = |y|.

A transducer is literal if for each edge the input label and the output label
are letters or the empty word. It is not difficult to show that any transducer
can be replaced by a literal one.

Example 1.5.5. The relation between a word written in lower-case letters
a, b, c, . . . and the corresponding upper-case lettersA, B, C, . . . is rational.
Indeed, it is described by the expression ((a, A) ∪ (b, B) ∪ . . .)∗. This re-
lation is realized by the transducer of Figure 1.28. This transducer is both
literal and synchronous.

Example 1.5.6. The Fibonacci morphism defined by a → ab, b → a is
realized by the transducer on the left of Figure 1.29. The transducer on the
right of Figure 1.29 realizes the same morphism. It is literal.
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0a | ab b | a 0b | a 1

a | a

ε | b

Figure 1.29. The Fibonacci morphism.

0 1a | a b | b

b | a

a | b

0 1a | a b | b

a | b

b | a

Figure 1.30. The circular right shift on words ending with a and its inverse.

Example 1.5.7. The transducer represented on the left of Figure 1.30
realizes the circular right shift on a word on the alphabet {a, b} ending with
the letter a. The transformation consists in shifting cyclically each symbol
one place to the right. For example

a b b a b a

a a b b a b

The restriction to words ending with the letter a is for simplicity (and
corresponds to the choice of state 0 as initial and final state in the automaton
on the left of Figure 1.30). The inverse of the right shift is the left shift which
shifts all symbols cyclically one place to the left. Its restriction to words
beginning with a is represented on the right of Figure 1.30. The composition
of both transformations is the identity restricted to words ending with the
letter a plus the empty word.

An important property of rational relations is that the composition of
two rational relations is again a rational relation. The construction of a
transducer realizing the composition is the following. We start with a trans-
ducer S = (Q, E, I, T ) over A, B and a transducer S′ = (Q′, E′, I ′, T ′)
over B, C. We suppose that S and S′ are literal (actually we shall only
need that the output automaton of S is literal and that the input automa-
ton of S′ is literal). We build a new transducer U as follows. The set
of states of U is Q × Q′. The set of edges is formed of three kinds of
edges:

1. The set of edges (p, p′)
a|c−→ (q, q ′) for all edges p

a|b−→ q in E and
p′ −→b|c q ′ in E′.

2. The set of edges (p, p′)
ε|c−→ (p, q ′) for p′ ε|c−→ q ′ in E′.

3. The set of edges (p, p′)
a|ε−→ (q, p′) for (p

a|ε−→ q) in E.
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0, 0

1, 0

1, 1

0, 1

a | a

b | a b | a

b | b

a | ba | b

b | b a | a

Figure 1.31. The right 2-shift.

The set of initial states of U is I × I ′ and the set of terminal states is T × T ′.
The definition of the edges implies that

(p, r)
x|z−→ (q, s) ⇐⇒ ∃y : p

x|y−→ q and r
y|z−→ s.

This allows us to prove that the composed transducer realizes the composi-
tion of the relations.

Example 1.5.8. The composition of the circular right shift of Exam-
ple 1.5.7 with itself produces the circular right 2-shift which consists in
cyclically shifting the letters two places to the right for words ending with
aa (see Figure 1.31).

For the implementation of transducers we use a function Next(p) which
associates to each state p the set of edges beginning at p, and two sets
Initial and Terminal to represent the initial and terminal states.

The algorithm computing the composition of two transducers is easy to
write.

ComposeTransducers(S,T)
1 � S and T are literal transducers
2 U ← NewTransducer()
3 for each edge (p, a, b, q) of S do
4 for each edge (r, b, c, s) of T do
5 add ((p, r), a, c, (q, s)) to the edges of U
6 for each edge (p, a, ε, q) of S do
7 for each state r of T do
8 add ((p, r), a, ε, (q, r)) to the edges of U
9 for each edge (r, ε, c, s) of T do

10 for each state p of S do
11 add ((p, r), ε, c, (p, s)) to the edges of U
12 InitialU ← InitialS × InitialT

13 TerminalU ← TerminalS × TerminalT

14 return U
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0 1
ε | a

2
ε | b

0, 0 1, 1
ε | a

1, 0
ε | b

2, 0
ε | a

Figure 1.32. The image f (x) = aba of x = ab by the Fibonacci
morphism.

The composition can be used to compute an automaton that recognizes
the image of a word (and more generally of a regular set) by a rational
relation. Indeed, let ρ be a rational relation from A∗ to B∗, let x be a
word over A. Let R be a literal transducer realizing ρ, and let A be a
literal transducer realizing the relation {(ε, x)}. Let T = Compose(A,R)
be the composition of A and R. The image f (x) = {y ∈ B∗ | (x, y) ∈ ρ}
is recognized by the output automaton of T.

Example 1.5.9. Consider the word x = ab and the Fibonacci morphism
of Example 1.5.6. On the left of Figure 1.32 is a transducer realizing {(ε, x)},
and on the right the transducer obtained by composing it with the literal
transducer of Figure 1.29. The composition of the transducers actually
contains an additional edge (0, 1) −→ε|b (0, 0) which is useless because the
state (0, 1) is inaccessible from the initial state.

A sequential transducer over A, B is a triple (Q, i, T ) together with a
partial function

Q × A → B∗ × Q

which breaks up into a next state function Q × A → Q and an out-
put function Q × A → B∗. As usual, the next state function is denoted
(q, a) �→ q · a and the output function (q, a) �→ q ∗ a. In addition, the ini-
tial state i ∈ Q has a word λ attached to it called the initial prefix and T

is actually a (partial) function T : Q → B∗ called the terminal function.
Thus, an initial prefix and additional suffix can be added to all outputs.

The next state and the output functions are extended to words by p ·
(xa) = (p · x) · a and p ∗ (xa) = (p ∗ x)(p · x) ∗ a. The second formula
means that the output p ∗ (xa) is actually the product of the words p ∗ x

and q ∗ a where q = p · x. The (partial) function f from A∗ to B∗ realized
by the sequential transducer is defined by f (x) = λvτ where u is the initial
prefix, v = i ∗ x and τ = T (i · x). A function from A∗ to B∗ that is realized
by a sequential transducer is called a sequential function.

Example 1.5.10. The circular left shift on words over {a, b} beginning
with a is realized, on the right of Figure 1.30, by a transducer which is
not sequential (two edges with input label a leave state 0). It can also be
computed by the sequential transducer of Figure 1.33 with the initial pair
(ε, 0) and the terminal function T (1) = a.
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0 1
a | ε a

a | a

b | b

Figure 1.33. A sequential transducer for the circular left shift on words
beginning with a.

The composition of two sequential functions is again a sequential func-
tion. This is actually a particular case of the composition of rational func-
tions. The same construction is used to compose sequential transducers and
it happens to produce a sequential transducer. We give explicitly the form
of the composed transducer.

Let S = (Q, i, T ) be a sequential transducer over A, B and let S′ =
(Q′, i ′, T ′) be a sequential transducer over B, C. The composition of S and
S′ is the sequential transducer S ◦ S′ with set of states Q′ × Q, initial
state (i ′, i) and terminal states T ′′ = T ′ × T . Observe that we reverse the
order for notational convenience. The next state function and the output
function are given by

(p′, p) · x = (p′ · (p ∗ x), p · x)
(p′, p) ∗ x = p′ ∗ (p ∗ x).

The initial prefix of the composed transducer is the word λ′′ = λ′(i ′ ∗ λ),
and the terminal function T ′′ is defined by

T ′′(q ′, q) = (q ′ ∗ T (q))T ′(q ′ · T (q)) .

The value of the terminal function T ′′ on (q ′, q) is indeed obtained by first
computing the value of the terminal function T (q) and then fitting this word
in the transducer S′ at state q ′.

For the implementation of sequential transducers we use a partial func-
tion Next(p, a) = (p ∗ a, p · a) grouping the output function and the next
state function. There is also a pair Initial = (λ, i) ∈ B∗ × Q for the initial
prefix and the initial state and a partial function Terminal(q) returning
the terminal suffix for each terminal state q ∈ T .

1.5.1. Determinization of transducers

Contrary to ordinary automata, it is not true that any finite transducer is
equivalent to a finite sequential one. It can be verified that a transducer is
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0 1a | a b | b

b | a

a | b

2 3a | a b | b

b | a

a | b

Figure 1.34. The circular right shift.

equivalent to a sequential one if and only if it realizes a partial function and
if it satisfies a condition called the twinning property defined as follows.
Consider a pair of paths with the same input label and of the form

i
u|u′
−→ q

v|v′
−→ q

i ′
u|u′′
−→ q ′ v|v′′

−→ q ′

where i and i ′ are initial states. Two paths such as these are called twin. The
twinning property is that for any pair of twin paths, the output is such that
v′, v′′ are conjugate and u′v′v′ · · · = u′′v′′v′′ · · ·.
Example 1.5.11. The circular right shift on all words over {a, b} is real-
ized by the transducer of Figure 1.34. It is not a sequential function because
the last letter cannot be guessed before the end of the input. Formally, this
is visible because of the twin paths

0
b|a−→ 1

ab|ba−→ 1

and

3
b|b−→ 3

ab|ba−→ 3,

with distinct outputs ababa · · · and bbababa · · ·.
The computation of an equivalent sequential transducer is a variant of
the determinization algorithm of automata. The main difference is that it
may fail to terminate since, as we have seen before, it cannot always be
performed successfully. We start with a transducer A which is supposed
to be equivalent to a sequential one. We suppose that A is literal (or,
at least, that its input automaton is literal) and trim. The states of the
equivalent sequential transducer B are sets of pairs (u, q) ∈ B∗ × Q. A pair
(u, q) ∈ B∗ × Q is called a half-edge. The states are computed by using in
a first step a function Next() represented below. The value of Next(S, a)
on a set S of half-edges and a letter a is the union, for (u, p) ∈ S of the set
of half-edges (uvw, r) such that there are, in A,

(i) an edge p
a|v−→ q,

(ii) and a path q
ε|w−→ r .
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We use a function NextA(p, a) returning the set of half-edges (v, q) such
that (p, a, v, q) is an edge of the transducer A.

Next(S, a)
1 � S is a set of half-edges (u, q) ∈ B∗ × Q, and a is a letter
2 T ← ∅
3 for (u, p) ∈ S do
4 for (v, q) ∈ NextA(p, a) do
5 T ← T ∪ (uv, q)
6 return Closure(T )

The set Closure(T ) is the set of half-edges (uw, r) such that there
is a path q −→ε|w r in A for some half-edge (u, q) ∈ T . If the transducer is
equivalent to a deterministic one, this set is finite. The computation of Clo-
sure(T ) uses as usual an exploration of the graph composed of the edges of
the form (q, ε, v, r). A test can be added to check that this graph has no loop
whose label is a nonempty word, that is that the set Closure(T ) is finite.

As an auxiliary step, we compute the following function

Lcp(U )
1 � U is a set of half-edges
2 v ← LongestCommonPrefix(U )
3 U ′ ← Erase(v, U )
4 return (v, U ′)

The function LongestCommonPrefix(U ) returns the longest com-
mon prefix of the words u such that there is a pair (u, q) ∈ U . The function
Erase(v, U ) returns the set of half-edges obtained by erasing the prefix v

of the words u appearing in the half-edges (u, q) ∈ U .
In a second step, we build the set of states and the next state function of

the resulting sequential transducer B. As for automata, we use a function
Explore() which operates on the fly.

Explore(T , S,B)
1 � T is a collection of sets of half-edges
2 � S is an element of T
3 for each letter a do
4 (v, U ) ← Lcp(Next(S, a))
5 NextB(S, a) ← (v, U )
6 if U �= ∅ and U /∈ T then
7 T ← T ∪ U

8 (T ,B) ← Explore(T , U,B)
9 return (T ,B)
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We can finally write the function realizing the determinization of a
transducer into a sequential one.

ToSequentialTransducer(A)
1 � A is a transducer
2 B ← NewSequentialTransducer()
3 I ← Closure({ε} × InitialA)
4 InitialB ← I

5 � T is a collection of sets of half-edges
6 T ← I

7 (T ,B) ← Explore(T , I,B)
8 for S ∈ T do
9 for (u, q) ∈ S do

10 if q ∈ TerminalA then
11 TerminalB(S) ← u

12 return B

Example 1.5.12. The application of the determinization algorithm to the
transducer on the right of Figure 1.30 produces the sequential transducer of
Figure 1.33 as obtained on Figure 1.35.

A test can be added to the determinization algorithm to stop the computation
in case of failure, that is if one of the following situations occurs, implying
that the transducer A is not equivalent to a sequential one. First, one may
check at line 4 in algorithm Explore() that the half edges appearing in
a state of B have a label of bounded length. Indeed, it can be shown that
there exists a constant K , depending on A such that for each half-edge
(u, q) appearing in a state of B, the length of u is bounded by K (otherwise
A does not satisfy the twinning property, see Problem 1.5.1). Second, a test
can be added at line 10 of algorithm ToSequentialTransducer() to
check that if a state of B contains two half-edges (u, q) and (v, r) with q, r

ε,0
a,0
b,1

a | ε a

a | a

b | b

Figure 1.35. A sequential transducer for the circular left shift on words
beginning with a obtained by the determinization algorithm.
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terminal, then u = v (if this condition fails to hold, then A does not realize
a function).

1.5.2. Minimization of transducers

Just as there is a unique minimal deterministic automaton equivalent to a
given one, there is also a unique minimal sequential transducer equivalent
to a given one. The minimization of sequential transducers consists of two
steps. A preliminary one, called normalization, allows output to be produced
as soon as possible. The second step is quite similar to the minimization of
finite automata.

Let A = (Q, i, T ) be a sequential transducer. For each state p ∈ Q,
let us denote by Xp the subset of B∗ recognized by the output automaton
corresponding to A with p as initial state. The normalization consists in
computing for each state p ∈ Q, the longest common prefix πp of all words
in Xp.

The normalized transducer is obtained by modifying the output function
and terminal function of A. We set

λ′ = λπi, p ∗′ a = π−1
p (p ∗ a)πp.a, T ′(p) = π−1

p T (p).

