1

Introduction

1.1 Why this book? Our aim and focus

String matching can be understood as the problem of finding a pattern with
some property within a given sequence of symbols. The simplest case is that
of finding a given string inside the sequence.

This is one of the oldest and most pervasive problems in computer science.
Applications requiring some form of string matching can be found virtually
everywhere. However, recent years have witnessed a dramatic increase in
interest in string matching problems, especially within the rapidly growing
communities of information retrieval and computational biology.

Not only are these communities facing a drastic increase in the text sizes
they have to manage, but they are demanding more and more sophisticated
searches. The patterns of interest are not just simple strings but also include
wild cards, gaps, and regular expressions. The definition of a match may
also permit slight differences between the pattern and its occurrence in the
text. This is called “approximate matching” and is especially interesting in
text retrieval and computational biology.

The problems arising in this field can be addressed from different view-
points. In particular, string matching is well known for being amenable
to approaches that range from the extremely theoretical to the extremely
practical. The theoretical solutions have given rise to important algorithmic
achievements, but they are rarely useful in practice: A well-known fact in
the community is that simpler ideas work better in practice. Two typical
examples are the famous Knuth-Morris-Pratt algorithm, which in practice is
twice as slow as the brute force approach, and the well-known Boyer-Moore
family, whose most successful members in practice are highly simplified vari-
ants of the original proposal.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

2 Introduction

It is hard, however, to find the simpler ideas in the literature. In most
current books on text algorithms, the string matching part covers only the
classic theoretical algorithms. There are three reasons for that.

First, the practical algorithms are quite recent, the oldest one being just
a decade old. Some recent developments are too new to appear in the es-
tablished literature or in books. These algorithms are usually based on
new techniques such as bit-parallelism, which has appeared with the recent
generation of computers.

The second reason is that in this area the theoretical achievements are
dissociated from the practical advantages. The algorithmic community is
interested in theoretically appealing algorithms, that is, those achieving the
best complexities and involving complicated algorithmic concepts. The de-
velopment community focuses solely on algorithms known to be fast in prac-
tice. Neither community pays much attention to what the other does. Only
in the last few years have new algorithms emerged that combine aspects of
both theory and practice (such as BNDM), and the result has been a new
trend of fast and robust string matching algorithms. These new algorithms
have also not yet found a place in the established literature.

Finally, the search for extended patterns, of much interest nowadays, is
largely unrepresented in the established literature. There are no books
dealing with such new search problems as multiple or approximate pattern
matching.

These reasons make it extremely difficult to find the correct algorithm if
one is not in the field: The right algorithms exist, but only an expert can
find and recognize them. Consider the case of software practitioners, compu-
tational biologists, researchers, or students who are not directly involved in
the field and are faced with a text searching problem. They are forced to dig
into dozens of articles, most of them of theoretical value but extremely com-
plicated to implement. Finally, they get lost in an ocean of choices, without
the background necessary to decide which is better. The typical outcomes
of this situation are (a) they decide to implement the simplest approach,
which, when available, yields extremely poor performance and affects the
overall quality of development; and (b) they make a (normally unfortunate)
choice and invest a lot of work in implementing it, only to obtain a result
that in practice is as bad as a naive approach or even worse.

The aim of our book is to present, for a large class of patterns (strings, sets
of strings, extended strings, and regular expressions) the existing exact and
approximate search approaches, and to present in depth the most practical
algorithms. By “practical” we mean that they are efficient in practice and
that a normal programmer can implement them in a few hours. Fortunately,

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.2 Overview 3

these criteria normally coincide in string matching. We focus on on-line
searching, which means that we do not build data structures on the text.
Indexed searching, although based on on-line searching, would deserve a
complete volume by itself.

This book is intended to be of use to a large audience. Computer scientists
will find everything needed to understand and implement the fastest search
algorithms. If they want to go further in studying text algorithms, we give
precise links and research references (books, proceedings, articles) to many
related problems. Computational biologists will be able to enter in depth
in the pattern matching field and find directly the most simple and efficient
algorithms for their sequence searches.

