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String matching

2.1 Basic concepts

The string matching problem is that of finding all the occurrences of a given
pattern p = p\p^ • • -Pm m a large text T = t\t2 • • -tn, where both T and p
are sequences of characters from a finite character set E. Given strings x,
y, and z, we say that x is a prefix of xy, a suffix of yx, and a factor of yxz.

Many algorithms exist to solve this problem. The oldest and most famous
are the Knuth-Morris-Pratt and the Boyer-Moore algorithms. These
algorithms appeared in 1977. The first is worst-case linear in the size of the
text. This O(n) complexity is a lower bound for the worst case of any string
matching algorithm. The second is O(mn) in the worst case but is sublinear
on average, that is, it may avoid reading some characters of the text. An
O(n logiEi m/m) lower bound on the average complexity has been proved in
[Yao79].

Since 1977, many studies have been undertaken to find simpler algorithms,
optimal average-case algorithms, algorithms that could also search extended
patterns, constant space algorithms, and so on. There exists a large variety
of research directions that have been tried, many of which lead to different
string matching algorithms.

The aim of this chapter is not to present as many algorithms as possible,
nor to give an exhaustive list of them. Instead, we will present the most ef-
ficient algorithms, which means the algorithms that for some pattern length
and some alphabet size yield the best experimental results. Among those
that have more or less the same efficiency, we will present the simplest.

The algorithms we present derive from three general search approaches,
according to the way the text is searched. For all of them, a search window
of the size of the pattern is slid from left to right along the text, and the
pattern is searched for inside the window. The algorithms differ in the way
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16 String matching

in which the window is shifted. The general scheme is shown Figure 2.1,
together with our favorite running example on English, which we will show
for all our algorithms.

Search window
Text

C P M a n n

Pattern

n u a 1 , , c o n

a n n o u n c e

f e r e n c e a n n o u n c e

Fig. 2.1. The search is done in a window that slides along the text. The search
window has the size of the pattern.

In general, strings that are searched for in natural language texts are
simpler than in DNA sequences because the former contain fewer intrinsic
repetitions. To show all the tricky cases that could appear, we also show
the behavior of all our algorithms when searching for the string ATATA in
t h e sequence AGATACGATATATAC.

The three search approaches are presented below.

Prefix searching (Figure 2.2) The search is done forward in the search
window, reading all the characters of the text one after the other. For each
position of the window, we search for the longest prefix of the window that
is also a prefix of the pattern. The Knuth-Morris-Pratt algorithm uses
this approach.

Text Forward search

wmrnm*
Pattern

Fig. 2.2. First approach: We search for a prefix of the pattern in the current win-
dow.

Suffix searching (Figure 2.3) The search is done backwards along the
search window, reading the longest suffix of the window that is also a suf-
fix of the pattern. This approach enables us on average to avoid reading
some characters of the text, and therefore leads to sublinear average-case
algorithms. The most famous algorithm using this technique is the Boyer-
Moore algorithm, which has been simplified by Horspool and by Sunday.

Factor searching (Figure 2.4) The search is done backwards in the
search window, looking for the longest suffix of the window that is also
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2.2 Prefix based approach 17

Text Suffix search

° illlllllllil
Pattern

Fig. 2.3. Second approach: We search for a suffix of the pattern in the current
window.

Text Factor search

-111!
Pattern a

Fig. 2.4. Third approach: We search for a factor of the pattern in the current
window.

a factor of the pattern. As with suffix searching, this approach leads to
sublinear expected algorithms, and even to optimal algorithms. The main
drawback is that it requires a way to recognize the set of factors of the
pattern, and this is quite complex.

These three approaches lead to algorithms that are efficient in several
cases, depending on the size of the pattern and the size of the alphabet. An
experimental map of their relative performances is given in Section 2.5.

2.2 Prefix based approach

Suppose that we have read the text up to position i and that we know the
length of the longest suffix of the text read that corresponds to a prefix of
the pattern p. When this length is \p\ we have an occurrence. The main
algorithmic problem is to find an efficient way to compute this length when
we read the next character of the text. There exist two classical ways to
solve this problem:

• The first is to find a mechanism to effectively compute the longest suffix
of the text read that is also a prefix of p, preferably in amortized constant
time per character. This is what the algorithm of Knuth, Morris, and
Pratt, KMP, does [KMP77].

• The second is to maintain a kind of set of all the prefixes of p that are also
suffixes of the text read, and update the set at each character read. The
bit-parallelism technique enables managing such a set in an efficient way
if the pattern is short enough. This leads to the Shift-And and Shift-Or
algorithms [WM92b, BYG89b].
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18 String matching

We do not give pseudo-code for the Knuth-Morris-Pratt algorithm, nor
a deeper study, for this algorithm improves in practice over suffix or factor
searching only for strings of less than 8 characters. In this range, the Shift-
And or Shift-Or algorithms can be run on any computer, and are at least
twice as fast and much simpler to implement.

2.2.1 Knuth-Morris-Pratt idea

The Knuth-Morris-Pratt (KMP) algorithm updates for each text char-
acter read the length of the longest prefix of the pattern that is also a suffix
of the text. The mechanism is based on the following observation. Let us
complete Figure 2.2 of the general prefix matching approach with a repre-
sentation of what what we would like to obtain. This is shown in Figure 2.5.
The string v(3 is a new potential prefix of the pattern that could be the new
longest prefix of p that is also a suffix of i i . . . tj+i- We observe that v is a
suffix of u, and also a prefix. We call it a border of u. Also, the character j3
has to be equal to ij+i (<r on the figure).

Forward search
Text I

i i+1

liiiiiiiii a

Pattern p i | | | | | | | | | | | a

Fig. 2.5. The shift in the Knuth-Morris-Pratt algorithm. The string v is a suffix
of the prefix u, and also a prefix. The character fi differs from a, which differs from
the text character a, on which the prefix search failed.