The computation of the words πp can be performed as follows. It uses the
binary operation associating to two words their longest common prefix.
This operation is associative and commutative and will be denoted in this
section by a +, like a sum. We consider the set K = B∗ ∪ 0 formed of
B∗ augmented with 0 as ordered by the relation x ≤ y if x is a prefix of
y or y = 0. For p, q ∈ Q, we denote by Mp,q the element of K which
is the longest common prefix of all words v such that there is an edge
p

a|v−→ q (and Mp,q = 0 if this set is empty). We also consider the Q-vector
N defined by Np = T (p), where T is the terminal function, and Np = 0 if
T (p) is empty. For a Q-vector X of elements of K , we consider the vector
Y = MX + N which is defined for p ∈ Q by

Yp =
∑
q∈Q

Mp,qXq + Np.

Recall that all sums are in fact longest common prefixes and that the right-
hand side of the equation above is the longest common prefix of the words
Mp,qXq , for q ∈ Q, and Np. It can be checked that the function f defined
by f (X) = MX + N is order preserving for the partial order considered
on the set K . Thus, there is a unique maximal fix-point which satisfies
X = MX + N . This is precisely the vector of words P = (πp) we are
looking for. It can be computed as the limit of the decreasing sequence
f k(0) for k = 1, 2, . . .
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0b | a 1

a | a

a | ba

b | ba

b

0b | a 1

a | ab

a | ab

b | a

Figure 1.36. The normalization algorithm.

Example 1.5.13. Consider the transducer realizing the Fibonacci mor-
phism represented on the right of Figure 1.29. The determinization of this
transducer produces the sequential transducer on the left of Figure 1.36.

The computation of the vector P uses the transformation Y = MX + N

with

Y0 = aX1 + aX0 + ε

Y1 = baX0 + baX1 + b

The successive values of the vector P are P = [
0 0

]
, P = [

ε b
]
. The last

value satisfies P = MP + N and thus it is the final one. The normalized
transducer is shown on the right of Figure 1.36.

The algorithm to compute the array P is easy to write.

LongestCommonPrefixArray(A)
1 � P, P ′ are arrays of strings initially null
2 � M is the matrix of transitions of A and N the vector of terminals
3 do P ← P ′
4 P ′ ← MP + N

5 while P �= P ′
6 return P

The expression MP + N should be evaluated using the longest common
prefix for the sum, including those appearing in the product MP . The
normalized transducer can now be computed by the following function.

NormalizeTransducer(A)
1 P ← LongestCommonPrefixArray(A)
2 (λ, i) ← Initial
3 Initial ← (λP [i], i)
4 for (p, a) ∈ Q × A do
5 (u, q) ← Next(p, a)
6 Next(p, a) ← P [p]−1uP [q]
7 for p ∈ Q do
8 T [p] ← P [p]−1T [p]
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0b | a 1

a | ab

a | ab

b | a

0b | a a | ab

Figure 1.37. The minimization algorithm.

The last step of the minimization algorithm minimizes the input au-
tomaton, starting from the initial partition which is defined by p ≡ q if
T (p) = T (q) and if p ∗ a = q ∗ a for each a ∈ A. Any one of the mini-
mization algorithms presented in Section 1.3.4 applies.

Example 1.5.14. We apply the minimization algorithm to the transducer
obtained after normalization on the right of Figure 1.37. The two states are
found to be equivalent.

The result is the sequential transducer on the right of Figure 1.37 which
is of course identical to the transducer on the left of Figure 1.29.

1.6. Parsing

There are other ways, beyond regular expressions, to specify properties of
words. In particular, context-free grammars offer a popular way to describe
words satisfying constraints. These constraints often appear as the syntactic
constraints defining programming languages or also natural languages. The
patterns specified by regular expressions can also be expressed in this way,
but grammars are strictly more powerful.

The problem of parsing or syntax analysis is that of computing the
derivation tree of a word, given a grammar.

A grammar G on an alphabet A is given by a finite set V and a finite
set R ⊂ V × (A ∪ V)∗. The elements of V are called variables and the
elements of R are called the productions of the grammar. A production
(v, w) is often written v → w. One fixes moreover a particular variable
i ∈ V called the axiom. The grammar is denoted by G = (A,V,R, i).

Given two words x, y ∈ (A ∪ V)∗, one writes x → y if y is obtained
from x by replacing some occurrence of v by w for some production (v, w)
in R, that is if x = pvq, y = pwq. One denotes by

∗→ the reflexive and
transitive closure of the relation →. Thus x

∗→ y if there exists a sequence
w0 = x, w1, . . . , wn = y of words wh ∈ (A ∪ V)∗ such that wh → wh+1

for 0 ≤ h < n. Such a sequence is called a derivation from x to y. The
language generated by the grammar G is the set

L(G) = {x ∈ A∗ | i
∗→ x}.
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One may more generally consider the language generated by any variable
v, denoted by L(G, v) = {x ∈ A∗ | v

∗→ x}.
A grammar G = (A,V,R, i) can usefully be viewed as a system of

equations, where the unknowns are the variables. Consider indeed the
system of equations

v = Wv (v ∈ V) (1.6.1)

where Wv = {w | (v, w) ∈ R}. If each variable v is replaced by the set
L(G, v), one obtains a solution of the system of equations which is always
the smallest solution (with respect to set inclusion) of the system.

A variant of the definition of a grammar is often used, where the sets
Wv of Equation (1.6.1) are regular sets. In this case, these sets are usually
described by regular expressions. This is equivalent to the first definition
but often more compact. We give two fundamental examples of languages
generated by a grammar.

Example 1.6.1. As a first example, let A = {a, b}, V = {v}, and R be
composed of the two productions

v → avv, v → b.

The language generated by the grammar G = (A,V,R, v) is known
as the Łukasiewicz language. Its elements can be interpreted as arith-
metic expressions in prefix notation, with a as an operator symbol and
b as an operand symbol. The first words of L(G) in radix order are
b, abb, aabbb, ababb, aaabbbb, aababbb, aabbabb, abaabbb, . . . In al-
phabetic order (with a < b) the last words are . . . , abb, b.

Example 1.6.2. The second fundamental example is the Dyck language
generated by the grammar G with the same sets A,V as above and the
productions

v → avbv, v → ε.

Let M be the language generated by this grammar. Then M = aMbM +
ε. Set D = aMb. Then M = DM + ε. This shows that M = D∗, and
thus D = aD∗b. The set M is called the Dyck language, and D is the set
of Dyck primes. The words in M can be viewed as well-formed sequences
of parentheses with a as left parenthesis and b as right parenthesis. The
words of D are the words in M which are not products of two nonempty
words of M. The first words in radix order in D and in D∗ are respectively
ab, aabb, aababb, . . . , and ε, ab, aabb, abab, aabbab. A basic relation
between the Łukasiewicz set L and the Dyck language M is the equation

L = Mb .
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This is easy to verify, provided one uses the equational form of the grammar.
The set L is indeed uniquely defined as the solution of the equation

L = aLL + b (1.6.2)

Since M = aMbM + ε, multiplying both sides by b on the right, we
obtain

Mb = aMbMb + b .

which is Equation (1.6.2), whence Mb = L. There is a simple combina-
torial interpretation of this identity. Let δ(x) denote the difference of the
number of occurrences of a and of b in the word x. One can verify that a
word x is in M if and only if δ(x) = 0 and δ(p) ≥ 0 for each prefix p of x.
Similarly, a word x is in L if and only if δ(x) = −1 and δ(p) ≥ 0 for each
proper prefix p of x.

A derivation tree for a word w is a tree T labelled by elements of
A ∪ V ∪ {ε} such that:

1. The root of T is labelled by i.
2. For each interior node n, the pair (v, x) formed by the label v of n

and the word x obtained by concatenating the labels of the children
of n in left to right order is an element of R.

3. A leaf is labelled ε only if it is the unique child of its parent.
4. The word w is obtained by concatenating the labels of the leaves of

T in increasing order.
A derivation tree is a useful shorthand for representing a set of derivations.
Indeed, any traversal of the derivation tree produces a derivation represented
by this tree, and conversely (see Figure 1.38 for a derivation tree in the Dyck
grammar).

We now present in an informal manner two strategies for syntax analysis.
Given a grammar G and a word x, we want to be able to check whether x

is in L(G). This amounts to building a derivation i
∗→ x from the axiom i

v

a v

ε

b v

a v

a v

ε

b v

ε

b v

ε

Figure 1.38. A derivation tree for the word abaabb in the Dyck grammar.
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of G to x. There are two main options for doing this. The first one, called
top-down parsing, builds the derivation from left to right (from i to x).
This corresponds to constructing the derivation tree from the root to the
leaves. The second one, called bottom-up parsing, builds the derivation
from right to left (from x backwards to i). This corresponds to constructing
the derivation tree from the leaves to the root.

1.6.1. Top-down parsing

The idea of top-down parsing is to build the derivation tree from the root.
This is done by trying to build a derivation i

∗→ x and from left to right. The
current situation in a top-down parsing is as follows (see Figure 1.39). A
derivation i

∗→ yw has already been constructed. It has produced the prefix y

of x = yz. It remains to build the derivation w
∗→ z. We may assume that w

starts with a variable v, that is w = vs. The key point for top-down parsing
to work is that the grammar fulfils the following requirement. The pair
(v, a), where a is the first letter of z, uniquely determines the production
v → α to be used, which is such that there exists a derivation αs

∗→ z.
Grammars having this property for all x usually are called LL(1) grammars.

We illustrate this method on two examples. The first one is the example
of arithmetic expressions, and the second one concerns regular expressions
already considered in Section 1.4. We consider the following grammar
defining arithmetic expressions with operators + and ∗ and parenthesis. The
grammar allows unambiguous parsing of these expressions by introducing
a hierarchy (expressions > terms > factors) reflecting the usual precedence
of arithmetic operators (∗ > +).

E → E + T | T

T → T ∗ F | F

F → (E) | c

(1.6.3)

where c is any simple character.

i

w

x : y z

Figure 1.39. Top-down parsing.
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We want to write a program to evaluate such an expression using top-
down parsing. The idea is to associate to each variable of the grammar
a function which acts according to the right side of the corresponding
production in the grammar. To manage the word to be analysed, a function
Current() gives the first letter of the suffix of the input word that remains
to be analysed. In syntax analysis, the value of the function Current() is
called the lookahead symbol.

A function Advance() allows one to progress on the input word. The
value of Current() allows one to choose the production of the grammar
that should be used.

As already said, this method will work provided one may uniquely
select, with the help of the value of Current(), which production should
be applied. However, we are already faced with this problem with the
productions E → E + T and E → T , because the first letter of the input
word does not allow us to know whether there is a + sign following the first
term. This phenomenon is called left recursion. To eliminate this feature,
we transform the grammar and replace the two rules above by the equivalent
form E = T (+T )∗. This shows that every expression starts with a term,
and the continuation of the derivation is postponed to the end of the analysis
of the first term.

The function corresponding to the variables E is given in Algo-
rithm EvalExp. It returns the numerical value of the expression.

EvalExp()
1 v ← EvalTerm()
2 while Current() = ‘+’ do
3 Advance()
4 v ← v + EvalTerm()
5 return v

The functions EvalTerm() and EvalFact() corresponding to T and
F are similar.

EvalTerm()
1 v ← EvalFact()
2 while Current() = ‘∗’ do
3 Advance()
4 v ← v ∗ EvalFact()
5 return v

EvalFact()
1 if Current() = ‘(’ then
2 Advance()
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3 v ← EvalExp()
4 Advance()
5 else v ← Current()
6 Advance()
7 return v

The instruction at line 5 of the function EvalFact() assigns to v the
numerical value corresponding to the current symbol.

The evaluation of an expression, involving the parsing of its structure,
is realized by calling EvalExp().

As a second example, we show that the syntax of regular expressions
can also be defined by a grammar. This is quite similar to the previously
seen grammar of arithmetic expressions.

E → E + T | T

T → TF | F

F → G | G∗
G → (E) | c

(1.6.4)

The symbol c stands for a letter or the symbol representing the empty
word. A top-down parser for this grammar allows the implementation of
the constructions of the previous section that produce a finite automaton
from a regular expression.

We have just seen top-down parsing developed on two examples. These
examples show how easy it is to write a top-down analyser. The drawback of
this method is that it assumes that the grammar defining the language has a
rather restricted form. In particular, it should not be left recursive, although
there exist standard procedures to eliminate left recursion. However, there
exist grammars that cannot be transformed into equivalent LL(1) grammars
that allow top-down parsing. The letters L in the acronym LL(1) refer to
left to right processing (on both the text and the derivation), and the number
1 refers to the number of lookahead symbols.

The precise definition of LL(1) grammars uses two functions called
First() and Follow() that associate to each variable a set of terminal
symbols. For a variable x ∈ V , First(x) is the set of terminal symbols
a ∈ A such that there is a derivation of the form x

∗→ au. The function
First() is extended to words in a natural way: First(w) is the set of
terminal symbols a such that w

∗→ au.
For each variable x ∈ V , Follow(x) is the set of terminal symbols

a ∈ A such that there is a derivation u
∗→ vxaw with a “following” x.

To compute First(), we build a graph with vertices A ∪ V and with
edges the pairs (x, y) ∈ V × (A ∪ V) such that there is a production of the
form x → uyw with u

∗→ ε. Then a ∈ First(x) if and only if there is a
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E T F

(

c

(a) First().

E)

+ $

T

∗

F

(b) Follow().

Figure 1.40. The graphs of First() and of Follow().

path from x to a in this graph. The graph corresponding to the grammar of
arithmetic expressions is shown on Figure 1.40(a).

The algorithm used to compute First() is given more precisely below.
We begin with an algorithm (Epsilon()) which computes a boolean array
epsilon indicating whether a symbol v is nullable, that is whether v

∗→ ε.
The array epsilon has size n + k, where n is the number of variables in the
grammar and k is the number of terminals.