We have implemented and experimented with all the algorithms presented
in this book. Moreover, some are ours. We give experimental maps whenever
possible to help the reader see at a glance the most appropriate algorithms
for a particular application.

This book is not a complete survey on text algorithms. This field is too
large for a single book. We prefer to focus on a precise topic and present it
in detail. We give a list of related recent books in Section 7.2.

1.2 Overview
Chapter 2: String matching

A string is a sequence of characters over a finite alphabet >i. For instance,
ATCTAGAGA is a string over ¥ = {4, C, G, T}. The string matching problem
is to find all the occurrences of a string p, called the pattern, in a large string
T on the same alphabet, called the text. Given strings z, y, and z, we say
that z is a prefix of zy, a suffix of yz, and a factor of yzz.

We present string matching algorithms according to three general ap-
proaches, depending on the way the pattern is searched for in the text.

The first approach consists in reading all the characters in the text one
after the other and at each step updating some variables so as to identify a
possible occurrence. The Knuth-Morris-Pratt algorithm is of this kind,
as is the faster Shift-Or, which is extensible to more complicated patterns.

The second approach consists in searching for the string p in a window
that slides along the text 1. For every position of this window, we search
backwards for a suffix of the window that matches a suffix of p. The Boyer-
Moore algorithm uses this approach, but it is generally slower than one of
its simplifications, Horspool. And when it is not, it is slower than other
algorithms of other approaches.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

4 Introduction

The third approach is more recent and leads to the most efficient al-
gorithms in practice for long enough p. As with the second approach, the
search is done backward in a window, but this time we search for the longest
suffix of the window that is also a factor of p. The first algorithm using this
approach was BDM, which, when p is short enough, leads to the simpler
and more efficient BNDM. For longer patterns, a new algorithm, BOM, is
the fastest.

We give an experimental map to easily choose the fastest algorithm ac-
cording to the length of the pattern and the size of the alphabet.

The three approaches represent a general framework in which the most
efficient algorithms fit. There exist other algorithms, for instance, those
based on hashing, but they are not efficient enough. We give references to
these algorithms in the last section.

Chapter 3: Multiple string matching

A set of strings P = {p',p?,...,p"} can be searched for in the same man-
ner as a single string, reading the text once. Many search algorithms for
searching a single string have been extended to search a set, with more or
less success. This chapter is a survey of the most efficient algorithms. Sur-
prisingly, many of them have just been published as technical reports and
it is quite difficult for a nonexpert to know of their existence.

All three approaches to search for a single string lead to extensions to a set
of strings. The first one leads to the well-known Aho-Corasick algorithm
and, when the sum of the pattern lengths, | P|, is very small, to the Multiple
Shift- And algorithm.

The second one leads to the famous Commentz- Walter algorithm, which
is not very efficient in practice. The extension of the Horspool algorithm,
Set Horspool, is efficient for very small sets on large alphabets. A last
algorithm, Wu-Manber, mixes the suffix search approach with a hashing
paradigm and is usually fast in practice.

The third approach permits an extension of BOM, the SBOM algorithm,
which becomes very efficient when the minimum pattern length grows. Sim-
ilarly to Shift-Or, BNDM leads to Multiple BNDM when |P| is very
small.

We give experimental maps that permit choosing which algorithm to use
depending on the total pattern size |P|, the minimum length, and the size
of the alphabet.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.2 Overview 5

Chapter 4: Extended string matching

In many applications, the search pattern is not just a simple sequence of
characters. In this chapter we consider several extensions that appear nor-
mally in applications and show how to deal with them. All these extensions
can be converted into regular expressions (Chapter 5), but simpler and faster
particular algorithms exist for the ones we consider here.

The simplest extension is to permit the pattern to be a sequence of classes
(sets) of characters instead of just characters. Any text character in the class
will match that pattern position. It is also possible for the classes to appear
in the text, not only in the pattern.

A second extension is bounded length gaps: Some pattern positions are
designated to match any text sequence whose length is between specified
minimum and maximum values. This is of interest in computational biology
applications, for example, to search for PROSITE patterns.

