CHAPTER 2

Structures for Indexes

2.0. Introduction

The chapter presents data structures used to memorize the suffixes of a text
and some of their applications. These structures are designed to give a fast
access to all factors of the text, and this is the reason why they have a fairly
large number of applications in text processing.

Two types of objects are considered in this chapter, digital trees and
automata, together with their compact versions. Trees put together common
prefixes of the words in the set. Automata gather in addition their common
suffixes. The structures are presented in order of decreasing size.

The representation of all the suffixes of a word by an ordinary digital
tree called a suffix trie (Section 2.1) has the advantage of being simple but
can lead to a memory size that is quadratic in the length of the considered
word. The compact tree of suffixes (Section 2.2) is guaranteed to hold in
linear memory space.

The minimization (related to automata) of the suffix trie gives the min-
imal automaton accepting the suffixes and is described in Section 2.4.
Compaction and minimization yield the compact suffix automaton of
Section 2.5.

Most algorithms that build the structures presented in this chapter work
in time O(n x log Card .A), for a text of length n, assuming that there is an
ordering on the alphabet .A. Their execution time is thus linear when the
alphabet is finite and fixed. Locating a word of length m in the text then
takes O(m x log Card A) time.

The main application of presented techniques is to provide the basis
for implementing indexes, which is described in Section 2.6. But the direct
access to factors of a word authorizes a great number of other applications.
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2.1. Suffix trie 107

We briefly mention how to detect repetitions or forbidden words in a text
(Section 2.7). Structures can also be used to search for fixed patterns in
texts because they can be regarded as pattern matching machines (see
Section 2.8). This method is extended in a particularly effective way, for
searching conjugates (or rotations) of a pattern, in Section 2.8.3.

2.1. Suffix trie

The tree of suffixes of a word, called its suffix trie, is a deterministic
automaton that accepts the suffixes of the word and in which there is a
unique path from the initial state to any state. It can be viewed as a digital
tree which represents the set of suffixes of the word. Standard methods can
be used to implement these automata, but its tree structure authorizes a
simplified representation.

Considering a tree implies that the terminal states of the tree are in
one-to-one correspondence with the words of the accepted language. The
tree is thus finite only if its language is also finite. Consequently, the
explicit representation of the tree has an algorithmic interest only for finite
languages.

Sometimes one forces the tries to have, for terminal states, only the
external nodes of the tree. With this constraint, a language L is representable
by a trie only if no proper prefix of a word of £ is in L. It results from this
remark that if y is a nonempty word, only Suff(y) \ {e} is representable by
a trie having this property, and this takes place only when the last letter
of y appears only once in y. For this reason one frequently adds for this
purpose a marker at the end of the word. We prefer to attach an output
to the nodes of the tree, which is in conformity with the concept used,
that of automaton. Only the nodes whose output is defined are regarded as
terminals. In addition, there are only very slight differences between the
implementations of the two features.

The suffix trie of a word y is denoted by (y). Its nodes are the factors of
v, € is the initial state, and the suffixes of y are the terminal states. The tran-
sition function & of €(y) is defined by 8(u, a) = ua if ua is a factor of y and
a € A. The output of a terminal state, which is then a suffix, is the position
of this suffix in y. An example of a suffix trie is displayed in Figure 2.1.

A classical construction of T(y) is carried out by adding successive
suffixes of y in the tree under construction, from the longest suffix, y itself,
until the shortest, the empty word.

The current operation inserts y[i . .n — 1], the suffix at position i, in the
structure which already contains all the longer suffixes. It is illustrated by
Figure 2.2. We call the head of a suffix its longest prefix common to a suffix
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108 2. Structures for Indexes

Figure 2.1. Trie T (ababbb) of suffixes of ababbb. Terminal states are
marked by double circles. The output associated with a terminal state is
the position of the corresponding suffix on the word ababbb. The empty
suffix, by convention, is associated with the length of the word.

Figure 2.2. The trie T(ababbb) (see Figure 2.1) during its construction,
just after the insertion of suffix abbb. The fork, state 2, corresponds to the
head, ab, of the suffix. It is the longest prefix of abbb that appears before
the concerned position. The tail of the suffix is bb, the label of the path
grafted at this stage from the fork and leading to states 12 and 13.

occurring at a smaller position. It is also the longest prefix of y[i..n — 1]
that is the label of some path starting at the initial state of the automaton
in construction. The target state of the path is called a fork (two divergent
paths start from this state). If y[i . . k — 1] is the head of the suffix at position
i (y[i..n —1]) the word y[k ..n — 1] is called the tail of the suffix.

More precisely, one calls fork any state of the automaton which is of
(out-degree) degree at least 2, or which is both of degree 1 and terminal.
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Algorithm SUFFIXTRIE builds the suffix trie of y.Its code is given be-
low. It is supposed that the automaton is represented by lists of successors
(adjacency lists). The list associated with state p is denoted by adj[ p] and
contains pairs of the form (a, g) where a is a letter and ¢ a state. The func-
tion TARGET implements transitions of the automaton, so TARGET(p, a) is
q when (a, g) € adj[ p] (or more generally when (au, q) € adj[ p] for some
word u, as considered in the next sections). States of the automaton have
the attribute output whose value is a position. When creating a state, the
procedure NEWSTATE allocates an empty adjacency list and set as unde-
fined the value of the attribute output. Only the output of terminal states
is set by the algorithm. The procedure NEWAUTOMATON creates a new
automaton, say M, with only one state, its initial state initial(M).

In the algorithm, the insertion of the current suffix y[i..n — 1] in the
automaton M under construction, starts with the computation of its head,
yli ..k — 1], and of the associated fork, p = é(initial(M), y[i ..k — 1]),
from which is grafted the tail of the suffix (denoting by § the transition
function of M). The value of the function SLowFIND applied to the pair
(initial(M), i) is precisely the sought pair (p, k). The creation of the path
of label y[k..n — 1] from p together with the definition of the output of
its target is carried out at lines 5-9.

The last step of the execution, insertion of the empty suffix, just defines
the output of the initial state, which value is n = |y| by convention (line 10).

SUFFIXTRIE(y, n)

1 M < NEWAUTOMATON()
2 fori < Oton —1do
(fork, k) <— SLOWFIND(initial(M), i)
p < fork
for j < kton —1do
g < NEWSTATE()
adjlp] < adjlp) U {(Lj1. 9))
P <4q
output[p] < i
10 output[initial(M)] < n
11 return M

O 00O\ AW

SLowFIND(p, i)
1 fork < iton—1do

2 if TARGET(p, y[k]) is undefined then
3 return (p, k)
4 p < TARGET(p, y[k])

5 return (p, n)
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110 2. Structures for Indexes

Proposition 2.1.1. Algorithm SUFFIXTRIE builds the suffix trie of a word
of length n in time ®(n?).

Proof. The correctness is easy to check on the code of the algorithm.

For the evaluation of execution time, let us consider stage i. Let us
suppose that y[i ..n — 1] has head y[i ..k — 1] and has tail y[k..n — 1].
The call to SLowFIND (line 3) performs k — i operations and the for
loop at lines 5-8 does n — k ones, which gives a total of n — i operations.
Thus the for loop indexed by i at lines 2-9 executesn + (n — 1) 4 --- + 1
operations, which gives a total execution time of ®(n?). "

2.1.1. Suffix links

It is possible to accelerate the preceding construction by improving the
search for forks. The technique described here is used in the following sec-
tion where it leads to an actual gain in the execution time that is measurable
with the asymptotic evaluation.

Let av be a suffix of y with a nonempty head az (a € A). The prefix
z of v thus appears in y before the considered occurrence. This implies
that z is a prefix of the head of suffix v. The search for this head and the
corresponding fork can thus be done by starting in state z instead of starting
systematically with the initial state as done in the preceding algorithm.
However, this supposes that, the state az being known, one has a fast access
to state z. For that, one introduces a function defined on the states of the
automaton and called the suffix link function. It is denoted by s, and defined,
for each state az (a € A, z € A*), by s,(az) = z. State z is called the suffix
link of state az. Figure 2.3 displays in dashed arrows the suffix link function
of the trie of Figure 2.1.

The algorithm SLowFIND-BIs uses the suffix link function for the
computation of the suffix trie of y. The function is implemented by a table
named s¢. Suffix links are actually computed there only for the forks and
their ancestors, except for the initial state. The rest is just an adaptation of
algorithm SLowFIND that includes the definition of the suffix link table
s¢. The new algorithm is called SLOWFIND-BIS.

SLowFIND-BIS(p, k)
1 while £k < n and TARGET(p, y[k]) is defined do

2 q < TARGET(p, y[k])

3 (e, f) < (p,q)

4 while e # initial(M) and s¢[ f] is undefined do
5 S f] <— TARGET(sL[e], y[k])

6 (e, f) < (stlel, stLf]D
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7 if s¢[ f] is undefined then
8 SLf] <« initial(M)
9 (p. k) < (g, k+1)

10 return (p, k)

Algorithm SUFFIXTRIE-BIS is an adaptation of SUFFIXTRIE. It uses
the function SLOWFIND-BIS instead of SLOWFIND.

SUFFIXTRIE-BIS(y, 1)
1 M < NEWAUTOMATON()
2 sllinitial(M))] < initial(M)
3 (fork, k) < (initial(M), 0)
4 fori < Oton —1do

5 k < max{k, i}

6 (fork, k) <— SLOWFIND-BIS(s{[fork], k)
7 p < fork

8 for j < kton—1do

9 q < NEWSTATE()

10 adj[p] < adj[pl U{(y[j]. 9)}

11 D <q

12 output[p] < i

13 outputlinitial(M)] < n

14 return M

Proposition 2.1.2. Algorithm SUFFIXTRIE-BIS builds the suffix trie of y
in time ®(Card Q), where Q is the set of states of T(y).

Figure 2.3. The triec T(ababbb) with suffix links of forks and of their
ancestors indicated by dashed arrows.
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112 2. Structures for Indexes

Proof. The operations of the main loop, apart from line 6 and the for loop
at lines 8—11, are carried out in constant time, which gives a time O(n) for
their total execution.

Each operation of the internal loop of the algorithm SLOWFIND-BIS,
which is called at line 6, leads to the creation of a suffix link. The total
number of links being bounded by Card Q, the cumulated time of all the
executions of line 6, is O(Card Q).

The execution time of the loop 8-11 is proportional to the number of
states that it creates. The cumulated time of all the executions of lines 8—11
is thus still O(Card Q).

Consequently, the total time of the construction is ®(Card Q), which is
the announced result. "

The size of %(y) can be quadratic. This is the case for example for
a word whose letters are pairwise distinct. For this category of words
algorithm SUFFIXTRIE-BIS is in fact not faster than SUFFIXTRIE.

For certain words, it is enough to prune the hanging branches (below
the forks) of T(y) to obtain a structure of linear size. This kind of pruning
gives the tree called the position tree of y (see Figure 2.4), which represents
the shortest factors occurring only once in y or the suffixes that identify
other positions. However, considering the position tree does not completely
solve the question of memory space for the structure that can still have
a quadratic size. It can be checked for example that the word a*b*a*b*
(k € N) of length 4k has a pruned suffix trie that contains more k> nodes.

The structure of the compact tree of the following section is a solution
to obtaining a structure of linear size. The automata of Sections 2.4 and 2.5
provide another type of solution.

Figure 2.4. Position tree of ababbb. It accepts the shortest factors which
identify positions on the word, and some suffixes.
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Figure 2.5. The (compact) suffix tree S(ababbb) with its suffix links.

2.2. Suffix tree

The compact suffix trie of word y, simply called its suffix tree and denoted
by G(y), is obtained by removing the nodes of degree 1 which are not
terminal in its suffix trie. This operation is called the compaction of the
trie. The compact tree preserves only the forks and the terminal nodes of
the suffix trie. Labels of edges then become words of positive variable
length. Observe that if two edges start from a same node and are labelled
by the words u and v then the first letters of these words are distinct, that is
u[0] # v[0]. This comes from the fact that the suffix trie is a deterministic
automaton.

Figure 2.5 shows the compact suffix tree obtained by compaction of the
suffix trie of Figure 2.1.

Proposition 2.2.1. The compact suffix tree of a word of length n > 0 has
between n + 1 and 2n nodes. The number of forks of the tree is between 1
and n.

Proof. The tree contains n 4 1 distinct terminal nodes corresponding to the
n + 1 suffixes they represent. This gives the lower bound.

Each fork that is not terminal has at least two children. For a fixed
number of external nodes, the maximum number of these forks is obtained
when each one has exactly two children. In this case, one obtains at most
n forks (terminal or not). Since for n > 0 the initial state is both a fork and
a terminal node, one obtains the bound (n + 1) +#n — 1 = 2n on the total
number of nodes. L]
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Figure 2.6. Representation of labels in the (compact) suffix tree
G(ababbb). (To be compared with the tree in Figure 2.5.) Label (2, 4)
of edge (3, 1) represents the factor of length 4 at position 2 in y, that is,
the word abbb.