The original idea, due to Morris and Pratt [MP70], is

• Precompute the longest border b(u) for each prefix u of the pattern.

• Now, in the current position, let u be the longest prefix of p that is a
suffix of t\... t{. We read the character a = ti+\ of the text. If a = P|«|+i
(denoted a in Figure 2.5), then the new longest prefix is nj?|u|+1. However,
if a ^ P\u\+ii then we compare a with p\b(u)\+i- If cr = p\b(u)\+ii then
b(u)P\b(u)\+i is the new longest prefix of p that is a suffix of t\... ij+i- If
a 7̂  P\b(u)\+ii then we compare it with a = p\b(b(u))\+i a n d s o o n i until one
border is followed by cr, or until there are no more borders (the empty
border e does not have a border), in which case the new longest prefix is
the empty string e.
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2.2 Prefix based approach 19

Knuth proposed the following improvement. We know that if the com-
parison of a = ij_|_i with p\u\+\ fails, the letter that follows any border of u
must differ from P|M|+i if it is to match a. So at the precomputing phase, we
can precompute for each proper prefix u of p (p = uw, w ^ e) the longest
border v that satisfies p\u\+i ^ P\v\+i-

The KMP algorithm is O(n) in the worst and average case for the search-
ing phase. For the preprocessing phase, the goal is to compute two things:
first, for each proper prefix u of the pattern, the longest border v such
that P|M|+i 7̂  P\v\+i', and second, for the pattern itself, its own longest bor-
der. Now, if we read the pattern p\... pm character by character, and if we
want to compute at each position j?i+i the length of the longest border of
p\.. -Pi+i, we want, in fact, to compute the longest suffix of p\.. -Pi+\ that
is also a prefix of p. It turns out that we are applying the KMP algorithm
for searching p itself. The preprocessing phase of KMP can also be done
with KMP, and its complexity is O(m).

We do not explain KMP further. Details can be found in [KMP77, CR94].
Many studies and variants exist. We give in Section 2.6 the most important
bibliographic references.

2.2.2 Shift-And/Shift- Or algorithm

The idea of the Shift-And and the Shift-Or algorithms is much simpler
than that of KMP. It consists in keeping a set of all the prefixes of p that
match a suffix of the text read. The algorithms use bit-parallelism to update
this set for each new text character. This set is represented by a bit mask
D = dm...di.

We first explain the Shift-And algorithm, which is easier to explain than
Shift-Or.

We put a 1 in the j - th position of D (the j - th position of D is said to
be active) if and only if p\ .. .pj is a suffix of t\... ij. If the size of p is less
than w, then this array will fit in a computer register. We report a match
whenever dm is active.

When reading the next text character £j+i, we have to compute the new
set D'. A position j + 1 in this set will be active if and only if the position
j was active in D, that is, p\ .. .pj was a suffix of t\... ij and ti+\ matches
Pj+i- This new set is easy to compute in constant time using bit-parallel
operations.

https://doi.org/10.1017/CBO9781316135228.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.002


20 String matching

The algorithm first builds a table B, which stores a bit mask bm . . . b\ for
each character. The mask in B[c] has the j- th bit set if pj = c.

We initially set D = 0m, and for each new text character t^+i we update
D using the formula

D' 4r- ((D«l) I 0m"1l) & B[tl+l] (2.1)

Intuitively, the "<<" shifts the positions to the left to mark at step i + 1
which positions of p were suffixes at step i. We also mark the empty string
£ as a suffix, so we OR the new bit mask with Qm~ll. Now, we keep from
these positions only those such that ti+i matches Pj+i, by AND-ing this set
of positions with the set i?[^+i] of positions of ti+i in p.

The cost of this algorithm is O(n), assuming that the operations in for-
mula (2.1) can be done in constant time, in practice when the pattern fits
in a few computer words.

The Shift-Or algorithm is a tricky implementation of Shift-And. The
idea is to avoid using the "O™"1!." mask of formula (2.1) in order to speed up
the computation. For this, we complement all the bit masks of B and use a
complemented bit mask D. As the shift "<<" operation will introduce a 0 to
the right of D7, the new suffix coming from the empty string is already in D'.

Shift-And (p = pip2 ..
1.
2.
3.
4.
5.
6.
7.
8.
9.

Preprocessing
•Pm, T =

For c G S D o B[C] <-
F o r j e l . .

Searching
D <- 0 m

For pos G 1
£> ^- ((j

If D &
End of for

tlt2

0m

m Do B\pj] <•

..n Do
D << 1)
1 Q m - l _̂

Q m -

om

-B\pj

H) &
Then

1

B[tpos]
report an occurrence at pos - r a + 1

Fig. 2.6. Shift-And algorithm.

The Shift-And and the Shift-Or algorithms can be seen as the sim-
ulation of a nondeterministic automaton that searches for the pattern in
the text (Figure 2.7). Formula (2.1) is then related to the moves in the
nondeterministic automaton for each new text character: Each state gets
the value of the previous state, but only if the text character matches the
corresponding arrow.

The "| O771"1!" after the shift allows a match to begin at the current
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2.2 Prefix based approach 21

text position. This corresponds to the self-loop at the beginning of the
automaton.

= P ( o ) •

Fig. 2.7. Nondeterministic automaton recognizing all prefixes of the pattern
"announce".

The automaton point of view is also valid for KMP, which can be seen as
an economical method to compute a deterministic automaton that searches
for the pattern in the text. The difference between KMP and Shift-Or is
that the former uses a deterministic automaton that the latter simulates with
bit-parallelism. However, Shift-Or is in practice twice as fast as KMP, is
simpler to implement, and can handle extended strings (Chapter 4).