A third extension is optional and repeatable characters. An optional
pattern character may or may not appear in its text occurrence, while a
repeatable character may appear one or more times.

Problems arising from these three extensions and combinations thereof
can be solved by adapting Shift-Or or BNDM. Both algorithms involve
bit-parallelism to simulate a nondeterministic automaton that finds all the
pattern occurrences (see Section 1.3). In this case we have more complex
automata, and the core of the problem is finding a way to simulate them.
Extending Shift-Or leads to an algorithm unable to skip text characters but
whose efficiency is unaffected by the complexity of the pattern. Extending
BNDM, on the other hand, is normally faster, but the efficiency is affected
by the minimum length of an occurrence, the alphabet size, and the sizes of
the classes and gaps. No classical algorithm can be extended so easily and
obtain the same efficiency.

Finally, we show that a small set of short strings can be searched for using
a similar approach, and give references to other theoretical algorithms that
search specific kinds of extended strings.

Chapter 5: Regular expression matching

Regular expressions give an extremely powerful way to express a set of search
patterns, containing all the previous types of problems we have considered
so far. A regular expression specifies simple strings and concatenations,
unions, and repetitions of other subexpressions. The algorithms addressing
them are more complex and should be used only when the problem cannot
be expressed as a simpler one.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

6 Introduction

Searching for a regular expression is a multistage process. First, we need
to parse it to obtain a more workable tree representation. We show at
the end of Chapter 5 how to do this. We then use the tree representation
throughout the chapter.

The second stage is to build a nondeterministic finite automaton (NFA)
from the pattern. The NFA is a state machine which has some states active
that change as we read text characters, recognizing occurrences when states
designated as “final” are reached. There are two interesting ways to obtain
an NFA from a regular expression. Thompson’s algorithm obtains an NFA
whose number of transitions is proportional to the length of the regular
expression and which satisfies some regularity properties that are of interest.
Glushkov’s algorithm produces an NFA that has the minimum number of
states and other interesting regularities.

The NFA can be used directly for searching (we call this algorithm NFA-
Thompson), but this is slow because many states can be active at any time.
It can also be converted into a deterministic finite automaton (DFA), which
has only one active state at a time. The DFA is appealing for text searching
and is used in one of the most classical algorithms for regular expression
searching. We call this algorithm DFA Classical. Its main problem is that
the size of the DFA can be exponential on that of the NFA, which makes
the approach workable only for small patterns. On longer patterns, a hybrid
approach that we dub DFAModules builds an NFA of small DFAs and
retains a reasonable efficiency.

Another trend is to simulate the NFAs using bit-parallelism instead of
converting them to DFAs. We present two relatively new approaches, BP-
Thompson and BPGlushkov, which are based on simulating the respec-
tive NFAs using their specific properties. We show that BPGlushkov
should always be preferred over BPThompson.

A third approach, also novel, permits skipping text characters. The al-
gorithm MultiStringRE computes the minimum length #min of an occur-
rence of the regular expression and computes all the prefixes (of that length)
of all the occurrences. It then conducts a multistring search (Chapter 2) for
all those strings. When one such prefix is found, it tries to complete the
occurrence. An extension of it, MultiFactRE, selects a set of strings of
length #min such that some of these strings must appear inside any oc-
currence (the set of prefixes is just one option). Finally, RegularBNDM
extends BNDM by simulating Glushkov’s NFA.

Choosing the best algorithm is a complex choice that depends on the
structure of the regular expression. We give simple criteria based on prop-
erties of the pattern to decide which algorithm to use.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.2 Overview 7
Chapter 6: Approximate matching

Approximate matching is the problem of finding the occurrences of a pattern
in a text where the pattern and the occurrence may have a limited number
of differences. This is becoming more and more important in problems such
as recovering from typing or spelling errors in information retrieval, from
sequence alterations or measurement errors in computational biology, or
from transmission errors in signal processing, to name a few.

