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18 Combinatorial Puzzles

1 Stringologic Proof of Fermat’s Little Theorem

In 1640 the great French number theorist Pierre de Fermat proved the following
property:

If p is a prime number and £ is any natural number
then p divides kP — k.

The statement is known as Fermat’s little theorem. For example:

7 divides 27 — 2 and 101 divides 10101 — 10.

| Question. Prove Fermat’s little theorem using only stringologic arguments.

[Hint: Count conjugacy classes of words of length p.]

Solution

To prove the property we consider conjugacy classes of words of the same
length. For example, the conjugacy class containing aaaba is the set
C(aaaba) = {aaaab,aaaba,aabaa,abaaa,baaaa}. The next fact is
a consequence of the Primitivity Lemma.

Observation. The conjugacy class of a primitive word w contains exactly |w|
distinct words.

Let us consider the set of words of length p, a prime number, over the
alphabet {1,2,...,k} and let Sx(p) be its subset of primitive words. Among
the k” words only k of them are not primitive, namely words of the form a”
for a letter a. Thus we arrive at the following observation.

Observation. The number |Si(p)| of primitive words of length p, a prime
number, on a k-letter alphabet is k” — k.

Since words in Si(p) are primitive, the conjugacy class of each of them is
of size p. Conjugacy classes partition S (p) into sets of size p, which implies
that p divides k” — k and that there are (k” — k)/p classes. This proves the
theorem.

Notes

When a word w = u? of length n on a k-letter alphabet has a primitive root u
of length d, we have n = gd and the conjugacy class of w contains d elements.
Running d over the divisors of n we get the equality k" = X{dyx(d) :
d divisor of n}, where v (m) denotes the number of classes of primitive words
of length m. It proves the theorem when # is prime. Further details are in the
book by Lothaire [175, chapter 1].
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2 Simple Case of Codicity Testing 19

2 Simple Case of Codicity Testing

A set {wy,ws, ..., w,} of words drawn from an alphabet A is a (uniquely
decipherable) code if for every two sequences (noted as words) i1is - - - iy and
J1j2 -+ je of indices from {1,2, ...,n} we have

g+ ip # jij2 - Je = WiWiy - Wiy 7 WjWj, - W

In other words, if we define the morphism A from {1,2,...,n}* to A* by
h(@i) = w;, fori € {1,2,...,n}, the condition means that the morphism is
injective.

For an arbitrary integer n there is no known linear-time algorithm for testing
the codicity property. However, the situation is extremely simple for n = 2: it
is enough to check if the two codewords commute, that is, if wjwy = wow;.

| Question. Show that {x, y} is a code if and only if xy # yx.

Solution
A proof idea is given on page 5 as a consequence of the Periodicity Lemma.
Below is a self-contained inductive proof.

If {x,y} is a code, the conclusion follows by definition. Conversely, let us
assume {x,y} is not a code and prove the equality xy = yx. The equality
holds if one of the words is empty, so we are left to consider the two words are
not empty.

The proof is by induction on the length of |xy|. The induction base is the
simple case x = y, for which the equality obviously holds.

Assume that x # y. Then one of the words is a proper prefix of the other
and assume w.l.o.g. that x is a proper prefix of y: y = xz for a non-empty
word z. Then {x, z} is not a code because the two distinct concatenations of x’s
and y’s producing the same word translate into two distinct concatenations of
x’s and z’s producing the word.

The inductive hypothesis applies because |xz| < |xy| and yields xz = zx.
Consequently xy = xxz = xzx = yx, which shows that the equality holds for
x and y, and achieves the proof.

Notes
The same type of proof shows that {x,y} is not a code if x* = y* for two
positive integers k and .

We do not know if there is a special codicity test for three words in terms of a
fixed set of inequalities. For a finite number of words, an efficient polynomial-
time algorithm using a graph-theoretical approach is given in Problem 52.
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3 Magic Squares and the Thue-Morse Word

The goal of the problem is to build magic squares with the help of the infinite
Thue—Morse word t on the binary alphabet {0, 1} (instead of {a,b}). The word
t is «°°(0) obtained by iterating the morphism u defined by 1 (0) = 01 and
u(l) =10:

t=01101001100101101001---.

The n x n array S,,, where n = 2™ for a positive natural number m is defined,
for0 <i,j < n, by

Suli, j1 = tTk1(k + 1) + (1 — tIk]) (n* — k),

where k = i.n + j. The generated array Sy is

The array is a magic square because it contains all the integers from 1 to 16
and the sum of elements on each row is 34, as well as the sums on each column
and on each diagonal.

Question. Show the n x n array S, is a magic square for any natural number
n power of 2.

