
ar
X

iv
:c

s/
04

05
06

3v
1 

 [
cs

.N
E

] 
 1

8 
M

ay
 2

00
4

Let’s Get Ready to Rumble:
Crossover Versus Mutation Head to Head

Kumara Sastry

David E. Goldberg

IlliGAL Report No. 2004005
January, 2004

Illinois Genetic Algorithms Laboratory (IlliGAL)
Department of General Engineering

University of Illinois at Urbana-Champaign
117 Transportation Building

104 S. Mathews Avenue, Urbana, IL 61801

http://arxiv.org/abs/cs/0405063v1


Let’s Get Ready to Rumble: Crossover Versus Mutation Head to

Head

Kumara Sastry1,2, David E. Goldberg1,3
1Illinois Genetic Algorithms Laboratory (IlliGAL)
2Department of Material Science and Engineering

3Department of General Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801
{ksastry,deg}@uiuc.edu

Abstract

This paper analyzes the relative advantages between crossover and mutation on a class of
deterministic and stochastic additively separable problems. This study assumes that the recom-
bination and mutation operators have the knowledge of the building blocks (BBs) and effectively
exchange or search among competing BBs. Facetwise models of convergence time and popula-
tion sizing have been used to determine the scalability of each algorithm. The analysis shows
that for additively separable deterministic problems, the BB-wise mutation is more efficient
than crossover, while the crossover outperforms the mutation on additively separable problems
perturbed with additive Gaussian noise. The results show that the speed-up of using BB-wise
mutation on deterministic problems is O(

√
k logm), where k is the BB size, and m is the num-

ber of BBs. Likewise, the speed-up of using crossover on stochastic problems with fixed noise
variance is O(m

√
k/ logm).

1 Introduction

Great debate between crossover and mutation has consumed much ink and many trees over the
years. When mutation works it is lightening quick and uses small or non-extent populations.
Crossover when it works, seems to be able to tackle more complex problems, but getting the
population size and other parameters set is a challenge. Comparisons between the two are usually
written by a researcher with an axe to grind. Comparisons are usually empirical, the basis for
comparison is implicitly or explicitly unfair, and theory is non-existent. Wouldn’t it be nice to
compare our two favorite genetic operators on a fair basis in an interesting class of problems and
let them slug it out head to head.

That’s what we do here. Assuming that both the recombination and mutation operators possess
linkage (or neighborhood) knowledge, we pit them against each other for solving boundedly difficult
additively separable problems with and without the presence of additive exogenous noise. We
use a recombination operator that exchanges building blocks (BBs) without disrupting them and
a mutation operator that performs local search among competing building-block neighborhood.
The motivation for this study also comes from recent local-search literature, where authors have
highlighted the importance of using a good neighborhood operator (Barnes, Dimova, & Dokov, 2003;

1



Watson, 2003). However, a systematic method of designing a good neighborhood operator for a
class of search problems is still an open question. We investigate whether using a neighborhood
operator that searches among competing BBs of a problem would be advantageous and if so under
what circumstances.

This paper is organized as follows. The next section gives a brief review of related literature.
We provide an outline of the crossover-based and mutation-based genetic algorithms (GAs) in
Section 3. Facetwise models are developed to determine the scalability of the crossover and the
BB-wise mutation-based GAs for deterministic fitness functions in Section 4 and for noisy fitness
functions in Section 5. Finally, we discuss future research directions followed by conclusions.

2 Literature Review

Over the last few decades many researchers have empirically and theoretically studied where genetic
algorithms excel. An exhaustive literature review is out of the scope of this paper, and therefore
we present a brief review of related theoretical studies.

