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Clues

C           
scattered abundantly throughout philosophy, logic, biology, psychology, statis-

tics, and engineering. With gradually increasing intensity, people set about to exploit
clues from these areas in their separate quests to automate some aspects of intelli-
gence. I begin my story by describing some of these clues and how they inspired
some of the first achievements in artificial intelligence.

2.1 From Philosophy and Logic

Although people had reasoned logically for millennia, it was the Greek philosopher
Aristotle who first tried to analyze and codify the process. Aristotle identified a
type of reasoning he called the syllogism “. . . in which, certain things being stated,
something other than what is stated follows of necessity from their being so.”1

Here is a famous example of one kind of syllogism:2

1. All humans are mortal. (stated)
2. All Greeks are humans. (stated)
3. All Greeks are mortal. (result)

The beauty (and importance for AI) of Aristotle’s contribution has to do with
the form of the syllogism. We aren’t restricted to talking about humans, Greeks, or
mortality. We could just as well be talking about something else – a result made
obvious if we rewrite the syllogism using arbitrary symbols in the place of humans,
Greeks, and mortal. Rewriting in this way would produce

1. All B’s are A. (stated)
2. All C’s are B’s. (stated)
3. All C’s are A. (result)

One can substitute anything one likes for A, B, and C . For example, all athletes are
healthy and all soccer players are athletes, and therefore all soccer players are healthy,
and so on. (Of course, the “result” won’t necessarily be true unless the things “stated”
are. Garbage in, garbage out!)

Aristotle’s logic provides two clues to how one might automate reasoning. First,
patterns of reasoning, such as syllogisms, can be economically represented as forms
or templates. These use generic symbols, which can stand for many different con-
crete instances. Because they can stand for anything, the symbols themselves are
unimportant.
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Figure 2.1. Gottfried
Leibniz.

Second, after the general symbols are replaced by ones pertaining to a specific
problem, one only has to “turn the crank” to get an answer. The use of general
symbols and similar kinds of crank-turning are at the heart of all modern AI reasoning
programs.

In more modern times, Gottfried Wilhelm Leibniz (1646–1716; Fig. 2.1) was
among the first to think about logical reasoning. Leibniz was a German philosopher,
mathematician, and logician who, among other things, co-invented the calculus. (He
had lots of arguments with Isaac Newton about that.) But more importantly for our
story, he wanted to mechanize reasoning. Leibniz wrote3

It is unworthy of excellent men to lose hours like slaves in the labor of calculation which could
safely be regulated to anyone else if machines were used.

and

For if praise is given to the men who have determined the number of regular solids . . . how
much better will it be to bring under mathematical laws human reasoning, which is the most
excellent and useful thing we have.

Leibniz conceived of and attempted to design a language in which all human
knowledge could be formulated – even philosophical and metaphysical knowledge.
He speculated that the propositions that constitute knowledge could be built from
a smaller number of primitive ones – just as all words can be built from letters
in an alphabetic language. His lingua characteristica or universal language would
consist of these primitive propositions, which would comprise an alphabet for human
thoughts.

The alphabet would serve as the basis for automatic reasoning. His idea was that if
the items in the alphabet were represented by numbers, then a complex proposition
could be obtained from its primitive constituents by multiplying the corresponding
numbers together. Further arithmetic operations could then be used to determine
whether or not the complex proposition was true or false. This whole process was
to be accomplished by a calculus ratiocinator (calculus of reasoning). Then, when
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12 The Quest for Artificial Intelligence

Figure 2.2. The Stanhope Square Demonstrator, 1805. (Photograph courtesy of Science
Museum/SSPL.)

philosophers disagreed over some problem they could say, “calculemus” (“let us
calculate”). They would first pose the problem in the lingua characteristica and then
solve it by “turning the crank” on the calculus ratiocinator.

The main problem in applying this idea was discovering the components of the
primitive “alphabet.” However, Leibniz’s work provided important additional clues
to how reasoning might be mechanized: Invent an alphabet of simple symbols and
the means for combining them into more complex expressions.

Toward the end of the eighteenth century and the beginning of the nineteenth,
a British scientist and politician, Charles Stanhope (Third Earl of Stanhope), built
and experimented with devices for solving simple problems in logic and probability.
(See Fig. 2.2.) One version of his “box” had slots on the sides into which a person
could push colored slides. From a window on the top, one could view slides that
were appropriately positioned to represent a specific problem. Today, we would say
that Stanhope’s box was a kind of analog computer.

The book Computing Before Computers gives an example of its operation:4

To solve a numerical syllogism, for example:

Eight of ten A’s are B’s; Four of ten A’s are C’s;
Therefore, at least two B’s are C’s.

Stanhope would push the red slide (representing B) eight units across the window (represent-
ing A) and the gray slide (representing C) four units from the opposite direction. The two
units that the slides overlapped represented the minimum number of B’s that were also C’s.
· · ·
In a similar way, the Demonstrator could be used to solve a traditional syllogism like:

No M is A; All B is M; Therefore, No B is A.

Stanhope was rather secretive about his device and didn’t want anyone to know
what he was up to. As mentioned in Computing Before Computers, “The few friends
and relatives who received his privately distributed account of the Demonstrator,
The Science of Reasoning Clearly Explained Upon New Principles (1800), were advised
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Figure 2.3. George Boole.

to remain silent lest ‘some bastard imitation’ precede his intended publication on
the subject.”

But no publication appeared until sixty years after Stanhope’s death. Then, the
Reverend Robert Harley gained access to Stanhope’s notes and one of his boxes and
published an article on what he called “The Stanhope Demonstrator.”5

Contrasted with Llull’s schemes and Leibniz’s hopes, Stanhope built the first
logic machine that actually worked – albeit on small problems. Perhaps his work
raised confidence that logical reasoning could indeed be mechanized.

In 1854, the Englishman George Boole (1815–1864; Fig. 2.3) published a book
with the title An Investigation of the Laws of Thought on Which Are Founded the
Mathematical Theories of Logic and Probabilities.6 Boole’s purpose was (among other
things) “to collect . . . some probable intimations concerning the nature and consti-
tution of the human mind.” Boole considered various logical principles of human
reasoning and represented them in mathematical form. For example, his “Proposi-
tion IV” states “. . . the principle of contradiction . . . affirms that it is impossible for any
being to possess a quality, and at the same time not to possess it. . . .” Boole then wrote
this principle as an algebraic equation,

x(1 − x) = 0,

in which x represents “any class of objects,” (1 − x) represents the “contrary or
supplementary class of objects,” and 0 represents a class that “does not exist.”

In Boolean algebra, an outgrowth of Boole’s work, we would say that 0 represents
falsehood, and 1 represents truth. Two of the fundamental operations in logic, namely
OR and AND, are represented in Boolean algebra by the operations + and ×,
respectively. Thus, for example, to represent the statement “either p or q or both,”
we would write p + q . To represent the statement “p and q ,” we would write
p × q . Each of p and q could be true or false, so we would evaluate the value (truth
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14 The Quest for Artificial Intelligence

or falsity) of p + q and p × q by using definitions for how + and × are used,
namely,

1 + 0 = 1,

1 × 0 = 0,

1 + 1 = 1,

1 × 1 = 1,

0 + 0 = 0,

and

0 × 0 = 0.

Boolean algebra plays an important role in the design of telephone switching
circuits and computers. Although Boole probably could not have envisioned com-
puters, he did realize the importance of his work. In a letter dated January 2, 1851,
to George Thomson (later Lord Kelvin) he wrote7

I am now about to set seriously to work upon preparing for the press an account of my theory
of Logic and Probabilities which in its present state I look upon as the most valuable if not
the only valuable contribution that I have made or am likely to make to Science and the thing
by which I would desire if at all to be remembered hereafter . . .