Epsilon()
1 for each production v → ε do
2 epsilon[v] ← true
3 for i ← 0 to n − 1 do
4 for each production v → x1 · · · xm do
5 epsilon[v] ← epsilon[v] ∨ (epsilon[x1] ∧ · · · ∧ epsilon[xm])
6 return epsilon

It is easy to compute a function IsNullable(w) for w = x1 · · · xn

as the conjunction of the Boolean values epsilon[xi]. The computation of
First() consists of several steps. We first compute the graph defined above.
The graph is represented by the set FirstChild(v) of successors of each
variable v. The function First() is computed after a depth-first exploration
of the graph has been performed.

FirstChild(v)
1 � S is the set of successors of v

2 S ← ∅
3 for each production v → x1 · · · xm do
4 for i ← 1 to m do
5 S ← S ∪ xi

6 if epsilon[xi] = false then
7 break
8 return S
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We mark vertices in the graph by a standard depth-first exploration.

ExploreFirstChild(v)
1 firstmark[v] ← true
2 for each x ∈ FirstChild(v) do
3 if firstmark[x] = false then
4 ExploreFirstChild(x)

The array firstmark is used for exploration of the graph of First().
Finally, we compute First().

First(v)
1 � firstmark is an array initialized to false
2 ExploreFirstChild(v)
3 S ← ∅
4 for each terminal c do
5 if firstmark[c] then
6 S ← S ∪ c

7 return S

The values of the function First() could of course be stored in an array
first. The extension of First to words is straightforward.

First(w)
1 S ← ∅
2 for i ← 1 to n do � w has length n

3 S ← S ∪ First(w[i])
4 if epsilon[w[i]] = false then
5 break
6 return S

There is an alternative way to present the computation of First(), by
means of a system of mutually recursive equations. For this, observe that
for each variable x, First(x) is the union of the sets First(y) over the set
S(x) of successors of x in the graph of First(). Thus, the function First()
is the least solution of the system of equations

First(x) = ∪y∈S(x)First(y) (x ∈ V )

such that First(a) = a for each letter a ∈ A. For example, the equations
for Grammar (1.6.3) are

First(E) = First(E) ∪ First(T )
First(T ) = First(T ) ∪ First(F )
First(F ) = {(, c}
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To compute the function Follow(), we build a similar graph. There
are two rules to define the edges.

1. If there is a production x → uvw with a terminal symbol a in
First(w), then (v, a) is an edge.

2. If there is a production z → uxw with w
∗→ ε, then (x, z) is an edge

(notice that we use the productions backwards).
The graph of Follow() for the grammar of arithmetic expressions is shown
on Figure 1.40(b). The computation of the function Follow is analogous.
It begins with the computation of the graph Sibling(x).

Sibling(x)
1 S ← ∅
2 for each production z → uxw do
3 S ← S ∪ First(w)
4 if IsNullable(w) then
5 S ← S ∪ z

6 return S

The depth-first exploration ExploreSibling(v) is then performed as
before. It produces an array followmark which is used to compute the
function Follow().

Follow(v)
1 � followmark is an array initialized to false
2 ExploreSibling(v)
3 S ← ∅
4 for each terminal c do
5 if followmark[c] then
6 S ← S ∪ c

7 return S

As for the function First(), the function Follow() can also be com-
puted by solving a system of equations. The precise definition of an LL(1)
grammar can now be formulated. It is a grammar such that:

1. For each pair of distinct productions x → u, x → v, with the same
left-side and u, v �= ε, one has

First(u) ∩ First(v) = ∅.

2. For each pair of distinct productions of the form x → u, x → ε, one
has

First(u) ∩ Follow(x) = ∅.
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E T F

(

c

E′ T ′+ ∗

(a) First().

E

E′

) +$

T

T ′

F

∗

(b) Follow().

Figure 1.41. The graphs of First() and Follow() for Grammar
(1.6.5).

Observe that our grammar for arithmetic expressions violates the first
condition, since for instance First(E) = First(T ), although we have two
productions E → E + T and E → T with the same left-hand side. We
have already met this problem of left recursion, and solved it by transform-
ing the grammar. The solution that we described is actually equivalent to
considering the grammar

E → TE′
E′ → +TE′ | ε

T → FT ′
T ′ → ∗FT ′ | ε

F → (E) | c.

(1.6.5)

This grammar is equivalent to Grammar (1.6.3). It meets the two con-
ditions for being LL(1). Indeed, the functions First() and Follow() are
given in Figure 1.41.

For example, consider the productions E′ → ε and E′ → +TE′. The
symbol + is not in Follow(E′), and thus the second condition is satis-
fied for this pair of productions. The characterization allows us to fill the
entries of a table called the parsing table given in Table 1.1. This is an

Table 1.1. The parsing table of Grammar (1.6.5).

c + ∗ ( ) $

E E → TE′ E → TE′

E′ E′ → +TE′ E′ → ε E′ → ε

T T → FT ′ T → FT ′

T ′ T ′ → ε T ′ → ∗FT ′ T ′ → ε T ′ → ε

F F → c F → (E)
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equivalent way to define the mutually recursive functions we defined above
(for the wise: this is also a way to convince oneself that the programs are
correct!)

The computation of the LL(1) parsing table uses the following algorithm.

LLTable()
1 � computes the LL(1) parsing table M

2 for each production p : v → w do
3 for each terminal c ∈ First(w) do
4 M[v][c] ← p

5 if w = ε then
6 for each terminal c ∈ Follow(v) do
7 M[v][c] ← p

8 return M

The above algorithm as written supposes the grammar to be LL(1).
Error messages to inform that the grammar is not LL(1) can easily be
added.

1.6.2. Bottom-up parsing

We now describe bottom-up parsing which is a more complicated but more
powerful method for syntax analysis.

The idea of bottom-up parsing is to build the derivation tree from the
leaves to the root. This method is more complicated to program, but is more
powerful than top-down parsing.

The current situation of bottom-up parsing is pictured in Figure 1.42.
The left part of the text which has already been analysed has been re-
duced, using the productions backwards, to a string that is kept in a

i

x : text

stack

Figure 1.42. Bottom up parsing.
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stack. We will see below that this actually corresponds to a last-in first-out
strategy.

We present bottom-up parsing on the example of arithmetic expressions
already used.

1 : E → E + T

2 : E → T

3 : T → T ∗ F

4 : T → F

5 : F → (E)
6 : F → c

(1.6.6)

We reproduce Grammar (1.6.3) with productions numbered from 1 to 6.
Programming a bottom-up analyser involves the management of a stack

containing the part of the text that has already been analysed. The evolution
of the stack and of the text is pictured below (Figure 1.43) to be read from
top to bottom.

Stack Text

1 (1 + 2) ∗ 3
2 ( 1 + 2) ∗ 3
3 (c +2) ∗ 3
4 (F +2) ∗ 3
5 (T +2) ∗ 3
6 (E +2) ∗ 3
7 (E+ 2) ∗ 3
8 (E + c ) ∗ 3
9 (E + F ) ∗ 3

10 (E + T ) ∗ 3
11 (E ) ∗ 3
12 (E) ∗3
13 F ∗3
14 T ∗3
15 T ∗ 3
16 T ∗ c

17 T ∗ F

18 T

19 E

Figure 1.43. Evolution of the stack and of the text during the bottom-up
analysis of the expression (1 + 2) ∗ 3.
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At the beginning, the stack is empty. Each step either
1. transfers a new symbol from the text to the stack (this operation is

called a shift);
2. reduces the top part of the stack according to a rule of the grammar

(this is a reduction).
As an example, the second and third rows in Figure 1.43 are the results of
shifts, while the three following rows are the results of reductions by rules
6, 4, and 2 respectively.

To be able to choose between shift and reduction, one uses a finite
automaton called LR automaton. This automaton keeps track of the infor-
mation concerning the presence of the right side of a rule at the top of the
stack. In our example, the automaton is given in Figure 1.44.

0 1
E

6
+

9
T

to 7
∗

to 3
F

to 4
(

to 5
c

2
T

7
∗

10
F

to 4
(

to 5
c

3
F

4
(

(

8
E

11
)

to 6
+

to 2
T

to 3
F

5
c

c

Figure 1.44. The LR automaton.
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Stack Text

0 (1 + 2) ∗ 3$
0 4 1 + 2) ∗ 3$
0 4 5 +2) ∗ 3$
0 4 3 +2) ∗ 3$
0 4 2 +2) ∗ 3$
0 4 8 +2) ∗ 3$
0 4 8 6 2) ∗ 3$
0 4 8 6 5 ) ∗ 3$
0 4 8 6 3 ) ∗ 3$
0 4 8 6 9 ) ∗ 3$
0 4 8 ) ∗ 3$
0 4 8 11 ∗3$
0 3 ∗3$
0 2 ∗3$
0 2 7 3$
0 2 7 5 $
0 2 7 10 $
0 2 $
0 1 $

Figure 1.45. The stack of states of the LR automaton during the bottom-up
analysis of the expression (1 + 2) ∗ 3.

The input to the LR automaton is the content of the stack. According to
the state reached, and to the lookahead symbol, the decision can be made
whether to shift or to reduce, and in the latter case by which rule. The fact
that this is possible is a property of the grammar. These grammars are called
SLR–grammars.

In practice, instead of pushing the symbols on the stack, one rather
pushes the states of the LR automaton. The result on the expression
(1 + 2) ∗ 3 is shown on Figure 1.45.

The decision made at each step uses two arrays S and R, represented
on Figure 1.46.

The array S is the transition table of the LR automaton. Thus S[p][c]
is the state reached from state p by reading c. The table R indicates which
reduction to perform. The value R[p][c] indicates the number of the pro-
duction to be used backwards to perform a reduction when the state p is on
top of the stack and the symbol c is the lookahead symbol. Empty entries
in tables S and R correspond to nonexisting transitions. A special state
Accept, abbreviated as Acc is the accepting state ending the computation
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c + ∗ ( ) $ E T F

0 5 4 1 2 3
1 6 Acc
2 7
3
4 5 4 8 2 3
5
6 5 4 9 3
7 5 4 10
8 6 11
9 7

10
11

(a) The array S.

c + ∗ ( ) $ E T F

0
1
2 2 2 2
3 4 4 4 4
4
5 6 6 6 6
6
7
8
9 1 1 1

10 3 3 3 3
11 5 5 5 5

(b) The array R.

Figure 1.46. The arrays S and R.

with a successful analysis. The tables S and R could be superposed be-
cause their nonempty entries are disjoint. Actually, this is necessary for the
LR-algorithm to work!

The implementation of the algorithm is given in the function LR-
Parse(). It uses, on the input, the two functions Current(), Advance()
already described earlier, and the symbol ‘$’ to mark the end of the text.
The functions Top() and Push() are the usual functions on stacks. The
function Reduce() operates in three steps. The call Reduce(n), where n

is the index of the production r → u, consists of the following:
1. It erases from the stack the number of states equal to the length

of u.
2. It computes the new value p = Top() and the state q = T [p][r].
3. It pushes q on the stack.

In the implementation, the value −1 represents nonexisting transitions. The
function returns the Boolean value true if the analysis was successful, and
false otherwise. There are three cases of failure:

1. There is no legal shift nor legal reduction, this is checked at lines 5
and 9. This happens for instance if the input is x = ‘)’.

2. The text has not been exhausted at the end of the analysis, for instance
if x = ‘(’; this leads to the same situation as above, because the state
Accept can only be accessed by the end marker.

3. The text has been exhausted before the end of the analysis; in this
case, the end marker leads to an empty entry in the tables.
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LRParse(x)
1 while Top() �= Accept do
2 p ← Top()
3 c ← Current()
4 q ← T [p][c]
5 if q �= −1 then
6 Push(q)
7 Advance()
8 else n ← R[p][c]
9 if n �= −1 then

10 Reduce(n)
11 else return false
12 return true

It remains to explain how to compute the LR automaton and the cor-
responding tables from the grammar. We work with an end marker ‘$’.
Accordingly, we add to the grammar an additional rule which, in our run-
ning example, is E′ → E$. The LR automaton recognizes the content of
the stack and its state allows one to tell whether the right side of some pro-
duction is present on the top of the stack. The set of possible stack contents
(sometimes called the viable prefixes) is the set

X = {p1p2 · · ·pn | pi ∈ P, n ≥ 0}
where P is the set of prefixes of the right sides of the productions and
where, for each i, 1 ≤ i ≤ n − 1, there is a production (xi, vi) such that
pixi+1 is a prefix of vi , and x1 is the axiom of the grammar. One may verify
this description of X by working on the bottom-up analysis backwards. It
is easy to build a nondeterministic automaton recognizing this set X . It is
built from the automata recognizing the right sides of the productions and
adding ε-transitions from each position before a variable y to the initial
positions of the productions with left side y.

The result is represented on Figure 1.47. The circled states correspond
to full right-hand sides and thus to productions of the grammar.

To be complete, we should add the transitions corresponding to the
rule E′ → E$. The states 0 and 4 correspond to the productions with left
side E. The automaton of Figure 1.44 is just the result of the determiniza-
tion algorithm applied to the nondeterministic automaton obtained. This
explains how the LR automaton and thus the table S, which is just its tran-
sition table, are built. It still remains to explain how table R is built. We
have R[p][c] = n if and only if the reduction by production n : x → v is
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0 1
E

2
+

3
T

to 6, 10

4 5
T

to 6, 10

6 7
T

8
∗

9
F

to 12, 16

10 11
F

to 12, 16

12 13
(

14
E

15
)

to 0, 4

16 17
c

Figure 1.47. A non deterministic LR automaton

possible in state p, and provided the lookahead symbol c is in Follow(x).
This solves the conflicts between shift and reduce.

Suppose for example that the variable T is on top of the stack, as at
lines 5, 14, 18 of Figure 1.43. At each of these lines, we can either reduce
by production 2 or shift. Similarly, at line 10 we can either reduce by
production 1 or 2, or shift. We should reduce only if the lookahead symbol
is in Follow(E). This is why we choose to reduce by production 2 at
lines 5 and 18. At line 14, we choose to shift, because the symbol ∗ is
not in Follow(E). At line 10, we reduce by production 1 because the
corresponding state 9 allows this reduction and the lookahead symbol ‘)’ is
in Follow(E).