Several authors have analyzed the scalability of a mutation based hillclimber and compared it to
scalability of different forms of genetic algorithms, such as breeder genetic algorithm (Mühlenbein, 1991;
Mühlenbein, 1992), an ideal genetic algorithm (Mitchell, Holland, & Forrest, 1994), and a genetic
algorithm with culling (Baum, Boneh, & Garrett, 2001). Goldberg (Goldberg, 1999) gave a the-
oretical analysis of deciding between a single run with a large population GA and multiple runs
with several small population GAs, under the constraint of fixed computational cost. He showed
that for uniformly-scaled problems a single run of large population GA was advantageous, while for
exponentially-scaled problems small population GAs with multiple restarts were better. Srivastava
and Goldberg (Srivastava & Goldberg, 2001; Srivastava, 2002) empirically verified and analytically
enhanced the time-continuation theory put forth by Goldberg (Goldberg, 1999). Recently, Cantú-
Paz and Goldberg (Cantú-Paz & Goldberg, 2003) investigated scenarios under which multiple runs
of a GA are better than a single GA run. For an exhaustive review of studies on the advan-
tages/disadvantages of multiple populations both under serial and parallel GAs over a single large-
population GA, the reader is referred elsewhere (Cantú-Paz, 2000; Srivastava, 2002; Luke, 2001;
Fuchs, 1999) and to the references therein.

While many of the related studies (Goldberg, 1999; Srivastava & Goldberg, 2001; Cantú-Paz & Goldberg, 2003)
assumed fixed genetic operators, with no knowledge of building-block structure, in this paper, we
assume that the recombination and mutation operators have linkage (or neighborhood) knowledge.
While the linkage information is usually unknown for a given search problem, a variety of linkage
identification methods can be used to design the operators (see Goldberg (Goldberg, 2002), Sastry
and Goldberg (Sastry & Goldberg, 2004), and references therein).

3 Preliminaries

The objective of this paper is to predict the relative computational costs of a crossover and an ideal-
mutation based algorithm for additively separable problems with and without additive Gaussian
noise. Before developing models for estimating the computational costs, we briefly describe the
algorithms and the assumptions used in the paper.

2



3.1 Selectorecombinative Genetic Algorithms

We consider a generationwise selectorecombinative GA with non-overlapping populations of fixed
size (Holland, 1975; Goldberg, 1989). We apply crossover with a probability of 1.0 and do not use
any mutation. We assume binary strings of fixed length as the chromosomes. To ease the analytical
burden, the selection mechanism assumed throughout the analysis is binary tournament selection
(Goldberg, Korb, & Deb, 1989). However, the results can be extended to other tournament sizes
and other selection methods in a straightforward manner. The recombination method used in the
analysis is a uniform building-block-wise crossover (Thierens & Goldberg, 1994). In uniform BB-
wise crossover, two parents are randomly selected from the mating pool and their building blocks
in each partition are exchanged with a probability of 0.5. Therefore, none of the building blocks are
disrupted during a recombination event. The offspring created through crossover entirely replace
the parental individuals.

3.2 Building-Block-Wise Mutation Algorithm (BBMA)

In this paper we consider an enumerative BB-wise mutation operator, in which we start with a
random individual and evaluate all possible schemas in a given partition. That is, for a building-
block of size k, we evaluate all 2k individuals. The best out of 2k individuals is chosen as a candidate
for mutating BBs of other partitions. In other words, the BBs in different partitions are mutated
in a sequential manner. For a problem with m BBs of size k each, the BBMA can be described as
follows:

1. Start with a random individual and evaluate it.

2. Consider the first non-mutated BB. Here the BB order is chosen arbitrarily from left-to-right,
however, different schemes can be—or may required to be—chosen to decide the order of BBs.

3. Create 2k − 1 unique individuals with all possible schemata in the chosen BB partition. Note
that the schemata in other partitions are the same as the original individual (from step 2).

4. Evaluate all 2k − 1 individuals and retain the best for mutation of BBs in other partitions.

5. Repeat steps 2–4 till BBs of all the partitions have been mutated.

We use an enumerative BB-wise mutation for simplifying the analysis and a greedy BB-wise method
can improve the performance of the mutation-based algorithm. A straightforward Markov process
analysis—along the lines of (Mühlenbein, 1991; Mühlenbein, 1992)—of a greedy BB-wise mutation
algorithm indeed shows that the greedy method is on an average better than the enumerative
one. However, the analysis also shows that differences between the greedy and enumerative BB-
wise mutation approaches are little, especially for moderate-to-large problems. Moreover, the
computational costs of an enumerative BB-wise mutation bounds the costs of a greedy BB-wise
mutation.

4 Crossover vs. Mutation: Deterministic Fitness Functions

In this section we analyze the relative computational costs of using a selectorecombinative GA or a
BB-wise mutation algorithm for successfully solving deterministic problems of bounded difficulty.