Boole’s work showed that some kinds of logical reasoning could be performed
by manipulating equations representing logical propositions – a very important clue
about the mechanization of reasoning. An essentially equivalent, but not algebraic,
system for manipulating and evaluating propositions is called the “propositional
calculus” (often called “propositional logic”), which, as we shall see, plays a very
important role in artificial intelligence. [Some claim that the Greek Stoic philospher
Chrysippus (280–209 ) invented an early form of the propositional calculus.8]

One shortcoming of Boole’s logical system, however, was that his propositions p ,
q , and so on were “atomic.” They don’t reveal any entities internal to propositions.
For example, if we expressed the proposition “Jack is human” by p , and “Jack is
mortal” by q , there is nothing in p or q to indicate that the Jack who is human
is the very same Jack who is mortal. For that, we need, so to speak, “molecular
expressions” that have internal elements.

Toward the end of the nineteenth century, the German mathematician, logician,
and philosopher Friedrich Ludwig Gottlob Frege (1848–1925) invented a system in
which propositions, along with their internal components, could be written down in a
kind of graphical form. He called his language Begriffsschrift, which can be translated
as “concept writing.” For example, the statement “All persons are mortal” would
have been written in Begriffsschrift something like the diagram in Fig. 2.4.9

Note that the illustration explicitly represents the x who is predicated to be a
person and that it is the same x who is then claimed to be mortal. It’s more convenient
nowadays for us to represent this statement in the linear form (∀x)P(x)⊃M(x),
whose English equivalent is “for all x, if x is a person, then x is mortal.”

Frege’s system was the forerunner of what we now call the “predicate calcu-
lus,” another important system in artificial intelligence. It also foreshadows another
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Figure 2.4. Expressing “All persons are mortal” in
Begriffsschrift.

representational form used in present-day artificial intelligence: semantic networks.
Frege’s work provided yet more clues about how to mechanize reasoning processes.
At last, sentences expressing information to be reasoned about could be written in
unambiguous, symbolic form.

2.2 From Life Itself

In Proverbs 6:6–8, King Solomon says “Go to the ant, thou sluggard; consider her
ways and be wise.” Although his advice was meant to warn against slothfulness, it
can just as appropriately enjoin us to seek clues from biology about how to build or
improve artifacts.

Several aspects of “life” have, in fact, provided important clues about intelligence.
Because it is the brain of an animal that is responsible for converting sensory infor-
mation into action, it is to be expected that several good ideas can be found in the
work of neurophysiologists and neuroanatomists who study brains and their funda-
mental components, neurons. Other ideas are provided by the work of psychologists
who study (in various ways) intelligent behavior as it is actually happening. And
because, after all, it is evolutionary processes that have produced intelligent life,
those processes too provide important hints about how to proceed.

2.2.1 Neurons and the Brain

In the late nineteenth and early twentieth centuries, the “neuron doctrine” specified
that living cells called “neurons” together with their interconnections were funda-
mental to what the brain does. One of the people responsible for this suggestion was
the Spanish neuroanatomist Santiago Ramón y Cajal (1852–1934). Cajal (Fig. 2.5)
and Camillo Golgi won the Nobel Prize in Physiology or Medicine in 1906 for their
work on the structure of the nervous system.

A neuron is a living cell, and the human brain has about ten billion (1010) of them.
Although they come in different forms, typically they consist of a central part called
a soma or cell body, incoming fibers called dendrites, and one or more outgoing fibers
called axons. The axon of one neuron has projections called terminal buttons that
come very close to one or more of the dendrites of other neurons. The gap between
the terminal button of one neuron and a dendrite of another is called a synapse. The
size of the gap is about 20 nanometers. Two neurons are illustrated schematically in
Fig. 2.6.

Through electrochemical action, a neuron may send out a stream of pulses down
its axon. When a pulse arrives at the synapse adjacent to a dendrite of another neuron,
it may act to excite or to inhibit electrochemical activity of the other neuron across
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16 The Quest for Artificial Intelligence

Figure 2.5. Ramón y Cajal.

the synapse. Whether or not this second neuron then “fires” and sends out pulses
of its own depends on how many and what kinds of pulses (excitatory or inhibitory)
arrive at the synapses of its various incoming dendrites and on the efficiency of those
synapses in transmitting electrochemical activity. It is estimated that there are over
half a trillion synapses in the human brain. The neuron doctrine claims that the

Figure 2.6. Two neurons. (Adapted from Science, Vol. 316, p. 1416, 8 June 2007. Used with
permission.)
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Figure 2.7. Warren McCulloch.

various activities of the brain, including perception and thinking, are the result of all
of this neural activity.

In 1943, the American neurophysiologist Warren McCulloch (1899–1969;
Fig. 2.7) and logician Walter Pitts (1923–1969) claimed that the neuron was, in
essence, a “logic unit.” In a famous and important paper they proposed simple
models of neurons and showed that networks of these models could perform all
possible computational operations.10 The McCulloch–Pitts “neuron” was a math-
ematical abstraction with inputs and outputs (corresponding, roughly, to dendrites
and axons, respectively). Each output can have the value 1 or 0. (To avoid confusing
a McCulloch–Pitts neuron with a real neuron, I’ll call the McCulloch–Pitts version,
and others like it, a “neural element.”) The neural elements can be connected together
into networks such that the output of one neural element is an input to others and so
on. Some neural elements are excitatory – their outputs contribute to “firing” any
neural elements to which they are connected. Others are inhibitory – their outputs
contribute to inhibiting the firing of neural elements to which they are connected.
If the sum of the excitatory inputs less the sum of the inhibitory inputs impinging
on a neural element is greater than a certain “threshold,” that neural element fires,
sending its output of 1 to all of the neural elements to which it is connected.

Some examples of networks proposed by McCullough and Pitts are shown in
Fig. 2.8.

The Canadian neuropsychologist Donald O. Hebb (1904–1985) also believed that
neurons in the brain were the basic units of thought. In an influential book,11 Hebb
suggested that “when an axon of cell A is near enough to excite B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is
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18 The Quest for Artificial Intelligence

Figure 2.8. Networks of McCulloch–Pitts neural elements. (Adapted from Fig. 1 of Warren
S. McCulloch and Walter Pitts, “A Logical Calculus of Ideas Immanent in Nervous Activity,”
Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133, 1943.)

increased.” Later, this so-called Hebb rule of change in neural “synaptic strength”
was actually observed in experiments with living animals. (In 1965, the neurophys-
iologist Eric Kandel published results showing that simple forms of learning were
associated with synaptic changes in the marine mollusk Aplysia californica. In 2000,
Kandel shared the Nobel Prize in Physiology or Medicine “for their discoveries
concerning signal transduction in the nervous system.”)

Hebb also postulated that groups of neurons that tend to fire together formed what
he called cell assemblies. Hebb thought that the phenomenon of “firing together”
tended to persist in the brain and was the brain’s way of representing the perceptual
event that led to a cell-assembly’s formation. Hebb said that “thinking” was the
sequential activation of sets of cell assemblies.12
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Figure 2.9. B. F. Skinner. (Courtesy of the B.
F. Skinner Foundation.)

2.2.2 Psychology and Cognitive Science

Psychology is the science that studies mental processes and behavior. The word
is derived from the Greek words psyche, meaning breath, spirit, or soul, and logos,
meaning word. One might expect that such a science would have much to say of inter-
est to those wanting to create intelligent artifacts. However, until the late nineteenth
century, most psychological theorizing depended on the insights of philosophers,
writers, and other astute observers of the human scene. (Shakespeare, Tolstoy, and
other authors were no slouches when it came to understanding human behavior.)