The fact that the compact suffix tree has a linear number of nodes does
not imply the linearity of its representation, because this also depends on the
total size of labels of the edges. The example of a word of length n that has
n distinct letters shows that this size can well be quadratic. Nevertheless,
labels of edges being all factors of y, each one can be represented by
a pair position-length (or also starting position-end position), provided
that the word y resides in memory with the tree to allow an access to
the labels. A word u that is the label of an edge (p, q) is represented
by the pair (i, |u|) where i is the position of some occurrence of u in y.
We write label(p, q) = (i, |u|) and assume that the implementation of the
tree provides a direct access to this label. This representation of labels is
illustrated in Figure 2.6 for the tree of Figure 2.5.

Proposition 2.2.2. Representing labels of edges by pairs of integers, the
total size of the compact suffix tree of a word is linear in its length, that is,
the size of S(y) is O(|y]).

Proof. The number of nodes of &(y) is ®(|y|) according to Proposi-
tion 2.2.1. The number of edges of G(y) is one unit less than the number
of nodes. The assumption on the representation of labels of edges implies
that each edge occupies a constant space. This gives the result. "

The suffix link function introduced in the preceding section finds its
complete usefulness in the construction of compact suffix tries. It al-
lows a fast construction when, moreover, the algorithm SLOWFIND of
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the preceding section is replaced by the algorithm FASTFIND hereafter that
has a similar function. The possibility of retaining only the forks of the tree,
in addition to terminal states, rests on the following lemma.

Proposition 2.2.3. In a suffix trie, the suffix link of a nonempty fork is a
fork.

Proof. For a nonempty fork, there are two cases to consider according to
whether the fork, say au (a € A, u € A*) has degree at least 2, or has
degree 1 and is terminal.

Let us suppose first that the degree of au is at least 2. For two distinct
letters b and c, the words aub and auc are factors of y. The same property
then holds for u = sy(au) which is thus of degree at least 2 and therefore
is a fork.

If the fork au has degree 1 and is terminal, then aub is a factor of y for
some letter b and simultaneously au is a suffix of y. Thus, ub is a factor of
y and u is a suffix of y, which shows that u = s,(au) is also a fork. ]

The following property is used as a basis for the computation of suffix
links in the algorithm SUFFIXTREE that builds the suffix tree. We denote
by & the transition function of G(y).

Lemma 2.2.4. Let (p, q) be an edge of S(y) and y[j ..k — 1], j <k, be
its label. If q is a fork of the tree, then

8(p,ylj+1..k—11) if p is the initial state,

sy(q) = {S(Sy(p)’ ylj..k—=1]) otherwise.

Proof. As q is a fork, s,(q) is defined according to Proposition 2.2.3. If p
is the initial state of the tree, that is, if p = ¢, one has 5s,(q) = (¢, y[j +
1..k — 1]) by definition of s,.

In the other case, there is a single path from the initial state ending at
p because G(y) is a tree. Let av be the nonempty label of this path with
a € Aand v € A* (that is, p = av). One has (¢, v) = s,(p) and (e, v -
ylj..k—=1]) =s,(q). It follows that s,(q) = &(s,(p), y[j ..k — 1]) (the
automaton is deterministic), as announced. n

2.2.1. Construction

The strategy we select to build the suffix tree of y successively inserts the
suffixes of y in the structure, from the longest to the shortest, as in the
preceding section. As for the algorithm SUFFIXTRIE-BIS, the insertion of
the tail of the running suffix is done after a slow find starting from the
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initial fork
state t a-u-v
O O——=0
la]l w ] v |
i Jj k
lal ] v [ w | z
[ u ] v [ w |
fast slow
O O O O
initial sy(1) )4 fork
state u-v-w

Figure 2.7. Schema for the insertion of the suffix y[i..n —1]=u-v-
w - z of y in the (compact) suffix tree during its construction, when the suf-
fix link is not defined on the fork a - u - v. Let ¢ be the parent of this fork and
v be the label of the associated edge. One first computes p = 8(s,(t), v)
using FASTFIND, then the fork of the suffix using SLOWFIND as in
Section 2.1.

suffix link of the current fork. When this link does not exist it is created
(lines 6-11 of SUFFIXTREE) by using the equality of the preceding state-
ment. Calculation is performed by the algorithm FASTFIND that satisfies

FasTtFIND(r, j, k) =8(r, y[j ..k — 1])
for the r state of the tree and j, k positions on y for which
r-ylj..k—1]is a factor of y.

The diagram for the insertion of one suffix inside the tree in construction is
presented in Figure 2.7.

SUFFIXTREE(y, n)
1 M < NEWAUTOMATON()
2 sllinitial(M)] < initial(M)
3 (fork, k) < (initial(M), 0)
4 fori < Oton —1do
k < max{i, k}
if s€[fork] is undefined then
t < parent of fork
(J, £) < label(t, fork)
if t = initial(M) then

O 00 1 O\ L
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10 L« 0—1

11 sl[fork] <— FASTFIND(sL[t], k — £, k)
12 (fork, k) <— SLOWFINDC(s/[fork], k)

13 if Xk < n then

14 g < NEWSTATE()

15 adj[fork] < adj[fork] U {((k,n — k), q)}
16 else g < fork

17 output[q] < i

18 outputlinitial(M)] < n

19 return M

Algorithm SLOWFINDC is merely adapted from algorithm SLowFIND
to take into account the fact that labels of edges are words. However, when
the sought target falls in the middle of an edge it is now necessary to cut
this edge. Let us notice that TARGET(p, a), if it exists, is the state ¢ for
which a is the first letter of the label of the edge (p, ¢). Labels can be
words of length strictly more than 1; thus, it is not true in general that
TARGET(p, a) = 6(p, a).

SLowFINDC(p, k)
1 while k < n and TARGET(p, y[k]) is defined do

2 q < TARGET(p, y[k])

3 (j, £) < label(p, q)

4 i< j

5 do i<«i+1

6 k< k+1

7 whilei < j + ¢ and k < n and y[i] = y[k]
8 ifi < j+ ¢ then

9 adjlp] < adjlp]\ {((j., ©). ¢)}
10 r < NEWSTATE()
11 adjlp] < adjlpl U {((j, i — j), ")}
12 adjlr] < adilr1U{(G. € — i+ ). @)
13 return (r, k)
14 p<q

15 return (p, k)

The improvement on the execution time of the construction of a suffix
tree by the algorithm SUFFIXTREE rests, in addition to the compaction
of the data structure, on an additional algorithmic element: the imple-
mentation of FASTFIND. Resorting to the particular algorithm described
by the code below is essential to obtaining the execution time stated in
Theorem 2.2.7.
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The algorithm FASTFIND is used to compute a fork. It is applied to state
r and word y[j ..k — 1] only when

r-ylj..k—1]is afactor of y.

In this case, from state r there is a path whose label is prefixed by y[j ..k —
1]. Moreover, as the automaton is deterministic, the shortest of these paths
is unique. The algorithm uses this property to determine edges of the path
by only checking the first letter of their label. The code below, or at least
its main part, implements the recurrence relation given in the proof of
Lemma 2.2.5.

The algorithm FasTFIND is used more precisely for computing the
value §(r, y[j ..k — 1]) (or that of §(r, v) with the notations of the lemma).
When the end of the traversed path is not the sought state, a state p is
created and inserted between the last two states met.

FasTFIND(r, j, k)
1 > Computation of 6(r, y[j ..k — 1])
2 if j > k then
3 return r
4 else g < TARGET(r, y[j])
5 (j', £) < label(r, q)
6 if j + ¢ < k then
7 return FASTFIND(q, j + £, k)
8 else adjlr] < adjlr]1\ {((j', ©), ¢)}

9 p < NEWSTATE()

10 adjlr] < adjlr1U{((j', k — j), p)}

11 adjlp]l < adjlplU{((j' +k — j,. L —k+ ), q)}
12 return p

The work of algorithms SLOWFINDC and FASTFIND is illustrated by
Figures 2.8 and 2.9.

2.2.2. Complexity

The lemma which follows is used for the evaluation of the execution time
of FAsTFIND(r, j, k). It is an element of the proof of Theorem 2.2.7.
It indicates that the computing time is proportional (up to a multiplicative
coefficient that comes from the computing time of transitions) to the number
of nodes of the traversed path, and not to the length of the label of the
path, a result which one would obtain immediately by applying algorithm
SLowFIND (Section 2.1).
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abababbb

(b) Suffix ababbb is added.

Figure 2.8. During the construction of &(abababbb), insertion of suffixes
ababbb and babbb. (a) Automaton obtained after the insertion of suffixes
abababbb and bababbb. The current fork is the initial state 0. (b) Suffix
ababbb is added using letter-by-letter comparisons (slow find) and starting
from state 0. This results in the creation of fork 3. The suffix link of 3 is
not yet defined.

For a state » of G(y) and a word v for which r - v is a factor of y, we
denote by end(r, v) the final vertex of the shortest path having origin r and
whose label has v as a prefix. Observe that end(r, v) = §(r, v) only if v is
the label of the path.

Lemma 2.2.5. Let r be a node of G(y) and let v be a word such that
r-visafactorof y. Let (r,ry, ..., ry) be the path having origin r and end
re = end(r, v) in G(y). The computation of end(r, v) can be carried out in
time O(¢ x log Card A) in the comparison model.

Proof. Ttis noticed that the path (r, ry, . .., r¢) exists by the condition “r - v
is a factor of y” and is unique because the tree is a deterministic automaton.
If v = ¢ one has end(r, v) = r. If not, let r; = TARGET(r, v[0]) and let v’
be the label of edge (r, r;). Note that

r if [v| < |[v'| (that is, v is a prefix of v’),

/—1

end(r;, v'"'v) otherwise.

end(r, v) = {

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

120 2. Structures for Indexes

abbb

(c) Definition of the suffix link of state 3.

abbb

(d) Insertion of babbb.

Figure 2.9. During the construction of &(abababbb) (continued). (c) The
first step of the insertion of suffix babbb starts with the definition of the
suffix link of state 3, which is state 5. This is a fast find process from state 0
by word bab. (d) The second step of the insertion of babbb leads to the
creation of state 6. State 5, which is the fork of suffix babbb, becomes the
current fork to continue the construction.

This relation shows that each stage of the computation takes time o + 8,
where « is a constant and 8 is the computing time of TARGET(r, v[0]). This
gives time O(log Card .A) in the comparison model.

The computation of r, which includes traversing the path (r, r, ..., r¢)
thus takes time O (¢ x log Card .A) as announced. n

Corollary 2.2.6. Let r be a node of &(y) and j, k be two positions on y,
Jj <k, such that r - y[j ..k — 1] is a factor of y. Let £ be the number of
states of the tree traversed during the computation of FASTFIND(r, j, k).
Then, the execution time of FASTFIND(r, j, k) is O(£ x log Card A) in the
comparison model.
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Proof. Let v=y[j..k— 1] and let (r,r{, ..., ry) be the path ending at
end(r, v). The computation of end(r, v) is done by FASTFIND that imple-
ments the recurrence relation of the proof of Lemma 2.2.5. It thus takes time
O(¢ x log Card A). During the last recursive call, a state p may be created
and related edges modified. This operation takes time O (log Card .A). This
gives the total time O (¢ x log Card .A) of the statement. ]

Theorem 2.2.7. The computation of SUFFIXTREE(Y) = G(y) takes
O(|y| x log Card A) time in the comparison model.

Proof. The fact that SUFFIXTREE(y) = &(y) is based mainly on
Lemma 2.2.4 by checking that the algorithm again uses the elementary
technique of Section 2.1.
The evaluation of the running time rests on the following observations
(see Figure 2.7):
® Each stage of the computation done by FASTFIND, except perhaps
the last stage, leads to the traversal of a state and strictly increases the
value of k — £ (j on the figure), which never decreases.
® Each stage of the computation done by SLOWFIND, except per-
haps the last stage, strictly increases the value of k, which never
decreases.
® Each other instruction of the for loop leads to the incrementing of
variable i, which never decreases.
The number of stages done by FASTFIND is thus bounded by |y|, which
gives O(|y| x logCard . A) time for these stages according to Corol-
lary 2.2.6. The same reasoning applies to the number of stages car-
ried out by SLOwWFIND, and also for the other stages, still giving time
O(]y| x log Card A).
Therefore, one obtains a total execution time O(]y| x log Card A).

2.3. Contexts of factors

We present in this section the formal basis for the construction of the
minimal automaton which accepts the suffixes of a word, and is called the
suffix automaton of the word. Some properties contribute to the proof of
the construction of the automaton (Theorems 2.3.10 and 2.4.7 later).

The suffix automaton is denoted by 2((y). Its states are classes of the
(right) syntactic equivalence associated with Suff(y), that is, are the sets of
factors of y having the same right context within y. These states are in one-
to-one correspondence with the (right) contexts of the factors of y in y itself.
Let us recall that the (right) context of a word u is R, (u) = u~'Suff(y). We
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denote by =, the syntactic congruence which is defined, for u, v € A*, by
u=y,v
if and only if
Ry(u) = Ry(v).