Example using English We search for the string "announce" in the text
"annual_announce".

0 0 0 0 0 0 1 1
6. Reading 1 0 0 0 0 0 0 0 0

B =

a
c
e
n
0

u
*

0000000 1
0 1000000
10000000
00 100110
0000 1000
00010000
00000000

= 0 0 0 0 0 0 0 0

1. Reading a
0000000 1
00000001

D =

2. Reading n

0 0 0 0 0 0 0 1

000000 11
00100110

D =

3. Reading n

0 0 0 0 0 0 10

00000 10 1
00100110

D =

4. Reading u

0 0 0 0 0 1 0 0

00001001
000 10000

D = 00000000

00000001
5. Reading a 0 0 0 0 0 0 0 1

ZT= 0 0 0 0 0 0 0 1

7.

12.

13.

D = 00000000

00000001
Reading _ 00000000

D = 00000000

0 0 0 0 0 0 0 1
Reading a 0 0 0 0 0 0 0 1

D = 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1
9. Reading n 0 0 1 0 0 1 1 0

D =

10. Reading n

0 0 0 0 0 0 1 0

00000 10 1
00100 110

D =

11. Reading o

0 0 0 0 0 1 0 0

0000 100 1
1000 1000

D = 0000 1000

0 0 0 1 0 0 0 1
Reading u 0 0 0 1 0 0 0 0

D = 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1
Reading n 0 0 1 0 0 1 1 0

D = 0 0 1 0 0 0 0 0
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14.

String matching

0 1 0 0 0 0 0 1
Reading c 0 1 0 0 0 0 0 0 15. Reading

1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

D = 0 1 0 0 0 0 0 0 D= 1 0 0 0 0 0 0 0
The last bit is set; we mark an occur-
rence.

Example using DNA We search for the string ATATA in the sequence
AGATACGATATATAC.

B =
A
T
*

10 10 1
0 1 0 1 0
0 0 0 0 0

= 0 0 0 0 0

1. Reading A
0 0 0 0 1
1 0 1 0 1

D =

2. Reading G

0 0 0 0 1

0 0 0 11
0 0 0 0 0

D =

3. Reading A

0 0 0 0 0

0 0 0 0 1
10 10 1

D =

4. Reading T

0 0 0 0 1

0 0 0 1 1
0 1 0 1 0

D =

5. Reading A

0 0 0 10

0 0 1 0 1
1 0 1 0 1

6.

7.

8.

9.

10.

11.

Reading
D =

Reading
D =

Reading
D =

Reading
D =

Reading
D =

Reading

C

G

A

T

A

T

0 1 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
10 1
0 0 0

0 0 0
0 1 0
0 0 0

00 1
1 0 1
00 1

0 1 0
0 1 0

1
0
0

0
0
0

0
0
0

1
1
1

0
0
0

1
1

1
0
0

1
0
0

1
1
1

1
0
0

1
1
1

1
0

D = 0 1 0 1 0

12. Reading A
10 10 1
10 10 1

D = 10 10 1
The last bit is set; we
mark an occurrence.

13. Reading T
0 10 11
0 1 0 1 0

D =

14. Reading A

0 1 0 1 0

10 10 1
10 10 1

D = 10 10 1
The last bit is set; we
mark an occurrence.

15. Reading C
0 10 11
0 0 0 0 0

D = 0 0 0 0 0

D = 0 0 1 0 1

2.3 Suffix based approach
The main difficulty in the suffix based approach is to shift the window in a
safe way, which means without missing an occurrence of the pattern.

We present the Boyer-Moore (BM) algorithm [BM77] and then the
Horspool simplification [Hor80]. We do not give any pseudo-code for the
first, nor a deeper study, for although BM improves over the algorithms of
the other two general approaches, it is never the fastest.

2.3.1 Boyer-Moore idea
The Boyer-Moore algorithm precomputes three shift functions d i , ^ , ^
that correspond to the following three situations. For all of them, we have
read a suffix u of the search window that is also a suffix of the pattern, and
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2.3 Suffix based approach 23

we have failed on a text character a that does not match the next pattern
character a (Figure 2.3).

First case The suffix u occurs in another position as a factor of p. Then
a safe shift is to move the window so that u in the text matches the next
occurrence of u in the pattern. This situation is shown in Figure 2.8. The
idea is to compute for each suffix of the pattern the distance to the position
of its next occurrence backwards in the pattern. We call this function d\.
If the suffix u of p does not appear again in p, then u is associated by d\ to
the size m of the whole pattern.

Suffix search
Text

u

° liiiiiiiliill
Pattern

Safe shift

gjiiiiiii!

Fig. 2.8. First shift function d\ of the Boyer-Moore algorithm. The pattern is
shifted to the next occurrence of u.

Second case The suffix u does not occur in any other position as a factor
of p. This does not mean that we can safely skip the whole search window,
for the situation shown in Figure 2.9 can occur. A suffix v of u can also be
a prefix of the pattern. To manage this case, we compute a second function
c?2 for all suffixes of the pattern. It associates to each suffix u of p the length
of the longest prefix v of p that is also a suffix of u.

Suffix search
Text

aiiiiiiilii
Pattern

Safe shift

a
II II

iiiiiiiiiii

Fig. 2.9. Second shift function d% of the Boyer-Moore algorithm. No other oc-
currence of u exists in p. The pattern is shifted to the longest prefix of p that is
also a suffix of u.

Third case The backward search has failed on the text character a. If we
shift the window with the first function d\ and this letter is not aligned with
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24 String matching

a a in the pattern, we will perform an unnecessary verification of the new
search window. This case is shown in Figure 2.10. The third function, cfa,
is computed to ensure that the text character a will correspond to a a in
the pattern for the next verification. It associates to each character a of the
alphabet the distance of its rightmost occurrence to the end of the pattern.
If a character a does not occur in p, it is associated with m.