Most people regard serious scientific study to have begun with the German
Wilhelm Wundt (1832–1920) and the American William James (1842–1910).13 Both
established psychology labs in 1875 – Wundt in Leipzig and James at Harvard.
According to C. George Boeree, who teaches the history of psychology at Shippens-
burg University in Pennsylvania, “The method that Wundt developed is a sort of
experimental introspection: The researcher was to carefully observe some simple
event – one that could be measured as to quality, intensity, or duration – and record
his responses to variations of those events.” Although James is now regarded mainly
as a philosopher, he is famous for his two-volume book The Principles of Psychology,
published in 1873 and 1874.

Both Wundt and James attempted to say something about how the brain worked
instead of merely cataloging its input–output behavior. The psychiatrist Sigmund
Freud (1856–1939) went further, postulating internal components of the brain,
namely, the id, the ego, and the superego, and how they interacted to affect behavior.
He thought one could learn about these components through his unique style of
guided introspection called psychoanalysis.

Attempting to make psychology more scientific and less dependent on subjective
introspection, a number of psychologists, most famously B. F. Skinner (1904–
1990; Fig. 2.9), began to concentrate solely on what could be objectively measured,
namely, specific behavior in reaction to specific stimuli. The behaviorists argued that
psychology should be a science of behavior, not of the mind. They rejected the idea
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20 The Quest for Artificial Intelligence

Figure 2.10. Noam Chomsky. (Photograph by
Don J. Usner.)

of trying to identify internal mental states such as beliefs, intentions, desires, and
goals.

This development might at first be regarded as a step backward for people want-
ing to get useful clues about the internal workings of the brain. In criticizing the
statistically oriented theories arising from “behaviorism,” Marvin Minsky wrote
“Originally intended to avoid the need for ‘meaning,’ [these theories] manage finally
only to avoid the possibility of explaining it.”14 Skinner’s work did, however, provide
the idea of a reinforcing stimulus – one that rewards recent behavior and tends to
make it more likely to occur (under similar circumstances) in the future.

Reinforcement learning has become a popular strategy among AI researchers,
although it does depend on internal states. Russell Kirsch (circa 1930– ), a computer
scientist at the U.S. National Bureau of Standards (now the National Institute for
Standards and Technology, NIST), was one of the first to use it. He proposed how
an “artificial animal” might use reinforcement to learn good moves in a game. In
some 1954 seminar notes he wrote the following:15 “The animal model notes, for
each stimulus, what move the opponent next makes, . . . Then, the next time that
same stimulus occurs, the animal duplicates the move of the opponent that fol-
lowed the same stimulus previously. The more the opponent repeats the same move
after any given stimulus, the more the animal model becomes ‘conditioned’ to that
move.”

Skinner believed that reinforcement learning could even be used to explain ver-
bal behavior in humans. He set forth these ideas in his 1957 book Verbal Behav-
ior,16 claiming that the laboratory-based principles of selection by consequences can
be extended to account for what people say, write, gesture, and think.

Arguing against Skinner’s ideas about language the linguist Noam Chomsky
(1928– ; Fig. 2.10), in a review17 of Skinner’s book, wrote that

careful study of this book (and of the research on which it draws) reveals, however, that
[Skinner’s] astonishing claims are far from justified . . . the insights that have been achieved
in the laboratories of the reinforcement theorist, though quite genuine, can be applied to
complex human behavior only in the most gross and superficial way, and that speculative
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attempts to discuss linguistic behavior in these terms alone omit from consideration factors
of fundamental importance . . .

How, Chomsky seems to ask, can a person produce a potentially infinite variety
of previously unheard and unspoken sentences having arbitrarily complex structure
(as indeed they can do) through experience alone? These “factors of fundamental
importance” that Skinner omits are, according to Chomsky, linguistic abilities that
must be innate – not learned. He suggested that “human beings are somehow
specially created to do this, with data-handling or ‘hypothesis-formulating’ ability of
[as yet] unknown character and complexity.” Chomsky claimed that all humans have
at birth a “universal grammar” (or developmental mechanisms for creating one) that
accounts for much of their ability to learn and use languages.18

Continuing the focus on internal mental processes and their limitations, the
psychologist George A. Miller (1920– ) analyzed the work of several experimenters
and concluded that the “immediate memory” capacity of humans was approximately
seven “chunks” of information.19 In the introduction to his paper about this “magical
number,” Miller humorously notes “My problem is that I have been persecuted by
an integer. For seven years this number has followed me around, has intruded in
my most private data, and has assaulted me from the pages of our most public
journals. This number assumes a variety of disguises, being sometimes a little larger
and sometimes a little smaller than usual, but never changing so much as to be
unrecognizable. The persistence with which this number plagues me is far more
than a random accident.” Importantly, he also claimed that “the span of immediate
memory seems to be almost independent of the number of bits per chunk.” That is,
it doesn’t matter what a chunk represents, be it a single digit in a phone number, a
name of a person just mentioned, or a song title; we can apparently only hold seven
of them (plus or minus two) in our immediate memory.

Miller’s paper on “The Magical Number Seven,” was given at a Symposium
on Information Theory held from September 10 to 12, 1956, at MIT.20 Chomsky
presented an important paper there too. It was entitled “Three Models for the
Description of Language,” and in it he proposed a family of rules of syntax he
called phrase-structure grammars.21 It happens that two pioneers in AI research (of
whom we’ll hear a lot more later), Allen Newell (1927–1992), then a scientist at
the Rand Corporation, and Herbert Simon (1916–2001), a professor at the Carnegie
Institute of Technology (now Carnegie Mellon University), gave a paper there also
on a computer program that could prove theorems in propositional logic. This
symposium, bringing together as it did scientists with these sorts of overlapping
interests, is thought to have contributed to the birth of cognitive science, a new
discipline devoted to the study of the mind. Indeed, George Miller wrote22

I went away from the Symposium with a strong conviction, more intuitive than rational,
that human experimental psychology, theoretical linguistics, and computer simulation of
cognitive processes were all pieces of a larger whole, and that the future would see progressive
elaboration and coordination of their shared concerns . . .

In 1960, Miller and colleagues wrote a book proposing a specific internal mech-
anism responsible for behavior, which they called the TOTE unit (Test–Operate–
Test–Exit).23 There is a TOTE unit corresponding to every goal that an agent
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22 The Quest for Artificial Intelligence

might have. Using its perceptual abilities, the unit first tests whether or not its goal
is satisfied. If so, the unit rests (exits). If not, some operation specific to achieving
that goal is performed, the test for goal achievement is performed again, and so
on repetitively until the goal finally is achieved. As a simple example, consider the
TOTE unit for driving a nail with a hammer. So long as the nail is not completely
driven in (the goal), the hammer is used to strike it (the operation). Pounding stops
(the exit) when the goal is finally achieved. It’s difficult to say whether or not this
book inspired similar work by artificial intelligence researchers. The idea was appar-
ently “in the air,” because at about the same time, as we shall see later, some early
work in AI used very similar ideas. [I can say that my work at SRI with behavior
(intermediate-level) programs for the robot, Shakey, and my later work on what I
called “teleo-reactive” programs were influenced by Miller’s ideas.]

Cognitive science attempted to explicate internal mental processes using ideas such
as goals, memory, task queues, and strategies without (at least during its beginning
years) necessarily trying to ground these processes in neurophysiology.24 Cognitive
science and artificial intelligence have been closely related ever since their beginnings.
Cognitive science has provided clues for AI researchers, and AI has helped cognitive
science with newly invented concepts useful for understanding the workings of the
mind.

2.2.3 Evolution

That living things evolve gives us two more clues about how to build intelligent
artifacts. First, and most ambitiously, the processes of evolution itself – namely,
random generation and selective survival – might be simulated on computers to
produce the machines we dream about. Second, those paths that evolution followed
in producing increasingly intelligent animals can be used as a guide for creating
increasingly intelligent artifacts. Start by simulating animals with simple tropisms
and proceed along these paths to simulating more complex ones. Both of these
strategies have been followed with zest by AI researchers, as we shall see in the
following chapters. Here, it will suffice to name just a few initial efforts.