3



The objective of the analysis is to answer whether a population-based selectorecombinative GA is
computationally advantageous over a BB-wise-mutation based algorithm. If one algorithm is better
than the other, we are also interested in estimating the savings in computational time. Note that
unlike earlier studies, we assume that the building-block structure is known to both the crossover
and mutation operators.

We begin our analysis with the scalability of selectorecombinative genetic algorithms followed
by the scalability of the BB-wise mutation algorithm.

4.1 Scalability of Selectorecombinative GA

Two key factors for predicting the scalability and estimating the computational costs of a genetic
algorithm are the convergence time and population sizing. Therefore, in the following subsections
we present facetwise models of convergence time and population sizing.

4.1.1 Population-Sizing Model

Goldberg, Deb, & Clark (Goldberg, Deb, & Clark, 1992) proposed population-sizing models for
correctly deciding between competing BBs. They incorporated noise arising from other par-
titions into their model. However, they assumed that if wrong BBs were chosen in the first
generation, the GAs would be unable to recover from the error. Harik, Cantú-Paz, Goldberg,
and Miller (Harik, Cantú-Paz, Goldberg, & Miller, 1999) refined the above model by incorporat-
ing cumulative effects of decision making over time rather than in first generation only. Harik et
al. (Harik, Cantú-Paz, Goldberg, & Miller, 1999) modeled the decision making between compet-
ing BBs as a gambler’s ruin problem. Here we use an approximate form of the gambler’s ruin
population-sizing model (Harik, Cantú-Paz, Goldberg, & Miller, 1999):

n =

√
π

2

σBB

d
2k
√
m logm, (1)

where k is the BB size, m is the number of BBs, d is the size signal between the competing BBs,
and σBB is the fitness variance of a building block. building blocks. The above equation assumes
a failure probability, α = 1/m.

4.1.2 Convergence-Time Model

Mühlenbein and Schlierkamp-Voosen (Mühlenbein & Schlierkamp-Voosen, 1993) derived a convergence-
time model for the breeder GA using the notion of selection intensity (Bulmer, 1985) from pop-
ulation genetics. Thierens and Goldberg (Thierens & Goldberg, 1994) derived convergence-time
models for different selections schemes including binary tournament selection. Bäck (Bäck, 1994)
derived estimates of selection intensity for s-wise tournament and (µ, λ) selection. Miller and Gold-
berg (Miller & Goldberg, 1995) developed convergence-time models for s-wise tournament selec-
tion and incorporated the effects of external noise. Bäck (Bäck, 1995) developed convergence-time
models for (µ, λ) selection. Even though the selection-intensity-based convergence-time models
were developed for the OneMax problem, Miller and Goldberg (Miller, 1997) observed that they
are generally applicable to additively decomposable problems of bounded order. Here, we use the
convergence-time model of Miller and Goldberg (Miller & Goldberg, 1995):

tc =
π

2I

√
ℓ, (2)

4



where I is the selection intensity, and ℓ = mk is the string length. For binary tournament selection,
I = 1/

√
π.

Using equations 1 and 2, we can now predict the scalability, or the number of function evalua-
tions required for successful convergence, of GAs as follows:

nfe,GA = n · tc =
π2

4

σBB

d

√
k logm · 2k ·m. (3)

4.2 Scalability of BB-wise Mutation Algorithm

Since the initial point is evaluated once and after that for each of the m BBs, 2k − 1 individuals
are evaluated, the total number of function evaluations required for the BBMA is

nfe,BBMA =
(

2k − 1
)

m+ 1. (4)

The results from the above subsections (Equations 3 and 4) indicate that while the scalability

of a selectorecombinative GA is O
(

2km logm
)

, the scalability of the BBMA is O
(

2km
)

. This is in

contrast to a random-walk mutation algorithm with no BB knowledge which scales as O
(

mk logm
)

(Mühlenbein, 1992). By searching among building-block neighborhoods, the selectomutative algo-
rithm scales-up significantly better than a mutation operator with no linkage information and
provides a savings of O(