One can also identify the states of 2[(y) to sets of indices on y which are
end positions of occurrences of equivalent factors.

The right contexts satisfy some properties stated below that are used
later in the chapter. The first remark concerns the link between the relation
“is a suffix of” and the inclusion of contexts. For any factor u of y, one
denotes by

end-pos(u) = min{|wu| | wu is a prefix of y} — 1,
the right position of the first occurrence of u in y. Note that end-pos(e) =
—1.
Lemma 2.3.1. Let u, v € Fact(y) with |u| < |v|. Then,
u is a suffix of v implies R, (v) € R, (u)
and

Ry(u) ="R,(v) implies both end-pos(u) = end-pos(v) and u is a suffix of v.

Proof. Let us suppose that u is a suffix of v. Let z € R (v). By definition,
vz is a suffix of y and, since u is a suffix of v, the word uz is also a suffix
of y. Thus, z € R (u), which proves the first implication.

Let us now suppose R,(u) = R,(v). Let w, z be such that y = w - z
with |w| = end-pos(u) + 1. By definition of end-pos, u is a suffix of w.
Therefore, z is the longest word in R, (u). The assumption implies that
z is also the longest word in R,(v), which yields |w| = end-pos(v) + 1.
The words u and v are thus both suffixes of w, and as u is shorter than
v one obtains that u is a suffix of v. This finishes the proof of the second
implication and the whole proof. "

Another very useful property of the congruence is that it partitions the
suffixes of a factor of y into intervals according to their length.

Lemma 2.3.2. Letu, v, w € Fact(y). If u is a suffix of v, v is a suffix of w
andu =, w, thenu =, v =, w.

Proof. By Lemma 2.3.1, the assumption implies

Ry(w) € Ry(v) € Ry ().
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Then, the equivalence u =, w which means R,(u) = R,(w) gives the
conclusion. n

A consequence of the following property is that inclusion induces a tree
structure on the right contexts. In this tree, the parent link is related to the
proper inclusion of sets. This link, important for the fast construction of
the automaton, corresponds to the suffix function defined then.

Corollary 2.3.3. Letu, v € A*. Then, the contexts of u and v are compa-
rable for inclusion or are disjoint, that is, at least one of the three following
conditions is satisfied:

1. Ry(u) € Ry(v),

2. Ry(v) - Ry(u)»

3. Ryw)NRy(v) =10

Proof. One proves the property by showing that the condition
Ryw) NRy(v) # 0
implies
Ry(u) CRy(v) or R,(v) € R,(u).

Letz € Ry(u) N Ry(v). Then, uz, vz are suffixes of y, and u, v are suffixes
of yz~!. Consequently, among u and v one is a suffix of the other. One
obtains finally the conclusion by Lemma 2.3.1. L]

2.3.1. Suffix function

On the set Fact(y) we consider the function s, called the suffix function of
y. It is defined, for all v € Fact(y) \ {¢}, by

sy(v) = longest suffix u of v such that u #, v.
After Lemma 2.3.1, one deduces the equivalent definition:
sy(v) = longest suffix u of v such that Ry (v) C R, (u).

Note that, by definition, s, (v) is a proper suffix of v (that is, |s,(v)| < [v]).
The following lemma shows that the suffix function s, induces a failure
function on states of 2A(y).

Lemma 2.3.4. Letu, v € Fact(y) \ {¢}. Ifu =, v, then s,(u) = 5,(v).

Proof. By Lemma 2.3.1 one can suppose without loss of generality that u
is a suffix of v. The word u cannot be a suffix of s, (v) because Lemma 2.3.2
would imply s,(v) =, v, which contradicts the definition of s,(v). Con-
sequently, s,(v) is a suffix of u. Since, by definition, s,(v) is the longest
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suffix of v which is not equivalent to itself, it is also s,(u). Thus, s,(u) =
sy(v). [

Lemma 2.3.5. Let y € A*. The word s,(y) is the longest suffix of y that
appears at least twice in y itself.

Proof. The context R,(y) is {¢}. As y and s,(y) are not equivalent,
Ry(sy(y)) contains some nonempty word z. Then, s,(y)z and s,(y) are
suffixes of y, which shows that s, (y) appears twice at least in y.

Any suffix w of y, longer than s,(y), is equivalent to y by definition of
sy(y). It thus satisfies Ry (w) = R, (y) = {¢}. Which shows that w appears
only once in y and finishes the proof. "

The following lemma shows that the image of a factor of y by the suffix
function is a word of maximum length in its equivalence class.

Lemma 2.3.6. Let u € Fact(y) \ {¢}. Then, any word equivalent to s,(u)
is a suffix of it.

Proof. Let w = s,(u) and v =, w. We show that v is a suffix of w. The
word w is a proper suffix of u. If the conclusion of the statement is false,
according to Lemma 2.3.1 one obtains that w is a proper suffix of v. Then
let z € Ry(u). As w is a suffix of u equivalent to v, we have z € Ry(w) =
Ry(v). Then, u and v are both suffixes of yz~!, which implies that one is
a suffix of the other. But this contradicts either the definition of w = s, (u)
or the conclusion of Lemma 2.3.2, and proves that v is a suffix of w =

Sy(”)- ]

The preceding property is considered in Section 2.8 where the automa-
ton is used as a pattern searching engine. One can check that the property
of s, is not satisfied in general on the minimal automaton which accepts the
factors (and not only suffixes) of a word, or, more exactly, is not satisfied on
the similar function defined from the right congruence defined from Fact(y)
(instead of Suff(y)).

2.3.2. Evolution of the congruence

The on-line construction of suffix automata relies on the relationship be-
tween =,,, and =,, which we examine here. By doing this, we consider that
the generic word y is equal to wa for some letter a. The properties detailed
below are also used to derive precise bounds on the size of the automaton
in the following section.

The first relation states that =,,, is a refinement of =,,.

Lemma 2.3.7. Let w € A* and a € A. The congruence =, is a refine-
ment of =, that is for all words u, v € A*, u =,,, v implies u =, v.
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Proof. Let us assume that u =,,, v, that is, R,,(u) = Ry.(v), and show
that u =, v, that is, R, (u) = R,(v). We show R, (u) € R,(v) only
because the opposite inclusion results by symmetry.

If R,,(u) = @ the inclusion is clear. If not, let z € R,,(u). Then uz is a
suffix of w, which implies that uza is a suffix of wa. The assumption gives
that vza is a suffix of wa, and thus vz is a suffix of w, or z € R,,(v), which
finishes the proof. ]

The congruence =,, partitions A4* into classes. Lemma 2.3.7 amounts
to saying that these classes are unions of classes according to =, (a € A).
It proves that only one or two classes with respect to =,, are divided into
two subclasses to give the partition induced by =,,. One of these two
classes consists of words not appearing in w. It contains the word wa itself
which produces a new class and a new state of the suffix automaton (see
Lemma 2.3.8). Theorem 2.3.10 and its corollaries give conditions for the
division of another class and indicate how this is done.

Lemma 2.3.8. Let w € A* and a € A. Let 7z be the longest suffix of wa
that appears in w. If u is a suffix of wa strictly longer than z, then the
equivalence u =,,, wa holds.

Proof. 1t is a direct consequence of Lemma 2.3.5 because z occurs at least
twice in wa. ]

Before going to the main theorem we state an additional relation con-
cerning right contexts.

Lemma 2.3.9. Let w € A* and a € A. Then, for each word u € A*,

R {eYURy(m)a ifuis a suffix of wa,

wa (1) = { RoW)a otherwise.

Proof. First notice that ¢ € R,,,(u) is equivalent to: u is a suffix of wa. It
is thus enough to show R, (1) \ {¢} = Ry(u)a.

Let z be a nonempty word of R, (u). We get that uz is a suffix of wa.
The word uz can be written uz'a with uz’ a suffix of w. Consequently,
7' € Ry(u), and thus z € R, (u)a.

Conversely, let z be a (nonempty) word in R, (1)a. It can be written z'a
for 7/ € Ry, (u). Thus, uz’ is a suffix of w, which implies that uz = uz'a is
a suffix of wa, that is, z € Ry, (u). This proves the converse statement and
ends the proof. n

Theorem 2.3.10. Letw € A* and a € A. Let 7 be the longest suffix of wa
that appears in w. Let 7' be the longest factor of w for which 7' =, z. Then,
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for each u, v € Fact(w),
U=y vandu %, z imply u =, v.
Moreover, for each word u such as u =, z,

B z  if|ul <zl
U =ya ’ .
7' otherwise.

Proof. Letu, v € Fact(w) be such that u =,, v. By definition of the equiv-
alence we get R, (u) = R, (v). We suppose first that u #%,, z and show that
Ruwa(t) = Ry (v), which is equivalent to u =, v.

According to Lemma 2.3.9, we have just to show that u is a suffix of
wa if and only if v is a suffix of wa. Indeed, it is enough to show that if
u is a suffix of wa then v is a suffix of wa since the opposite implication
results by symmetry.

So, let us suppose that u is a suffix of wa. We deduce from the fact that
u is a factor of w and the definition of z that u is a suffix of z. We can thus
consider the greatest integer j > 0 for which |u| < |s,,/(z)|. Let us note
that s,,/(z) is a suffix of wa (like z is), and that Lemma 2.3.2 ensures that
u =, s, (z). From which we get v =,, 5,,/(z) by transitivity.

Since u #,, z, we have j > 0. Lemma 2.3.6 implies that v is a suffix
of 5,,7(z), and thus also of wa as wished. This proves the first part of the
statement.

Let us consider now a word u such as u =, z.

When |u| < |z], to show u =,,, z by using the above argument, we have
only to check that u is a suffix of wa because z is a suffix of wa. This, in
fact, is a simple consequence of Lemma 2.3.1.

Let us suppose |u| > |z|. The existence of such a word u implies 7’ # z
and |7'| > |z| (z is a proper suffix of z"). Consequently, by the definition
of z, u and 7’ are not suffixes of wa. Using the above argument again, this
proves u =,,, z’ and finishes the proof. "

The two corollaries, stated below, of the preceding theorem refer to
situations simple to manage during the construction of suffix automata.

Corollary 2.3.11. Let w € A* and a € A. Let 7 be the longest suffix of
wa that appears in w. Let 7' be the longest word such as 7/ =, z. Let us
suppose 7' = z. Then, for each u, v € Fact(w),

U =, vimplies u =, v.

Proof. Let u, v € Fact(w) be such that u =,, v. We prove the equivalence
u =y, v. The conclusion comes directly from Theorem 2.3.10 if u #,, z.
Else, u =, z; by the assumption made on z and Lemma 2.3.1, we get
|u| < |z|. Finally, Theorem 2.3.10 gives the same conclusion. L]
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Corollary 2.3.12. Let w € A* and a € A. If the letter a does not appear
in w, then, for each u, v € Fact(w),

u =, vimplies u =, v.

Proof. Since a does not appear in w, the word z of Corollary 2.3.11 is the
empty word. It is of course the longest of its class, which makes it possible
to apply Corollary 2.3.11 and gives the same conclusion. ]

2.4. Suffix automaton

The suffix automaton of a word y is the minimal automaton that accepts the
set of suffixes of y. It is denoted by 24(y). The structure is intended to be
used as an index on the word (see Section 2.6) but also constitutes a device
to search for factors of y within another text (see Section 2.8). The most
surprising property of the automaton is that its size is linear in the length of
y although the number of factors of y can be quadratic. The construction
of the automaton also takes a linear time on a fixed alphabet. Figure 2.10
shows an example of such an automaton to be compared with the trees in
Figures 2.1 and 2.5.

As we do not force the automaton to be complete, the class of words
which do not appear in y, whose right context is empty, is not a state of

2A(y).

2.4.1. Size of suffix automata

The size of an automaton is expressed both by the number of its states
and the number of its edges. We show that 2((y) has less than 2|y| states
and less than 3|y| edges, for a total size O(|y|). This result is based on
Theorem 2.3.10 of the preceding section. Figure 2.11 shows an automaton
that has the maximum number of states for a word length 7.

Proposition 2.4.1. Let y € A* be a word of length n and let st(y) be the
number of states of A(y). For n = 0, we have st(y) = 1, forn = 1, we have

Figure 2.10. The (minimal) suffix automaton of ababbb.
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Figure 2.11. A suffix automaton with the maximum number of states.

st(y) = 2; for n > 1 finally, we have
n+1<st(y)<2n-1,

and the upper bound is reached if and only if y is of the form ab"™", for
two distinct letters a, b.

Proof. The equalities concerning short words can be checked directly in-
cluding st(y) = 3 when |y| = 2. Letus supposen > 2. The minimal number
of states of 2((y) is obviously n + 1 (otherwise the path labelled by y would
contain a cycle yielding an infinite number of words recognized by the
automaton); the minimal value is reached with y = a”" (a € A).