Suffix search

Text ! ""

-ft

Pattern a

m
II

liili
-ft

Safe shift —=» c

no a in this part

Fig. 2.10. Third shift function dz of the Boyer-Moore algorithm. The pattern is
shifted to the next occurrence of a in p.

To shift the window after we read u and failed on <r, the Boyer-Moore
algorithm compares two shifts:

• the maximum between the shifts given by d\(u) and ^(cr), since we want
to align u with its next occurrence in the pattern, knowing that the a of
the text has to match another a in the pattern;

• the minimum between the result of the previous maximum and m — d2(u),
since the latter expression is the maximum safe shift that can be per-
formed.

However, if the beginning of the window has been reached, which means
that we have found an occurrence, only the function d,2 is used to shift the
search window.

The search part of B M has 0(mn) worst-case complexity, but it is sub-
linear on average. Many variations have been designed to make it linear in
the worst case. The most important references are given in Section 2.6.

The main inconvenience of B M is the computation of the functions di,
d2, and d^. They can be computed in O(m) time, but that is difficult
[Ryt80]. We now present a simplification that leads to algorithms that are
more efficient than B M itself in numerous cases.
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2.3 Suffix based approach 25

2.3.2 Horspool algorithm

The BM algorithm was first simplified by Horspool [Hor80], who assumed

that, for a reasonably large alphabet, the shift function d% will always yield

the longest shift. Horspool just considered a small modification of d% that

is easy to compute and yields longer shifts. The resulting algorithm works

as follows (Figure 2.11).

For each position of the search window, we compare its last character (j3

in the figure) with the last character of the pattern. If they match, we verify

the search window backward against the pattern until we either find the

pattern or fail on a text character (a in the figure). Then, whether there

was a match or not, we shift the window according to the next occurrence

of the letter /3 in the pattern. Pseudo-code for the Horspool algorithm is

given in Figure 2.12.

Text
Suffix search

Pattern

ailiiiliili
* II II

*mmmm
p

Safe shift p

no β in this part

Fig. 2.11. Horspool algorithm. The pattern is shifted according to the last char-
acter of the search window.

H o r s p o o l (p = pip-2 ...pm, T = ti*2 • • • tn)
1.
2.
3.

4.

5.
6.

7.
8.
9.

10.

11.

Preprocessing
For c G E D o d[c] <- m
For j 6 1 . . . m — 1 Do d\pj] «— m — j

Searching
pos «— 0
While pos < n — m D o

j <- m
While j > 0 AND tpoS+j = Pj D o j <- j - 1
If j = 0 Then report an occurrence at pos + 1
pos •<— pos + d[tpos+m]

End of while

Fig. 2.12. Horspool algorithm.
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We notice that:

String matching

• The verification also could have been done forward. Many implementa-
tions use a built-in memory comparison instruction.

• The main loop can be "unrolled," which means that we can first shift the
search window until its last character matches the last character of the
pattern, and then perform the verification.

The variant of Sunday Instead of shifting the window using its last char-
acter, we may use the next character after the window, which leads on aver-
age to longer shifts. This algorithm has been proposed by Sunday [Sun90].
Although the shifts are longer, the lower number of memory references of
the unrolled Horspool algorithm makes it faster in general.

Example of the Horspool algorithm using English We search for the
string "announce" in the text "CPM_annual_conf erence_announce".

the window matches the last character
of the pattern. We continue the back-
ward verification [ nferen|~ce~| ] ,
[ nfere|~nce~| ] , and it fails on the
next character. We re-use the last char-
acter of the window, d[e] = 8.

a

7
c

1
n

2
0

4
u

3
*
8

ICPM_annu | al_conference_announce
u / e, d[u] = 3

2. CPM |_annual_| conference_announce
_ / e, d[-] = 8 5. CPM_annual_conference |_announc

c / e, d[c] = 1
3. CPM_annual_ | conferen | ce.announce

n / e, d[n] = 2 6. CPM_annual_conference_ I announce

4. CPM_annual_co | nference | .announce

The last character [ nf erencrii ] of

The last character [ announcj^] ] of
the window matches the last character
of the pattern. We verify backward the
window and find the occurrence.

A

2
T

1
*
5

Example of the Horspool algorithm using D N A We search for the
string ATATA in the sequence AGATACGATATATAC.

backward verification [ AGAITAI ] ,

[ AG| ATA | ] , and it fails on the next
chararacter. We re-use the last charac-
ter of the window, d[k] = 2.

2. AG |ATACG | ATATATAC

G / A, d[G] = 5

1. |AGATA | CGATATATAC

The last character [ AGAT[T] ] of
the window matches the last character
of the pattern. We continue the
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3. AGATACG TAC

The last character [ ATAT|_AJ ] of
the window matches t he last character
of the pa t t e rn . We verify backward t he
window and find the occurrence. We
then shift by re-using t he last character
of t he window, d[&] = 2.

4. AGATACGAT | ATATA | C

The last character [ A T A T [ T ] ] of
the window matches t he last character
of the pa t t e rn . We verify backward t he
window and find the new occurrence.
We then shift by re-using the last char-
acter of the window, d[A] = 2. Then ,
pos > n — m and the search stops.

2.4 Factor based approach

The factor based approach leads to optimal average-case algorithms, assum-
ing that the characters of the text are independent and occur with the same
probability.

The idea for moving the search window with this approach is elegant and
simple. It is shown in Figure 2.13. Suppose that we have read backward a
factor u of the pattern, and that we failed on the next letter a. This means
that the string au is no longer a factor of p, so no occurrence of p can contain
au, and we can safely shift the window to after a.