A grammar for which this method works is called SLR(1). A word on
this terminology. The acronym LR refers to a left to right analysis of the
text and a rightmost derivation (corresponding to a bottom-up analysis). A
grammar is said to be LR(0) if no shift-reduce conflict appears on the LR
automaton. The 0 means that no lookahead is needed to make the decisions.
This is not the case of Grammar (1.6.6), as we have seen. The acronym SLR
means ‘simple LR’ and the integer 1 refers to the length of the lookahead.
Formally, a grammar is said to be SLR(1) if for any state p of the LR
automaton and each terminal symbol c, at most one of the two following
cases arises.

https://doi.org/10.1017/CBO9781107341005.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.002


1.7. Word enumeration 69

1. There is a transition from p by c in the automaton.
2. There is a possible reduction in state p by production n : x → v such

that c ∈ Follow(x).
In practice, this condition is equivalent to the property that the sets of
nonempty entries of the tables S and R are disjoint.

More complicated methods exist, either with lookahead 1 or with a
larger lookahead, although a lookahead of size larger than 1 is rarely used in
practice. With lookahead 1, the class of LR(1) grammars uses an automaton
called the LR(1) automaton to keep track of the pair (s, c) of the stack
content s and the lookahead symbol c to be expected at the next reduction.
The main drawback is that the number of states is much larger than with
the LR(0) automaton.

1.7. Word enumeration

One often has to compute the number of words satisfying some property.
This can be done using finite automata or grammars as illustrated in the
following examples.

1.7.1. Two illustrative examples

The first example illustrates the case of a property defined by a finite
automaton.

Example 1.7.1. The number un of words of length n on the binary al-
phabet {a, b} which do not contain two consecutive letters a satisfies the
recurrence formula un+1 = un + un−1. Indeed, a nonempty word of length
n can terminate with either a or b. In the first case, it has to terminate with
ba unless it is the word a. Since u0 = 1 and u1 = 2, the number un is the
Fibonacci number Fn+2.

This argument can be used quite generally when the corresponding
set of words is recognized by a finite automaton. In the present case, the
set S without factor bb is recognized by the Golden mean automaton of
Figure 1.11. Let Sq be the set of words recognized by the automaton with
initial state 1 and final state q. We derive from the automaton the following
set of equations

S1 = S1b + S2b + ε

S2 = S1a

Since S = S1 + S2, summing up the equations gives

S = Sb + S1a + ε = S(b + ab) + ε.

This gives the expected recurrence relation.
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A second example concerns the Dyck language.

Example 1.7.2. Recall from Example 1.6.2 that the Dyck language D∗ is
related to the Łukasiewicz language L by the relation D∗b = L. Let fn be
the number of words of length n in D and let un be the number of words of
length n in D∗.

It can be verified, using the function δ of Example 1.6.2, that each
word x of length 2n + 1 with δ(x) = −1 is primitive and has exactly one
conjugate in L. Since u2n is also the number of words of length 2n + 1 in
L, one gets

u2n = 1

2n + 1

(
2n + 1

n

)
= 1

n + 1

(
2n

n

)
.

Since D = aD∗b, it follows that

f2n = 1

n

(
2n − 2

n − 1

)
.

The sequence (u2n) is the sequence of Catalan numbers.
The combinatorial method used to compute the numbers fn and un can

be frequently generalized in the case of more complicated grammars (see
Chapter 9). In the present case, the relation is the following.

We start with the relation D = aD∗b. This implies that the generating
function D(z) = ∑

n≥0 fnz
n satisfies the equation

D2 − D + z2 = 0 .

It follows that

D(z) = 1 − √
1 − 4z2

2
.

An elementary application of the binomial formula gives the expected
expression for the coefficient fn.

1.7.2. The Perron–Frobenius theorem

Several enumeration problems on words involve the spectral properties of
nonnegative matrices. The Perron–Frobenius theorem describes some of
these properties and constitutes a very important tool in this framework.
We shall see in the next section several applications of this theorem.

Let Q be a set of indices (we have of course in mind the set of states of a
finite automaton). For two Q-vectors v, w with real coordinates, one writes
v ≤ w if vq ≤ wq for all q ∈ Q and v < w if vq < wq for all q ∈ Q. A
vector v is said to be nonnegative (resp.positive) if v ≥ 0 (resp. v > 0). In the
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same way, for two Q × Q-matrices M, N with real coefficients, one writes
M ≤ N when Mp,q ≤ Np,q for all p, q ∈ Q and M < N when Mp,q <

Np,q for all p, q ∈ Q. The Q × Q-matrix M is said to be nonnegative
(resp. positive) if M ≥ 0 (resp. M > 0). We shall often use the elementary
fact that if M > 0 and v ≥ 0 with v �= 0, then Mv > 0.

A nonnegative matrix M is said to be irreducible if for all indices p, q,
there is an integer k such that Mk

p,q > 0, where Mk denotes the kth power
of M . It is easy to verify that M is irreducible if and only if (I + M)n > 0
where n is the dimension of M . It is also easy to prove that M is reducible
(i.e. M is not irreducible) if there is a reordering of the indices such that M

is block triangular, that is of the form

M =
[

U V

0 W

]
(1.7.1)

with U, W of dimension > 0.
A nonnegative matrix M is called primitive if there is an integer k

such that Mk > 0. A primitive matrix is irreducible but the converse is not
true.

A nonnegative matrix M is called aperiodic if the greatest common
divisor of the integers k such that Mk

i,i > 0 for some i is equal to 1 (including
the case where the set of integers k is empty). It can be verified that a matrix
is primitive if and only if it is aperiodic and irreducible.

The Perron–Frobenius theorem asserts that for any nonnegative matrix
M , the following holds

1. The matrix M has a real eigenvalue ρM such that |λ| ≤ ρM for any
eigenvalue λ of M .

2. If M ≤ N with M �= N , then ρM < ρN .
3. There corresponds to ρM a nonnegative eigenvector v and ρM is the

only eigenvalue with a nonnegative eigenvector.
4. If M is irreducible, the eigenvalue ρM is simple and there corresponds

to ρM a positive eigenvector v.
5. If M is primitive, all other eigenvalues have modulus strictly less

than ρM . Moreover, (1/ρn
M )Mn converges to a matrix of the form vw,

where v (w) is a right (left) eigenvector corresponding to ρ, that is
Mv = ρv (wM = ρw) and wv = 1.

We shall give a sketch of a proof of this classical theorem. Let us
first show that one may suppose that M is irreducible. Indeed, if
M is reducible, we may consider a triangular decomposition as in
Equation (1.7.1). Applying by induction the theorem to U and W , we
obtain the result with ρM equal to the maximal value of the moduli of
eigenvalues of U and W . The corresponding eigenvector is completed with
zeroes (and thus condition 4 fails to hold).
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We suppose from now on that M is irreducible. For a nonnegative
Q-vector v, let

rM (v) = min{(Mv)i/vi | 1 ≤ i ≤ n, vi �= 0}
Thus rM (v) is the largest real number r such that Mv ≥ rv. The function
rM is known as the Wielandt function. One has rM (λv) = rM (v) for all
real number λ ≥ 0. Moreover, rM is continuous on the set of nonnegative
vectors.

The set X of nonnegative vectors v such that ‖v‖ = 1 is compact. Since
a continuous function on a compact set reaches its maximum on this set,
there is an x ∈ X such that rM (x) = ρM where ρM = max{rM (w) | w ∈ X}.
Since rM (v) = rM (λv) for λ ≥ 0, we have ρM = max{rM (w) | w ≥ 0}.

We show that Mx = ρMx. By the definition of the function rM , we have
Mx ≥ ρMx.

Set y = Mx − ρMx. Then y ≥ 0. Assume Mx �= ρMx. Then y �= 0.
Since (I + M)n > 0, this implies that the vector (I + M)ny is positive. But

(I + M)ny = (I + M)n(Mx − ρMx) = M(I + M)nx − ρM (I + M)nx
= Mz − ρMz,

with z = (I + M)nx. This shows that Mz > ρMz, which implies that
rM (z) > ρM , a contradiction with the definition of rM . This shows that
ρM is an eigenvalue with a nonnegative eigenvector.

Let us show that ρM ≥ |λ| for each real or complex eigenvalue λ of M .
Indeed, let v be an eigenvector corresponding to λ. Then Mv = λv. Let
|v| be the nonnegative vector with coordinates |vi |. Then M|v| ≥ |z||v| by
the triangular inequality. By the definition of the Wielandt function, this
implies rM (|v|) ≥ |λ| and consequently ρM ≥ |λ|. This completes the proof
of assertion 1.

We have already seen that there corresponds to ρM a nonnegative eigen-
vector x. Let us now verify that x > 0. But this is easy since (I + M)nx =
(1 + ρM )nx, which implies that (1 + ρM )nx > 0 and thus x > 0.

In order to prove assertion 2, let us consider N such that M ≤ N . Then
obviously ρM ≤ ρN . Let us show that ρM = ρN implies M = N . Let v > 0
be such that Mv = ρMv. Then Nv ≥ ρMv and we conclude as before that
Nv = ρMv. From Mv = Nv with v > 0, we conclude that M = N as
asserted.

We now complete the proof of assertion 3. Let Mv = λv with v ≥ 0.
Since, as before, (I + M)nv = (1 + λ)nv, we actually have v > 0. Let D be
the diagonal matrix with coefficients v1, v2, . . . , vn and let N = D−1MD.
Since ni,j = mi,j vj /vi , we have

∑
j bi,j = λ for 1 ≤ i ≤ n. Let w be a

nonnegative eigenvector of N for the eigenvalue ρM . We normalize w

in such a way that wi ≤ 1 for all i and wt = 1 for one index t . Then,
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ρM = ∑
j nt,jwj ≤ ∑

j nt,j = λ. Thus λ = ρM as asserted. This completes
the proof of assertion 3.

We further have to prove that ρM is simple. Let p(λ) = det(λI − M)
be the characteristic polynomial of M . We have p′(λ) = ∑

i det(λI − Mi)
where Mi is the matrix obtained from M by replacing the ith row and
column by 0. Indeed,

det(λI − M) = det(λe1 − v1, . . . , λen − vn)

where ei is the ith unit vector and vi is the ith column of M . Since the
determinant is a multilinear function, this gives the desired formula for
p′(λ). One has Mi ≤ M and Mi �= M for each i, because an irreducible
matrix cannot have a null row. By assertion 2, ρMi

< ρM and thus det(ρMI −
Mi) > 0, whence p′(ρM ) > 0. This shows that the root ρM is simple.

Let us finally prove assertion 5. Let λ be an eigenvalue of M such
that |λ| = ρM . Let v be an eigenvector for the eigenvalue λ. Then, from
Mv = ρMv, we obtain M|v| ≥ ρM |v| whence M|v| = ρM |v| by the same
argument as before. Let k be such that Mk > 0. Then, from |Mkv| = Mk|v|,
we deduce that v is collinear to a nonnegative real vector. This shows that
λ is real and thus that λ = ρM .

Since M has a simple eigenvalue ρM strictly greater than every other
eigenvalue, the sequence (1/ρn

M )Mn converges to a matrix of rank one,
which is thus of the indicated form.

This completes the proof of the Perron–Frobenius theorem. For an
indication of another proof, see Problem 1.7.1.

The practical computation of the maximal eigenvalue of a primitive
matrix M can be done using the following algorithm. It is based on the
fact that by assertion 5 the sequence defined by x(n+1) = (1/r(x(n)))Mx(n)

converges to an eigenvector corresponding to the maximal eigenvalue, and
thus r(x(n)) converges to an eigenvector. The starting value x(0) can be an
arbitrary positive vector.

DominantEigenvalue(M, x)
1 y ← x

2 do (y, x) ← (Mx, y)
3 r ← min1≤i≤n yi/xi

4 y ← (1/r)y
5 while y �≈ x

6 return r

where y ≈ x means that y is numerically close to x.
The vector computed by this algorithm is called an approximate eigen-

vector. The definition is the following. Let M be a nonnegative matrix. Let
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r be such that r ≤ ρM . Then a vector v such that Mv ≥ rv is called an
approximate eigenvector relative to r .

Example 1.7.3. Let

M =
[

1 1
1 0

]
.

The matrix M is nonnegative and irreducible. The eigenvalues of M are ϕ =
(1 + √

5)/2 and ϕ̂ = (1 − √
5)/2. The vector x =

[
ϕ

1

]
is an eigenvector

relative to ϕ. The vector v =
[

1
1

]
is an approximate eigenvector relative

to r = 1 and Mv is an approximate eigenvector relative to r = 3/2.

1.8. Probability distributions on words

In this section, we consider the result of randomly selecting the letters
composing a word. We begin with the formal definition of a probability law
ruling this selection.

1.8.1. Information sources

Given an alphabet A, a probability distribution on the set of words on A is
a function π : A∗ → [0, 1] such that π(ε) = 1 and for each word x ∈ A∗,∑

a∈A
π(xa) = π(x).

The definition implies that
∑

x∈An π(x) = 1 for all n ≥ 0. Thus a probability
distribution on words does not make the set of all words a probability space
but it does for each set An.

Probability distributions on words are sometimes defined with a
different vocabulary. One considers a sequence of random variables
(X1, X2, . . . , Xn, . . .) with values in the set A. Such a sequence is of-
ten called a discrete time information source or also a stochastic process.
For x = a1 · · · an with ai ∈ A, set

π(x) = P(X1 = a1, . . . , Xn = an)

Then π is a probability distribution in the previous sense. Conversely, if
π is a probability distribution, this formula defines the nth order joint
distribution of the sequence (X1, X2, . . . , Xn, . . .). We will say that P and
π correspond to each other.
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Two particular cases are worth mentioning: Bernoulli distributions and
Markov chains.

First, a Bernoulli distribution corresponds to successively indepen-
dent choices of the symbols in a word, with a fixed distribution
on letters. Thus it is given by a probability distribution on the set
A extended by simple multiplication. For a1, a2, . . . , an ∈ A, one has
π(a1a2 · · · an) = π(a1)π(a2) · · ·π(an). In the terminology of information
sources, a Bernoulli distribution corresponds to a sequence of independent,
identically distributed (i.i.d.) random variables.