Solution

To understand the structure of the array S, let 7, be the Thue—Morse
2-dimensional word of shape n x n, where n = 2", defined, for 0 < i,j < n,
by T,[i, j] = tli.n + j]. The picture displays 74 and T3, where * substitutes
for 0 and space substitutes for 1.
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3 Magic Squares and the Thue—Morse Word 21

Notice that the table 7,, satisfies two simple properties:
(1) Every row and every column is made up of blocks 0110 and 1001.

(i) Each of the two main diagonals is homogeneous, consisting only of 0’s or
only of 1’s (respectively stars and spaces on the picture).

It is clear from the definition that the n x n matrix §,, is filled with all the
integers from 1 to n2. To prove it is a magic square we have to show that the
sum of all entries in any row, in any column or in any of the two diagonals is
the same, that is, %(n2 +1).

Correctness for rows. According to property (i) each block in a row is of type
0110 or type 1001. Consider a block 0110 whose first element is the kth
element in the array. Then

Stkk+1,k+2k+3l=[n?—k k+2 k+3,n%—k—3],

which sums to 2n2 + 2. For a block whose type is different from 0110 we get
[k+1,n%2 —k — 1,n? — k — 2,k + 4], whose sum is the same value. Since we
have n /4 such blocks in a row, the sum of all their contributions is

n n
— . 2n?+2) = —m?+1
4(n+) 2(”+),

as required.
The correctness for columns can be shown similarly.

Correctness for diagonals. Let us consider only the diagonal from (0,0) to
(n — 1,n — 1) since the other diagonal can be treated similarly. Entries on the
diagonal are 1,1+ (n+1),14+2(n+1),...,14+m—1)(n+1), listed bottom-up.
Their sum is
n—1 n n
1 | = D=(n—1) = =(n*>+1),

n+ (n + ),-Z(;l nt (D=1 =20+ 1)

as required.
This achieves the proof that S, is a magic square.

Notes
More on magic squares and their long history may be found on Wikipedia:
https://en.wikipedia.org/wiki/Magic_ square.
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4 Oldenburger-Kolakoski Sequence

The Oldenburger—Kolakoski sequence is an autodescriptive and self-
generating infinite sequence of symbols {1, 2}. More technically, it is its own
run-length encoding. The sequence, denoted here by K, is one of the strangest
sequences. Despite the simplicity of its generation it appears to have a random
behaviour.

By a block of letters in a word we mean a run of letters, that is, a maximal
factor consisting of occurrences of the same letter. The operation blocks(S)
replaces each block of a word § by its length. For example,

blocks(2111221222)=13213.

The sequence K is the unique infinite sequence over the alphabet {1, 2} that
starts with 2 and satisfies blocks(K) = K.

Remark. Usually the sequence is defined to start with 1, but it is more
convenient here that it starts with 2. In fact, these are the same sequences after
removing the first occurrence of 1.

Question. Show that we can generate online the first n symbols of the
sequence K in O (n) time and O (logn) space.

[Hint: Produce K by iterating 4 = blocks™" from 2.]
The very small space used for the generation of K is the most interesting
element of the question.

Solution
As h is defined, h(x) = y if and only if y starts with 2 and blocks(y) = x.

How to generate 4**!(2) from 1% (2). Let x = #*(2). Then y = A*t1(2) =
h(x) results by replacing the letter x[i] of x either by x[i] occurrences of letter
2 if i is even or by x[i] occurrences of letter 1 if i is odd. The word K is the
limit of K; = h¥(2) when k goes to infinity. The first iterations of & give

h(2) =22

h%(2) =2211
h(2)=221121
h*(2) =221121221

We leave for the reader the following technical fact.

Observation. n = O (log |K,|) and )} |Ki| = O (K, ).
Let T be the parsing tree associated with K,,. Its leaves correspond to
positions on K. For a position i, 0 < i < |K,|, RightBranch(i) denotes
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4 Oldenburger—Kolakoski Sequence 23

the path from the ith leaf upwards to the first node on the leftmost branch of
the tree (see picture).

2 2
|----—..__..._ | \\\\\\\\\

2 2 1 1
2 2 1 1 2 1
T~ I T~
2 2 1 1 2 1 2 2 1
N IN | |1 BN IN |
2 2 1 1 2 1 2 2 1 2 2 1 1 2
IN IN LT IN N TININ T IN
2 2 1 1 2 1 2 2 1 2 1 1 2 1 1 2 2 1 2 1 1

The figure illustrates the parsing tree of Kg = h°(2). Each level represents
hk2) for k = 0,1,...,6. The RightBranch of position 10 (circled leaf)
consists of the thick edges and their endpoints. It starts from the leaf and goes
up to finish at the first node on the leftmost branch.

To every node on the RightBranch is attached one bit of information: the parity
of the numbers of nodes to the left on its level.