√
k logm) evaluations over the GA. The savings comes from the extra

evaluation required for the convergence and decision-making in the selectorecombinative GAs.
The speed-up—which is defined as the ratio of number of function evaluations required by a

GA to that required by BBMA—obtained by using a BB-wise mutation algorithm over a selectore-
combinative GA is given by

η =
nfe,GA

nfe,BBMA

= O
(√

k logm
)

. (5)

In particular, the speed-up for the OneMax problem (k = 1) is given by

ηOneMax =
π2

4
m logm

m+ 1
≈ π2

4
logm, (6)

and for the GA-hard m k-Trap function (Goldberg, 1987), the speed-up is given by

ηTrap =
π2

4
σBB

d

√
k2km logm

(2k − 1)m+ 1
≈ π2

4

σBB

d

√
k logm. (7)

The speed-up predicted by Equations 6 and 7 are verified with empirical results in Figures 1(a)
and 1(b), respectively. The results are averaged over 900 independent runs. The results show that
there is a good agreement between the predicted and observed speed-up. The results show that
for deterministic additively separable problems, a BB-wise mutation algorithm is about O(

√
km)

times faster than a selectorecombinative genetic algorithm.

5 Crossover vs. Mutation: Noisy Fitness Functions

In the previous section, we observed that BB-wise mutation scales-up better than a crossover
on deterministic additively separable problems. Furthermore, a selectomutative algorithm was

5



10 20 50 100 200 500 1000

6

8

10

12

14

16

18

Number of building blocks, m

S
pe

ed
−

U
p 

η O
ne

M
ax

OneMax

(a) OneMax

2 5 10 20 30 50
0

2.5

5

7.5

10

12.5

15

Number of BBs, m

S
pe

ed
−

U
p,

 η
T

ra
p

m k−Trap

Theory, k = 4, d = 0.25
Expt., k = 4, d = 0.25
Theory, k = 5, d = 0.20
Expt., k = 5, d = 0.20

(b) m k-Trap

Figure 1: Empirical verification of the speed-up predicted for using BB-wise mutation over a selec-
torecombinative GA by Equations 6 and 7. The empirical results are averaged over 900 independent
runs. The results show that the speed-up obtained by BB-wise mutation algorithm over a GA is
O(

√
k logm).

6



able to overcome deception, one of the key factors influencing problem difficulty, using linkage
(neighborhood) information and enumeration within the neighborhood. In this section we introduce
another dimension of problem difficulty in extra-BB noise (Goldberg, 2002) and analyze if the BB-
wise mutation maintains its edge over crossover. That is, we analyze whether a selectorecombinative
or a selectomutative GA works better on additively separable problems with additive external
Gaussian noise.

We follow the same approach outlined in the previous section and consider the scalability of
crossover and mutation.

5.1 Scalability of Selectorecombinative GAs

Again we use the convergence-time and population-sizing models to determine the scalability of
GAs under the presence of unbiased Gaussian noise. We use an approximate form of the gambler’s
ruin population-sizing model for noisy environments:

n =

√
π

2

σBB

d
2k
√
m logm

√

√

√

√

(

1 +
σ2
N

σ2
f

)

, (8)

where σ2
N is the variance of the noise, and σ2

f is the fitness variance.
We use an approximate form of Miller and Goldberg’s (Miller & Goldberg, 1995) convergence-

time model:

tc =
π

2I

√
m

√

√

√

√1 +
σ2
N

σ2
f

. (9)

A detailed derivation of the above equation and other approximations are given elsewhere (Goldberg, 2002;
Sastry, 2001).

The population-sizing and convergence-time models indicate that the exogenous noise increases
the population size and elongates the convergence time. Using equations 1 and 2, we can now
predict the scalability, or the number of function evaluations required for successful convergence,
of GAs as follows:

nfe,GA =
π2

4

σBB

d

√
k logm ·

(

1 +
σ2
N

σ2
f

)

· 2k ·m. (10)

5.2 Scalability of BB-wise Mutation Algorithm

Unlike the deterministic case where a BB was perturbed and evaluated once, in the presence of
exogenous noise we cannot rely on only a single evaluation. In other words, in the presence of noise,
an average of multiple samples of the fitness should be used in deciding between competing building
blocks. Now the question remains as to exactly how many samples have to be considered. This
issue of exact samples of fitness required to correctly decide between competing building blocks in
the presence of noise has been addressed elsewhere (Goldberg, Deb, & Clark, 1992):

ns = 2cσ2
N , (11)

where ns is the number of independent fitness samples, and c is the square of the ordinate of a one-
sided standard Gaussian deviate at a specified error probability α. For low error values, c can be