Early attempts to simulate evolution on a computer were undertaken at Princeton’s
Institute for Advanced Study by the viral geneticist Nils Aall Barricelli (1912–1993).
His 1954 paper described experiments in which numbers migrated and reproduced
in a grid.25

Motivated by the success of biological evolution in producing complex organisms,
some researchers began thinking about how programs could be evolved rather than
written. R. N. Friedberg and his IBM colleagues26 conducted experiments in which,
beginning with a population of random computer programs, they attempted to evolve
ones that were more successful at performing a simple logical task. In the summary
of his 1958 paper, Friedberg wrote that “[m]achines would be more useful if they
could learn to perform tasks for which they were not given precise methods. . . . It is
proposed that the program of a stored-program computer be gradually improved by
a learning procedure which tries many programs and chooses, from the instructions
that may occupy a given location, the one most often associated with a successful
result.” That is, Friedberg installed instructions from “successful” programs into the
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programs of the next “generation,” much as how the genes of individuals successful
enough to have descendants are installed in those descendants.

Unfortunately, Friedberg’s attempts to evolve programs were not very successful.
As Marvin Minsky pointed out,27

The machine [described in the first paper] did learn to solve some extremely simple problems.
But it took of the order of 1000 times longer than pure chance would expect. . . .

The second paper goes on to discuss a sequence of modifications . . . With these, and with
some ‘priming’ (starting the machine off on the right track with some useful instructions), the
system came to be only a little worse than chance.

Minsky attributes the poor performance of Friedberg’s methods to the fact that
each descendant machine differed very little from its parent, whereas any helpful
improvement would require a much larger step in the “space” of possible machines.

Other early work on artificial evolution was more successful. Lawrence Fogel
(1928–2007) and colleagues were able to evolve machines that could make predic-
tions of the next element in a sequence.28 Woodrow W. Bledsoe (1921–1995) at
Panoramic Research and Hans J. Bremermann (1926–1969) at the University of
California, Berkeley, used simulated evolution to solve optimization and mathemati-
cal problems, respectively.29 And Ingo Rechenberg (according to one AI researcher)
“pioneered the method of artificial evolution to solve complex optimization tasks,
such as the design of optimal airplane wings or combustion chambers of rocket
nozzles.”30

The first prominent work inspired by biological evolution was John Holland’s
development of “genetic algorithms” beginning in the early 1960s. Holland (1929– ),
a professor at the University of Michigan, used strings of binary symbols (0’s and 1’s),
which he called “chromosomes” in analogy with the genetic material of biological
organisms. (Holland says he first came up with the notion while browsing through
the Michigan math library’s open stacks in the early 1950s.)31 The encoding of 0’s
and 1’s in a chromosome could be interpreted as a solution to some given problem.
The idea was to evolve chromosomes that were better and better at solving the
problem. Populations of chromosomes were subjected to an evolutionary process
in which individual chromosomes underwent “mutations” (changing a component
1 to a 0 and vice versa), and pairs of the most successful chromosomes at each stage
of evolution were combined to make a new chromosome. Ultimately, the process
would produce a population containing a chromosome (or chromosomes) that solved
the problem.32

Researchers would ultimately come to recognize that all of these evolutionary
methods were elaborations of a very useful mathematical search strategy called
“gradient ascent” or “hill climbing.” In these methods, one searches for a local
maximum of some function by taking the steepest possible uphill steps. (When
searching for a local minimum, the analogous method is called “gradient descent.”)

Rather than attempt to duplicate evolution itself, some researchers preferred to
build machines that followed along evolution’s paths toward intelligent life. In the
late 1940s and early 1950s, W. Grey Walter (1910–1977), a British neurophysiologist
(born in Kansas City, Missouri), built some machines that behaved like some of
life’s most primitive creatures. They were wheeled vehicles to which he gave the
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Figure 2.11. Grey Walter (top left), his Machina speculatrix (top right), and its circuit diagram
(bottom). (Grey Walter photograph from Hans Moravec, ROBOT, Chapter 2: Caution! Robot
Vehicle!, p. 18, Oxford: Oxford University Press, 1998; “Turtle” photograph courtesy of
National Museum of American History, Smithsonian Institution; the circuit diagram is from
W. Grey Walter, The Living Brain, p. 200, London: Gerald Duckworth & Co., Ltd., 1953.)

taxonomic name Machina speculatrix (machine that looks; see Fig. 2.11).33 These
tortoise-like machines were controlled by “brains” consisting of very simple vacuum-
tube circuits that sensed their environments with photocells and that controlled their
wheel motors. The circuits could be arranged so that a machine either moved toward
or away from a light mounted on a sister machine. Their behaviors seemed purposive
and often complex and unpredictable, so much so that Walter said they “might be
accepted as evidence of some degree of self-awareness.” Machina speculatrix was the
beginning of a long line of increasingly sophisticated “behaving machines” developed
by subsequent researchers.

2.2.4 Development and Maturation

Perhaps there are alternatives to rerunning evolution itself or to following its paths
toward increasing complexity from the most primitive animals. By careful study
of the behavior of young children, the Swiss psychologist Jean Piaget proposed a
set of stages in the maturation of their thinking abilities from infancy to adoles-
cence.34 Might these stages provide a set of steps that could guide designers of
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intelligent artifacts? Start with a machine that is able to do what an infant can do,
and then design machines that can mimic the abilities of children at each rung
of the ladder. This strategy might be called “ontogenetic” to contrast it with the
“phylogenetic” strategy of using simlulated evolution.

Of course, it may be that an infant mind is far too complicated to simulate and the
processes of its maturation too difficult to follow. In any case, this particular clue
remains to be exploited.

2.2.5 Bionics

At a symposium in 1960, Major Jack E. Steele, of the Aerospace Division of the
United States Air Force, used the term “bionics” to describe the field that learns
lessons from nature to apply to technology.35

Several bionics and bionics-related meetings were held during the 1960s. At the
1963 Bionics Symposium, Leonard Butsch and Hans Oestreicher wrote “Bionics
aims to take advantage of millions of years of evolution of living systems during which
they adapted themselves for optimum survival. One of the outstanding successes of
evolution is the information processing capability of living systems [the study of
which is] one of the principal areas of Bionics research.”36

Today, the word “bionics” is concerned mainly with orthotic and prosthetic
devices, such as artificial cochleas, retinas, and limbs. Nevertheless, as AI researchers
continue their quest, the study of living things, their evolution, and their develop-
ment may continue to provide useful clues for building intelligent artifacts.

2.3 From Engineering

2.3.1 Automata, Sensing, and Feedback

Machines that move by themselves and even do useful things by themselves have
been around for centuries. Perhaps the most common early examples are the “verge-
and-foliot” weight-driven clocks. (See Fig. 2.12.) These first appeared in the late
Middle Ages in the towers of large Italian cities. The verge-and-foliot mechanism
converted the energy of a falling weight into stepped rotational motion, which could
be used to move the clock hands. Similar mechanisms were elaborated to control the
actions of automata, such as those of the Munich Glockenspiel.

One of the first automatic machines for producing goods was Joseph-Marie
Jacquard’s weaving loom, built in 1804. (See Fig. 2.13.) It followed a long history of
looms and improved on the “punched card” design of Jacques de Vaucanson’s loom
of 1745. (Vaucanson did more than build mechanical ducks.) The punched cards of
the Jacquard loom controlled the actions of the shuttles, allowing automatic produc-
tion of fabric designs. Just a few years after its invention, there were some 10,000
Jacquard looms weaving away in France. The idea of using holes in paper or cards
was later adopted by Herman Hollerith for tabulating the 1890 American census data
and in player pianos (using perforated rolls instead of cards). The very first factory
“robots” of the so-called pick-and-place variety used only modest elaborations of
this idea.
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Figure 2.12. A verge-and-foliot mechanism (left) and automata at the Munich Glockenspiel
(right).