Let us show the upper bound. By Theorem 2.3.10, each letter y[i], 2 <
i <n — 1,increases by at most two the number of states of A(y[0..i — 1]).
As the number of states of 2A(y[0]y[1]) is 3, it follows that

st(y) <34+2(n —2)
=2n-—1,

as announced.

The construction of a word of length n whose suffix automaton has
2n — 1 states is still a simple application of Theorem 2.3.10 by noting that
each letter y[2], y[3], ..., y[n — 1] must effectively lead to the creation of
two states during the construction. Notice that after the choice of the first
two letters, which must be different, there is no choice for the other letters.
This produces the only possible form given in the statement. n

Lemma 2.4.2. Lety € A" and let ed(y) be the number of edges of UA(y).
Then,

ed(y) < st(y)+ |yl — 2.

Proof. Let us call g the initial state of 2(y), and consider the spanning tree
of longest paths starting at go in 2(y). The tree contains s#(y) — 1 edges
of 2(y) because it arrives exactly at one edge on each state except on the
initial state.

With each otheredge (p, a, ¢) we associate the suffix uav of y defined as
follows: u is the label of the path starting at gy and ending at p; v is the label
of the longest path from g arriving on a terminal state. Doing so, we get an
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Figure 2.12. A suffix automaton with the maximum number of edges.

injection from the set of concerned edges to the set Suff(y). The suffixes y
and ¢ are not concerned because they are labels of paths in the spanning tree.
This shows that there is at most Card(Suff(y) \ {y, €}) = |y| — 1 additional

edges.
Summing up the numbers of edges of the two types, we get a maximum
of st(y) + |y| — 2 edges in A(y). n

Figure 2.12 shows an automaton that has the maximum number of edges
for a word of length 7.

Proposition 2.4.3. Let y € A* be a word of length n and let ed(y) be the
number of edges of U(y). For n =0, we have ed(y) = 0; for n = 1, we
have ed(y) = 1; for n = 2, we have ed(y) = 2 or ed(y) = 3; finally, for
n > 2, we have

n <ed(y) <3n-—4,

and the upper bound is reached if y is of the form ab"~*c, where a, b, and
c are three pairwise distinct letters.

Proof. We can directly check the results on short words. Let us consider
n > 2. The lower bound is immediate and is reached by the word y = a”"
(a € A).

Let us then examine the upper bound. By Proposition 2.4.1 and
Lemma 2.4.2 we obtain

edly) <(2n—1)4+n-2
=3n—3.

The 2n — 1 quantity is the maximum number of states obtained only if
y =ab""! (a,b € A, a # b). But for a word in this form the number of
edges is only 2n — 1. Thus, ed(y) < 3n — 4.

It can be checked that the automaton 20(ab"~2¢) (where a, b, ¢ € A with
Card{a, b, ¢} = 3) has 2n — 2 states and 3n — 4 edges. [

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

130 2. Structures for Indexes

Figure 2.13. The suffix automaton 2A(aabbabb). Suffix links on states
are: f[11=0, fI21=1, f[3]1=3", f[3"1 =73 fI3]1=0, fl4] =4",
f14"1=73", fI51=1, f[6]1=3", f[7] =4". The suffix path of 7 is
(7,4”, 3, 0), which includes all the terminal states of the automaton (see
Corollary 2.4.6).

The following statement summarizes Propositions 2.4.1 and 2.4.3.

Theorem 2.4.4. The total size of the suffix automaton of a word is linear
in the length of the word. "

2.4.2. Suffix links and suffix paths

Theorem 2.3.10 and its two consecutive corollaries provide the frame of the
on-line construction of the suffix automaton 2((y). The algorithm controls
the conditions which appear in these statements by means of a function
defined on the states of the automaton, the suffix link function, and of a
classification of the edges into solid and non-solid edges. We define these
two concepts hereafter.

Let p be a state of 2((y), different from the initial state. State p is a class
of factors of y that are equivalent with respect to equivalence =,. Let u be
any word in the class (u # ¢ because p is not the initial state). We define
the suffix link of p, denoted by f,(p), as the congruence class of s, (u). The
function f is called the suffix link function of the automaton. According to
Lemma 2.3.4 the value of s,(1) is independent of the word u chosen in the
class of p, which makes the definition coherent. The suffix link function is
also called a failure function and used with this meaning in Section 2.8. An
example is given in Figure 2.13.

For a state p of 2(y), we denote by /g, (p) the maximum length of words
u in the congruence class of p. Itis also the length of the longest path starting
from the initial state and ending at p. The longest paths starting at the initial
state form a spanning tree for 2(y) (a consequence of Lemma 2.3.1). Edges
which belong to this tree are qualified as solid. In an equivalent way,

edge (p, a, q) is solid
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if and only if

lg,(q) =g, (p)+ L.

This notion is used in the construction of the automaton.
Suffix links induce by iteration what we call suffix paths in 2(y) (see
Figure 2.13). One can note that

q = fy(p) implies Ig (q) < Ig,(p).
So, the sequence

(P, £(p), £2(D),...)

is finite and ends at the initial state (which does not have a suffix link). It is
called the suffix path of p in 2A(y), and is denoted by SP(p).

Let last be the state of 2A(y) that is the class of word y itself. This state
is characterized by the fact that it is not the origin of any edge. The suffix
path of last,

(last, fy(last), f,*(last), ..., £, (last) = qo),

where g is the initial state of the automaton, plays an important part in
the on-line construction. It is used to effectively test conditions of Theo-
rem 2.3.10 and its corollaries. We denote by § the transition function of 2A(y).

Proposition 2.4.5. Ler u € Fact(y) \ {¢} and let p = 8(qo, u). Then, for
each integer j > 0 for which s,/ (u) is defined,

£/ (p) = 8(qo, s,/ (w)).

Proof. We prove the result by recurrence on j. If j =0, fyj (p) = p and
sy/(u) = u, therefore the equality is satisfied by assumption.

Let j > O such as s,/ (u) is defined and suppose by recurrence assump-
tion that f,’~'(p) = 8(i, s,/ ~'(u)). By definition of f,, f,(f,’ " '(p)) is
the congruence class of the word sy(syf ~!(u)). Consequently, fyj (p) =
8(qo, syf (u)), which completes the recurrence and the proof. n

Corollary 2.4.6. The terminal states of UA(y) are the states of the suffix
path of last, SP(last).

Proof. First, we prove that states of the path suffix are terminal. Let p
be any state of SP(last). One has p = fyj (last) for some j > 0. Because
last = 8(qo, y), Proposition 2.4.5 implies p = 8(qo, s,/ (y)); and as s,/ (y)
is a suffix of y, p is a terminal state.

Conversely, let p be a terminal state of 2A(y). Let then u be a suffix
of y such that p = §(qo, ). Since u is a suffix of y, we can consider
the greatest integer j > O for which |u| < |syf(y)|. By Lemma 2.3.2 one
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obtains u =, s5,7(y). Thus, p = 8(qo, s,/ (y)) by definition of 2(y). There-
fore, Proposition 2.4.5 applied to y implies p = fyj (last), which proves
that p appears in SP(last). This ends the proof. "

2.4.3. On-line construction

It is possible to build the suffix automaton of y by applying to the suffix trie
of Section 2.1 standard algorithms that minimize automata. But the suffix
trie can be of quadratic size, which gives the time and space complexity
of this approach. We present an on-line construction algorithm that avoids
this problem and works in linear space with an execution time O(|y| x
log Card A).

The algorithm treats the prefixes of y from the shorter, ¢, to the longest,
y itself. At each stage, just after having treated prefix w, the following
information is available:

¢ The suffix automaton 2{(w) with its transition function §.

® The table f, defined on the states of 2((w), which implements the

suffix function f,,.

® The table L, defined on the states of 2(w), which implements the

function length, Ig,,.

® The state last.

Terminal states of 2(w) are not explicitly marked, they are given implicitly
by the suffix path of last (Corollary 2.4.6). The implementation of 2A(w) with
these additional elements is discussed just before the analysis of complexity
of the computation.

Algorithm SUFFIXAUTOMATON that builds the suffix automaton of y
relies on the procedure EXTENSION given further. This procedure treats
the next letter of word y. It transforms the suffix automaton 2A(w) already
built into the suffix automaton 2A(wa) (wa is a prefix of y, a € A). After all
extensions, terminal states are eventually marked explicitly (lines 7 to 10).

SUFFIXAUTOMATON(Y, 1)

M < NEWAUTOMATON()

Llinitial(M)] < 0

last[M] < initial(M)

for each letter a of y, sequentially do
> Extension of M by letter a
EXTENSION(a)

p < last[|M]

do terminal(p) <— TRUE
p < flpl

10 while p is defined

11 return M

O 001NN A~ W~
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Contrary to what happens for the construction of suffix trees, a state-
splitting operation is necessary in some circumstances. It is realized by the
following algorithm CLONE.

EXTENSION(a)
new <— NEWSTATE()
L[new] < L[last{M]] + 1
p < last[M]
do «adj[p] < adj[p] U {(a, new)}
p < flprl
while p is defined and TARGET(p, a) is undefined
if p is undefined then
fnew] < initial(M)
else g < TARGET(p, a)
10 if (p, a, q) is a solid edge, thatis, L[p] + 1 = L[q] then
11 flnew] < q
12 else clone < CLONE(p, a, q)
13 fnew] < clone
14 last[M] < new

O 001N N~ W =

CLONE(p, a, q)
clone < NEWSTATE()
L[clone] < L[p]+1
for each (b, ¢') € adj[q] do
adj[clone] < adj[clone] U {(b, q')}
flclone]l < flq]
flg] < clone
do adjlp] < adjlp]\ {(a, )}
adj[p] < adj[p] U {(a, clone)}
p < flpl
while p is defined and TARGET(p, a) = ¢
return clone

— O 000NN A W

—_—

Figures 2.14, 2.15, 2.16, and 2.17 illustrate how the procedure EXTEN-
SION works.

Theorem 2.4.7. Algorithm SUFFIXAUTOMATON builds a suffix automa-
ton, that is SUFFIXAUTOMATON(Y) is the automaton 2(y), for y € A*.

Proof. We show by recurrence on |y| that the automaton is computed
correctly, as well as tables L and f and state last. It is shown then that
terminal states are computed correctly.

If |y| = 0, the algorithm builds an automaton consisting of only one
state which is both an initial and a terminal state. No transition is defined.
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Figure 2.14. Automaton fA(ccccbbcec) on which is illustrated in
Figures 2.15, 2.16, and 2.17 the procedure EXTENSION(a) according to
three cases.

Figure 2.15. Suffix automaton 2A(ccccbbeced) obtained by extending
A(cceebbecec) of Figure 2.14 by letter d. During the execution of the first
loop of EXTENSION(d), state p traverses the suffix path (9, 3,2, 1, 0). At
the same time, edges labelled by letter d are created, starting from these
states and leading to 10, the last created state. The loop stops at the initial
state. This situation corresponds to Corollary 2.3.12.

The automaton thus recognizes the language {¢} which is Suff(y). Elements
f and last as well as tables L and f are also correctly calculated.

We now consider that |y| > 0 and that y = wa, fora € Aand w € A*.
We suppose, by recurrence, that the current automaton M is 2A(w) with
its transition function §,,, that go = initial(M), that last = &,,(qy, w), that
table L satisfies L[p] = lg,(p) for any state p, and that table f satisfies
fIp] = fu(p) for any state p different from the initial state.

We first show that the procedure EXTENSION carries out correctly the
transformation of the automaton M, of the variable last, and of the tables
L and f.
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Figure 2.16. Suffix automaton 2A(ccccbbeecc) obtained by extending
A(cccebbecc) of Figure 2.14 by letter ¢. The first loop of the procedure
EXTENSION(c) stops at state 3 = f[9] because an edge labelled by c starts
from this state. Moreover, the edge (3, c, 4) is solid. We obtain directly the
suffix link of the new state created: f[10] = 8(3, ¢) = 4. There is nothing
else to do according to Corollary 2.3.11.

Figure 2.17. Suffix automaton 2l(ccccbbcceb) obtained by extending
A(cceebbecc) of Figure 2.14 by letter b. The first loop of the procedure
EXTENSION(D) stops at state 3 = f[9] because an edge labelled by b starts
from this state. In the automaton 2(ccccbbecc) edge (3, b, 5) is not solid.
The word cceb is a suffix of ccccbbeceb but cceeb is not, although they
both lead to state 5. This state is duplicated into the final state 5” that is
the class of factors cccb, ccb and cb. Edges (3, b, 5), (2, b, 5) and (1, b, 5)
of A(cceebbecc) are redirected onto 5” according to Theorem 2.3.10.

The variable p of procedure EXTENSION runs through the states of the
suffix path SP(last) of 20(w). The first loop creates transitions labelled by
a targeted at the new state new in agreement with Lemma 2.3.8. We also
have the equality L[new] = lgy(new).