If for each node we know its label and whether it is a left child, then
from RightBranch(i) the symbol at position (i + 1) as well as the whole
RightBranch(i + 1) are computed in logarithmic space and amortised constant
time due to the observation (since lengths of paths are logarithmic and the size
of the whole tree is linear). The process works as follows on a suffix of the
RightBranch. It goes up the tree to find the first left child, then goes down to
the right from its parent and continues until it reaches the next leaf. Basically
it goes up to the lowest common ancestor of leaves i and i + 1 and in a certain
sense each iteration can be seen as an in-order traversal of the parsing tree
using small memory.

The RightBranch may grow upwards, as happens when changing
RightBranch(13) to RightBranch(14) in the example. This is a top-level
description of the algorithm and technical details are omitted.

Notes

The Oldenburger—Kolakoski sequence, often referred to as just the Kolakoski
sequence, was designed by Oldenburger [197] and later popularised by
Kolakoski [166]. The sequence is an example of a smooth word, see [46]. Our
sketch of the algorithm is a version of the algorithm by Nilsson [195]; see also
https://en.wikipedia.org/wiki/Kolakoski sequence.
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5 Square-Free Game

A non-trivial square is a word over an alphabet A of the form uu, where
|u| > 1, and it is an odd-square if in addition |u| is an odd number.

The square-free game of length n over A is played between two players,
Ann and Ben. The players extend an initially empty word w by alternately
appending letters to the word. The game ends when the length of the emerging
word is n or a non-trivial square has been created earlier. We assume that Ben
makes the first move and that n is even. Ann wins if there are no non-trivial
squares in the final word. Otherwise, Ben is the winner.

Odd square-free game. In this limited game Ann wins if no odd-square
occurs. On the alphabet A = {0,1,2} we describe Ann’s winning strategy
as follows. Ann never makes the same move as Ben’s last move, and if Ben
repeats Ann’s last move then she does not repeat his previous move.

To do so, Ann remembers the pair (b,a), where a is the letter appended
during her previous move and b is that from Ben’s previous move. In other
terms, the word w is of even length and after the first move is of the form w =
vba. Then Ben adds ¢ and Ann responds by adding d to get w = vbacd, where

a if ¢ # a,

- 3—b—a otherwise.

Ann behaves like a finite deterministic automaton whose output has six states.
A possible sequence of moves starting with 12, potentially winning for
Ann, is

12122010021220.

Question. (A) Show that Ann always wins against Ben in the odd square-
free game of any even length n.

(B) Describe a winning strategy for Ann in the square-free game over an
alphabet of size 9.

[Hint: To prove (A) show w contains no odd-square. For point (B) mix a
simple even-square strategy with the former strategy.]

Solution

Point (A). We show point (A) by contradiction that Ann’s strategy is win-
ning and assume the word w (history of the game) contains an odd-square
uu (Ju] > 1).
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5 Square-Free Game 25

Case 1. The first letter of uu is from a move by Ben.
The square is of the form

uu = boaibyarby - - - ay by a(')b/laib/zaé .- ~b,’{a,'<,

where the letters b; and b} correspond to Ben’s moves and the others to Ann’s
moves.

Since uu is a square we get by = aj, a; = b, ..., by = a;. Due to Ann’s
strategy we have a; # by, ay # by, etc.; that is, each two adjacent letters in uu
are distinct. In particular, this implies that Ben never repeats the last move of
Ann in uu.

Consequently all moves of Ann are the same; that is, all letters a;, a} are the
same. Hence a; = a,’( but at the same time a,’C = by, since uu is a square. This
implies by = ax and that Ben repeats the last move of Ann, a contradiction.
This completes the proof for this case.

Case 2. The first letter of uu is from a move by Ann.
The square is of the form

uu = apbraibyay - - - bray byaibiaybl - - - apby,

where as before the letters b;, b;. correspond to Ben’s moves and the others to
Ann’s moves.

Similarly to the previous case we can prove that Ben always makes a move
different from the last move of Ann, except that it can happen that a; = by,

If so, a; # by, since aj = 3 —ax — b, and later @] = a) = - = qa;.
Consequently a; # by but at the same time a; = by, since uu is a square, a
contradiction.

If ap # b6 all moves of Ben are different from those of Ann, who
consequently always does the same move in uu. This leads to a contradiction
in the same way as in case 1.

This completes the proof of this case and shows that Ann’s strategy is
winning.

Point (B). If the game concerns non-trivial even squares on the alphabet
{0,1,2} a winning strategy for Ann is extremely simple: in her kth move
she adds the kth letter of any (initially fixed) square-free word over the same
alphabet.

Combining in a simple way strategies (using them simultaneously) for non-
trivial odd and even square-free games, Ann gets a winning strategy avoiding
general non-trivial squares on a 9-letter alphabet. The alphabet now consists of
pairs (e, e’) of letters in {0, 1, 2}. The history of the game is a word of the form
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w = (e1,€))(e2,€}) - - - (ex.,e;) for which ejes - - - ¢ contains no odd-square
and e} ¢, - - - e; contains no non-trivial even square.