Factor search
Text

u

Pattern

Safe shift

Fig. 2.13. Basic idea for shifting the window with the factor search approach. If
we failed to recognize a factor of the pattern on a, then au is not a factor of the
pattern and the window can be safely shifted after a.

The main drawback to this approach is that it requires recognizing the set
of factors of the pattern. We first present the Backward Dawg Match-
ing (BDM) algorithm [CCG+94]. This algorithm uses a suffix automaton,
which is a powerful but complex structure. We will not describe it in this
chapter for two reasons:

(i) When the pattern is short enough, of size less than w, the suffix au-
tomaton can be simulated efficiently with bit-parallelism. This algo-
rithm, Backward Nondeterministic Dawg Matching [NROO], is
faster than BDM, simpler to implement, and applicable to extended
patterns (Chapter 4).
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28 String matching

(ii) When the pattern is longer, the Backward Oracle Matching algo-
rithm [ACR01], based on a modification of the factor based approach,
leads to the same experimental times as BDM, but with a much sim-
pler automaton, called the factor oracle.

2.4-1 Backward Dawg Matching idea

The Backward Dawg Matching algorithm uses a suffix automaton to
perform the factor search, and it also improves the basic search approach.
We begin with a general description of the suffix automaton and then explain
the main parts of the algorithm.

Suffix au toma ton We need to recognize whether a given word u is a fac-
tor of the pattern p. There exist many indexing structures that enable us
to determine whether u is a factor of p in O(|u|) time. The most classic
structure is the compact suffix tree [McC76]. However, in this structure,
the transitions are coded as factors of the pattern, and to pass through a
transition we need access to an arbitrary part of the pattern. The suffix
automaton has the same efficiency, but its transitions are labeled with single
characters. This speeds up the search and the pattern matching algorithms
that use it. The interested reader can find a complete survey of the suffix
automaton in [CH97, CR94]. We simply recall its three basic properties:

Pr\ It enables us to determine whether a string u is a factor of a string p in
0(|it|) time. A string u is a factor in the suffix automaton built on p if
and only if there is a path labeled u beginning at the initial node.

Pr<i It enables us to recognize the suffixes of the pattern on which it is built.
If a path beginning at the initial node reaches a terminal state of the
automaton built on p, it means that the label of this path is a suffix of p.

Pr3 It can be built onp = P1P2 • • -pm in O(m) time with an on-line algorithm,
which means that the characters pj can be added one after another into
the structure, updating at each step j the suffix automaton of the prefix
p\.. -Pj-i to obtain that of p\.. .pj.

Search algorithm The BDM algorithm [CCG+94] makes use of the prop-
erties of the suffix automaton. The general approach of Figure 2.13 is pos-
sible using the suffix automaton. Moreover, property Pr<i enables a tricky
improvement.

To search a pattern p = p\P2 • • • pm in a text T = tit^ ... tn: the suffix au-
tomaton of prv = PmPm-i • • -Pi is built. The algorithm searches backwards
along the window for a factor of the pattern using the suffix automaton.
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Factor search

Text last

Pattern

Safe shift

Fig. 2.14. Basic search of the BDM algorithm with the suffix automaton. The
variable last stores the beginning position of the longest suffix of the part read that
is also a prefix of the pattern.

During this search, if a terminal state is reached that does not correspond
to the entire pattern, the position in the window is stored in a variable last.
Due to property Pr2, this corresponds to finding a prefix of the pattern
starting at position last inside the window and ending at the end of the
window since the suffixes of prv are the reverse prefixes of p. Since we stored
the last prefix recognized backwards, we have the longest prefix of p in the
window. This backward search ends in two possible ways:

(i) We fail to recognize a factor, that is, we reach a letter a that does
not correspond to a transition in the suffix automaton of prv. We
then shift the window so that its new starting position corresponds
to the position last. We cannot miss an occurrence because in that
case the suffix automaton would have found its prefix in the window.
This situation is shown in Figure 2.14.

(ii) We reach the beginning of the window, thus recognizing the pattern
p. We report the occurrence, and we shift the window exactly as in
the previous case.

The algorithm is O(mn) time in the worst case. However, it is the optimal
O(n logiEi rn/rn) on average under the assumption that the text characters
are independent and have the same occurrence probabilities.

2.4-2 Backward Nondeterministic Dawg Matching algorithm

The Backward Nondeterministic Dawg Matching (BNDM) algo-
rithm uses the same search approach as BDM, but the factor is searched
using bit-parallelism. Compared to the original BDM algorithm, B N D M
is simpler, uses less memory, has more locality of reference, and is easier to
extend to more complex patterns (Chapter 4).

The idea is to maintain a set of positions on the reverse pattern that are
the beginning positions of the string u read in the text. This set is stored
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with 0 and 1 as with Shift-And. The number 1, representing an active
state at position j of p, means that the factor pj .. .pj+\u\_i is equal to u.
Figure 2.15 shows this relationship. If the pattern is of size less that w, then
the set fits in a computer word D = dm ... d\.

Factor search

Text u

iiii
Pattern

D table

liii liii
Iu

0 1 0 0 0 1 0 0

Fig. 2.15. Bit-parallel factor search. The table D keeps a list of the positions in p
where the factor u begins.

We need to update the array D to D' after reading a new character a of
the text. A state j of D' is active if it corresponds to the beginning of the
string ou in the pattern; that is, if

• u began at position j + 1 in the pattern, which means that the (j + l)-th
position in D is active, and

• a is in position j in the pattern.