For example, if the alphabet has two letters a and b with probabili-
ties π(a) = p and π(b) = q = 1 − p, then π(w) = p|w|a q |w|b . The random
variable X whose value is the number of letters b in a word w of length n

has the distribution

P(X = m) =
(

n

m

)
pn−mqm

This distribution is called the binomial distribution. Its expectation and
variance are

E(X) = np, Var(X) = npq .

Second, a Markov chain corresponds to the case where the probability
of choosing a symbol depends on the previous choice, but not on earlier
choices. Thus, a Markov chain is given by an initial distribution π on A
and by an A × A stochastic matrix P of conditional probabilities P (a, b),
that is such that for all a ∈ A,

∑
b∈A P (a, b) = 1. Then

π(a1a2 · · · an) = π(a1)P (a1, a2) · · ·P (an−1, an).

In terms of stochastic processes, P (a, b) is the conditional probability
given for all n ≥ 2 by P (a, b) = P(Xn = b | Xn−1 = a). The powers of the
matrix P can be used to compute the probability P(Xn = a). Indeed, one
has P(Xn = a) = (πP n)(a).

Example 1.8.1. Consider the Markov chain over A = {a, b} given by the
matrix [

1/2 1/2
1 0

]
and the initial distribution π(a) = π(b) = 1/2. For example, one has
π(aab) = π(aaba) = 1/8. This distribution assigns probability 0 to any
word containing two consecutive letters b because P (b, b) = 0.

A distribution π on A∗ is said to be stationary if for all x ∈ A∗, one has
π(x) = ∑

a∈A π(ax). In terms of stochastic processes, this means that the
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joint distribution does not depend on the choice of time origin, that is,

P(Xi = ai, m ≤ i ≤ n) = P(Xi+1 = ai, m ≤ i ≤ n).

A Bernoulli distribution is a stationary distribution. A Markov chain is
stationary if and only if πP = π , that is if π is an eigenvector of the matrix
P for the eigenvalue 1. The distribution π on A is itself called stationary.

A Markov chain is irreducible if, for all a, b ∈ A, there exists an integer
n ≥ 0 such that P n(a, b) > 0. This is exactly the definition of an irreducible
matrix.

Similarly, a Markov chain is aperiodic if the matrix P is aperiodic.
The fundamental theorem of Markov chains says that for any irreducible

Markov chain, there is a unique stationary distribution π , and whatever be
the initial distribution, P(Xn = a) tends to π(a). The proof uses the Perron–
Frobenius theorem.

Example 1.8.2. Consider the Markov chain over A = {a, b} given by the
same matrix

P =
[ 1/2 1/2

1 0

]
and the initial distribution π(a) = 2/3, and π(b) = 1/3. This Markov chain
is irreducible, and π is its unique stationary distribution.

A Markov chain is actually a particular case of a more general concept
which is a probability distribution on words given by a finite automaton.
Let A = (Q,A) be a finite deterministic automaton. Let π be a prob-
ability distribution on Q. For each state q ∈ Q, consider a probability
distribution on the set of edges starting in q. This is again denoted by π .
Thus ∑

q∈Q

π(q) = 1,
∑
a∈A

π(q, a) = 1 for all q ∈ Q.

This defines a probability distribution on the set of paths in A: given a path
γ : q0

a0−→ q1
a1−→· · · , we set π(γ ) = π(q0)π(q0, a0)π(q1, a1) · · ·. This in

turn defines a probability distribution on the set of words as follows: for
a word w, π(w) is the sum of π(γ ) over all paths (γ ) with label w. The
probability on words obtained in this way is a transfer of a Markov chain
on the edges of the automaton.

We now give two examples of probability distributions on words. The
first one is a distribution given by a finite automaton, the second one is more
general.

Example 1.8.3. Consider the automaton given in Figure 1.48. Let π(1) =
1, π(2) = π(3) = 0, and let π(1, a, 2) = π(1, b, 2) = 1/2, π(2, a, 2) =
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1

2

3

a

b

a, b

a, b

Figure 1.48. A finite automaton.

π(2, b, 2) = 1/2, and π(3, a, 3) = 0, π(2, b, 2) = 1. The probability π

induced on words by this distribution on the automaton is such that
π(bn) = 1/2 for any word n ≥ 1. This distribution keeps an unbounded
memory of the past, and is therefore not a Markov distribution.

Example 1.8.4. Let t = abbabaabbaababba · · · be the Thue–Morse
word that is the fixed point of the morphism µ which maps a to ab and b

to ba. Let S be the set of factors of t . Define a function δ on words in S of
length at least 4 as follows. For w ∈ S with |w| ≥ 4, set δ(w) = v, where
v is the unique word of S such that

µ(v) =
{

w or xwx if |w| is even,
wx or xw otherwise,

for some x ∈ {a, b}.
For w ∈ S, define π(w) recursively by π(w) = π(δ(w))/2 if |w| ≥ 4,

and by the value given in Figure 1.49 otherwise. It is easy to verify that π

is an invariant probability distribution on S. Indeed, one has π(ε) = 1 and,
for each w ∈ S,

π(wa) + π(wb) = π(w), π(aw) + π(bw) = π(w) .

The notion of a probability distribution on words leads naturally to the
definition of a probability measure on the set Aω of infinite words. This
produces a real probability distribution, instead of the distribution on each
set An.

Let C be the set of thin cylinders, that is C = {wAω | w ∈ A∗}, and let
� be the σ -algebra generated by C. Recall that the σ -algebra generated by
C is the smallest family of sets containing C and closed under complements
and countable unions. A function µ from a σ -algebra � to the real numbers
is said to be σ -additive if

µ
(⋃

n

En

) =
∑

n

µ(En)
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1

1/2

a

1/6
a

1/6b
1/12a

1/12b

1/3
b

1/6a

1/12a

1/12b

1/6b 1/6a

1/2

b
1/3

a

1/6a 1/6b

1/6b
1/12a

1/12b

1/6
b

1/6a
1/12a

1/12b

Figure 1.49. A probability distribution on the factors of the Thue–Morse
infinite word.

for any family En of pairwise disjoint sets from �. A probability measure µ

on (Aω, �) is a real valued function on � such that µ(Aω) = 1 and which
is σ -additive.

By a classical theorem due to Kolmogorov, for each probability distri-
bution π there exists a unique probability measure µ on (Aω, �) such that
µ(xAω) = π(x).

Example 1.8.5. Let us consider again the distribution π on A∗ with A =
{a, b} of Example 1.8.3. The corresponding probability measure µ on Aω

is such that µ(bω) = 1/2. Indeed, because Aω = ∪i≥0b
iaAω ∪ bω, one has

by the property of σ -additivity

µ(bω) = µ(Aω) −
∑
i≥0

µ(biaAω) = 1 −
∑
i≥0

π(bia) = 1 − π(a) = 1/2.

1.8.2. Entropy

Let U be a finite set, and let X be a random variable with values in U . Set
p(u) = P(X = u). We define the entropy of X as

H (X) = −
∑
u∈U

p(u) log p(u).
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We use the convention that 0 log 0 = 0. We also use the convention that the
logarithm is taken in base 2. In this way, when the set U has two elements 0
and 1, with p(0) = p(1) = 1/2, then H (X) = 1. More generally, if U has
n elements, then

H (X) ≤ log n (1.8.1)

and the equality H (X) = log n holds if and only if p(u) = 1/n for u ∈ U .
To prove this statement, we first establish the following assertion: Let

pi, qi , for (1 ≤ i ≤ n) be two finite probability distributions with pi, qi > 0.
Then ∑

pi log pi ≥
∑

pi log qi (1.8.2)

with equality if and only if pi = qi for i = 1, . . . , n.
Indeed, observe first that loge(x) ≤ x − 1 for 0 < x with equality if and

only if x = 1. Thus for 1 ≤ i ≤ n

loge(qi/pi) ≤ qi/pi − 1

and consequently ∑
pi loge(qi/pi) ≤

∑
qi − 1 = 0

This shows Inequality (1.8.2) for the logarithm in base e. Multiplying by
an appropriate constant gives the general inequality. Equality holds if and
only if pi = qi for all i.

If we choose qi = 1/n for all i, Inequality (1.8.2) becomes Inequal-
ity (1.8.1).

If (X, Y ) is a two-dimensional random variable with values in U × V ,
we set p(u, v) = P(X = u, Y = v). Thus

H (X, Y ) = −
∑

(u,v)∈U×V

p(u, v) log p(u, v)

Finally, set p(u|v) = P(X = u|Y = v). Then we first define

H (X|v) = −
∑
u∈U

p(u|v) log p(u|v)

and for two random variables X, Y , we set

H (X|Y ) =
∑
v∈V

H (X|v)p(v).

It is easy to check that

H (X|Y ) = −
∑

(u,v)∈U×V

p(u, v) log p(u|v).
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It can be checked that

H (X, Y ) = H (Y ) + H (X|Y ). (1.8.3)

Indeed

H (X, Y ) = −
∑
u,v

p(u, v) log p(u, v)

= −
∑
u,v

p(u, v) log(p(u|v)p(v))

= −
∑
u,v

p(u, v) log p(u|v) −
∑
u,v

p(u, v) log p(v)

= H (X|Y ) + H (Y ).

It can also be verified that

H (X, Y ) ≤ H (X) + H (Y ) (1.8.4)

and that the equality holds if and only if X and Y are independent. Indeed,

H (X) + H (Y ) = −
∑

u

p(u) log p(u) −
∑

v

p(v) log p(v)

= −
∑
u,v

p(u, v) log p(u) −
∑
u,v

p(u, v) log p(v)

= −
∑
u,v

p(u, v) log(p(u)p(v))

≥ −
∑
u,v

p(u, v) log p(u, v)

where the last inequality follows from Inequality (1.8.2).
More generally, if (X1, . . . , Xn) is an information source, then

Hn = H (X1, . . . , Xn) is defined as the entropy of the random variable
(X1, . . . , Xn). In terms of a probability distribution π , we have

Hn = −
∑
x∈An

π(x) log π(x).

Thus Hn is the entropy of the finite probability space U = An.
Assume now that the source (X1, . . . , Xn, . . .) is stationary. The entropy

of the source is defined as

H = lim
n→∞

1

n
Hn.

According to the context, we write indistinctly H or H (X). We show that
this limit exists. First, observe that, by Inequality (1.8.4), for all m, n ≥ 1

H (X1, . . . , Xm+n) ≤ H (X1, . . . , Xm) + H (Xm+1, . . . , Xm+n).
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Since the source is stationary, H (Xm+1, . . . , Xm+n) = H (X1, . . . , Xn).
This implies

Hm+n ≤ Hm + Hn.

Thus the sequence (Hn) is a subadditive sequence of positive numbers. This
implies that Hn/n has a limit.

We now give expressions for the entropy of particular sources. The
entropy of a Bernoulli distribution π is

H = −
∑
a∈A

π(a) log(π(a)).

Indeed, Hn = nH1 since the random variables X1, . . . , Xn are independent
and identical. As a particular case, if π(a) = 1/q for all a ∈ A, then H =
log q.

The entropy of an irreducible Markov chain with matrix P and stationary
distribution π is

H =
∑
a∈A

π(a)Ha

where Ha = − ∑
b∈A P (a, b) log P (a, b). Indeed, by Formula (1.8.3), one

has

H (X1, . . . , Xn) = H (X1) +
n−1∑
k=1

H (Xk+1 | Xk).

By definition,

H (Xn+1 | Xn) =
∑
a∈A

H (Xn+1 | Xn = a)P(Xn = a)

and H (Xn+1 | Xn = a) = Ha . Since P(Xn = a) tends to π(a), H (Xn+1 |
Xn) tends to

∑
a∈A Haπ(a). This implies

lim
1

n
H (X1, . . . , Xn) =

∑
a∈A

Haπ(a).

Example 1.8.6. Consider again the Markov chain given by

P =
[ 1/2 1/2

1 0

]
and the initial distribution π(a) = 2/3, and π(b) = 1/3. Then Ha = 1,
Hb = 0 and H = 2/3.
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1.8.3. Topological entropy

For a set S of words, one defines the topological entropy of S as the limit

h(S) = lim sup
1

n
log sn

where sn is the number of words of length n in S. This entropy is called the
topological entropy to distinguish it from the entropy previously defined.

Let π be a stationary distribution. Let S be the support of π , that is, the
set of words x ∈ A∗ such that π(x) > 0. Then

H (π) ≤ h(S).

Indeed, in view of Inequality (1.8.1), one has for each n ≥ 1,

Hn ≤ log sn

where sn is the number of words of length n in S. The inequality follows by
taking the limit. Thus the topological entropy of S is an upper bound to the
value of possible entropies related to a stationary probability distribution
supported by S.

In the case of a regular set S, the entropy h(S) can be easily computed
using the Perron–Frobenius theorem. Indeed, let A be a deterministic au-
tomaton recognizing S, and let M be the adjacency matrix of the underlying
graph. By the Perron–Frobenius theorem, there is a real positive eigenvalue
λ which is the maximum of the moduli of all eigenvalues. One has the
formula

h(S) = log λ.

This formula expresses the fact that the number sn of words of length n in
S grows as λn.

Example 1.8.7. Consider again the Golden mean automaton of Exam-
ple 1.3.5 which we redraw in Figure 1.50 for convenience. It recognizes the
set S of words without two consecutive letters a. We have

M =
[ 1 1

1 0

]
and λ = (1 + √

5)/2. Thus h(S) = log(1 + √
5)/2.

1 2b

a

b

Figure 1.50. The Golden mean automaton.
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1.8.4. Distribution of maximal entropy

As we have seen in the previous section, the topological entropy of a
set S is an upper bound to the value of possible entropies related to a
stationary probability distribution supported byS. A probability distribution
π supported byS such that H (π) = h(S) is called a distribution of maximal
entropy. Intuitively, a distribution of maximal entropy on a set of words S
is such that all words of S of a given length have approximately the same
probability.

We are going to show that for each rational set S, there exists a distribu-
tion π supported by S of maximal entropy, that is such that H (π) = h(S).