It was only necessary to provide these early machines with an external source
of energy (a falling weight, a wound-up spring, or humans pumping pedals). Their
behavior was otherwise fully automatic, requiring no human guidance. But, they had
an important limitation – they did not perceive anything about their environments.
(The punched cards that were “read” by the Jacquard loom are considered part of the
machine – not part of the environment.) Sensing the environment and then letting
what is sensed influence what a machine does is critical to intelligent behavior. Grey
Walters’s “tortoises,” for example, had photocells that could detect the presence or

Figure 2.13. Reconstruction of a Jacquard
loom.
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absence of light in their environments and act accordingly. Thus, they seem more
intelligent than a Jacquard loom or clockwork automata.

One of the simplest ways to allow what is sensed to influence behavior involves
what is called “feedback control.” The word derives from feeding some aspect of a
machine’s behavior, say its speed of operation, back into the internals of the machine.
If the aspect of behavior that is fed back acts to diminish or reverse that aspect, the
process is called “negative feedback.” If, on the other hand, it acts to increase or
accentuate that aspect of behavior, it is called “positive feedback.” Both types of
feedback play extremely important roles in engineering.

Negative feedback techniques have been used for centuries in mechanical devices.
In 270 , a Greek inventor and barber, Ktesibios of Alexandria, invented a float
regulator to keep the water level in a tank feeding a water clock at a constant depth
by controlling the water flow into the tank.37 The feedback device was a float valve
consisting of a cork at the end of a rod. The cork floated on the water in the tank.
When the water level in the tank rose, the cork would rise, causing the rod to turn
off the water coming in. When the water level fell, the cork would fall, causing the
rod to turn on the water. The water level in modern flush toilets is regulated in much
the same way. In 250 , Philon of Byzantium used a similar float regulator to keep
a constant level of oil in a lamp.38

The English clockmaker John Harrison (1693–1776) used a type of negative
feedback control in his clocks. The ambient temperature of a clock affects the length
of its balance spring and thus its time-keeping accuracy. Harrison used a bimetallic
strip (sometimes a rod), whose curvature depends on temperature. The strip was
connected to the balance spring in such a way that it produced offsetting changes in
the length of the spring, thus making the clock more independent of its temperature.
The strip senses the temperature and causes the clock to behave differently, and
more accurately, than it otherwise would. Today, such bimetallic strips see many
uses, notably in thermostats. (Dava Sobel’s 1995 book, Longitude: The True Story of
a Lone Genius Who Solved the Greatest Scientific Problem of His Time, recounts the
history of Harrison’s efforts to build a prize-winning clock for accurate time-keeping
at sea.)

Perhaps the most graphic use of feedback control is the centrifugal flyball governor
perfected in 1788 by James Watt for regulating the speed of his steam engine. (See
Fig. 2.14.) As the speed of the engine increases, the balls fly outward, which causes
a linking mechanism to decrease air flow, which causes the speed to decrease, which
causes the balls to fall back inward, which causes the speed to increase, and so on,
resulting in an equilibrium speed.

In the early 1940s, Norbert Wiener (1894–1964) and other scientists noted similar-
ities between the properties of feedback control systems in machines and in animals.
In particular, inappropriately applied feedback in control circuits led to jerky move-
ments of the system being controlled that were similar to pathological “tremor” in
human patients. Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow coined
the term “cybernetics” in a 1943 paper. Wiener’s book by that name was pub-
lished in 1948. The word is related to the word “governor.” (In Latin gubernaculum
means helm, and gubernator means helmsman. The Latin derives from the Greek
kybernetike, which means the art of steersmanship.39)
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Figure 2.14. Watt’s flyball governor.

Today, the prefix “cyber” is used to describe almost anything that deals with
computers, robots, the Internet, and advanced simulation. For example, the author
William Gibson coined the term “cyberspace” in his 1984 science fiction novel
Neuromancer. Technically, however, cybernetics continues to describe activities
related to feedback and control.40

The English psychiatrist W. Ross Ashby (1903–1972; Fig. 2.15) contributed to
the field of cybernetics by his study of “ultrastability” and “homeostasis.” According
to Ashby, ultrastability is the capacity of a system to reach a stable state under a
wide variety of environmental conditions. To illustrate the idea, he built an elec-
tromechanical device called the “homeostat.” It consisted of four pivoted magnets
whose positions were rendered interdependent through feedback mechanisms. If the
position of any was disturbed, the effects on the others and then back on itself would
result in all of them returning to an equilibrium condition. Ashby described this
device in Chapter 8 of his influential 1952 book Design For a Brain. His ideas had an
influence on several AI researchers. My “teleo-reactive programs,” to be described
later, were motivated in part by the idea of homeostasis.

Another source of ideas, loosely associated with cybernetics and bionics, came
from studies of “self-organizing systems.” Many unorganized combinations of sim-
ple parts, including combinations of atoms and molecules, respond to energetic
“jostling” by falling into stable states in which the parts are organized in more com-
plex assemblies. An online dictionary devoted to cybernetics and systems theory has
a nice example: “A chain made out of paper clips suggests that someone has taken
the trouble to link paper clips together to make a chain. It is not in the nature of
paper clips to make themselves up into a chain. But, if you take a number of paper
clips, open them up slightly and then shake them all together in a cocktail shaker,
you will find at the end that the clips have organized themselves into short or long
chains. The chains are not so neat as chains put together by hand but, nevertheless,
they are chains.”41
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Figure 2.15. W. Ross Ashby, Warren McCulloch, Grey Walter, and Norbert Wiener at a
meeting in Paris. (From P. de Latil, Thinking by Machine, 1956.)

The term “self-organizing” seems to have been first introduced by Ashby in
1947.42 Ashby emphasized that self-organization is not a property of an organism
itself, in response to its environment and experience, but a property of the orga-
nism and its environment taken together. Although self-organization appears to be
important in ideas about how life originated, it is unclear whether or not it provides
clues for building intelligent machines.

2.3.2 Statistics and Probability

Because nearly all reasoning and decision making take place in the presence of
uncertainty, dealing with uncertainty plays an important role in the automation of
intelligence. Attempts to quantify uncertainty and “the laws of chance” gave rise
to statistics and probability theory. What would turn out to be one of the most
important results in probability theory, at least for artificial intelligence, is Bayes’s
rule, which I’ll define presently in the context of an example. The rule is named for
Reverend Thomas Bayes (1702–1761), an English clergyman.43

One of the important applications of Bayes’s rule is in signal detection. Let’s
suppose a radio receiver is tuned to a station that after midnight broadcasts (ran-
domly) one of two tones, either tone A or tone B, and on a particular night we want
to decide which one is being broadcast. On any given day, we do not know ahead
of time which tone is to be broadcast that night, but suppose we do know their
probabilities. (For example, it might be that both tones are equally probable.) Can
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we find out which tone is being broadcast by listening to the signal coming into the
receiver? Well, listening can’t completely resolve the matter because the station is
far away, and random noise partially obscures the tone. However, depending on the
nature of the obscuring noise, we can often calculate the probability that the actual
tone that night is A (or that it is B). Let’s call the signal y and the actual tone x
(which can be either A or B). The probability that x = A, given the evidence for
it contained in the incoming signal, y, is written as p(x = A | y) and read as “the
probability that x is A, given that the signal is y.” The probability that x = B, given
the same evidence is p(x = B | y).

A reasonable “decision rule” would be to decide in favor of tone A if p(x = A | y)
is larger than p(x = B | y). Otherwise, decide in favor of tone B. (There is a
straightforward adjustment to this rule that takes into account differences in the
“costs” of the two possible errors.) The problem in applying this rule is that these
two probabilities are not readily calculable, and that is where Bayes’s rule comes in.
It allows us to calculate these probabilities in terms of other probabilities that are
more easily guessed or otherwise obtainable. Specifically, Bayes’s rule is

p(x | y) = p(y | x)p(x)/p(y).