If we precompute a table B exactly as for Shift-And that associates to each
letter of p the set of its positions in p with a bit mask, then we obtain D'
from D by the following formula:

D' (D « 1) & B[a] (2.2)

However, there is a problem with the initialization. We would like to
mark in the initial table D that each position of D matches the empty
string, which means D should be l m . But in that case, the first shift will
give (D << 1) = lm^10 and we will miss the first factor, which corresponds
to the entire word. The simplest solution would be to take D of size m + 1,
initialized to l m + 1 . However, it reduces to w — 1 the maximum length of the
string that can be searched. Instead we split formula (2.2) into two parts.

We first perform the operation D[ -(— D & B[a] and verify the match,
and then we perform the register shift D1 -(— D^ << 1. The initialization
is then D = \m. A string read in the text is a prefix of p if the first position
is active, that is, if in D[ the position dm is active.

The B N D M algorithm is the same as BDM, except that the factor search
is done with the bit-parallelism technique. Each time the bit dm is active,
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B N D M (p = pip2...pm, T = ht2...tn)
1.
2.
3.
4.
5.
6.
7.

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Preprocessing
For c G E Do B[c] <- 0m

For j € 1. . . m Do B ^ ] <- B\pj] 0 i"110m" i

Searching
pos «— 0
While pos < n — m Do

j <— m, Zosi <— m

While D ^ 0m Do
D <— D & B[tpos+i7-]

j <- j - 1
If D & 101""1 ^ 0m Then

If j > 0 Then last <- j
Else report an occurrence at pos + 1

End of if
D <— D « 1

End of while
pos <— pos + last

End of while

Fig. 2.16. Bit-parallel pseudo-code for BNDM.

the position of the window is stored in the variable last. Pseudo-code for
the algorithm is given in Figure 2.16.

BNDM has the same worst-case complexity 0(mn) as BDM, and also
the same optimal average complexity O(nlogisi m/m).

© ^ ^ 0 ^^© ^^@ —°̂ ® ̂ © MD 0 Q

Fig. 2.17. Nondeterministic automaton recognizing all factors of the reverse string
of "announce".

From an automaton point of view, the bit-parallel factor search is a sim-
ulation of a nondeterministic automaton that recognizes all suffixes of the
reverse pattern. For example, if we search the pattern "announce", we sim-
ulate the automaton shown in Figure 2.17. It turns out that the minimal
deterministic version of this automaton is the suffix automaton used in the
classic BDM. The difference between BNDM and BDM is conceptually
the same as that between Shift-Or and KMP. The former simulates a non-
deterministic automaton using bit-parallelism, and the latter first obtains a
representation of the deterministic automaton.
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Example of BNDM using English We search for the string "announce"
in the text "CPM_annual_conf erence.announce".

B =

a
c
e
n
0

u
*

10000000
000000 10
0000000 1
01100 100
000 10000
00001000
00000000

4. CPM_annual_conference_ I announce

= 1 1 1 1 1 1 1 1

1. CPM_annu al_conference_announce
last

Reading u
11111111
00001000

D= 0 0 0 0 1 0 0 0

Reading n
00010000
0 1100100

D= 00000000

2. CPM.annu |

last <- 8

Reading

al_confe rence_announce

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1

D= 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0
Reading f 0 0 0 0 0 0 0 0

D= 0 0 0 0 0 0 0 0

3. CPM_annual_confe

last <- 8
rence_an nounce

Reading n
1 1 1 1 1 1 1 1
0 1 1 0 0 1 0 0

D = 0 1 1 0 0 1 0 0

Reading a
1100 1000
10000000

D= 10000000

The position dg is active, but j > 0, so
we set last —̂ 6.

last —̂ 8
1 1 1 1 1 1 1 1

Reading e 0 0 0 0 0 0 0 1
D= 0 0 0 0 0 0 0 1

Reading
00000010
000000 10

D= 0 0 0 0 0 0 1 0

Reading n
00000100
01100100

D= 0 0 0 0 0 1 0 0

Reading u
0000 1000
00001000

D= 0 0 0 0 1 0 0 0

Reading o
000 10000
000 10000

D= 0 0 0 1 0 0 0 0

Reading n
00100000
01100100

D= 0 0 1 0 0 0 0 0

Reading n
01000000
0 1100100

D= 0 1 0 0 0 0 0 0

Reading a
10000000
10000000

D= 10000000

The position ds is active and j = 0, so
we mark an occurrence.
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Example of B N D M using D N A We search for the string ATATA in the
sequence AGATACGATATATAC.

A
T
*

10 10 1
01010
00000

B =

£> = 1 1 1 1 1

1. |AGATA | CGATATATAC

last <- 5
1 1 1 1 1

Reading A 10 10 1
D= 10 10 1

Reading T
0 1 0 1 0
0 1 0 1 0

D = 0 10 10

Reading A
10 1 0 0
10 10 1

D = 10 10 0

The position <i5 is active, but j > 0, so
we set last —̂ 2.

Reading G
0 1 0 0 0
0 0 0 0 0

2.

D= 0 0 0 0 0

AG |ATACG | ATATATAC

last <r- 5
1 1 1 1 1

Reading G 0 0 0 0 0
D = 0 0 0 0 0

3. AGATACG | ATATA | TAC

last —̂ 5
1 1 1 1 1

Reading A 10 10 1
D~= 10 10 1

Reading T
0 1 0 1 0
0 1 0 1 0

D= 0 10 10

Reading A
10100
10 10 1

~= 10100

The position d*> is active, but j > 0, so
we set last —̂ 2.

Reading T
0 1 0 0 0
0 1 0 10

D= 0 1 0 0 0

Reading A
1 0 0 0 0
1 0 1 0 1

D= 1 0 0 0 0

The position d$ is active and j = 0, so
we mark an occurrence.

4. AGATACGAT |ATATA | C

last —̂ 5
1 1 1 1 1

Reading A 10 1 0 1
D= 1 0 1 0 1

Reading T
0 1 0 10
0 1 0 10

D= 0 10 10

Reading A
1 0 1 0 0
1 0 1 0 1

D= 1 0 1 0 0

The position <i5 is active, but j > 0, so
we set last —̂ 2.