7



0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

3500

4000

σ2
N

/σ2
f

N
um

be
r 

of
 s

am
pl

es
, n

s

m = 50
m = 100
m = 200
m = 400
Theory

Figure 2: Comparison of the number of samples of fitness evaluations per individual required to
correctly decide between competing building blocks as predicted by Equation 11 with empirical
results.

obtained by the usual approximation for the tail of a Gaussian distribution: α ≈ exp(−c/2)/(
√
2c).

In this paper we have used α = 1/m. Equation 11 is empirically verified for the Noisy-OneMax
problem in Figure 2. The results show a good agreement between the model and experiments.

Since the initial point is evaluated ns times and after that for each of the m BBs, 2k − 1
individuals are evaluated ns times, the total number of function evaluations required for the BBMA
for noisy fitness functions is given by

nfe,BBMA = ns

[(

2k − 1
)

m+ 1
]

,

=

(

2c
σ2
N

σ2
f

·mσBB

)

[(

2k − 1
)

m+ 1
]

. (12)

The results from the above subsections (Equations 10 and 12) indicate that under the presence

of exogenous noise, a selectorecombinative GA scales as O
(

2km logm(1 + σ2
N/σ2

f )
)

. On the other

hand, the BB-wise mutation scales as O
(

2km2(σ2
N/σ2

f )
)

. Therefore, for constant values of σ2
N/σ2

f , a

selectorecombinative GA is O(
√
km/ logm) times faster than the BB-wise mutation. By implicitly

averaging out the exogenous noise, crossover is able to overcome the extra effort needed for the
convergence and decision-making. On the other hand the explicit averaging via multiple fitness
samples by the BB-wise mutation leads to an order of magnitude increase in the number of function
evaluations.

The speed-up—which is defined as the ratio of number of function evaluations required by mu-
tation to that required by crossover—obtained by using a selectorecombinative over selectomutative

8



0 1 2 3 4 5

0

5

10

15

20

25

30

35

40

45

σ2
N

/σ2
f

S
pe

ed
−

U
p,

 η
N

oi
sy

 O
ne

M
ax

m = 50
m = 100
m = 200
m = 400

Figure 3: Empirical verification of the speed-up predicted for using BB-wise mutation over a selec-
torecombinative GA by Equation 14 for the OneMax problem with exogenous noise. The empirical
results are averaged over 900 independent runs. The results show that a selectorecombinative GA
uses significantly less number of function evaluations than the BB-wise mutation algorithm.

GA is given by

ηNoise =
nfe,BBMA

nfe,GA

= O







√
k

m

logm







σ2

N

σ2

f

1 +
σ2

N

σ2

f












. (13)

In particular, the speed-up for the OneMax problem (k = 1) is given by

ηNoisy OneMax =
4c

π2

m

logm







σ2

N

σ2

f

1 +
σ2

N

σ2

f






. (14)

The speed-up predicted by Equation 14 is verified with empirical results in Figure 3. The results
are averaged over 900 independent runs. The results show that there is a good agreement between
the predicted and observed speed-up. The results show that for stochastic additively separable
problems with constant noise variance, a selectorecombinative GA is about O(

√
km/ logm) times

faster than the BB-wise mutation algorithm.

6 Future Work

The results of this paper indicate that there are significant advantages of using a mutation operator
that performs hillclimbing in the BB space and indicates many avenues of future research some of
which are listed in the following:

9



Hybridization of crossover and BB-wise mutation: While this paper consider a bounding
case of crossover vs. mutation, it might be (more likely it is) more effective to use an efficient
hybrid of crossover and mutation.