Using Bayes’s rule, our decision rule can now be reformulated as

Decide in favor of tone A if p(y | x = A)p(x = A)/p(y) is greater than p(y | x = B)p(x =
B)/p(y). Otherwise, decide in favor of tone B.

Because p(y) occurs in both expressions and therefore does not affect which one is
larger, the rule simplifies to

Decide in favor of tone A if p(y | x = A)p(x = A) is greater than p(y | x = B)p(x = B).
Otherwise, decide in favor of tone B.

We assume that we know the a priori probabilities of the tones, namely, p(x = A)
and p(x = B), so it remains only for us to calculate p(y | x) for x = A and x = B.
This expression is called the likelihood of y given x. When the two probabilities,
p(x = A) and p(x = B), are equal (that is, when both tones are equally probable
a priori), then we can decide in favor of which likelihood is greater. Many decisions
that are made in the presence of uncertainty use this “maximum-likelihood” method.
The calculation for these likelihoods depends on how we represent the received
signal, y, and on the statistics of the interfering noise.

In my example, y is a radio signal, that is, a voltage varying in time. For com-
putational purposes, this time-varying voltage can be represented by a sequence of
samples of its values at appropriately chosen, uniformly spaced time points, say y(t1),
y(t2), . . . y(ti ), . . . , y(tN). When noise alters these values from what they would have
been without noise, the probability of the sequence of them (given the cases when
the tone is A and when the tone is B) can be calculated by using the known statistical
properties of the noise. I won’t go into the details here except to say that, for many
types of noise statistics, these calculations are quite straightforward.

In the twentieth century, scientists and statisticians such as Karl Pearson (1857–
1936), Sir Ronald A. Fisher (1890–1962), Abraham Wald (1902–1950), and Jerzey
Neyman (1894–1981) were among those who made important contributions to the

https://doi.org/10.1017/CBO9780511819346.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.003


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

Clues 31

use of statistical and probabilistic methods in estimating parameters and in making
decisions. Their work set the foundation for some of the first engineering applications
of Bayes’s rule, such as the one I just illustrated, namely, deciding which, if any, of
two or more electrical signals is present in situations where noise acts to obscure the
signals. A paper by the American engineers David Van Meter and David Middleton,
which I read as a beginning graduate student in 1955, was my own introduction to
these applications.44 For artificial intelligence, these uses of Bayes’s rule provided
clues about how to mechanize the perception of both speech sounds and visual
images. Beyond perception, Bayes’s rule lies at the center of much other modern
work in artificial intelligence.

2.3.3 The Computer

A. Early Computational Devices
Proposals such as those of Leibniz, Boole, and Frege can be thought of as early
attempts to provide foundations for what would become the “software” of arti-
ficial intelligence. But reasoning and all the other aspects of intelligent behav-
ior require, besides software, some sort of physical engine. In humans and other
animals, that engine is the brain. The simple devices of Grey Walter and Ross
Ashby were, of course, physical manifestations of their ideas. And, as we shall
see, early networks of neuron-like units were realized in physical form. However,
to explore the ideas inherent in most of the clues from logic, from neurophysiol-
ogy, and from cognitive science, more powerful engines would be required. While
McCulloch, Wiener, Walter, Ashby, and others were speculating about the machin-
ery of intelligence, a very powerful and essential machine bloomed into existence –
the general-purpose digital computer. This single machine provided the engine for
all of these ideas and more. It is by far the dominant hardware engine for automating
intelligence.

Building devices to compute has a long history. William Aspray has edited an
excellent book, Computing Before Computers, about computing’s early days.45 The
first machines were able to do arithmetic calculations, but these were not pro-
grammable. Wilhelm Schickard (1592–1635; Fig. 2.16) built one of the first of these
in 1623. It is said to have been able to add and subtract six-digit numbers for use
in calculating astronomical tables. The machine could “carry” from one digit to the
next.

In 1642 Blaise Pascal (1623–1662; Fig. 2.16) created the first of about fifty of
his computing machines. It was an adding machine that could perform automatic
carries from one position to the next. “The device was contained in a box that was
small enough to fit easily on top of a desk or small table. The upper surface of
the box . . . consisted of a number of toothed wheels, above which were a series of
small windows to show the results. In order to add a number, say 3, to the result
register, it was only necessary to insert a small stylus into the toothed wheel at the
position marked 3 and rotate the wheel clockwise until the stylus encountered the
fixed stop . . . ”46

Inspired by Pascal’s machines, Gottfried Leibniz built a mechanical multiplier
called the “Step Reckoner” in 1674. It could add, subtract, and do multiplication
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Figure 2.16. Wilhelm Schickard (left) and Blaise Pascal (right).

(by repeated additions). “To multiply a number by 5, one simply turned the crank
five times.”47

Several other calculators were built in the ensuing centuries. A particularly inter-
esting one, which was too complicated to build in its day, was designed in 1822
by Charles Babbage (1791–1871), an English mathematician and inventor. (See
Fig. 2.17.) Called the “Difference Engine,” it was to have calculated mathematical
tables (of the kind used in navigation at sea, for example) using the method of finite
differences. Babbage’s Difference Engine No. 2 was actually constructed in 1991
(using Babbage’s designs and nineteenth-century mechanical tolerances) and is now
on display at the London Science Museum. The Museum arranged for another copy

Figure 2.17. Charles Babbage (left) and a model of his Analytical Engine (right).
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to be built for Nathan Myhrvold, a former Microsoft Chief Technology Officer.
(A description of the machine and a movie is available from a Computer History
Museum Web page at http://www.computerhistory.org/babbage/.)

Adding machines, however, can only add and subtract (and, by repetition of
these operations, also multiply and divide). These are important operations but
not the only ones needed. Between 1834 and 1837 Babbage worked on the design
of a machine called the “Analytical Engine,” which embodied most of the ideas
needed for general computation. It could store intermediate results in a “mill,” and
it could be programmed. However, its proposed realization as a collection of steam-
driven, interacting brass gears and cams ran into funding difficulties and was never
constructed.

Ada Lovelace (1815–1852), the daughter of Lord Byron, has been called the
“world’s first programmer” for her alleged role in devising programs for the Analyt-
ical Engine. However, in the book Computing Before Computers the following claim
is made:48

This romantically appealing image is without foundation. All but one of the programs cited
in her notes [to her translation of an account of a lecture Babbage gave in Turin, Italy] had
been prepared by Babbage from three to seven years earlier. The exception was prepared by
Babbage for her, although she did detect a “bug” in it. Not only is there no evidence that Ada
Lovelace ever prepared a program for the Analytical Engine but her correspondence with
Babbage shows that she did not have the knowledge to do so.

For more information about the Analytical Engine and an emulator and programs
for it, see http://www.fourmilab.ch/babbage/.

Practical computers had to await the invention of electrical, rather than brass,
devices. The first computers in the early 1940s used electromechanical relays.
Vacuum tubes (thermionic valves, as they say in Britain) soon won out because they
permitted faster and more reliable computation. Nowadays, computers use billions
of tiny transistors arrayed on silicon wafers. Who knows what might someday
replace them?