When the first loop stops, three disjoint cases arise:

1. p is not defined,

2. (p,a,q)is asolid edge,
3. (p,a, q) is anonsolid edge.
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Case 1. This situation occurs when the letter a does not occur in w;
one has then f,(new) = go. Thus, after the instruction at line 8 the equality
flnew] = fy(new) holds. For the other states r, one has f,,(r) = f,(r)
according to Corollary 2.3.12. Which gives the equalities f[r] = f,(r) at
the end of the execution of the procedure EXTENSION.

Case 2. Let u be the longest word for which §(qo, u) = p. By recurrence
and Lemma 2.3.6, we have |u| = Ig,,(p) = L[ p]. The word ua is the longest
suffix of y which is a factor of w. Thus, f,(new) = g, which shows that
flnew] = f,(new) after the instruction of line 11.

Since edge (p, a, q) is solid, by recurrence again, we have |ua| =
Llq] = Ig,(g), which shows that the words equivalent to ua according
to =, are not longer than ua. Corollary 2.3.11 applies with z = ua. And
asincase 1, f[r] = f,(r) for all the states different from new.

Case 3. Let u be the longest word for which §(gg, #) = p. The word ua
is the longest suffix of y which is a factor of w. So, fy(new) = g, and thus
flnew] = fy(new). Since edge (p, a, q) is not solid, ua is not the longest
word in its congruence class according to =,,. Theorem 2.3.10 applies with
7z = ua, and 7' the longest word for which 8(qo, z') = ¢. The class of ua
according to =, is divided into two subclasses with respect to =,,,. They
correspond to states g and clone.

Words v no longer than ua and such as v =, ua are of the form v'a
with v’ a suffix of u (a consequence of Lemma 2.3.1). Before the execution
of the last loop, all these words v satisfy ¢ = §,,(qo, v). Consequently, just
after the execution of the loop, they satisfy clone = 6,(qo, v), as required
by Theorem 2.3.10. Words v longer than ua and such as v =, ua satisfy
q = 8,(qo, v) after the execution of the loop, as required by Theorem 2.3.10,
again. One can check that table f is updated correctly.

For each of the three cases, one can check that the value of last is cor-
rectly computed at the end of the execution of the procedure EXTENSION.

Finally, the recurrence shows that automaton M, state last, tables L and
f are correct after the execution of procedure EXTENSION.

It remains to be checked that terminal states are correctly marked during
the execution of the last loop of algorithm SUFFIXAUTOMATON. But this
is a straight consequence of Corollary 2.4.6 because variable p runs through
the suffix path of last. "

2.4.4. Complexity

To analyse the complexity of the algorithm SUFFIXAUTOMATON we first
describe a possible implementation of the elements necessary for the
construction.

We suppose that the automaton is represented by lists of successors. By
doing this, operations of addition, update, and access concerning an edge
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are performed in time O(log Card .A) with an efficient implementation of
the lists. Function f, is realized by table f which gives access to f,(p) in
constant time.

To implement the solidity of edges table L is used. It represents the
function Ig,, as the description of the procedure EXTENSION suggests
(line 10). Another way of doing it uses a Boolean value per edge of the
automaton. This induces a slight modification of the procedure which we
describe as follows: each first edge created during the execution of the loops
at lines 4-6 and lines 7—10 must be marked as solid; the other created edges
are marked as nonsolid. This type of implementation does not require the
use of table L, which can then be eliminated, reducing the memory space
used. Nevertheless, table L finds its utility in applications like those of
Section 2.8. We retain that the two types of implementation provide a
constant-time access to the quality (solid or not solid) of an edge.

Theorem 2.4.8. Algorithm SUFFIXAUTOMATON can be implemented so
that the construction of A(y) takes time O(]y| x log Card A) in a memory
space O(|y]).

Proof. We choose an implementation by lists of successors for the transition
function. States of 2(y) and tables f and L require a space O(st(y)), lists of
edges a space O(ed(y)). Thus, the complete implementation takes a space
O(|y]), as a consequence of Propositions 2.4.1 and 2.4.3.

Another consequence of these propositions is that all the operations
carried out either once per state or once per edge of the final automaton take
a total time O(|y| x log Card .A). The same result applies to the operations
which are performed once per letter of y. It thus remains to be shown
that the time spent for the executions of the two loops at lines 4-6 and
lines 7-10 of the procedure EXTENSION are of the same order, namely
O(]y| x log Card A).

We examine initially the case of the first loop. Let us consider the
execution of the procedure EXTENSION during the transformation of 2((w)
into A(wa) (wa is a prefix of y, a € A). Let u be the longest word of state
p during the test at line 6. The initial value of u is s,(w), and its final
value satisfies ua = s,,(wa) (if p is defined). Let k = |w| — |u| be the
position of the suffix occurrence of u in w. Then, each test strictly increases
the value of k during a call to the procedure. Moreover, the initial value
of k at the beginning of the execution of the next call is not smaller than
its final value reached at the end of the execution of the current call. So,
k is never decreased and thus tests and instructions of this loop are done
in O(ly).

A similar argument applies to the second loop at lines 7-10 of the
procedure EXTENSION. Let v be the longest word of p during the test of
the loop. The initial value of v is sw/(w), for j > 2, and its final value
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satisfies va = s,,>(wa) (if p is defined). Then, the position of v as a
suffix of w increases strictly at each test during successive calls to the
procedure. Thus, again, tests and instructions of the loop are done in O(|y|)

time.
Consequently, the cumulated time of the executions of the two loops is
O(]y| x log Card .A), which finishes the proof. n

On a small alphabet, one can still choose an implementation of the
automaton that is even more efficient than that by lists of successors, to
the detriment of memory space, however. It is enough to use a transition
matrix within O(]y| x Card.4) memory space and manage it like a sparse
table. With this particular management, any operation on edges is done in
constant time, which leads to the following result.

Theorem 2.4.9. When the alphabet is fixed, algorithm SUFFIXAUTOMA-
TON can be implemented so that the construction of U(y) takes time O(]y|)
in a memory space O(|y| x Card A).

Proof. One can use, to implement the transition matrix, the technique for
representing sparse tables which gives a direct access to each one of its
entries while avoiding initializing the complete matrix. "

2.5. Compact suffix automaton

In this section, we describe briefly how to build a compact suffix automaton
denoted by 2°(y) for y € A*. This automaton can be seen as the compact
version of the suffix automaton of the preceding section, that is, it is obtained
by removing the states that have only one outgoing transition and that are
not terminal. It is the process used on the suffix trie of Section 2.1 to produce
a structure of linear size.

The compact suffix automaton is also the minimized version, in the
sense of automata theory, of the (compact) suffix tree of Section 2.2. It is
obtained by identifying subtrees which recognize the same words.

Figure 2.18 shows the compact suffix automaton of ababbb that can
be compared to the compact tree of Figure 2.5 and to the automaton of
Figure 2.10.

Exactly as for the tree ¥(y), in the automaton 2A(y) we call fork any
state that is of (outgoing) degree at least 2, or that is both of degree 1
and terminal. Forks of suffix automata satisfy the same property as forks
of suffix trees, property which allows the compaction of the automaton.
The proof of the next proposition is an immediate adaptation of that of
Proposition 2.2.3.
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Figure 2.18. The compact suffix automaton A (ababbb).

4,2

2,4
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Figure 2.19. Representation of labels in the compact suffix automaton
A€ (ababbb). (To be compared with the automaton in Figure 2.18.)

Proposition 2.5.1. In the suffix automaton of a word, the suffix link of a
fork (different from the initial state) is a fork. ]

When one removes nonfork states in 2((y), edges of the automaton must
be labelled by (not empty) words and not only by letters. To get a structure
of size linear in the length of y, labels of edges must not be stored explicitly.
One represents them in constant space by means of a couple of integers.
If the word u is a label of an edge (p, q), it is represented by the pair
(i, |u|) for which i is the position of an occurrence of u in y. We denote the
label by label(p, q) = (i, |u|) and suppose that the implementation of the
automaton provides a direct access to it. This forces the storing of the word
y together with the data structure. Figure 2.19 indicates how labels of the
compact suffix automaton of ababbb are represented.

The size of compact suffix automata can be evaluated directly from sizes
of compact suffix trees and of suffix automata.

Proposition 2.5.2. Let y € A* be a word of length n and let e.(y) be the
number of states of A°(y). Forn = 0, we have e.(y) = 1, forn > 0, we have

2<e(y)=n+1,

and the upper bound is reached for y = a", a € A.
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Proof. The result can be checked directly for the empty word.

Letus supposen > 0.Let ¢ be aletter, ¢ ¢ A, and let us consider the tree
G(y - ¢). This tree has exactly n + 1 external nodes on each one of which
arrives an edge whose label ends by letter c. The tree has at most  internal
nodes because they have at least two outgoing edges. When minimized
to get a compact automaton, all external nodes are identified in only one
state, which reduces the number of states to n + 1 at most. Removal of the
letter ¢ does not increase this value, which gives the upper bound. It can
immediately be checked that 2°(a”) has n + 1 states exactly and that the
obvious lower bound is reached when the alphabet of y has size n. "

Proposition 2.5.3. Let y € A* be a word of length n and let f.(y) be the
number of edges of UA°(y). For n = 0, we have f.(y) =0; forn =1, we
have f.(y) = 1; forn > 1, we have

fe(y) =2 — 1),

and the upper bound is reached for y = a"~'b, where a, b are two distinct
letters.

Proof. After checking the results for the short words, one notes that if x
is of the form a”, n > 1, one has f.(y) = n — 1, a quantity that is smaller
than 2(n — 1).

Let us suppose now that Cardalph(y) > 2. We continue the proof of
the preceding lemma by still considering the word y - ¢, ¢ & A. Its suffix
tree has at most 2n nodes. Thus it has at most 2n — 1 edges, which after
compaction gives 2n — 2 edges since the edges labelled by ¢ disappear.
This gives the announced upper bound. The automaton 2°(a"~'b) has n
states and 2n — 2 edges, as can be directly checked. "

The construction of 2(°(y) can be carried out starting from the tree G(y)
or from the automaton 2((y) (see Problems 2.5.1 and 2.5.2). However, to
save memory space at construction time one rather takes advantage of a
direct construction. It is the schema of this construction that is sketched
here.

The construction borrows elements from the algorithms SUFFIXTREE
and SUFFIXAUTOMATON. Thus, the edges of the automaton are marked
as solid or not solid. The created edges targeted at new leaves of the tree
become edges to state last. We also use the concepts of slow and fast
traversal from the construction of suffix trees. It is on these two procedures
that the changes are essential, and that are added duplications of states and
redirections of edges as for the construction of suffix automata.

During the execution of a slow traversal, the attempt at crossing a non-
solid edge leads to cloning its target, with a duplication similar to that done
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during the execution of procedure EXTENSION at line 6. One can note that
certain edges can be redirected by this process.

The second important point in the adaptation of the algorithms of the pre-
ceding sections relates to the fast traversal procedure. The main algorithm
calls it for the definition of a suffix link as in the algorithm SUFFIXTREE.
The difference comes when the target of a suffix link for a last-created fork
(see lines 8—11 in procedure FASTFIND) is created. If a new state has to be
created in the middle of a solid edge, the same process applies. But, if the
edge is not solid, during a first step the edge is only redirected towards the
concerned fork, and its label is updated accordingly. This leaves the suffix
link undefined and leads to an iteration of the same process.

Phenomena that have just been described intervene in any sequential
construction of this type of automaton. Taking them into account is nec-
essary for a correct sequential computation of 2°(y). They are present in
the construction of A°(ababbb) (see Figure 2.18) for which three stages are
detailed in Figure 2.20.

To conclude the section, we state the complexity of the direct construc-
tion of the compact suffix automaton. The formal description and the proof
of the algorithm are left to the reader.

Proposition 2.5.4. The computation of the compact suffix automaton
A°(y) can be done in time O(|y| x log Card A) in a space O(|y)). n

2.6. Indexes

Techniques introduced in the preceding sections find immediate applica-
tions in the design of indexes on textual data. The utility of considering the
suffixes of a text for this kind of application comes from the obvious remark
that any factor of a word is a prefix of some suffix of the text. Using suffix
structures thus provides a kind of direct access to all the factors of a word
or a language, and it is certainly the main interest of these techniques. This
property gives rise to an implementation of an index on a text or a family
of texts, with efficient algorithms for the basic operations (Section 2.6.2)
such as questions of membership, location, and computation of lists of
occurrences of patterns. Section 2.6.3 gives a solution in the form of a
transducer.

2.6.1. Implementation of indexes

The aim of an index is to provide an efficient mechanism for answering
certain questions concerning the contents of a fixed text. This word is

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

142 2. Structures for Indexes

ab abbb

babbb

(a) After three insertions.

bb

ab abbb

b

(b) Suffix link of state 2 is defined as state 0.

bb
ab > abbb |
abbb
2/
b N\ bb

(c) Duplication of state 2.