Approximate matching is modeled using a distance function that tells how
similar two strings are. We are given the pattern and a threshold &, which
is the maximum allowed distance between the pattern and its occurrences.
In this chapter we concentrate on the Levenshtein (or edit) distance, which
is the minimum number of character insertions, deletions, and substitutions
needed to make both strings equal. Many applications use variants of this
distance.

We divide the existing algorithms into four types. The first is based on
dynamic programming. This is the oldest approach and still the most flexible
one to deal with distances other than edit distance. However, algorithms of
this kind are not among the most efficient.

The second type of algorithm converts the problem into the output of an
NFA search, which is built as a function of the pattern and &, and then makes
the automaton deterministic. The resulting algorithms behave reasonably
well with short patterns, but not as fast as newer techniques.

Bit-parallelism is the third approach, and it yields many of the most
successful results. The algorithms BPR and BPD simulate the NFA, while
BPM simulates the dynamic programming algorithms. BPM and BPD
are the most efficient of the class, but BPR is more flexible and can be
adapted to more complex patterns.

Finally, the fourth approach is filtration. A fast algorithm is used to dis-
card large text areas that cannot contain a match, and another (nonfiltra-
tion) algorithm is used to check the remaining text areas. These algorithms
are among the fastest, but their efficiency degrades quickly as k£ becomes
large compared to the pattern length m.

Among the many filtration algorithms, we present the two most efficient
ones. PEX splits the pattern in & 4+ 1 pieces and resorts to multistring
searching of them, as at least one must appear unaltered in any occurrence.
ABNDM is an extension of BNDM that simulates the NFA of approximate
searching.

We present an experimental map comparing these algorithms. In general,
filtration approaches work better for low k/m values. ABNDM is best for

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

8 Introduction

small alphabet sizes (such as DNA) while PEX is best for larger alphabets
(such as proteins or natural language). For larger k/m values, and also to
verify the text areas that the filters cannot discard, the best algorithms are
the bit-parallel ones.

There are some developments for approximate searching of other types of
patterns. For multiple pattern matching with errors, the main algorithms
are MultiHash, which works only for £ = 1 but is efficient even when the
number of patterns is large; MultiPEX, which takes k41 strings from each
pattern and is the most efficient choice for low k/m values; and MultiBP,
which superimposes the NFAs of all the patterns and uses the result as a
filter, this being the best choice for intermediate k/m values.

For matching extended strings and regular expressions with errors, there
are a few approaches: one based on dynamic programming for regular ex-
pressions, one based on an NFA of DFAs permitting errors, and a bit-parallel
one based on BPR. This last one is the most attractive because of the com-
bination of simplicity and efficiency it offers.

1.3 Basic concepts
1.3.1 Bit-parallelism and bit operations

The bit-parallelism technique takes advantage of the intrinsic parallelism of
the bit operations inside a computer word. That is, we can pack many
values in a single word and update them all in a single operation. By taking
advantage of bit-parallelism, the number of operations that an algorithm
performs can be cut down by a factor of up to w, where w is the number of
bits in the computer word. Since in current architectures w is 32 or 64, the
speedup is very significant in practice.

Let us introduce some notation to describe bit-parallel algorithms. We
use exponentiation to denote bit repetition, for example, 0°1 = 0001. A
sequence of bits by...by is called a bit mask of length ¢, which is stored
somewhere inside the computer word of length w. We use C-like syntax for
operations on the bits of computer words, that is, “|” is the bitwise OR, “&”
is the bitwise AND, “A” is the bitwise XOR, “~” complements all the bits,
and “<<” (“>>") moves the bits to the left (right) and enters zeros from
the right (left), so that, for example, bgby 1 ...baby << 3 = by_3...bab1000.

We can also perform arithmetic operations on the bits, such as addition
and subtraction. These operate on the bits as if they formed a number. For
instance, 00010110 + 00010010 = 00101000 and 10010000 — 1 = 10001111.

We may have to use many computer words to store a given set of values,
and in this case the operations described have to be applied over this entire

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.3 Basic concepts 9

representation. This is quite trivial for most operations, but the arithmetic
ones need some care because we have to consider the propagation effects. For
example, imagine that we have to simulate Z + X+Y or Z + X —Y, where
X =X;...X;5and Y = Y,...Y; are each represented using ¢ computer
words. Figure 1.1 shows the algorithm for both operations.