We consider a deterministic automaton A recognizing S. Let G be
the underlying graph of A with labels removed. We assume that G is
strongly connected. Let Q be the set of vertices of G and let M be its
adjacency matrix. The fact that G is strongly connected is equivalent to the
irreducibility of M .

By the Perron–Frobenius theorem, an irreducible matrix M has a real
positive simple eigenvalue λ larger than or equal to the modulus of any
other eigenvalue.

The number of paths of length n in G is asymptotically equivalent to
λn. We prove that there is a labelling of G by positive real numbers which
results in a Markov chain on Q of entropy log λ. This produces a probability
distribution exactly supported by S, which has maximal entropy log λ.

Again by the Perron–Frobenius theorem, there exist a right eigenvector
v and a left eigenvector w for the eigenvalue λ such that all vi and wi are
strictly positive. We normalize v and w such that v · w = 1. Let

Pij = (vj/λvi)mi,j

and let πi = viwi . The matrix P is stochastic since∑
j

Pi,j =
∑

j

(vj/λvi)mi,j =
∑

j

vjmi,j /λvi = 1.

The Markov chain with transition matrix P and initial distribution π is
stationary. Indeed,∑

i

πiPi,j =
∑

i

viwi(vj/λvi)mi,j = (vj/λ)
∑

i

wimi,j = (vj/λ)λwj =πj .

The entropy of the Markov chain is log λ. Indeed, the probability of any
path γ of length n from i to j is

p(γ ) = wivj

λn
.
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1 2b|(1/ϕ)

a|(1/ϕ2)

b|1
Figure 1.51. The Golden mean automaton with transition probabilities.

1

1/ϕ2

a
1/ϕ2

b
1/ϕ4a

1/ϕ3
b

1/ϕ
b

1/ϕ2
a 1/ϕ2

b

1/ϕ3b

1/ϕ5a

1/ϕ4
b

Figure 1.52. The tree of the Golden mean.

This proves the existence of a distribution with maximal entropy on S
when the graph of the automaton is strongly connected. In this case, the
uniqueness can also be proved. The existence in the general case can be
shown to reduce to this one.

Example 1.8.8. Let us consider again the Golden mean automaton of
Example 1.3.5 which recognizes the set S of words without aa. We have

M =
[

1 1
1 0

]
, w = [

ϕ 1
]
, (1 + ϕ2)v =

[
ϕ

1

]
,

P =
[

1/ϕ 1/ϕ2

1 0

]
, π = [

ϕ2/(1 + ϕ2) 1/(1 + ϕ2)
]
.

The values of the transition probabilities are represented on the automaton of
Figure 1.51. The probability distribution on words induced by this Markov
chain is pictured in Figure 1.52.

As a consequence of the above construction, the distribution of maximal
entropy associated with a rational set S is given by a finite automaton. It is
even more remarkable that it can be given by the same automaton as the set
S itself. This appears clearly in the above example where the automaton of
Figure 1.51 is the same as the Golden mean automaton of Figure 1.11.
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1.8.5. Ergodic sources and compressions

Consider a source X = (X1, X2, . . . , Xn, . . .) on the alphabet A associated
to a probability distribution π. Given a word w = a1 · · · an on A, denote by
fN (w) the frequency of occurrences of the word w in the first N terms of
the sequence X.

We say that the source X is ergodic if for any word w, the sequence
fN (w) tends almost surely to π(w). An ergodic source is stationary. The
converse is not true, as shown by the following example.

Example 1.8.9. Let us consider again the distribution of Example 1.8.3.
This distribution is stationary. We have fN (b) = 1 when the source outputs
only letters b, although the probability of b is 1/2. Thus, this source is not
ergodic.

Example 1.8.10. Consider the distribution of Example 1.8.4. This source
is ergodic. Indeed, the definition of π implies that the frequency fN (w) of
any factor w in the Thue–Morse word tends to π(w).

It can be proved that any Bernoulli source is ergodic. This implies in partic-
ular the statement known as the strong law of large numbers: if the sequence
X = (X1, X2, . . . , Xn, . . .) is independent and identically distributed then,
setting Sn = X1 + · · · + Xn, the sequence (1/n)Sn converges almost surely
to the common value E(Xi).

More generally, any irreducible Markov chain equipped with its station-
ary distribution as initial distribution is an ergodic source.

Ergodic sources have the important property that typical messages of the
same length have approximately the same probability, which is 2−nH where
H is the entropy of the source. Let us give a more precise formulation
of this property, known as the asymptotic equirepartition property. Let
(X1, X2, . . .) be an ergodic source with entropy H . Then for any ε > 0
there is an N such that for all n ≥ N , the set of words of length n is the
union of two sets R and T satisfying

(i) π(R) < ε

(ii) for each w ∈ T ,

2−n(H+ε) < π(w) < 2−n(H−ε)

where π denotes the probability distribution on An defined by
π(a1a2 · · · an) = P(X1 = a1, . . . , Xn = an). Thus, the set of messages of
length n is partitioned into a set R of negligible probability and a set T of
“typical” messages all having approximately probability 2−nH .

Since π(w) ≥ 2−n(H+ε) for w ∈ T , the number of typical messages
satisfies Card(T ) ≤ 2n(H+ε). This observation allows us to see that the
entropy gives a lower bound for the compression of a text. Indeed, if
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the messages of length n are coded unambiguously by binary messages of
average length �, then �/n ≥ H − ε since otherwise two different messages
would have the same coding. On the other hand, any coding assigning
different binary words of length n(H + ε) to the typical messages and
arbitrary values to the other messages will give a coding of compression
rate approximately equal to H .

It is interesting in practice to have compression methods which are
universal in the sense that they do not depend on a particular source. Some of
these methods however achieve asymptotically the theoretical lower bound
given by the entropy for all ergodic sources. We sketch here the presentation
of one of these methods among many, the Ziv–Lempel encoding algorithm.
This algorithm fits well in our selection of topics because it is combinatorial
in nature.

We consider for a word w the factorization

w = x1x2 · · · xmu

where
1. for each i = 1, . . . , m, the word xi is chosen to be the shortest possible

not the set {x0, x1, x2, . . . , xi−1}, with the convention x0 = ε,
2. the word u is a prefix of some xi .

This factorization is called the Ziv–Lempel factorization of w. It appears
again in Chapter 8. For example, the Fibonacci word has the factorization

(a)(b)(aa)(ba)(baa)(baab)(ab)(aab)(aba) · · ·.
The coding of the word w is the sequence (n1, a1), (n2, a2), . . . , (nm, am)
where n1 = 0 and x1 = a1, and for each i = 2, . . . , n, we have xi = xni

ai ,
with ni < i and ai a letter. Writing each integer ni in binary gives a coding
of length approximately m log m bits. It can be shown that for any ergodic
source, the quantity m log m/n tends almost surely to the entropy of the
source. Thus this coding is an optimal universal coding.

Practically, the coding of a word w uses a set D called the dictionary to
maintain the set of words {x1, . . . , xi}. We use a trie (see Section 1.3.1) to
represent the set D. We also suppose that the word ends with a final symbol
to avoid coding the last factor u.

ZLencoding(w)
1 � returns the Ziv–Lempel encoding c of w

2 T ← NewTrie()
3 (c, i) ← (ε, 0)
4 while i < |w| do
5 (�, p) ← LongestPrefixInTrie(w, i)
6 a ← w[i + �]
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7 q ← NewVertex()
8 Next(p, a) ← q � updates the trie T

9 c ← c · (p, a) � appends (p, a) to c

10 i ← i + � + 1
11 return c

The result is a linear time algorithm. The decoding is also simple. The
important point is that there is no need to transmit the dictionary. Indeed,
one builds it in the same way as it was built in the encoding phase. It is
convenient this time to represent the dictionary as an array of strings.

ZLdecoding(c)
1 (w, i) ← (ε, 0)
2 D[i] ← ε

3 while c �= ε do
4 (p, a) ← Current() � returns the current pair in c

5 Advance()
6 y ← D[p]
7 i ← i + 1
8 D[i] ← ya � adds ya to the dictionary
9 w ← wya

10 return w

The functions Current() and Advance() manage the sequence c,
considering each pair as a token. The practical details of the implementation
are delicate. In particular, it is advised not to let the size of the dictionary
grow too much. One strategy is to limit the size of the input, encoding
it in blocks. Another one resets the dictionary once it has exceeded some
prescribed size. In either case, the decoding algorithm must of course also
follow the same strategy.

1.8.6. Unique ergodicity

We have seen that in some cases, given a formal language S, there exists a
unique invariant measure with entropy equal to the topological entropy of
the set S. In particular, it is true in the case of a regular set S recognized by
an automaton with a strongly connected graph. In this case, the measure is
also ergodic since it is the invariant measure corresponding to an irreducible
Markov chain. There are even cases in which there is a unique invariant
measure supported by S. This is the so-called property of unique ergodicity.
We will see below that this situation arises for the factors of fixed points of
primitive morphisms.
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Example 1.8.4 is one illustration of this case. We obtained the result by
an elementary computation. In the general case, one considers a morphism
f : A∗ → A∗ that admits a fixed point u ∈ Aω. Let M be theA × A–matrix
defined by

Ma,b = |f (a)|b
where |x|a is the number of occurrences of the symbol a in the word x. We
suppose the morphism f to be primitive, which by definition means that
the matrix M itself is primitive. It is easy to verify that for any n, the entry
Mn

a,b is the number of occurrences of b in the word f n(a).
Since the matrix M associated to the morphism f is primitive it is

also irreducible. By the Perron–Frobenius theorem, there is a unique real
positive eigenvalue λ and a real positive eigenvector v such that vM = λv.
We normalize v by

∑
a∈A va = 1.

Using the fact that M is primitive, again by the Perron–Frobenius the-
orem, (1/λn)Mn

a,b tends to a matrix with rows proportional to vb when n

tends to ∞. This shows that the frequency of a symbol b in u is equal to vb.
The value of the distribution of maximal entropy on the letters is given

by π(a) = va . For words of length � larger than 1, a similar computation
can be carried out, provided that one passes to the alphabet of overlapping
words of length �, as shown in the following example.

Example 1.8.11. Let us consider again the set S of factors of the Thue–
Morse infinite word t (Example 1.8.4). The matrix of the morphism µ :
a → ab, b → ba is

M =
[ 1 1

1 1

]
.

The left eigenvector is v = [1/2, 1/2] and the maximal eigenvalue is 2.
Accordingly, the probability of the symbols is π(a) = π(b) = 1/2. To com-
pute by this method the probability of the words of length 2, we replace
the alphabet A by the alphabet A2 = {x, y, z, t} with x = aa, y = ab,
z = ba and t = bb. We replace µ by the morphism µ2 obtained by coding
successively the overlapping blocks of length 2 appearing in µ(A2).

It is enough to truncate at length 2 in order to get a morphism that has
as its unique fixed point the infinite word t2 obtained by coding overlapping
blocks of length 2 in t . Thus

µ2 :

x �→ yz

y �→ yt

z �→ zx

t �→ zy
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has the fixed point

t2 = ytzyzxytzxyz · · ·.
The matrix associated with µ2 is

M (2) =

⎡
⎢⎣

0 1 1 0
0 1 0 1
1 0 1 0
0 1 1 0

⎤
⎥⎦ .

The left eigenvector is v2 = [1/6, 1/3, 1/3, 1/6], consistently with the
values of π given in Figure 1.49.

1.8.7. Practical estimate of the entropy

The entropy of a source given by an experiment and not by an abstract model
(for example like a Markov chain) can be usefully estimated. This occurs in
practice in the context of natural languages or for sources producing signals
recorded by some physical measure.

The case of natural languages is of practical interest for the purpose of
text compression. An estimate of the entropy H of a natural language like
English implies for example that an optimal compression algorithm can
encode using H bits per character on average. The definition of a quantity
which can be called “entropy of English” deserves some commentary. First
we have to clarify the nature of the sequences considered. A reasonable
simplification is to assume that the alphabet is composed of the 26 ordinary
letters (and thus without the upper/lower case distinction) plus possibly a
blank character to separate words. The second convention is of a different
nature. If one wants to consider a natural language as an information source,
an assumption has to be made about the nature of the source. The good
approximation obtained by finite automata for the description of natural
languages makes it reasonable to assume that a natural language such as
English can be considered as an irreducible Markov chain and thus as
an ergodic source. Thus it makes sense to estimate the probabilities by
the frequencies observed on a text or a corpus of texts and to use these
approximations to estimate the entropy H by H ≈ Hn/n where

Hn = −
∑

k

pk log pk

and where the pk are the probabilities of the n-grams. One actually has
H ≤ Hn/n. It is worth remarking that the approximation thus obtained is
much better than that obtained by using H ≈ hn/n with

hn = log sn
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Table 1.2. Entropies of n-grams on
an alphabet of 26 or 27 letters.

number of symbols 26 27

H1 4.14 4.03
H2/2 3.56 3.32
H3/3 3.30 3.10

where sn is the number of possible n-grams in correct English sentences.
For small n the approximation is bad because some n-grams are far more
frequent than others, and for large n the computation is not feasible because
the number of correct sentences is too large.

One has H ≤ log2(26) ≈ 4.7 when considering only 26 symbols and
H ≤ log2(27) ≈ 4.76 on 27 symbols. Further values are given in Table 1.2
leading to an upper bound H ≤ 3. An algorithm to compute the frequencies
of n-grams is easy to implement. It uses a buffer s which is initialized to the
first n symbols of the text and which is updated by shifting the symbols one
place to the left and adding the current symbol of the text at the last place.
This is done by the function Current(). The algorithm maintains a set S

of n-grams together with a map Freq() containing the frequencies of each
n-gram. A practical implementation should use a representation of sets like
a hashtable, allowing the set to be stored in a space proportional to the size
of S (and not to the number of all possible n-grams, which grows too fast).