Figure 2.20. Three steps of the construction of A€(ababbb). (a) Auto-
maton right after the insertion of the three longest suffixes of the word
ababbb. The suffix link of state 2 is still undefined. (b) Computation by
fast find of the suffix link of state 2, which results in transforming the edge
(0, babbb, 1) into (0, b, 2). At the same time, the suffix bbb is inserted.
(c) Insertion of the next suffix, bb, is done by slow find starting from state
0. Since edge (0, b, 2) is not solid, its target, state 2, is duplicated as 2/,
which has the same transitions as 2. To finish the insertion of suffix bb it
remains to cut the edge (2, bb, 1) to insert state 3. Finally, the rest of the
construction amounts to determining final states, and we get the automaton
of Figure 2.18.

denoted by y (v € A*) and its length is n (n € N). An index on y can be
regarded as an abstract data type whose basic set is the set of factors of y,
Fact(y), and that includes operations for accessing information related to
factors of y. The concept is similar to the index of a book, which provides
pointers to pages from a set of selected keywords. We rather consider what
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can be called a generalized index, in which all the factors of the text are
present. We describe indexes for only one word, but extending methods to
a finite number of words is in general a simple matter.

We consider four principal operations on the index of a text. They
are related to a word x, the query, to be searched for in y: membership,
position, number of occurrences, and list of positions. This set of operations
is often extended in real applications, in connection with the nature of
data represented by y, to yield information retrieval systems. But the four
operations we consider constitute the technical basis from which can be
developed broader systems of queries.

For implementing indexes, we choose to treat the main method that leads
to efficient and sometimes optimal algorithms. It is based on one of the data
structures that represent suffixes of y and that are described in previous
sections. The choice of the structure produces variations of the method.
In this section we recall the elements of the data structures that must be
available to execute the index operations. The operations themselves are
treated in the next section.

The implementation of an index is built on automata of the preceding
sections. Let us recall the data structures necessary to use the suffix tree,
&(y), of y. They are composed of:

® The word y itself stored in a table.

¢ Animplementation of the automaton in the form of a transition matrix

or list of edges per state, to represent the transition function §, the
access to the initial state, and a table of terminal states, for example.
® The table s¢, defined on states, which represents the suffix link func-
tion of the tree.
Note that the word y itself must be maintained in memory, because the
labelling of edges refers to it (see Section 2.2). The suffix link is use-
ful for only certain applications, it can of course be eliminated when the
implemented operations do not make use of it.

One can also consider the suffix automaton of y, 2((y), which produces
in a natural way an index on factors of the text y. The structure includes:

® an implementation of the automaton as for the tree above,

® the table f that implements the failure function defined on states,

® the table L that indicates for each state the maximum length of the

words reaching this state.
For this automaton it is not necessary to store the word y in memory. It
appears in the automaton as the label of the longer path starting from the
initial state. Tables f and L can be omitted if they are not useful for the set
of selected operations.

Lastly, the compact version of the suffix automaton can be used in order
to reduce even more the memory capacity needed to store the structure. Its
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implementation uses in a standard way the same elements as for the suffix
automaton (in a noncompact version) with, in addition, the word y in order
to access to labels of edges, as for the suffix tree. One gets a noticeable
space reduction in using this structure rather than the two preceding ones.

In the rest of the section we examine several types of solutions for
realizing basic operations on indexes.

2.6.2. Basic operations

We consider in this section four operations related to factors of text y:
membership (in Fact(y)), first position, number of occurrences, and list of
the positions. The algorithms are presented after the global description of
these four operations.

The first operation on an index is the membership of word x to the index,
that is, the question of knowing if x is a factor of y. This question can be
specified in two complementary ways according to whether one expects to
find an occurrence of x in y. If x does not appear in y, it is often interesting
in practice to find the longest prefix of x which is a factor of y. It is usually
the type of response necessary to realize sequential searches in text editors.

Membership Given x € A*, find the longest prefix of x that belongs to
Fact(y).

In the contrary case (x € Fact(y)), methods produce without much mod-
ification the position of an occurrence of x, and even the position of the
first or last occurrence of x in y.

Position Given x afactor of y, find the (left) position of its first (respectively
last) occurrence in y.

Knowing that x is in the index, another relevant item of information is
its number of occurrences in y. This information can drive later researches
differently.

Number of occurrences Given x a factor of y, find how many times x
appears in y.

Lastly, under the same assumption as before, complete information on
the location of x in y is provided by the list of positions of its occurrences.

List of positions Given x a factor of y, produce the list of positions of the
occurrences of x in y.
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We describe solutions obtained by using the above data structures. It
should be noticed that the structures sometimes require enrichment in order
to guarantee an efficient execution of the algorithms.

Proposition 2.6.1. Given one of the automata S(y), A(y), or A°(y), com-
puting the longest prefix u of x that is a factor of y can be carried out in
time O(|u| x log Card A) within memory space O(|y|).

Proof. By means of 2(y), in order to determine the word u, it is enough
to follow a path labelled by a prefix of x starting from the initial state of
the automaton. The traversal stops when a transition misses or when x is
exhausted. This produces the longest prefix of x which is also a prefix of
the label of a path starting at the initial state, that is, which appears in y
since all the factors of y are labels of these paths. Overall, this is done after
|u| successful transitions and possibly one unsuccessful transition (when
u is a proper prefix of x) at the end of the test. As each transition takes
a time O(log Card A) for an implementation in space O(|y|) (by lists of
successors), we obtain a total time O(|u| x log Card A).

The same process works with G(y) and 2°(y). Taking into account the
representation of these structures, certain transitions are done by simple
letter comparisons, but the maximum execution time is unchanged. n

POSITION

We now examine the operations for which it is supposed that x is a factor
of y. The test of membership which can be carried out separately as in
the preceding proposition, can also be integrated into the solutions of the
other problems that interest us here. The use of transducers, which extend
suffix automata for this type of question, is considered in the following
section.

Finding the position pos,(x) of the first occurrence of x in y amounts
to calculating its right position end-pos,(x) (see Section 2.3) because

pos,(x) = end-pos(x) — |x| + 1.

Moreover, this is also equivalent to computing the maximum length of right
contexts of x in y,

ley(x) =max{|z] | z € Ry(x)},
because
pos,(x) = [yl — ley(x) — |x].

In a symmetrical way, in order to find the position last-pos,,(x) of the last
occurrence of x in y, it remains to calculate the minimal length sc,(x) of

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

146 2. Structures for Indexes

its right contexts because
last-pos (x) = |y| — scy(x) — |x|.

To be able to quickly answer requests related to the first or last positions
of factors of y, structures of indexes are not sufficient alone, at least if one
seeks to obtain optimal execution times. Consequently, one precomputes
two tables indexed by the states of the selected automaton and that represent
functions lcy and scy. One thus obtains the following result.

Proposition 2.6.2. Automata S(y), A(y), and A°(y) can be preprocessed
in time O(|y|) so that the first (or last) position on y of a factor x of
v, as well as the number of occurrences of x, can be computed in time
O(|x| x log Card A) within memory space O(|y|).

Proof. Let us call M the selected structure, ¢ its transition function, F its
set of edges, and T its terminal states.

To begin let us consider the computation of pos,(x). The preprocessing
of M relates to the computation of a table LC defined on states of M and
aimed at representing the function Ic,. For a state p and a word u € A*
with p = §(initial(M), u), we define

LClp] = ley(u),

a quantity that is independent of the word u that labels a path from the initial
state to p, according to Lemma 2.3.1. This value is also the maximum length
of paths starting at p and ending at a terminal state in the automaton 2((y).
For G(y) and 2A°(y) this consideration still applies by defining the length
of an edge as that of its label.

The table LC satisfies the recurrence relation:

if deg(p) =0,

L =
ctrl max{f + LC[q] | (p,v,q) € F and |v| = £} otherwise.

The relation shows that the computation of values L C[ p], for all the states of
M, is done by a simple depth-first traversal of the graph of the structure. As
its number of states and its number of edges are linear (see Sections 2.2,2.4,
and 2.5) and since the access to the label length of an edge is done in
constant time according to the representation described in Section 2.2, the
computation of the table takes a time O(]y|) (independent of the alphabet).

Once the precomputation of table LC is performed, the computation
of pos,(x) is done by searching for p = 8(initial(M), x) and then by com-
puting |y| — LC[p] — |x|. We then obtain the same asymptotic execution
time as for the membership problem, namely O(|x| x log Card A). Let us
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note that if
end(initial(M), x) = 8(initial(M), xw)

with w nonempty, the value of pos,(x) is then |y| — LC[p] — |xw]|, which
does not modify the asymptotic evaluation of the execution time.

The computation of the position of the last occurrence of x in y is solved
in a similar way by considering the table SC defined by

SC[p] = scy(u),

with the notations above. The relation

SClp] = 0 ifpeT,
pi= min{f + SC[q] | (p, v, q) € F and |v| = £} otherwise,

shows that the precomputation of SC takes a time O(|y|), and that the
computation of last-pos,(x) then takes O(|x| x log Card .A) time.

Lastly, for accessing the number of occurrences of x one precomputes
a table NB defined by

NB[p] = Card{z € A* | §(p,z) € T},

which is precisely the sought quantity when p = end(initial(M), x). The
linear precomputation results from the relation

L+ pwgerNBlgl ifpeT,

NBlp] = { Z(p,v,q)eFNB[q] otherwise.

Then, the number of occurrences of x is obtained by computing the state
p = end(initial(M), x) and by accessing to NB[p], which is done in the
same time as for the above operations.

This ends the proof. L]

An argument similar to the last element of the preceding proof allows
an effective computation of the number of factors of y, that is, of the size
of Fact(y). For that, one evaluates the quantity CS[ p], for all states p of the
automaton, by using the relation

1 if deg(p) = 0,
CS[pl = L+ Y uger(v] = 14 CS[g])  otherwise.

If p = S(initial(M), u) for some factor u of y, CS[ p] is the number of factors
of y starting with u. This gives a linear-time computation of Card Fact(y) =
CS[qo] (qo initial state of the automaton), that is in time O(]y|) independent
of the alphabet, given the automaton.
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LIST OF POSITIONS

Proposition 2.6.3. Given the tree G(y) or the automaton A°(y), the list
L of positions of the occurrences of a factor x of y can be computed in
time O(|x| x log Card A + k) within memory space O(|y|), where k is the
number of elements in L.

Proof. The tree G(y) is first considered. Let us point out from Section 2.1
that a state g of the tree is a factor of y, and that, if it is terminal, its output
is the position of the suffix occurrence of ¢ in y (in this case g is a suffix
of y and output[q] = |y| — |q|). The positions of occurrences of x in y are
the positions of suffixes prefixed by x. One thus obtains these positions
by seeking terminal states of the subtree rooted at p = end(initial(M), x)
(see Section 2.2). Exploration of this subtree takes a time proportional to
its size and indeed to its number of terminal nodes since each node that
is not terminal has at least two children by definition of the tree. Finally,
the number of terminal nodes is precisely the number k of elements of the
list L.

In short, the computation of the list requires the computation of p and
then the traversal of the subtree. The first phase is carried out in time
O(]x| x log Card A), the second in time O(k), which gives the announced
result when &(y) is used.

A similar reasoning applies to A°(y). Let p = end(initial(M), x) and
let w be such that é(initial(M), xw) = p. Starting from p, we explore the
automaton by memorizing the length of the current path (the length of
an edge is that of its label). A terminal state g that is reached by a path
of length £ corresponds to a suffix of length £ which therefore occurs at
position |y| — £. Then, |y| — £ — |xw]| is the position of an occurrence of x
in y. The complete traversal takes a time O (k) as its equivalent traversal of
the subtree of G(y) just described. We thus obtain the same running time
as with the compact suffix tree. "

Notice that the computation of the lists of positions is obtained without
preprocessing the automata. By the way, using the (noncompact) suffix
automaton of y requires a preprocessing which creates shortcuts to super-
impose the structure of 2A°(y) on it, if one wishes to obtain the same running
time.

2.6.3. Transducer of positions

Some of the questions of locating factors within the word y can be described
in terms of transducers, that is automata in which edges have an output in
addition to outputs on states. As an example, the function pos, is realized
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)
b:2 I 4 a:l

Figure 2.21. Transducer that realizes in a sequential way the function pos,
relative to y = aabbabb. Each edge is labelled by a pair (a, s) denoted by
a : s, where a is the input of the edge and s its output. When scanning abb,
the transducer produces the value 1 (= 0 4+ 1 4 0), which is the position of
the first occurrence of abb in y. The last state having output 3, one deduces
that abb is a suffix at position 4 (= 1+ 3) of y.

by the transducer of positions of y, denoted by 7 (y). Figure 2.21 gives an
illustration of it.