Reading T
0 1 0 0 0
0 1 0 10

D= 0 1 0 0 0

Reading A
1 0 0 0 0
1 0 1 0 1

D= 1 0 0 0 0

The position <i5 is active and j = 0, so
we mark a new occurrence. We then
shift to pos + last and pos > n — ra, so
the search stops.
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2.4-3 Backward Oracle Matching algorithm

For patterns longer than w, the normal BDM algorithm would be necessary
but the complexity of the construction of the suffix automaton makes it
impractical. A solution has been proposed recently [ACR01]. It is based
on the observation that, to shift the window in the general factor search
approach (Figure 2.13), it is not necessary to know that u is a factor. It
suffices to know that au is not.

The factor oracle structure has this particularity. Built on a string p, it
recognizes more than the set of factors of p, but it is easy to understand
and implement and is compact, so that the efficiency lost by reading more
letters in the backward search is recovered by doing fewer page faults.

To simplify notation, we denote by 9 an object that is not denned. For
instance, in an automaton, 6(q, a) = 9 means that there is no outgoing
transition from q labeled with a.

2.4-3.1 Factor oracle

The factor oracle built on a string p = P1P2 • • • Pm is a deterministic acyclic
automaton that has m + 1 states and m to 1m — 1 transitions. We denote
its transition function by S.

The m + \ states correspond to the m +1 positions between the characters
of p, including a first position 0 before the whole pattern. A state 0 < i < m
corresponds to the prefix p\ .. .pi.

The first m transitions spell out the pattern itself in a line; for 0 < i < m,
we build a transition from state i — 1 to i labeled pi. In practice, these
transitions and states can be stored implicitly with the pattern itself.

Then, we build what we call the "external transitions," of which there are
at most 771 — 1. We associate to each state i another state j < i, called its
"supply state" and denoted j = S(i). This function is the "supply function."
It is built together with the external transitions. S(0) is set to 9.

The construction algorithm proceeds by inspecting each state from 1 to
m. We assume that we have reached state i — \ and begun to inspect the i-th
state. We go down the supply function from state % — 1. We use a variable
k initialized to S(i — 1) and we repeat the following steps.

If k = 9, then S(i) <- 0.
ST2 If k 7̂  9 and there does not exist a transition from state k labeled by pi,

then build a transition from state k to state i by pi, and return to step
STi with k <- S(k).

5T3 If k ^ 9 and there exists a transition from k labeled by p,b leading to a
state j , then set S(i) -(— j and stop processing state i.
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This construction is simple. Moreover, it is clear that it can be done on-
line, which means that we can add the letters pi one after another and build
the new state i and all the new transitions at this time. Pseudo-code for the
on-line construction is given in Figure 2.18. The algorithm is linear in the
size of the pattern.

Oracle_add_letter(Oracle(p = P1P2 • • -Pm), &)
1. Create a new state m + 1
2. S(m,a) <- m + 1
3. k<- S(m)
4. While k / 0 AND 8(k, a) = 6 Do
5. 6(k,a) <- m + 1
6. k <- S(k)
7. End of while
8. If k = 6 Then s <- 0
9. Else s <- S(k,a)
10. 5(m + l ) ^ - s
11. Return Oracle(p = P1P2 • • -Pmcr)

Oracle-on-line(p = pip2 • • Pm)
12. Create Oracle(s) with:
13. One single initial state 0
14. 5(0) <- 0
15. For j e 1 • • • m Do
16. Oracle(p = pip2 . . .pj) <- Oracle_add_letter(Oracle(p = pip2 . . -Pj-i), Pj)
17. End of for

Fig. 2.18. Construction of the factor oracle. The function Oracle_add_letter adds
a letter a to Oracle(p = P1P2 .. -Pm) to get Oracle(pcr). The on-line construction
algorithm adds the letters pi one by one to obtain finally Oracle(p =

The factor oracle built on p recognizes all the factors of p. It really
recognizes more, but not so many in practice, and it recognizes only one
string of size ra, the pattern itself.

To code it, the easiest way in practice is to use a (ra +1) x A table, where
A is the alphabet size of the pattern. This representation has the advantage
of giving 0(1) access time to the transitions, which speeds up the search
algorithm. However, for very long patterns, an implementation in O(ra)
space has to be considered.

2.4-3.2 Search with the factor oracle

The search algorithm with the factor oracle, called Backward Oracle
Matching (BOM), is the simple transcription of the factor search approach
(Figure 2.13). We read backwards in the window the text characters in the
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factor oracle of the reverse pattern prv. If we fail on a letter a after reading
a string u, we know that au is not a factor of p and we can safely shift the
window after the letter a. If the beginning of the window is reached, then,
since the factor oracle recognizes only one string of size \p\, we mark a match
and we shift the window by one character. Pseudo-code for B O M is given
in Figure 2.19.

B O M ( p = pip2 .. .pm, T = i i i 2 . . . i n)
1. Preprocessing
2. Oracle-on- \ine(prv)

S is its transition function
3. Searching
4. pos <— 0
5. W^hile pos < n — m Do
6. Current <— initial state of
7. j •<— m
8. While j > 0 AND Current ^ 9 Do
9. Current <— 6(Current, tpos+j)
10. j:<r- j - 1
11. End of while
12. If Current ^ 9 Then
13. mark an occurrence at pos + 1
14. End of if
15. pos «— pos + j + 1
16. End of while

Fig. 2.19. Pseudo-code of the BOM algorithm.

B O M is 0(mn) time in the worst case. From experimental results it is
conjectured that it is optimal on average.