Add(X =X,.. X1,Y =Y;... Y1)

carry < 0

Foricl...tDo
Zi +— Xi+Yi+carry
If Z; < X; OR (Y; = 1" AND carry = 1) Then carry <1
Else carry + 0

End of for

Return Z=27;... 73

I e

Subtract(X = X;...X;,Y =Y;...Y7)

8. carry <0

9. For:iel...t Do

10. Z; +— X; = Y; —carry

11. If Z; > X; or (Y; = 1% AND carry = 1) Then carry < 1
12. Else carry < 0

13. End of for
14. Return Z2=27;... Z1

Fig. 1.1. Algorithms for adding and subtracting unsigned numbers stored in multi-
ple machine words. The first word, Z;, is the least significant. We ignore the final
overflow in the operation, but the overflow information is contained in the variable
carry.

1.3.2 Labeled rooted tree, trie

Most of the data structures presented in this book are based on classical
strings and rooted trees. A rooted tree is a set of nodes linked together with
unidirectional links. The source node of each link is called the parent and
the target is called a child. One special node has no parent; this node is
denoted root. The rest of the nodes of the tree have exactly one parent each.
Nodes with no children are called leaves.

For our purpose, it is convenient to attach a label to each link, which is
normally a character of the alphabet ¥. An example of such a tree is shown
in Figure 1.2

When the labeled rooted tree is associated to a set of strings, it is called
a trie. A complete presentation of the trie structure is given in Chapter 3.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

10 Introduction

OO0

= (o]
R A }'@
(2)—"+(4)
A\x@

Fig. 1.2. A labeled tree. State 0 is the root. Fach node, except the root, has a
unique parent.

An algorithm that uses a labeled rooted tree performs computations over
the nodes in a specific order. In prefix order, the algorithm performs the
computation first over a node and then over its children (if any). In postfiz
order, the computation over the node is done after those over the children.
For instance, for the tree in Figure 1.2, the nodes we compute over in prefix
order are 0, 1, 3, 5, 8, 2, 4, 6, 7, and in postfix order they are &8, 5, 3, 1,
7, 6, 4, 2, 0. The specific order in which sibling nodes are processed is not
relevant.

Another frequently used order is the transversal order. The level of a node
is its distance, in terms of the number of intermediate nodes, to the root. In
transversal order the nodes are processed in increasing level order. Inside a
level, the order has generally no importance, but sometimes we impose one
to simplify the algorithms. Two transversal orders are shown in Figure 1.3.
The dashed arrows represent the way the nodes are processed.

Fig. 1.3. Tree traversals. State O is the root. The traversals are shown in dashed
arrows.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.8 Bastc concepts 11
1.3.3 Automata

The term automaton has many meanings in computer science. For our
purposes, a finite automaton, which we call simply an automaton, is a finite
set of states @, among which one is initial (state I € Q) and some are final
or terminal (state set F C Q). Transitions between states are labeled by
elements of ¥ U {¢}. These are formally defined by a transition function
D, which associates to each state ¢ € @ a set {q1,qo,...,qr} of states of
Q for each « € ¥ U {e}. An automaton is then totally defined by A =
(Q,%,I,F,D).

In practice, we distinguish two general types of automata, depending
on the form of the transition function. If the function D is such that
there exists a state ¢ associated by a given character a to more than one
state, say D(q,a) = {q1,92,...,q1}, k > 1, or there is some transition
labeled by e, then the automaton is called a nondeterministic finite automa-
ton (NFA), and the transition function D is denoted by the set of triples
A = {(q,,¢"), ¢ € Q,a € T U {e},¢ € D(g,)}. Otherwise, the au-
tomaton is called a deterministic finite automaton (DFA), and D is denoted
by a partial function § : Q X X — @, such that if D(¢q,a) = {¢'}, then
d(g,) = ¢'. We give examples of both types of automata in Figure 1.4.