The transducer 7 () is built on 2(y) by adding outputs to edges and by
modifying the outputs associated with the terminal states. Edges of 7 (y)
are of the form (p, (a, 5), g) where p, g are states and (a, s) the label of the
edge. Letter a € A is its input and integer s € N is its output. The path

(po, (ao, 50), p1), (1, (a1, $1), p2)s -+ s (Pk—1, (Ak—15 Sk—1)5 Pk)
of the transducer has as input label the word apa; - - - ax—, concatenation
of input labels of edges of the path, and for output the sum sg 4 s; + - - - +
Sk—1-
The transformation of 2((y) into 7 (y) is done as follows. When (p, a, q)
is an edge of 2U(y) it becomes the edge (p, (a, ), ¢) of 7 (y) with output

s = end-pos,(q) — end-pos,(p) — 1,
which is also
LC[p]l—LClg]—1

with the notation LC used in the proof of Proposition 2.6.2. The output
associated with a terminal state p is defined as L C[ p]. The proof of Propo-
sition 2.6.2 shows how to compute table LC from which one deduces
a computation of outputs associated with edges and terminal states. The
transformation is thus carried out in linear time.

Proposition 2.6.4. Let u be the input label of a path starting at the initial
state of the transducer T (y). Then, the output of the path is pos,(u).
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Moreover, if the end of the path is a terminal state having output t, u
is a suffix of y and the position of this occurrence of u in y is pos(u) + t

(= |yl = lul).

Proof. We prove it by recurrence on the length of u. The first step of
the recurrence, for u = ¢, is immediate. Let us suppose that u = va with
v € A* and a € A. The output of the path having input label va is r + s,
where r and s are respectively the outputs corresponding to inputs v and a.
By the recurrence hypothesis, we have r = pos,(v). By definition of labels
in 7 (y), we have

s = end-posy(u) — end—posy(v) — 1.
Therefore the output associated with u is
pos,(v) + end—posy(u) — end-posy(v) -1,
or also, since end—posy(w) = pos,(w) + [w| — 1,
posy(u) + |u| —[v| — 1,

which is pos,(u) as expected. This finishes the proof of the first part of the
statement.

If the end of the considered path is a terminal state, its output ¢ is, by
definition, LC[u], which is |y| — end-pos,(u) — 1 or |y| — posy(u) — [ul.
Therefore pos,(u) +t = |y| — |u|, which is the position in y of the suffix
u as announced. "

The existence of the transducer of positions just described shows that
the position of a factor in y can be computed sequentially, while reading
the factor. The computation is even done in real time when transitions are
performed in constant time.

2.7. Finding regularities

2.7.1. Repetitions

In this section we examine two questions concerning repetitions of factors
within the text y. There are two dual problems that are solved efficiently by
using a suffix tree or suffix automaton:

® Compute longest repeated factors of y.

¢ Find shortest factors having few occurrences in y.
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These questions are parameterized by an integer k£ which bounds the number
of occurrences.

Longest repetition Given an integer k, kK > 1, find a longest word occur-
ring at least k times in y.

Let 2(y) be the suffix automaton of y. If the table NB defined in the
proof of Proposition 2.6.2 is available, the problem of the longest repeti-
tion remains of finding the states p of 2((y) which are the deepest in the
automaton and for which NB[p] > k. The labels of longest paths from the
initial state to ps are then solutions of the problem.

Indeed the solution comes without the use of table NB because values
in the table do not need to be stored. We show how this is done for the
instance of the problem with £ = 2. One simply seeks a state (or all states),
as deep as possible, that satisfies one of the two conditions:

® at least two edges leave p,

® an edge leaves p and p is a terminal state.

State p is then a fork and it is found by a mere traversal of the automa-
ton. Proceeding in this way, no preliminary treatment of 2(y) is necessary
and nevertheless the linear computing time is preserved. One can note that
the execution time does not depend on the branching time in the automa-
ton because no transition is executed, the search only traverses existing
edges.

The two descriptions above are summarized in the following proposi-
tion.

Proposition 2.7.1. Given one of the automata S(y), A(y), or A(y), com-
puting a longest repeated factor of y can be done in time and space

O(lyD- n

The second problem deals with searching for a marker. A factor of y is
so called when it marks a small number of positions on y.

Marker Given an integer k, k > 1, find a shortest word having less than k
occurrences in y.

The use of a suffix automaton provides a solution to the problem of
the same vein as that of the solution to the longest repetition problem. It
amounts to finding, in the automaton, a state that is as close as possible to
the initial state and that is the origin of less than k paths to a terminal state.
Contrary to the above situation, however, a state associated with a marker is
not necessarily a fork, but this has no effect on the solution. Again, a simple
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traversal of the automaton solves the question, which gives the following
result.

Proposition 2.7.2. Given one of the automata S(y), A(y), or A(y),
the computation of a marker in y can be carried out in time and space
O(lyD. n

2.7.2. Forbidden words

Searching for forbidden words is a reverse question to finding repeti-
tions. It intervenes in the description of a certain type of text compression
algorithms.

A word u € A* is called a forbidden word in the word y € A* if it is not
a factor of y. And u is called a minimal forbidden word if in a supplement
all its own proper factors are factors of y. In other words, the minimality
relates to the ordering “is a factor of”’. This concept is in fact more relevant
than the preceding one. We denote by /(y) the set of minimal forbidden
words in y.

One can notice that

u=ul0..k—1]€I(y)
if and only if
u is not a factor of y but u[0..k — 2] and u[1 ..k — 1] are factors of y,
which results in the equality
1(y) = (A-Fact(y)) N (Fact(y) - A) N (A* \ Fact(y).

The equality shows in particular that the language 1(y) is finite. It is thus
possible to represent /(y) by a trie in which only the external nodes are
terminal because of the minimality of words.

The algorithm FORBIDDENWORDS, whose code is given below, builds
the trie accepting I(y) from the automaton 2A(y). Figure 2.22 shows the
example of the trie of forbidden words of aabbabb, obtained from the
automaton of Figure 2.13. In the algorithm, the queue is used to traverse
the automaton 2A(y) in a width-first manner.

FORBIDDENWORDS(RA(y))
1 M < NEWAUTOMATON()
2 L < EMPTYQUEUE()
3 ENQUEUE(L, (initial(A(y)), initial(M)))
4 while not FILEISEMPTY(L) do
5 (p, p') < DEQUEUE(L)
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Figure 2.22. Trie of minimal forbidden words of the word aabbabb on
the alphabet {a, b, c}, such as it is built by algorithm FORBIDDEN. Non-
terminal states are those of automaton A(aabbabb) of Figure 2.13. Note
that states 3 and 4 as well as the edges reaching them can be removed. The
forbidden word babba, recognized by the tree, is minimal because babb
and abba are factors of aabbabb.

6 for eacha € A do
7 if TARGET(p, a) is undefined and
(p = initial(y)) or TARGET(f[p], a) is defined) then
8 q' < NEWSTATE()
9 terminal(q’) < TRUE
10 adj[p'] < adjlp'1 U {(a, q")}
11 elseif TARGET(p, a) is defined and
TARGET(p, a)not reached yet then
12 q' < NEWSTATE()
13 adjlp'] < adj[p'1U {(a, ¢")}
14 ENQUEUE(L, (TARGET(p, a), q'))
15 return M

Proposition 2.7.3. For y € A*, the algorithm FORBIDDENWORDS pro-
duces, from the automaton 2A(y), a tree that accepts the language 1(y). The
execution can be done in time O(]y| x log Card A).

Proof. 1t is noticed that edges created at line 13 duplicate the edges of the
spanning tree of shortest paths of the graph of 2(y), because the automaton
is traversed in width-first order (the queue L is aimed at that). Other edges
are created at line 10 and are of the form (p’, a, ¢") with p’, ¢’ € T’, denoting
by T’ the set of terminal states of M. Let us denote by 4’ the transition
function associated with the edges of M created by the algorithm. By
construction, the word u for which &' (initial(M), u) = p’ is the shortest
word that reaches the state p = §(initial(24(y)), u) in A(y).

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

154 2. Structures for Indexes

We start by showing that any word recognized by the tree that the
algorithm produces is a minimal forbidden word. Let ua be such a word,
necessarily nonempty (u € A*, a € A). By assumption, the edge (p’, a, ¢’)
was created at line 10 and ¢’ € T'. If u = ¢, we have p’ = initial(M) and
we notice that, by construction, a ¢ alph(y); therefore ua is effectively a
minimal forbidden word. If u # &, let us write it bv withb € Aand v € A*.
The state

s = 8(initial(A(y)), v)

satisfies s % p because both |v| < |u| and, by construction, u is the shortest
word that satisfies p = &(initial(M), u). Therefore f[p] = s, by definition
of suffix links. Then, again by construction, 4(s, a) is defined, which implies
that va is a factor of y. The word ua = bva is thus minimal forbidden since
bv, va are factors of y but ua is not a factor of y.

It is then shown conversely that any forbidden word is recognized by the
tree built by the algorithm. Let ua be such a word, necessarily nonempty
(u € Fact(y), a € A). If u = ¢, the letter @ does not appear in y, and thus
8(initial(2A(y)), a) is not defined. The condition at line 7 is met and causes
an edge to be created which leads to the recognition of the word ua by the
automaton M. If u =# ¢, let us write it as bv with b € A and v € A*. Let

p = 8(initial(A(y)), u).

As v is a proper suffix of # and va is a factor of y while ua is not a factor
of y, if we consider the state

s = 8(initial(A(y)), v),

we have necessarily p # s and thus s = f[p] by definition of suffix links.
The condition at line 7 is thus still satisfied in this case, and this has the
same effect as above. In conclusion, ua is recognized by the tree created
by the algorithm, which finishes the proof. "

An unexpected consequence of the preceding construction is an upper
bound on the number of minimal forbidden words in a word.

Proposition 2.7.4. A word y € A* of length |y| > 2 has no more than
Card A + 2|y| — 3) x (Card alph(y) — 1) minimal forbidden words. It has
Card A of them if |y| < 2.

Proof. According to the preceding proposition the number of minimal for-
bidden words in y is equal to the number of terminal states of the trie 1(y),
which is also the number of edges entering these states.

There are exactly Card A — « such edges coming out from the initial
state, by noting & = Card alph(y). There are at most « outgoing edges from
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the unique state of 2(y) having no outgoing transition. From other states
there are at most @ — 1 outgoing edges. Since, for |y| > 2, 2(y) has at most
2|y| — 1 states (Proposition 2.4.1), we obtain

CardI(y) < (Card A — )+ o+ 2ly]| = 3) x (¢ — 1),
which gives
Card I(y) < Card A+ 2ly| — 3) x (o — 1),

as announced.
Finally, we have I(¢) = A and, for a € A, I(a) = (A\ {a}) U {aa}.
Therefore Card I(y) = Card A when |y| < 2. n

2.8. Pattern matching machine

Suffix automata can be used like machines to locate occurrences of patterns.
We consider in this section the suffix automaton 2(x) to implement the
search for x (Ilength m) in a word y (length ). The other structures, compact
tree G(x) and compact automaton 2(°(x), can be used as well.

The searching algorithm rests on considering a transducer with a fail-
ure function. The transducer computes sequentially the lengths ¢; defined
below. It is built upon the automaton 2((x), and the failure function, used
to cope with nonexplicitly defined transitions of the searching automaton,
is nothing else than the suffix link f defined on states of the automaton.
The principle of the searching method is standard. The search is carried out
sequentially along the word y. Adaptation and analysis of the algorithm
with the tree G(x) are immediate although the suffix link function of this
structure is not a failure function according to the precise meaning of this
concept (see Problem 2.2.4).

The advantage brought by the algorithm to other methods based on
failure functions lies in a bounded amount of time to treat a letter of y,
together with a more direct analysis of its time complexity. The price for
this improvement is a more important need for memory capacity intended
to store the automaton instead of a simple table, although the space remains
linear.

2.8.1. Lengths of common factors

The search for x is based on computing lengths of factors of x appearing at
any position on y. More precisely, the algorithm computes, at any position
iony,0<i < n,the length

¢; = max{|u| | u € Fact(x) N Suff(y[0..i])}
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i 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
yil] a a a b b b a b b a a b b a b b b
¢ 1 2 2 3 4 2 3 4 5 4 2 3 4 5 6 7 2
Di 1 2 2 3 4 45 6 75 2 3 4 5 6 7 4

Figure 2.23. Using the automaton 2(aabbabb) (see Figure 2.13), algo-
rithm LENGTHSOFFACTORS determines the factors common to aabbabb
and y. Values ¢; and p; are the respective values of variables ¢ and p
of the algorithm related to position i. At position 8 for example, €g = 5
indicates that the longest factor of aabbabb ending there has length 5; it
is bbabb; the current state is 7. An occurrence of the pattern is detected
when ¢; = 7 = |aabbabb], as it is at position 15.

of the longest factor of x ending at this position. The detection of occur-
rences of x follows the obvious remark:

X occurs at position i — |x| 4+ 1 on y
if and only if
£ = |x|.

The algorithm which computes the lengths €y, £1, ..., £,_; is given
below. It uses the table L, defined on states of the automaton (Section 2.4),
to reset the length of the current factor, after a traversal through a suffix link
(line 8). The correction of this instruction is a consequence of Lemma 2.3.6.
A simulation of the computation is given in Figure 2.23.