Designing BB-wise Mutation: In this paper we assumed that the BB information was known,
which generally is not the case. Over the last few years, effective recombination operators
that adapt linkage have been developed in a systematic manner (Goldberg, 2002). On the
other hand, most mutation operators, including adaptive ones, search in the local neigh-
borhood of a solution. Furthermore, there has been growing evidence of the importance of
using good neighborhood operators in determining the effectiveness of local-search methods
(Barnes, Dimova, & Dokov, 2003; Watson, 2003). Despite the importance of having good
neighborhood information, a general methodology for designing operators with good neigh-
borhood information is non-existent. That is, little attention has been paid to systematically
design effective mutation operators that performs local search in the building-block space
(Sastry & Goldberg, 2004). The results of this paper indicate that the dividends obtained by
designing BB-wise mutation operators that adaptively identify and utilize good neighborhood
information can be significant.

Problems with overlapping building blocks: While this paper considered problems with non-
overlapping building blocks, many problems have different building blocks that share common
components. An analysis similar to the one presented in this paper can be performed to
predict which of the two algorithms excel. However, since the effect of overlapping variable
interactions is similar to that of exogenous noise (Goldberg, 2002), based on the results of
this paper crossover is likely to be more useful than the mutation for solving problems with
overlapping building blocks.

Hierarchical problems: One of the important class of nearly decomposable problems is hierar-
chical problems, in which the building-block interactions are present at more than a single
level. Further investigation is necessary to analyze if BB-wise mutation can help speed-up
the scalability of selectorecombinative GAs.

7 Summary & Conclusions

In this paper, we have introduced a building-block-wise mutation operator which efficiently searches
among the competing building block (BB) neighborhood. We also compared the computational
costs BB-wise mutation algorithm with a selectorecombinative genetic algorithm for both deter-
ministic and stochastic additively separable problems. Our results show that while the BB-wise
mutation provides significant advantage over crossover for deterministic problems, crossover main-
tains significant edge over the BB-wise mutation on stochastic problems. The results show that the
speed-up of using BB-wise mutation on deterministic problems is O(

√
k logm), where k is the BB

size, and m is the number of BBs. Likewise, the speed-up of using crossover on stochastic problems
with fixed noise variance is O(m

√
k/ logm).

10



Acknowledgments

This work was sponsored by the Air Force Office of Scientific Research, Air Force Materiel Com-
mand, USAF, under grant F49620-00-0163 and F49620-03-1-0129, the National Science Foundation
under grant DMI-9908252, ITR grant DMR-99-76550 (at Materials Computation Center), and ITR
grant DMR-0121695 (at CPSD), and the Dept. of Energy through the Fredrick Seitz MRL (grant
DEFG02-91ER45439) at UIUC. The U.S. Government is authorized to reproduce and distribute
reprints for government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed or implied,
of the Air Force Office of Scientific Research, the National Science Foundation, or the U.S. Gov-
ernment.

References

Bäck, T. (1994). Selective pressure in evolutionary algorithms: A characterization of selection
mechanisms. Proceedings of the First IEEE Conference on Evolutionary Computation, 57–62.

Bäck, T. (1995). Generalized convergence models for tournament—and (µ, λ)—selection. Pro-
ceedings of the Sixth International Conference on Genetic Algorithms, 2–8.

Barnes, J. W., Dimova, B., & Dokov, S. P. (2003). The theory of elementary landscapes. Applied
Mathematical Letters, 16 , 337–343.

Baum, E. B., Boneh, D., & Garrett, C. (2001). Where getic algorithms excel. Evolutionary

Computation, 9 (1), 93–124.

Bulmer, M. G. (1985). The mathematical theory of quantitative genetics. Oxford: Oxford Uni-
versity Press.

Cantú-Paz, E. (2000). Efficient and accurate parallel genetic algorithms. Boston, MA: Kluwer
Academic Pub.

Cantú-Paz, E., & Goldberg, D. E. (2003). Are multiple runs of genetic algorithms better than
one? Proceedings of the Genetic and Evolutionary Computation Conference, 801–812.

Fuchs, M. (1999). Large populations are not always the best choice in genetic programming.
Proceedings of the Genetic and Evolutionary Computation Conference, 1033–1038.

Goldberg, D. E. (1987). Simple genetic algorithms and the minimal, deceptive problem. In Davis,
L. (Ed.), Genetic algorithms and simulated annealing (Chapter 6, pp. 74–88). Los Altos, CA:
Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic algorithms in search optimization and machine learning. Read-
ing, MA: Addison-Wesley.