(a) Nondeterministic automaton (b) Deterministic automaton

Fig. 1.4. Two automata. In both, the state 0 is initial and the double-circled states
are terminal. The left automaton is nondeterministic since from the state 0 by
T we reach 2 and 6. The right one is deterministic because for a fixed transition
character all the states lead to at most one state.

A string is recognized by the automaton A = (Q,X,I,F,A) or A =
(Q,%,I,F,0) if it labels a path from an initial to a final state. The lan-
guage recognized by an automaton is the set of strings it recognizes. For
instance, the language recognized by the automaton in Figure 1.4 (a) is the
set of strings: A in state 8, ATAT in states 7 and 8, T in state 6, TC in state
8, TAG in state 6, and finally TAGC in state 8.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

12 Introduction

In NFAs, we accept that some transitions are labeled with the empty string
e, and they are called e-transitions (or empty transitions). This means that
we do not have to read a character to go through the transition. If we are
at the source state of the e-transition, we can simply jump to its target
state. This can also be seen as reading an empty string. These transitions
are generally used to simplify the construction of the NFA, but there always
exists an equivalent automaton, recognizing the same language without e-
transitions.

Both in NFAs and DFAs, if a string = labels a path from I to a state s,
we say that s is active after reading z. DFAs have at most one active state
at a time, while NFAs may have many.

The two automata shown in Figure 1.4 have a simple form, in the sense
that the transitions do not form cycles. Such automata are called acyclic,
whether they are deterministic or not. However, we can easily conceive of
cyclic automata. These automata are useful for regular expression matching.
The two automata of Figure 1.5 are cyclic. The language recognized by a
cyclic automaton can be infinite. For instance, the automaton of Figure 1.5
(a) recognizes TAG, but also TA-GAA-G, TA-GAA-GAA-G, TA-GAA-GAA-GAA-G, and
S0 on.

T
N
)

(a) Nondeterministic cyclic automaton (b) Deterministic cyclic automaton

Fig. 1.5. Two cyclic automata. In both, the state 0 is initial and the double-circled
states are terminal. The cycles are marked in bold.

1.3.4 Complezity notations

We will generally describe the efficiency of our pattern matching algorithms
in terms of the number of character comparisons and other basic operations,
depending on the size of the pattern, m, and of the text, n. We do not usually
give a precise function of n and m, only its growth rate or complezity order.
The O notation is used to express this idea.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

1.8 Bastc concepts 13

Definition A function g(n) is said to be O(f(n)) if there exist two con-
stants C' and ng such that g(n) < C x f(n) for all n > ng.

For instance, 2n? + 3n + loglogn is O(n?), nlogn + 120n + logn is
O(nlogn), and n* + 3n3 + 15n% + n is O(n*). A deeper presentation of
complexity notations and their meanings can be found in [Sed88, CLR90].

This notation permits us to compare algorithms of different complexities.
For example, if algorithm A takes time O(n) and algorithm B takes time

O(nlog(m)/m), then we know that for large enough m algorithm B will
be faster than algorithm A. We do not know how large is “large enough.”
Moreover, when both algorithms have the same complexity we do not know
which is better.

Sometimes a finer analysis can be done, comparing the exact number
of text inspections, table accesses, register accesses, and so on, that are
performed by each algorithm. These values are not only more complex to
obtain, but they also do not guarantee that we can predict which algorithm
is better on a given computer: Not only may the accesses have different
costs depending on the architecture, but also caching and pipelining effects
complicate any prediction.

The O notation is independent of the architecture, but its predictive power
is limited. In many cases we must resort to empirical measures to determine
which algorithm is better depending on the instance.

Two complexities are usually studied in the analysis of an algorithm. Its
worst-case complexity corresponds to the maximum cost over every possible
input. Its average-case or expected-case complexity refers to averaging the
cost over all the inputs. This involves assuming a probabilistic distribution
of the data. In this book we assume that the pattern and text characters
are independent and uniformly distributed over a finite alphabet.

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

https://doi.org/10.1017/CB0O9781316135228.001 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.001