LENGTHSOFFACTORS(RU(x), y)
1 (£, p) < (0, initial(™A(x)))
2 fori < Oton —1do
3 if TARGET(p, y[i]) is defined then
4 (¢, p) < (L + 1, TARGET(p, yli]))
5 else do p <« f[p]
6 while p is defined and TARGET(p, y[i]) is undefined
7 if p is defined then
8 (€, p) < (L[p] + 1, TARGET(p, y[i]))
9 else (¢, p) < (0, initial(RA(x)))
10 output £
Theorem 2.8.1. The algorithm LENGTHSOFFACTORS applied to the
automaton A(x) and the word y (x,y € A*) produces the lengths
Lo, €1, ..., Ly—1. It makes less than 2|y| transitions in A(x) and runs
in time O(|y| x log Card A) and space O(|x|).
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Proof. The correctness of the algorithm is proved by recurrence on the
length of prefixes of y. We show more exactly that the equalities

L =¥
and
p = 8(initialA(x)), y[i — €+ 1..i])

are invariants of the for loop, by noting § the transition function of 2((x).

Leti > 0. The already-treated prefix has length i and the current letter
is y[i]. It is supposed that the condition is satisfied for i — 1. Thus, u =
yli —€..i — 1] is the longest factor of x ending at position i — 1 and
p = 8(initial(A(x)), u).

Let w be the suffix of length ¢; of y[0..i]. Let us first suppose w # ¢;
therefore w rewrites v - y[i] with v € A*. Note that v cannot be longer than
u because this would contradict the definition of u, and thus v is a suffix
of u.

If v =u, §(p, yli]) is defined and provides the next value of p. More-
over, {; = £ + 1. These two points correspond to the update of (¢, p) car-
ried out at line 4, which shows that the condition is satisfied for i in this
situation.

When v is a proper suffix of u, we consider the greatest integer k, k > 0,
for which v is a suffix of sf(u) where s, is the suffix function relative to
x (Section 2.3). Lemma 2.3.6 implies that v = sf(u) and that the length
of this word is L,(q) where ¢ = 8(initial((x)), v). The new value of p is
thus 8(g, y[i]), and that of £ is L,(g) + 1. It is done so by the instruction
at line 8, since f and L respectively implement the suffix function and the
length function of the automaton, and according to Proposition 2.4.5 which
establishes the relation with function s, .

When w = ¢, this means that letter y[i] & alph(x). It is thus necessary
to re-initialize the pair (£, p), which is done at line 9.

Finally, it is noted that the proof is also valid for the treatment of the first
letter of y, which finishes the proof of the invariant condition and proves
the correctness of the algorithm.

For the complexity, one notices that each transition done, successfully
or not, leads to i being incremented or to a strict increase in the value of
i — £. As each one of these two expressions varies from O to |y|, we deduce
that the number of transitions done by the algorithm is no more than 2|y|.
Moreover, as the execution time of all the transitions is representative of
the total execution time, it is O(|y| x log Card A).

The memory space necessary to run the algorithm is used mainly to store
the automaton 2((x) which has size O(|x|) according to Theorem 2.4.4. This
gives the last stated result, and finishes the proof. n
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2.8.2. Optimization of suffix links

Since the algorithm LENGTHSOFFACTORS works in a sequential way, it is
natural to consider its delay, that is, the maximum time spent on a letter of
y. One realizes immediately that it is possible to modify the suffix function
in order to reduce this time.

We define, for each state p of 2A(x),

Next(p) = {a € A | 8(p, a) is defined}.

Then, the new suffix link f is defined, for the p state of (x), by the
relation:

Plpl = flpl if Next(p) C Next(f[p]).
pl= FILfIp1l else, if this value is defined.
Note that the relation can leave the value of f[p] undefined. The idea of
this definition comes from the fact that the link is used as a failure function:
there is no need to go to f[p] if Next(f[p]) C Next(p).

Note that in the automaton 2((x) one always has

Next(p) C Next(f[p]).

So, we can reformulate the definition of f as:

7lpl = flp] if deg(p) # deg(f[pD).

PYZV FLFIp1l  else, if this value is defined.

The computation of f can thus be performed in linear time by considering
outgoing degrees (deg) of states in the automaton.

The optimization of the suffix link leads to a reduction of the delay of
algorithm LENGTHSOFFAcCTORS. The time can be evaluated as the number
of executions of the instruction at line 5. We get the following result, which
shows that the algorithm treats the letters of y in real time when the alphabet
is fixed.

Proposition 2.8.2. When the algorithm LENGTHSOFFACTORS makes use
of the suffix link f in place of f, the treatment of each letter of y takes a
time O(Card alph(x)).

Proof. The result is an immediate consequence of inclusions
Next(p) C Next(f[p]) € A

for each state p for which f[p] is defined. "

https://doi.org/10.1017/CBO9781107341005.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107341005.003

2.8. Pattern matching machine 159

2.8.3. Search for conjugates

The sequence of lengths £y, ¢y, ..., £,_; of the preceding section provides
very rich information on resemblances between the words x and y. It can
be exploited in various ways by algorithms comparing words. It authorizes
for example an efficient computation of LCF(x, y), the maximum length
of factors common to x and y. This is done in linear time on a bounded
alphabet. This quantity intervenes for example in the definition of the
distance between words:

d(x,y) = |x|+ |y| — 2LCF(x, y).

We are interested in searching for conjugates (or rotation) of a word
within a text. The solution put forward in this section is another conse-
quence of the length computation described in the previous section. Let
us recall that a conjugate of word x is a word of the form v - 4 for which
X=u-v.

Searching for conjugates Let x € A*. Locate all the occurrences of con-
jugates of x (of length m) occurring in a word y (of length n).

A first solution applies a classical algorithm to search for a finite set of
words after having built the trie of conjugates of x. The search time is then
proportional to n (on a fixed alphabet), but the trie can have a quadratic size
O(n?), as can be the size of the (noncompact) suffix trie of x.

The solution based on the use of a suffix automaton does not have this
disadvantage while preserving an equivalent execution time. The technique
is derived from the computation of lengths done in the preceding section.
For this purpose, we consider the suffix automaton of the word x - x, by
noting that every conjugate of x is a factor of x - x. One could even consider
the word x - wA~! where w is the primitive root of x, but that does not
change the following result.

Proposition 2.8.3. Ler x, y € A*. Locating the conjugates of x in 'y can
be done in time O(|y| x log Card A) within a memory space O(|x|).

Proof. We consider a variant of algorithm LENGTHSOFFACTORS that pro-
duces the positions of the occurrences of factors having a length not smaller
than a given integer k. The transformation is immediate since at each stage
of the algorithm the length of the current factor is stored in variable £.

The modified algorithm is applied to the automaton 2((x?) and the word
y with parameter k = |x|. The algorithm thus determines factors of length
|x| of x> which appear in y. The conclusion follows, noting that factors
of length |x| of x? are conjugate of x, and that all conjugates x appear
in x2. .
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Problems

Section 2.2

221

222

223

224

225

226
227

Check that the execution of SUFFIXTREE(a") (a € A) takes a
time O(n). Check that the execution time of SUFFIXTREE(Y) is
Q(nlogn) when Card alph(y) = |y| = n.

How many nodes are there in the compact suffix tree of a de Bruijn
word? How many for a Fibonacci word? Same question for their
compact and noncompact suffix automata.

Let 7 ;(y) be the compact trie that accepts the factors of word y
that have a length ranging between the two natural integers k and £
(0 <k < £ < |y|). Design an algorithm, to build 7; ;(y), that uses a
memory space proportional to the size of the tree (and not O(|y|)),
and that runs in the same asymptotic time as the construction of
the suffix tree of y.

Design an algorithm for the computation of LCF(x, y) (x, y € A*),
maximum length of factors common to x and y, based on the tree
S(x - c-y),wherec € Aandc & alph(x - y). What is the time and
space complexity of the computation? Compare with the solution
in Section 2.8.

Give a bound on the number of cubes of primitive words occurring
in a word of length n. Same problem for squares. (Hint: use the
suffix tree of the word.)

Design an algorithm for the fusion of two suffix trees.

Describe a linear time and space algorithm (on a fixed alphabet)
for the construction of the suffix tree of a finite set of words.

Section 2.3

2.3.1

232

Let y be a word in which the last letter does not appear elsewhere.
Show that §(y), the minimal deterministic automaton accepting
the factors of y, has the same states and same edges as 2((y) (only
the terminal states differ).

Give the precise number of states and edges in the factor automaton

SO).

Section 2.4

24.1

Design an on-line algorithm for the construction of the factor au-
tomaton §(y). The algorithm should run in linear time and space
on a finite and fixed alphabet.
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2.4.2  Design a linear-time algorithm (on a fixed alphabet) for the con-
struction of the suffix automaton of a finite set of words.

Section 2.5

2.5.1  Describe an algorithm for constructing 21°(y) from G(y).
2.5.2  Describe an algorithm for constructing 2A°(y) from 24(y).

2.5.3  Write in details the code of the algorithm for the direct construction
of A°(y).

2.5.4  Design an on-line algorithm for constructing 2A°(y).

Section 2.7

2.7.1 Letk > 0be an integer. Implement an algorithm, based on one of
the automata of suffixes of y € A*, which determines factors that
appear at least k times in y.

2772 For y € A*, design an algorithm for computing the maximum
length of factors of y which have two nonoverlapping occurrences
(that is if u is such a factor, it appears in y at two positions i and j
such asi + |u| < j).

2.7.3  Ttis said that a language M C A* avoids a word u € A* if u is not
a factor of any word of M. Let M be the language of words that
avoid all the words of a finite set I € A*. Show that M is accepted
by a finite automaton. Give an algorithm that builds an automaton
accepting M given the trie of 1.

2.74 Design a construction of the automaton F(y) given the trie of
forbidden words 7(y).

Section 2.8

2.8.1  Provide an infinite family of words for which each word has a trie
of its conjugates that is of quadratic size.

2.8.2  Design an algorithm for locating conjugates of x in y (x, y € A*),
given the tree G(x - x - ¢ - y), where ¢ € A and ¢ € alph(x - y).
What is the complexity of the computation?

Notes

The concept of position tree is due to Weiner (1973) who presented an
algorithm to compute its compact version. The algorithm of Section 2.2
is from McCreight (1976). A strictly sequential version of the suffix tree
construction was described by Ukkonen (1995).
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For questions referring to formal languages, like concepts of syntactic
congruences and minimal automata, one can refer to the books of Berstel
(1979) and Pin (1986).

The suffix automaton of a text with unmarked terminal states is also
known by the acronym DAWG, Directed Acyclic Word Graph. Its linearity
was discovered by Blumer, Blumer, Enhrenfeucht, Haussler, and McConnel
(1983) who gave a linear construction of it on a fixed alphabet (see also
Blumer et al. 1985). The minimality of the structure as an automaton is due
to Crochemore (1986), who showed how to build within the same complex-
ity the factor automaton of a text (see Problems 2.3.1, 2.3.2, and 2.4.1).

The notion of compact suffix automaton appears in Blumer, Ehren-
feucht, and Haussler (1989). An algorithm for compacting suffix automata,
as well as a direct construction of compact suffix automata, is presented
in Crochemore and Vérin (1997). An on-line construction of compact suf-
fix automata has been designed by Inenaga, Hoshino, Shinohara, Takeda,
Arikawa, Mauri, and Pavesi (2001).

For the average analysis of sizes of the various structures presented
in the chapter, one can refer to Szpankowski (1993b) and to Jacquet
and Szpankowski (1994), who corrected a previous analysis by Blumer
et al. (1989), extended by Raffinot (1997). These analyses rely on methods
described in the book of Sedgewick and Flajolet (1995).

On special integer alphabets, Farach (1997) has designed a linear time
construction of suffix trees.

Indexes can also be realized efficiently with the use of suffix arrays.
This data structure may be viewed as an implementation of a suffix tree.
The notion has been introduced by Manber and Myers (1993) who designed
the first efficient algorithms for its construction and use. On special integer
alphabets, a suffix array can be built in linear time by three independent
algorithms provided by Kérkkédinen and Sanders (2003), Kim, Sim, Park,
and Park (2003), and Ko and Aluru (2003).

The concept of index is strongly used in questions related to data re-
trieval techniques. One can refer to the book of Baeza-Yates and Ribero-
Neto (1999) to go deeper into the subject, or to that of Salton (1989).
Apostolico (1985) describes several algorithmic applications of suffix trees
that often apply to other suffix structures.

Personal searching systems, or indexes used by search engines, often
use simpler techniques like the constitution of lexicons of rare words or
k-grams (that is factors of length k) with k relatively small.

The majority of topics covered in this chapter is classical in string
algorithmics. The book of Gusfield (1997) contains a good number of
problems, and especially those grounded on questions in computational
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molecular biology, whose algorithmic solutions rest on the use of data
structures for indexes, including questions related to repetitions.
Forbidden words of Section 2.7.2 are used in the DCA compression
method of Crochemore, Mignosi, Restivo, and Salemi (2000).
The use of suffix automata as searching machines is due to Crochemore
(1987). Using suffix trees for this purpose produces an immediate but less
efficient solution (see Problem 2.2.4).
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