Fig. 2.20. Factor oracle for the reverse string of "announce".
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Example using English We search for the string "announce" in the text
"CPM_annual_conference_announce". The factor oracle of the reverse pat-
tern of "announce" is given in Figure 2.20.

| CPM_annu | al_conf erence_announce

Reading [ CPM_ann[̂ ] ] in the fac-
tor oracle.

Fail on the next character n.

2. CPFLann ual_conf erence_announce
Fail on the character f.

3. CPM_annual_conf | erence_a | nnounce

Reading [ erence_|T| ] in the fac-
tor oracle.

Fail on the next character _.

4. CPM_annual_conference_ announce

Reading [ announ^cT]e ] in the fac-
tor oracle.

Reading [ annou[n~|ce ] in the fac-
tor oracle.
Reading [ anno| u frice ] in the fac-
tor oracle.

Reading [ ann| o |unce ] in the fac-
tor oracle.

Reading [ an[n~|ounce ] in the fac-
tor oracle.
Reading [ a| n |nounce ] in the fac-
tor oracle.

Reading [ |~a~|nnounce ] in the fac-
tor oracle.

We mark an occurrence.

Reading [ announc|^ej ] in the fac-
tor oracle.

Example using D N A We search for the string ATATA in the sequence AG-
ATACGATATATAC. The factor oracle of the reverse pattern of ATATA is given
in Figure 2.21.

Fig. 2.21. Factor oracle for the reverse string of ATATA.

1. AGATA CGATATATAC 3 . AGATACG ATATA TAC

Reading [ AGAT|_Aj ] in the factor
oracle.

Reading [ AGA|jIjA ] in the factor
oracle.

Reading [ AG|_AJTA ] in the factor
oracle.

Fail on the next character G.

2. AG | ATACG | AT AT AT AC

Fail on the character G.

Reading [ ATAT|_Aj ] in the factor
oracle.

Reading [ ATA[T]A ] in the factor
oracle.

Reading [ AT| A [TA ] in the factor
oracle.

Reading [ A[T]ATA ] in the factor
oracle.

Reading [ [TJrATA ] in the factor
oracle.

We mark an occurrence.
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4. AGATACGA |TATAT | AC

Reading [ TATA|T] ] in the factor
oracle.

Reading [ TATJTJT ] in the factor
oracle.
Reading [ TA[i]AT ] in the factor
oracle.

Reading [ TJTJTAT ] in the factor
oracle.

Fail on the character T.

5. AGATACGAT | ATATA | C

Reading [ ATAT[T] ] in the factor
oracle.

Reading [ ATA|_TJA ] in the factor
oracle.
Reading [ AT] A [TA ] in the factor
oracle.

Reading [ A[T]ATA ] in the factor
oracle.
Reading [ [TJTATA ] in the factor
oracle.

We mark a new occurrence.

6. AGATACGATA | TATAC |

Fail on t he character C.

2.5 Experimental map

We present in this section a map of the efficiency of different string matching
algorithms, showing zones where they are most efficient in practice. The
experiments were performed on a w = 32 bits Ultra Sparc 1 running SunOs
5.6. Texts of 10 megabytes were randomly built, as were the patterns. The
experiments were repeated until we obtained a relative error below 2% with
95% confidence. We tested optimized implementations of all the algorithms
presented. However, only Shift-Or, Horspool, BNDM, and BOM have
a zone in the map, since the others were too slow.

The map is shown in Figure 2.22. We show the length w of a register word
to recall that it is the maximum size of string that BNDM can manage with
a single word implementation.

Results on DNA sequences turn out to be the same as those for a random
text of size 4. A more surprising fact is that results on English are about
the same as those for a random text of size 16.

The map shows clearly that the Horspool algorithm becomes more and
more difficult to beat as the alphabet grows. The BNDM algorithm is
confined to a small zone for small alphabet sizes, but the map does not
reflect its ability to handle extended strings. The Shift-Or wins only for
small strings on very small alphabet sizes.
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English

DNA
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\
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50

BOM

50

1 1 1 ^̂ *"
2 4 16 32 64 128 256

Fig. 2.22. Map of experimental efficiency for different string matching algorithms.

2.6 Other algorithms and references

Many other algorithms exist for searching a string in a text. We give in this
section the most important references on string matching research.

On the Knuth-Morris-Pratt algorithm Many variants exist based on
MP [MP70] and KMP [KMP77], the most important one being the Simon
algorithm [Sim93]. Simon shows that the underlying automaton of KMP
can be completed and stored in an efficient way. Some complete analyses on
KMP can be found in [Reg89]. The Simon algorithm has been analyzed
in [Han93].

On the Boyer-Moore algorithm As for KMP, many variants of BM
[BM77] exist. The principal ones are the Boyer-Moore-Galil [Gal79] and
the Turbo-BM [CGR92] algorithms. The BM algorithm has been analyzed
in [BYGR90, BYR92, Col94]. The underlying automaton was analyzed in
[BYG89a, Cho90, BYCG94, BBYDS96]. The Horspool algorithm has been
analyzed in [MRS96].
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On the Backward Dawg Matching algorithm The BDM algorithm
used together with a KMP algorithm is linear in the worst case. An example
of this is the TurboBDM algorithm [CCG+94], and another is TurboRF
[CCG+94]. The Double Forward Dawg Matching algorithm [AR00] is
the simplest worst-case linear time and optimal on average.

Constant space algorithms In 1981 there appeared in [GS81] the first
linear time string matching algorithm that uses only a constant amount of
additional space. Since then, many others have appeared [CP91, Cro92,
CR95]. Finding a constant space algorithm that is optimal on average is an
open problem.

Hashing The most famous hashing algorithm is Karp-Rabin [KR87]. It
is analyzed in [GBY90].
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