Goldberg, D. E. (1999). Using time efficiently: Genetic-evolutionary algorithms and the con-
tinuation problem. Proceedings of the Genetic and Evolutionary Computation Conference,
212–219. (Also IlliGAL Report No. 99002).

Goldberg, D. E. (2002). Design of innovation: Lessons from and for competent genetic algo-

rithms. Boston, MA: Kluwer Acadamic Publishers.

11



Goldberg, D. E., Deb, K., & Clark, J. H. (1992). Genetic algorithms, noise, and the sizing of
populations. Complex Systems, 6 , 333–362. (Also IlliGAL Report No. 91010).

Goldberg, D. E., Korb, B., & Deb, K. (1989). Messy genetic algorithms: Motivation, analysis,
and first results. Complex Systems, 3 (5), 493–530. (Also IlliGAL Report No. 89003).

Harik, G., Cantú-Paz, E., Goldberg, D. E., & Miller, B. L. (1999). The gambler’s ruin problem,
genetic algorithms, and the sizing of populations. Evolutionary Computation, 7 (3), 231–253.
(Also IlliGAL Report No. 96004).

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor, MI: University
of Michigan Press.

Luke, S. (2001). When short runs beat long runs. Proceedings of the Genetic and Evolutionary

Computation Conference, 74–80.

Miller, B. L. (1997, May). Noise, sampling, and efficient genetic algorithms. Doctoral dissertation,
University of Illinois at Urbana-Champaign, General Engineering Department, Urbana, IL.
(Also IlliGAL Report No. 97001).

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects
of noise. Complex Systems, 9 (3), 193–212. (Also IlliGAL Report No. 95006).

Mitchell, M., Holland, J., & Forrest, S. (1994). When will a genetic algorithm outperform hill-
climbing. Advances in Nueral Information Processing Systems, 6 , 51–58.

Mühlenbein, H. (1991). Evolutiona in time and space- the parallel genetic algorithm. Foundations
of Genetic Algorithms, 316–337.

Mühlenbein, H. (1992). How genetic algorithms really work: Mutation and hillclimbing. Parallel
Problem Solving from Nature II , 15–26.

Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic
algorithm: I. continous parameter optimization. Evolutionary Computation, 1 (1), 25–49.

Sastry, K. (2001). Evaluation-relaxation schemes for genetic and evolutionary algorithms. Mas-
ter’s thesis, University of Illinois at Urbana-Champaign, General Engineering Department,
Urbana, IL. (Also IlliGAL Report No. 2002004).

Sastry, K., & Goldberg, D. (2004, January). Designing competent mutation operators via proba-

bilistic model building of neighborhoods (IlliGAL Report No. 2004006). Urbana, IL: University
of Illinois at Urbana-Champaign.

Srivastava, R. (2002). Time continutation in genetic algorithms. Master’s thesis, University of
Illinois at Urbana-Champaign, General Engineering Department, Urbana, IL. (Also IlliGAL
Report No. 2001021).

Srivastava, R., & Goldberg, D. E. (2001). Verification of the theory of genetic and evolutionary
continuation. Proceedings of the Genetic and Evolutionary Computation Conference, 551–558.
(Also IlliGAL Report No. 2001007).

Thierens, D., & Goldberg, D. E. (1994). Convergence models of genetic algorithm selection
schemes. Parallel Problem Solving from Nature, 3 , 116–121.

Watson, J.-P. (2003). Empirical modeling and analysis of local search algorithms for the job-shop

scheduling problem. Doctoral dissertation, Colorado State University, Fort Collins, CO.

12


	Introduction
	Literature Review
	Preliminaries
	Selectorecombinative Genetic Algorithms
	Building-Block-Wise Mutation Algorithm (BBMA)

	Crossover vs. Mutation: Deterministic Fitness Functions
	Scalability of Selectorecombinative GA
	Population-Sizing Model
	Convergence-Time Model

	Scalability of BB-wise Mutation Algorithm

	Crossover vs. Mutation: Noisy Fitness Functions
	Scalability of Selectorecombinative GAs
	Scalability of BB-wise Mutation Algorithm

	Future Work
	Summary & Conclusions