Entropy(n)
1 � returns the n-th order entropy Hn

2 S ← ∅ � S is the set of n-grams in the text
3 do s ← Current() � s is the current n-gram of the text
4 if s /∈ S then
5 S ← S ∪ s

6 Freq(s) ← 1
7 else Freq(s) ← Freq(s) + 1
8 while there are more symbols
9 for s ∈ S do

10 Prob(s) ← Freq(s)/Card S

11 return
1

n

∑
s∈S

Prob(s) log Prob(s)

Another approach leads to a better estimate of H . It is based on an
experiment which uses a human being as an oracle. The idea is to scan a
text through a window of n − 1 consecutive characters and to ask a subject
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Table 1.3. Experimental bounds for the entropy
of English.

n 1 2 3 4 5 6 7

upper bound 4.0 3.4 3.0 2.6 2.1 1.9 1.3
lower bound 3.2 2.5 2.1 1.8 1.2 1.1 0.6

to guess the symbol following the window contents, repeating the question
until the answer is correct. The average number of probes is an estimate
of the conditional entropy H (Xn|X1, . . . , Xn−1). The values obtained are
shown in Table 1.3.

1.9. Statistics on words

In this section, we consider the problem of computing the probability
of appearance of some properties on words defined using the concepts
introduced at the beginning of the chapter. In particular, we shall study the
average number of factors or subwords of a given type in a regular set.

1.9.1. Occurrences of factors

For any integer valued random variable X with probability distribution
pn = P(X = n), one introduces the generating series f (z) = ∑

n≥0 pnz
n.

If we denote qn = ∑
m≥n pm, then the generating series g(z) = ∑

n≥0 qnz
n

is given by the formula

g(z) = 1 − f (z)

1 − z
.

This implies in particular that the expectation E(X) = ∑
n≥0 npn of X also

has the expression E(X) = g(1). These general observations about random
variables have an important interpretation when the random variable X is
the length of a prefix in a given prefix code.

Let π be a probability distribution on A∗. For a prefix code C ⊂ A∗, the
value π(C) = ∑

x∈C π(x) can be interpreted as the probability that a long
enough word has a prefix in C. Accordingly, we have π(C) ≤ 1.

Let C be a prefix code such that π(C) = 1. The average length of the
words of C is

λ(C) =
∑
x∈C

|x|π(x).
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One has the useful identity

λ(C) = π(P)

whereP = A∗ − CA∗ is the set of words which do not have a prefix in C. In-
deed, let pn = π(C ∩ An) and qn = ∑

m≥n pm. Then, λ(C) = ∑
n≥1 npn =∑

n≥1 qn. Since π(P ∩ An) = qn, this proves the claim.
The generating series C(z) = ∑

n≥0 pnz
n is related to P (z) =∑

n≥0 qnz
n by

C(z) − 1 = P (z)(1 − z).

When π is a Bernoulli distribution, one may use unambiguous ex-
pressions on sets to compute probability of events definable in this way.
Indeed, the unambiguous operations translate to operations on probability
generating series. If W is a set of words, we set

W (z) =
∑
n≥0

π(W ∩ An)zn.

Then, if U + V , UV , and U∗ are unambiguous expressions, we have

(U + V )(z) = U (z) + V (z), (UV )(z) = U (z)V (z),

(U ∗)(z) = 1

1 − U (z)
.

We now give two examples of this method.
Consider first the problem of finding the expected waiting time T (w)

before seeing a word w. We are going to show that it is given by the formula

T (w) = π(Q)

π(w)
(1.9.1)

where Q = {q ∈ A∗ | wq ∈ A∗w and |q| < |w|}. Thus Q is the set of
(possibly empty) words q such that w = sq with s a nonempty suffix
of w.

Let C be the prefix code formed of words that end with w for the first
time. Let V be the set of prefixes of C, which is also the set of words which
do not contain w as a factor. We can write

Vw = CQ. (1.9.2)

Moreover both sides of this equality are unambiguous. Thus, since π(C) =
1, π(V)π(w) = π(Q), whence Formula (1.9.1). Formula (1.9.2) can also be
used to obtain an explicit expression for the generating series C(z). Indeed,
using (1.9.2), one obtains V (z)π(w)zm = C(z)Q(z), where m is the length
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of w. Replacing V (z) by (1 − C(z))/(1 − z), one obtains

C(z) = π(w)zm

π(w)zm + Q(z)(1 − z)
(1.9.3)

The polynomial Q(z) is called the autocorrelation polynomial of w. Its
explicit expression is

Q(z) = 1 +
∑

p∈P (w)

π(wn−p · · ·wn−1)zp

where P (w) is the set of periods of the word w = w0 · · ·wn−1, and wi

denotes the ith letter of w. A slightly more general definition is given in
Chapter 6.

Example 1.9.1. In the particular case of w = am and A = {a, b} with
π(a) = p, π(b) = q = 1 − p, the autocorrelation polynomial of w is

Q(z) = 1 − pmzm

1 − pz
.

Consequently, π(Q) = (1 − pm)/q and Formula (1.9.1) and (1.9.3) become

T (am) = 1 − pm

qpm
, C(z) = (1 − pz)pmzm

1 − z + qpmzm+1
,

so that for p = q = 1/2,

T (w) = 2m+1 − 2, C(z) = (1 − z/2)zm/2m

1 − z + zm+1/2m+1

Formula (1.9.1) can be considered as a paradox. Indeed, it asserts that with
π(a) = π(b) = 1/2, the waiting time for the word w = aa is 6 while it is
4 for w = ab.

Formula (1.9.1) is related to the automaton recognizing the words ending
with w and consequently to Algorithm SearchFactor. We illustrate this
on an example. Let w = abaab. The minimal automaton recognizing the
words on {a, b} ending with w for the first time is represented in Figure 1.53.
The transitions of the automaton can actually be computed using the array
b introduced in algorithm Border.

0 1 2 3 4 5

b : −1 0 0 1 1 2 .

For example, the transition from state 3 by letter b is to state 2 because
b[3] = 1 and w[1] = b. The set Q can also be read on the array b. Actually,
we have Q = {ε, aab} since the border of w has length 2 (b[5] = 2) and
b[2] = 0.
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0 1 2 3 4 5

b

a

a

b
a

b

a

b

b

a

a

b

Figure 1.53. The minimal automaton recognizing the words ending with
abaab.

As a second example, we now consider the problem of finding the
probability fn that the number of a equals the number of b for the first time
in a word of length n on {a, b} starting with a, with π(a) = p, π(b) = q =
1 − p. This is the classical problem of return to 0 in a random walk on the
line.

The set of words starting with a and having as many as as bs for the first
time is the Dyck set D already studied in Section 1.6. We have already seen
that D = aD∗b. Thus, the generating series D(z) = ∑

n≥0 f2nz
2n satisfies

D2 − D + pqz2 = 0.

D(z) = 1 −
√

1 − 4pqz2

2
.

This formula shows in particular that for p = q, π(D) = 1/2 since
π(D) = D(1). But for p �= q, π(D) < 1/2. An elementary application of
the binomial formula gives the coefficient fn of D(z) = ∑

n≥0 fnz
n

f2n = 1

n

(
2n − 2

n − 1

)
pnqn .

1.9.2. Extremal problems

We consider here the problem of computing the average value of several
maxima concerning words. We assume here that the source is Bernoulli,
that is that the successive letters are drawn independently with a constant
probability distribution π .

We begin with the case of the longest run of successive occurrences
of some letter a with π(a) = p. The probability of seeing a run of k

consecutive letters a beginning at some given position in a word of length
n is pk . So the average number of runs of length k is approximately npk .
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Let Kn be the average value of the maximal length of a run of letters a in
the words of length n.

Intuitively, since the longest run is likely to be unique, we have npKn =
1. This equation has the solution Kn = log1/p n. One can elaborate the
above intuitive reasoning to prove that

lim
n→∞

Kn

log1/p n
= 1 . (1.9.4)

This formula shows that, on average, the maximal length of a run of letters
a is logarithmic in the length of the word.

A simple argument shows that the same result holds when runs are
extended to be words over some fixed subset B of the alphabet A. In this
case, p is replaced by the sum of the probabilities of the letters in B.

Another application of the above result is the computation of the average
length of the longest common factor starting at the same position in two
words of the same length. Such a factor x induces in two words w and w′
the factorizations w = uxv and w′ = u′xv′ with |u| = |u′|. A factor is just
a run of symbols (a, a) in the word (w, w′) written over the alphabet of
pairs of letters. The value of p for Equation (1.9.4) is

p =
∑
a∈A

π(a)2 .

The average length of the longest repeated factor in a word is also
logarithmic in the length of the word. It is easily seen that over a q letter
alphabet, the length k of the longest repeated factor is at least 	logq n
 and
thus the average length of the longest repeated factor is at least logq n. It
can be proved that it is also O(log n).

The longest common factor of two words can be computed in
linear time. An algorithm (Lengths-of-factors) is given in Chapter 2.
The average length of the longest common factor of two words of the same
length is also logarithmic in the length. More precisely, let Cn denote the
average length of the longest common factor of two words of the same
length n. Then

lim
n→∞

Cn

log1/p n
= 2 . (1.9.5)

The intuitive argument used to derive Formula (1.9.4) can be adapted to
this case to explain the value of the limit. Indeed, the the average number
of common factors of length k in two words of length n is approximately
n2pk . Solving the equation n2pk = 1 gives k = log1/p n2 = 2 log1/p n.
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Table 1.4. Some upper and lower
bounds for ck .

k lower bound upper bound

2 0.76 0.86
3 0.61 0.77

10 0.39 0.54
15 0.32 0.46

The case of subwords contrasts with the case of factors. We have already
given in Section 1.2.4 an algorithm (LcsLengthArray(x, y)) which
computes the length of the longest common subwords of two words. The
essential result concerning subwords is that the average length c(k, n) of
the longest common subwords of two words of length n on k symbols is
O(n). More precisely, there is a constant ck such that

lim
n→∞

c(k, n)

n
= ck.

This result is easy to prove, even if the proof does not give a formula for
ck . Indeed, we have c(k, n + m) ≥ c(k, n) + c(k, m) since this inequality
holds for the length of the longest common subwords of any pair of words.
This implies that the sequence c(k, n)/n converges (we have already met
this argument in Section 1.8.2). There is no known formula for ck but only
estimates given in Table 1.4.

Problems

Section 1.1

1.1.1 Show that the number of words of length n on q letters with a given
subword of length k is

n−k∑
i=0

(
n − i − 1

k − 1

)
qi(q − 1)n−i−k.

In particular, this number does not depend on the particular word
chosen as a subword. (Hint: consider the automaton recognizing
the set of words having a given word as subword.)

1.1.2 Let c : (A ∪ ε) × (A ∪ ε) → R ∪ ∞ be a function assigning a cost
to each pair of elements equal to a symbol or to the empty word.
Assume that
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(i) the restriction of c to A × A is a distance,
(ii) c(ε, a) = c(a, ε) > 0 for all a ∈ A.
Each transformation on a word is assigned a cost using the cost c

as follows. A substitution of a symbol a by a symbol b adds a cost
c(a, b). An insertion of a symbol a counts for c(ε, a) and a deletion
for c(a, ε). Let d(u, v) be the distance defined as the minimal cost
of a sequence of transformations that changes u into v.

Show that d is a distance on A∗. Show that d coincides with
1. the Hamming distance if c(a, b) = 1 for a �= b and c(a, ε) =

c(ε, a) = ∞,
2. the subword distance if c(a, b) = ∞ for a, b ∈ A and a �= b,

and c(a, ε) = c(ε, a) = 1 for all a ∈ A.

Section 1.2

1.2.1 The sharp border array of a word x of length m is the array sb of
size m + 1 such that sb[m] = b[m] and for 1 ≤ j ≤ m − 1, sb[j ]
is the largest integer i such that x[0 . . i − 1] = x[j − i . . j − 1]
and x[j ] �= x[i]. By convention, sb[j ] = −1 if no such integer i

exists. For example, if x = abaababa, the array sb is

0 1 2 3 4 5 6 7 8

b : −1 0 −1 1 0 −1 3 −1 3 .

Show that the following variant of Algorithm Border computes
the array sb in linear time.

BorderSharp(x)
1 � x has length m, sb has size m + 1
2 i ← 0
3 sb[0] ← −1
4 for j ← 1 to m − 1 do
5 � Here x[0 . . i − 1] = border(x[0 . . j − 1])
6 if x[j ] = x[i] then
7 sb[j ] ← sb[i]
8 else sb[j ] ← i

9 do i ← sb[i]
10 while i ≥ 0 and x[j ] �= x[i]
11 i ← b[i]
12 i ← i + 1
13 sb[m] ← i

14 return b
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Show that, in Algorithm SearchFactor, one may use the table
sb of sharp borders instead of the table b of borders, resulting in a
faster algorithm.

Section 1.3

1.3.1 This exercise shows how to answer the following questions: what
is the minimal Hamming distance between a word w and the words
of a regular set X and how is a word of X computed which realizes
the minimum?

These questions are solved by the following algorithm known
as the Viterbi algorithm.

Let A = (Q, i, T ) be a finite automaton over the alphabet A

and, for each p ∈ Q, let Xp be the set recognized by the automaton
(Q, i, p).

Let w = a0 · · · an−1 be a word of length n. For a symbol a ∈ A

and 0 ≤ i < n we denote c(a, i) = 0 if a = ai and c(a, i) = 1
otherwise. We compute the function d : Q × N → N defined by:
d(p, i) is the minimal Hamming distance of the words in Xp ∩ Ai

to the word a0 · · · ai−1.

Viterbi(w)
1 for i ← 0 to n − 1 do
2 for each edge (p, a, q) do
3 if d(p, i − 1) + c(a, i) < d(q, i) then
4 d(q, i) ← d(p, i − 1) + c(a, i)
5 return mint∈T d(t, n − 1)

Show how to modify this algorithm to return a word in X that
is closest to w.

1.3.2 Prove that the minimal automaton recognizing the set S(w) of
suffixes of a word of length n has at most 2n states. Hint: show that
for any p, q, the sets p−1S(w) and q−1S(w) are either disjoint or
comparable.