B. Computation Theory
Even before people actually started building computers, several logicians and mathe-
maticians in the 1930s pondered the problem of just what could be computed. Alonzo
Church came up with a class of functions that could be computed, ones he called
“recursive.”49 The English logician and mathematician, Alan Turing (1912–1954;
Fig. 2.18), proposed what is now understood to be an equivalent class – ones that
could be computed by an imagined machine he called a “logical computing machine
(LCM),” nowadays called a “Turing machine.”50 (See Fig. 2.19.) The claim that
these two notions are equivalent is called the “Church–Turing Thesis.” (The claim
has not been proven, but it is strongly supported by logicians and no counterexample
has ever been found.)51

The Turing machine is a hypothetical computational device that is quite simple
to understand. It consists of just a few parts. There is an infinite tape (which is one
reason the device is just imagined and not actually built) divided into cells and a
tape drive. Each cell has printed on it either a 1 or a 0. The machine also has a
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Figure 2.18. Alan Turing. (Alan Mathison
Turing by Elliott & Fry c© National Portrait
Gallery, London)

read–write head positioned over one cell of the tape. The read function reads what
is on the tape. There is also a logic unit that can decide, depending on what is read
and the state of the logic machine, to change its own state, to command the write
function to write either a 1 or a 0 on the cell being read (possibly replacing what is
already there), to move the tape one cell to the left or to the right (at which time
the new cell is read and so on), or to terminate operation altogether. The input (the
“problem” to be computed) is written on the tape initially. (It turns out that any
such input can be coded into 1’s and 0’s.) When, and if, the machine terminates, the
output (the coded “answer” to the input problem) ends up being printed on the tape.

Turing proved that one could always specify a particular logic unit (the part that
decides on the machine’s actions) for his machine such that the machine would

Figure 2.19. A Turing machine.
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Figure 2.20. Claude Shannon. (Photograph
courtesy of MIT Museum.)

compute any computable function. More importantly, he showed that one could
encode on the tape itself a prescription for any logic unit specialized for a particular
problem and then use a general-purpose logic unit for all problems. The encoding for
the special-purpose logic unit can be thought of as the “program” for the machine,
which is stored on the tape (and thus subject to change by the very operation of the
machine!) along with the description of the problem to be solved. In Turing’s words,
“It can be shown that a single special machine of that type can be made to do the
work of all. It could in fact be made to work as a model of any other machine. The
special machine may be called the universal machine.”52

C. Digital Computers
Somewhat independently of Turing, engineers began thinking about how to build
actual computing devices consisting of programs and logical circuitry for performing
the instructions contained in the programs. Some of the key ideas for designing the
logic circuits of computers were developed by the American mathematician and
inventor Claude Shannon (1916–2001; Fig. 2.20).53 In his 1937 Yale University
master’s thesis54 Shannon showed that Boolean algebra and binary arithmetic could
be used to simplify telephone switching circuits. He also showed that switching
circuits (which can be realized either by combinations of relays, vacuum tubes, or
whatever) could be used to implement operations in Boolean logic, thus explaining
their importance in computer design.

It’s hard to know who first thought of the idea of storing a computer’s program
along with its data in the computer’s memory banks. Storing the program allows
changes in the program to be made easily, but more importantly it allows the program
to change itself by changing appropriate parts of the memory where the program
is stored. Among those who might have thought of this idea first are the German
engineer Konrad Zuse (1910–1995) and the American computer pioneers J. Presper
Eckert (1919–1995) and John W. Mauchly (1907–1980). (Of course Turing had
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already proposed storing what amounted to a program on the tape of a universal
Turing machine.)

For an interesting history of Konrad Zuse’s contributions, see the family of sites
available from http://irb.cs.tu-berlin.de/∼zuse/Konrad Zuse/en/index.html.
One of these mentions that “it is undisputed that Konrad Zuse’s Z3 was the
first fully functional, program controlled (freely programmable) computer of the
world. . . . The Z3 was presented on May 12, 1941, to an audience of scientists in
Berlin.” Instead of vacuum tubes, it used 2,400 electromechanical relays. The origi-
nal Z3 was destroyed by an Allied air raid on December 21, 1943.55 A reconstructed
version was built in the early 1960s and is now on display at the Deutsche Museum
in Munich. Zuse also is said to have created the first programming language, called
the Plankalkül.

The American mathematician John von Neumann (1903–1957) wrote a “draft
report” about the EDVAC, an early stored-program computer.56 Perhaps because
of this report, we now say that these kinds of computers use a “von Neumann
architecture.” The ideal von Neumann architecture separates the (task-specific)
stored program from the (general-purpose) hardware circuitry, which can execute
(sequentially) the instructions of any program whatsoever. (We usually call the
program “software” to distinguish it from the “hardware” part of a computer.
However, the distinction is blurred in most modern computers because they often
have some of their programs built right into their circuitry.)

Other computers with stored programs were designed and built in the 1940s in
Germany, Great Britain, and the United States. They were large, bulky machines.
In Great Britain and the United States, they were mainly used for military purposes.
Figure 2.21 shows one such machine.

We call computers “machines” even though today they can be made completely
electrical with no moving parts whatsoever. Furthermore, when we speak of com-
puting machines we usually mean the combination of the computer and the program
it is running. Sometimes we even call just the program a machine. (As an example
of this usage, I’ll talk later about a “checker-playing machine” and mean a program
that plays checkers.)

The commanding importance of the stored-program digital computer derives
from the fact that it can be used for any purpose whatsoever – that is, of course, any
computational purpose. The modern digital computer is, for all practical purposes,
such a universal machine. The “all-practical-purposes” qualifier is needed because
not even modern computers have the infinite storage capacity implied by Turing’s
infinite tape. However, they do have prodigious amounts of storage, and that makes
them practically universal.

D. ‘‘Thinking’’ Computers
After some of the first computers were built, Turing reasoned that if they were
practically universal, they should be able to do anything. In 1948 he wrote, “The
importance of the universal machine is clear. We do not need to have an infinity of
different machines doing different jobs. A single one will suffice. The engineering
problem of producing various machines for various jobs is replaced by the office
work of ‘programming’ the universal machine to do these jobs.”57
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Figure 2.21. The Cambridge University EDSAC computer (circa 1949). (Copyright Com-
puter Laboratory, University of Cambridge. Reproduced by permission.)

Among the things that Turing thought could be done by computers was mimicking
human intelligence. One of Turing’s biographers, Andrew Hodges, claims, “he
decided the scope of the computable encompassed far more than could be captured
by explicit instruction notes, and quite enough to include all that human brains
did, however creative or original. Machines of sufficient complexity would have the
capacity for evolving into behaviour that had never been explicitly programmed.”58

The first modern article dealing with the possibility of mechanizing all of human-
style intelligence was published by Turing in 1950.59 This paper is famous for several
reasons. First, Turing thought that the question “Can a machine think?” was too
ambiguous. Instead, he proposed that the matter of machine intelligence be settled
by what has come to be called “the Turing test.”

Although there have been several reformulations (mostly simplifications) of the
test, here is how Turing himself described it:

The new form of the problem [Can machines think?] can be described in terms of a game
which we call the “imitation game.” It is played with three people, a man (A), a woman (B),
and an interrogator (C) who may be of either sex. The interrogator stays in a room apart from
the other two. The object of the game for the interrogator is to determine which of the other
two is the man and which is the woman. He knows them by labels X and Y, and at the end
of the game he says either “X is A and Y is B” or “X is B and Y is A.” The interrogator is
allowed to put questions to A and B thus:

C: Will X please tell me the length of his or her hair?
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Now suppose X is actually A, then A must answer. It is A’s object in the game to try and cause
C to make the wrong identification. His answer might therefore be

“My hair is shingled, and the longest strands are about nine inches long.”

In order that tones of voice may not help the interrogator the answers should be written, or
better still, typewritten. The ideal arrangement is to have a teleprinter communicating between
the two rooms. Alternatively the question and answers can be repeated by an intermediary.
The object of the game for the third player (B) is to help the interrogator. The best strategy
for her is probably to give truthful answers. She can add such things as “I am the woman,
don’t listen to him!” to her answers, but it will avail nothing as the man can make similar
remarks.

We now ask the question, “What will happen when a machine takes the part of A in this
game?” Will the interrogator decide wrongly as often when the game is played like this as
he does when the game is played between a man and a woman? These questions replace our
original, “Can machines think?”

Most of the simplifications of Turing’s test involve attempting to have a computer
“in the other room” fool an interrogator into believing the computer is a human. To
stimulate progress toward that goal, a prize has been established – annual prizes in
fact. In the words of the Web site announcing the prizes, “In 1990 Hugh Loebner
agreed with The Cambridge Center for Behavioral Studies to underwrite a contest
designed to implement the Turing Test. Dr. Loebner pledged a Grand Prize of
$100,000 and a Gold Medal for the first computer whose responses were indistin-
guishable from a human’s. Such a computer can be said ‘to think.’ Each year an
annual prize of $2000 and a bronze medal is awarded to the most human-like com-
puter. The winner of the annual contest is the best entry relative to other entries
that year, irrespective of how good it is in an absolute sense.”60

However, several people have pointed to inadequacies of both the simplifications
and even of the original test.61 In fact, it has been alleged that even Joseph Weizen-
baum’s patently unintelligent 1966 conversational program, ELIZA, has fooled people
into thinking it is human.62

For example, here is part of a transcript of a conversation with ELIZA:

ELIZA: How do you do. Please state your problem.
> I spend too much time with computers.

ELIZA: Why do you mention computers?
> You are one.

ELIZA: Does it please you to believe I am one?
> Yes.

ELIZA: You seem to be quite positive.
> I suppose I am.

ELIZA: How long have you been?
> 31 years.

ELIZA: I’m not sure I understand you fully.
> Join the club.

ELIZA: Please go on.
> You don’t make too much sense yourself.

ELIZA: We were discussing you – not me.
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The first part of the conversation seems reasonable, but ELIZA bogs down in the
middle because the program was expecting “I suppose I am” to be followed by some
word like “happy.” (There are several ELIZA simulations on the Web. One that claims
to reproduce faithfully the original ELIZA program is at http://www.chayden.net/
eliza/Eliza.html. Try one out!)

A second important feature of Turing’s 1950 paper was his handling of arguments
that people might raise against the possibility of achieving intelligent computers. I’ll
quote the ones Turing mentions:

(1) The Theological Objection: Thinking is a function of man’s immortal soul.
God has given an immortal soul to every man and woman, but not to any
other animal or to machines. Hence no animal or machine can think.

(2) The ‘Heads in the Sand’ Objection: “The consequences of machines thinking
would be too dreadful. Let us hope and believe that they cannot do so.”

(3) The Mathematical Objection: There are a number of results of mathematical
logic that can be used to show that there are limitations to the powers of
discrete-state machines.

(4) The Argument from Consciousness: This argument is very well expressed in
Professor Jefferson’s Lister Oration for 1949, from which I quote:
“Not until a machine can write a sonnet or compose a concerto because of
thoughts and emotions felt, and not by the chance fall of symbols, could we
agree that machine equals brain – that is, not only write it but know that it
had written it. No mechanism could feel (and not merely artificially signal,
an easy contrivance) pleasure at its successes, grief when its valves fuse, be
warmed by flattery, be made miserable by its mistakes, be charmed by sex, be
angry or depressed when it cannot get what it wants.”

(5) Arguments from Various Disabilities: These arguments take the form, “I
grant you that you can make machines do all the things you have mentioned
but you will never be able to make one to do X.”

(6) Lady Lovelace’s Objection: Our most detailed information of Babbage’s Ana-
lytical Engine comes from a memoir by Lady Lovelace. In it she states, “The
Analytical Engine has no pretensions to originate anything. It can do whatever
we know how to order it to perform” (her italics).

(7) Argument from Continuity in the Nervous System: The nervous system
is certainly not a discrete-state machine. A small error in the information
about the size of a nervous impulse impinging on a neuron may make a large
difference to the size of the outgoing impulse. It may be argued that, this
being so, one cannot expect to be able to mimic the behavior of the nervous
system with a discrete-state system.

(8) The Argument from Informality of Behavior: It is not possible to produce a
set of rules purporting to describe what a man should do in every conceivable
set of circumstances.

(9) The Argument from Extra-Sensory Perception.

In his paper, Turing nicely (in my opinion) handles all of these points, with the
possible exception of the last one (because he apparently thought that extra-sensory
perception was plausible). I’ll leave it to you to read Turing’s 1950 paper to see his
counterarguments.
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Figure 2.22. Herbert Simon (seated) and Allen Newell (standing). (Courtesy of Carnegie
Mellon University Archives.)

The third important feature of Turing’s 1950 paper is his suggestion about how we
might go about producing programs with human-level intellectual abilities. Toward
the end of his paper, he suggests, “Instead of trying to produce a programme to
simulate the adult mind, why not rather try to produce one which simulates the
child’s? If this were then subjected to an appropriate course of education one would
obtain the adult brain.” This suggestion is really the source for the idea mentioned
earlier about using an ontogenetic strategy to develop intelligent machines.

Allen Newell and Herb Simon (see Fig. 2.22) were among those who had no
trouble believing that the digital computer’s universality meant that it could be used
to mechanize intelligence in all its manifestations – provided it had the right soft-
ware. In their 1975 ACM Turing Award lecture,63 they described a hypothesis that
they had undoubtedly come to believe much earlier, the “Physical Symbol System
Hypothesis.” It states that “a physical symbol system has the necessary and sufficient
means for intelligent action.” Therefore, according to the hypothesis, appropriately
programmed digital computers would be capable of intelligent action. Conversely,
because humans are capable of intelligent action, they must be, according to the
hypothesis, physical symbol systems. These are very strong claims that continue to
be debated.

Both the imagined Turing machine and the very real digital computer are symbol
systems in the sense Newell and Simon meant the phrase. How can a Turing machine,
which uses a tape with 0’s and 1’s printed on it, be a “symbol system”? Well, the 0’s
and 1’s printed on the tape can be thought of as symbols standing for their associated
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numbers. Other symbols, such as “A” and “M,” can be encoded as sequences of
primitive symbols, such as 0’s and 1’s. Words can be encoded as sequences of letters,
and so on. The fact that one commonly thinks of a digital computer as a machine
operating on 0’s and 1’s need not prevent us from thinking of it also as operating on
more complex symbols. After all, we are all used to using computers to do “word
processing” and to send e-mail.

Newell and Simon admitted that their hypothesis could indeed be false: “Intel-
ligent behavior is not so easy to produce that any system will exhibit it willy-nilly.
Indeed, there are people whose analyses lead them to conclude either on philosoph-
ical or on scientific grounds that the hypothesis is false. Scientifically, one can attack
or defend it only by bringing forth empirical evidence about the natural world.”
They conclude the following:

The symbol system hypothesis implies that the symbolic behavior of man arises because he
has the characteristics of a physical symbol system. Hence, the results of efforts to model
human behavior with symbol systems become an important part of the evidence for the
hypothesis, and research in artificial intelligence goes on in close collaboration with research
in information processing psychology, as it is usually called.

Although the hypothesis was not formally described until it appeared in the 1976
article, it was certainly implicit in what Turing and other researchers believed in
the 1950s. After Allen Newell’s death, Herb Simon wrote, “From the very begin-
ning something like the physical symbol system hypothesis was embedded in the
research.”64

Inspired by the clues we have mentioned and armed with the general-purpose
digital computer, researchers began, during the 1950s, to explore various paths
toward mechanizing intelligence. With a firm belief in the symbol system hypothesis,
some people began programming computers to attempt to get them to perform some
of the intellectual tasks that humans could perform. Around the same time, other
researchers began exploring approaches that did not depend explicitly on symbol
processing. They took their inspiration mainly from the work of McCulloch and
Pitts on networks of neuron-like units and from statistical approaches to decision
making. A split between symbol-processing methods and what has come to be called
“brain-style” and “nonsymbolic” methods still survives today.
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