Section 1.5

1.5.1 Let A = (Q, I, T ) be a transducer over A, B with n states. Let
M be the maximal length of output labels in the edges of A.
Suppose that A is equivalent to a sequential transducer B, obtained
by the determinization algorithm. Let (u, q) ∈ B∗ × Q be a pair
appearing in a state of B. Show that |u| ≤ 2n2M .
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Section 1.7

1.7.1 A rational function is a function of the form f (z) = ∑
n≥0 anz

n

such that f (z)q(z) = p(z) for two polynomials p, q with q(0) = 1.
It is said to be nonnegative if an ≥ 0 for all n ≥ 0. We shall use
the fact that if f (z) is a nonnegative rational function such that
f �= 0 and f (0) = 0, then the radius of convergence σ of f ∗(z) =
1/(1 − f (z)) is a simple pole of f ∗ such that σ ≤ |π | for any other
pole π (see the Notes of this chapter for a reference). Moreover σ

is the unique real number such that f (σ ) = 1.
Let M be an n × n irreducible matrix and let

M =
[

u v

w N

]

with N of dimension n − 1. Let f (z) = uz + v(I − zN)−1wz2.
Show that

1/(1 − f (z)) = (I − Mz)−1
1,1.

Use the result quoted above on nonnegative rational functions to
prove that

1. the spectral radius ρM of M is 1/σ where σ is such that
f (σ ) = 1,

2. each row of the matrix [(σ − z)(I − Mz)−1]z=σ is a positive
eigenvector of M corresponding to 1/σ .

(Hint: use the relation I + (I − Mz)−1Mz = (I − Mz)−1).

Section 1.8

1.8.1 Consider a uniform primitive morphism f : A∗ → A∗ with a fix-
point u ∈ Aω. We indicate here a method to compute the frequency
of the factors of length � in u by a faster method than the one used
in Section 1.8.6. Let F� be the set of factors of length � of u.
Let M (�) be the F� × F�–matrix defined by M (�)

x,y = |f (x)|y as in
Example 1.8.11. Let p be an integer such that |f p(a)| > � − 2 for
all a ∈ A. Let U be the F2 × F�–matrix defined as follows. For
a, b ∈ A such that ab ∈ F2 and y ∈ F�, Uab,y is the number of
occurrences of y in f p(ab) that begin in the prefix f p(a). Show
that

UM (�) = M (2)U,
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that M (2) and M (�) have the same dominant eigenvalue ρ, and that
if v2 is an eigenvector of M (2) corresponding to ρ, then v� = v2U

is an eigenvector of M (�) corresponding to ρ.
1.8.2 Let µ : a → ab, b → ba be the morphism with fixpoint the Thue–

Morse word. Show that for � = 5, p = 3, the matrix U of the pre-
vious problem (with the 12 factors of length 5 of the Thue–Morse
word listed in alphabetic order) is

U =

⎡
⎢⎣

1 0 1 1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 1 1 0 1 1 0
1 1 0 1 0 1 1 0 1 1 0 1
1 0 1 1 0 1 1 0 1 1 0 1

⎤
⎥⎦

and that the vector v2U with v2 = [
1 2 2 1

]
is the vector with all

components equal to 4. Deduce that the 12 factors of length 5 of the
Thue–Morse word have the same frequency (see Example 1.8.4).

1.8.3 Consider the following transformation T on words: a word w

is replaced by the word T (w) of the same length obtained as
follows: list the cyclic shifts of w in alphabetic order as the rows
w1, w2, . . . , wn of an array. Then T (w) is the last column of the
array. For example, let w = abracadabra. The list of conjugates
of w sorted in alphabetical order is represented below.

1 2 3 4 5 6 7 8 9 10 11
1 a a b r a c a d a b r

2 a b r a a b r a c a d

3 a b r a c a d a b r a

4 a c a d a b r a a b r

5 a d a b r a a b r a c

6 b r a a b r a c a d a

7 b r a c a d a b r a a

8 c a d a b r a a b r a

9 d a b r a a b r a c a

10 r a a b r a c a d a b

11 r a c a d a b r a a b

The word T (w) is the last column of the array. Thus in our example
T (w) = rdarcaaaabb. Show that w �→ T (w) is a bijection up to
conjugacy.

1.8.4 Let uS(z) be the generating series of the number of words of length
n in S, that is

uS(z) =
∑
w∈S

z|w| .
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Show that

uS(z) = S(qz),

where S(z) is the generating series for the uniform Bernoulli
distribution on q symbols.

1.8.5 Show that the generating series of the set F of words over {a, b}
without factor w = an is

uF (z) = 1 − zn

1 − 2z + zn+1
.

Notes

Several textbooks treat the subject of algorithms on words in much more
detail than we did here. In the first place, several general textbooks on algo-
rithms like Aho, Hopcroft, and Ullman (1975) or Sedgewick (1983) include
automata and pattern matching algorithms among many other topics. In the
second place, several books like Crochemore and Rytter (1994), Gusfield
(1997) or Baeza-Yates and Ribero-Neto (1999) are entirely dedicated to
word algorithms.

Words. The distance introduced in Problem 1.1.2 is known as the edit
distance or also the alignment distance. It has been introduced first by
Levenshtein (1965) and it is used in many ways in bioinformatics (see
Sankoff and Kruskal 1983).

The algorithm Viterbi in Problem 1.3.1 is used in the context of
convolutional error-correcting codes (see McEliece 2002). It appears again
in Chapter 4.

Elementary algorithms. The algorithm Border computing the border of
a word in linear time and the linear time algorithm SearchFactor that
checks whether a word is a factor of another (Algorithm SearchFactor)
are originally due to Knuth, Morris, and Pratt (1977). This algorithm is the
first one of a large family of algorithms constituting the field of pattern
matching algorithms. See Crochemore, Hancart, and Lecroq (2001) for a
general presentation. The algorithm BorderSharp of Problem 1.2.1 is
from Knuth et al. (1977).

The quadratic algorithm to compute a longest common subword (Algo-
rithm Lcs) is usually credited to Hirschberg (1977), although many authors
discovered it independently (see Sankoff and Kruskal 1983). It is not known
whether a linear algorithm exists. An algorithm working in time O(p log n)
on two words of length n with p pairs of matching positions is due to Hunt
and Szymanski (1977).
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The linear algorithm CircularMin that computes the least conju-
gate of a word is due to Booth (1980). Several refinements were pro-
posed, see Shiloach (1981), Duval (1983), Apostolico and Crochemore
(1991). The algorithm giving the factorization in Lyndon words (Algorithm
LyndonFactorization) is due to Fredricksen and Maiorana (1978), see
also Duval (1983).

Tries and automata. Tries are treated in many textbooks on algorithms (e.g.,
Aho, Hopcroft, and Ullman 1983). Our treatment of the implementation of
automata and pattern matching is also similar to that of most textbooks (see
for example Aho et al. 1975).

The exact complexity of the minimization problem for deterministic
finite automata is not yet known. Moore’s algorithm appears in a his-
torical paper (Moore 1956). Hopcroft’s minimization algorithm appears
first in Hopcroft (1971). The linear minimization algorithm for DAWGs
is from Revuz (1992). It can be considered as an extension of the tree
isomorphism algorithm in Aho et al. (1975).

Gilbreath’s card trick (Example 1.3.9) is described as follows in
Chapter 9 of Gardner (1966): Consider a deck of 2n cards ordered in
such a way that red and black cards alternate. Cut the deck into two parts
and give it a riffle shuffle. Cut it once more, this time not completely arbi-
trarily but at a place where two cards of the same colour meet. Square up
the deck.

Then for every i = 1, . . . , n the pair consisting of the (2i − 1)-th and
the 2i-th card is of the form (red, black) or (black, red). The property
of binary sequences underlying the card trick is slightly less general than
Formula (1.3.1).

The source of Exercise (1.3.2) is Blumer, Blumer, Haussler, Ehren-
feucht, Chen, and Seiferas (1985). The automaton can be used in several
contexts, including as a transducer called the suffix transducer (see
Chapter 2).

Pattern Matching. The equivalence of regular expressions and finite au-
tomata is a classical result known as Kleene’s theorem. We present here
only one direction of this result, namely the construction of finite automata
from regular expressions. This transformation is used in many situations.
Actually, regular expressions are often used as a specification of some
pattern and the equivalent finite automaton can be considered as an imple-
mentation of this specification. The converse transformation gives rise to
algorithms that are less frequently used. One case of use is for the compu-
tation of generating series (see Section 1.9).

There is basically only one method to transform a regular expression
into a finite automaton which operates by induction on the structure of the
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regular expression. However, several variants exist. The one presented here
is due to Thompson (1968). It uses ε-transitions and produces a normalized
automaton that has a unique initial state with no edge entering it and a unique
terminal state with no edge going out of it. Another variant produces an
automaton without ε-transitions (see Eilenberg 1974 for example). The
resulting automaton has in general fewer states than the one obtained by
Thomson’s algorithm. Yet another variant produces directly a deterministic
automaton (see Berry and Sethi 1986 or Aho, Sethi, and Ullman 1986).

Transducers. The notion of a rational relation and of a transducer dates
back to the origins of automata theory although there are few books treat-
ing extensively this aspect of the theory. Eilenberg’s book (Eilenberg 1974)
represents a significant date in the clarification of the concepts and nota-
tion. Later books treating transducers include Berstel (1979) and Sakarovich
(2004). A word on the terminology concerning what we call here sequential
transducers. The term “sequential machine” (also called “Mealy machine”)
is in general used only in the case of sequential letter-to-letter transducers.
The version using (possibly empty) word outputs is often called a “gen-
eralized sequential machine” (or gsm). A further generalization, used by
Schützenberger (1977), introduces a class of tranducers called subsequen-
tial which allow the additional use of a terminal suffix. We simply call here
sequential these subsequential transducers.

Any sequential function is a rational function but the converse is of
course not true. Several characterizations of rational functions, in particular
special classes of transducers realize rational fuctions. Among these are
so-called bimachines used in Chapter 3. The determinization algorithm
has been first studied in Schützenberger (1977) and Choffrut (1979). In
particular, the characterization of sequential transducers by the twinning
property is in Choffrut (1977, 1979). See also Reutenauer (1990).

The source of Problem 1.5.1 is Béal and Carton (2002). It can be checked
in polynomial time whether a transducer is equivalent to a sequential one
(see Weber and Klemm 1995 or Béal and Carton 2002). The normalization
algorithm was first considered by Choffrut (1979) and subsequently by
Mohri (1994) and by Béal and Carton (2001).

A quite different algorithm relying on shortest paths algorithms has been
proposed by Breslauer (1998). For recent developments, see the survey on
minimization algorithms of transducers in Choffrut (2003).

Parsing. The section on parsing follows essentially Aho et al. (1986). The
Dyck language is named after the group theorist Walther von Dyck (Dyck
1882). Context-free grammars are an important model for modelling hier-
archically structured data. They appear in various equivalent forms, such
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as recursive transition networks (RTNs) used in natural language process-
ing (see Chapter 3). Parsers are ubiquitous in data processing systems,
including natural language processing. The abstract model of a parser is a
pushdown automaton which is a particular case of the general model of a
Turing machine.

It is a remarkable fact that a large class of grammars can be parsed in one
pass, from left to right, and in linear time. This was first established by Knuth
(1965) who introduced in particular the LR analysis described here.

Word enumeration. A detailed proof of the Perron–Frobenius theorem can
be found in Gantmacher (1959). The proof given here is due to Wielandt,
whence the name of “Wielandt function”, also called Collatz–Wielandt
function (see Allouche and Shallit (2003)).

Problem 1.7.1 presents the connection between the theorem of Perron–
Frobenius and related statements concerning the poles of nonnegative ra-
tional functions. For a proof of the statement appearing at the beginning of
the problem, see Eilenberg (1974) or Berstel and Reutenauer (1984). This
approach gives a proof of the Perron–Frobenius theorem that differs from
the one given in Section 1.7.2. See McCluer (2000) for a survey on several
possible proofs of this theorem.

Probability. Our presentation of probability distributions on words is in-
spired by Welsh (1988), Szpankowski (2001), and Shields (1969). A proof
of the fundamental theorem of Markov chains can be found in most text-
books on probability theory (see, e.g., Feller (1968), chapter XV). The
theorem of Kolmogorov on probability measures on infinite words can be
found in Feller (1971), chapter IV. The notion of entropy is due to Shannon
(1948). Many textbooks contain a presentation of the main properties of
entropy (see e.g. Ash 1990). The computation of the distribution of maxi-
mal entropy (Section 1.8.4) is originally due to Shannon. Our presentation
follows Lind and Marcus (1996), chapter 13.

The computation of the frequencies of factors in fixpoints of substi-
tutions is reproduced from Queffélec (1987). The method described in
Problem 1.8.1 is also from Queffélec (1987).

The asymptotic equirepartition property of ergodic sources is known as
the Shannon–McMillan theorem. See Shields (1969) for a proof. The Ziv–
Lempel coding originally appears in Ziv and Lempel (1977). A complete
presentation of this popular coding can be found in Bell, Cleary, and Witten
(1990) with several variants.

The entropy of English has been studied by Shannon. In particular,
Tables 1.2 and 1.3 are from Shannon (1951). They are reproduced in several
manuals on text compression (see e.g. Welsh 1988 or Bell et al. 1990).
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Statistics on words. Events defined by prefix codes (Section 1.9.1) are pre-
sented in Feller (1968) under the name of recurrent events. Formula (1.9.1)
appears already in the paper Schützenberger (1964). The name of auto-
correlation polynomials appears in Guibas and Odlyzko (1981b). For-
mula (1.9.4) is due to Erdös Rényi (1970). For a proof, see Waterman (1995),
chapter 11. Formula (1.9.5) is due to Arratia, Morris, and Waterman (1988)
(see Waterman (1995), chapter 11). Table 1.4 is from Sankoff and Kruskal
(1983). It has been proved recently that Ck

√
k → 2 when k → +∞ (Kiwi

et al. 2004).
The transformation described in Problem 1.8.3 is known as the Burrows–

Wheeler transformation (see Manzini (2001)). It is the basis of a text com-
pression method. Indeed, the idea is that adjacent rows of the table of cyclic
shifts will often begin by a long common prefix and T (w) will therefore
have long runs of identical symbols. For example, in a text in English, most
rows beginning with ‘nd’ will end with ‘a’.

https://doi.org/10.1017/CBO9781107341005.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.002