Notes

The solution of the game presented in the problem is described in [132], where
the number of letters was additionally decreased to 7 using more complicated
arguments. However, a flaw was discovered by Kosinski et al.; see [169], where
the number of letters is reduced just to 8.

6 Fibonacci Words and Fibonacci Numeration System

Let r(m) denote the Fibonacci representation of a non-negative integer m.
It is a word x of length ¢ on the alphabet {0,1} ending with 1 except for
m = 0, containing no two consecutive occurrences of 1 and that satisfies
m = Zf;é x[i] - Fi42, where Fj; is the (i + 2)th Fibonacci number (recall
that Fp =0, F1 =1, F, =1, F3 =2, etc.).

For example: r(0) = 0,r(1) = 1,r(2) = 01,r(3) = 001,r(4) = 101,
r(5) = 0001, r(6) = 1001, r(7) = 0101.

Note that the usual positional Fibonacci representation of an integer m is
r(m)R, the reverse of r(m). Also note that Fibonacci coding used to encode an

integer m in a data stream is r ()1, terminating with 11 to allow its decoding.

Question. Show that the sequence of first digits of Fibonacci representations
of natural numbers in increasing order is the infinite Fibonacci word when
letters are identified to digits: a to 0, b to 1.

Let pos(k,c), k > 0, denote the position of the kth occurrence of letter ¢ in
the infinite Fibonacci word f.

Question. Show how to compute the position of the kth occurrence of letter
a in the Fibonacci word f in time O (log k). The same applies for the letter b.

[Hint: Show the following formulas: r(pos(k,a)) = 0 - r(k — 1) and
r(pos(k,b)) = 10 -r(k — 1).]
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Solution

To understand the structure of Fibonacci representations, let us consider the
rectangle R, whose rows are representations of the first | fib,,| = F,42 natural
numbers. Representations are possibly right padded with 0’s to get n digits.
The rectangles are given by the recurrence shown in the picture below.

L0
| |
0 0,0
: Rn+l :
5 00 100 !
Ry = Ry= |1 0 R3= |0 10| Rop2= | 0
01 0,0 1 101
1'0 1 Ry
|
1

Answer to the first question. Rows of rectangles Ry and R, are representa-
tions of first | fib;| and | fib,| integers in increasing order respectively. Let us
show by recurrence it holds for R,;2, n > 0. Indeed, the first |fib, ;| rows
of R,1> are representations padded with 0 of the first |fib, ;| integers by the
recurrence hypothesis. The next |fib,| rows are representations of the form
X - 01 (they cannot end with 11). Since x is a row of R, and using again the
recurrence hypothesis, the next rows represent the next |fib,,| integers, which
shows that R, 4, satisfies the property and ends the recurrence.

It is clear from the recurrence that the sequence of first digits (the first
column at the limit) corresponds to the infinite Fibonacci word. This answers
the first question.

Answer to the second question. The limit of tables R,, is the infinite table R
of Fibonacci representations of all consecutive natural numbers in increasing
order. In each row, letters to the right of the rightmost occurrence of 1 are
non-significant digits equal to zero.

Zeros in the first column of Ry, correspond to a’s in the Fibonacci word.
Rows starting with 0’s are of the form

0-x9, 0-x1, 0-xp, ...,
where
X0, X1, X2, ...

is the sequence of representations of consecutive natural numbers.

Hence the kth zero corresponds to x;x_; and occurs at position 0 - xz_1,
which gives r(pos(k,a)) =0 -r(k — 1).

Similarly we get r(pos(k,b)) = 10 - r(k — 1), since all rows containing 1
in the first column of R, start in fact with 10.
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Therefore, computing the kth occurrence of a letter in the Fibonacci word
amounts to computing the Fibonacci representation of an integer and doing the
inverse operation, both taking O (log k) time as expected.

0 a |000O0O
1 Db |1 0000
2 a |01 000
positions of the 3 aloo100
4 b1 0100
5th occurrence of a: 5 ajooo0o10
0-10)p=7 6 b |1 0010
7 a |01 010
8§ a |[000 01
4th occurrence of b: 9 b l10001
(10-00D)g =9 0 alo1001
11 a |[00101
12 b |1 0101
Notes

The problem material is by Rytter [216].

7  Wythoff’s Game and Fibonacci Word

Wythoff’s game, a variant of the game of Nim, is a two-player game of strategy.
It is played with two piles of tokens, one being initially non-empty. Players take
turns removing either a positive number of tokens from one pile or the same
number of tokens from both piles. When there are no tokens left, the game
ends and the last player is the winner.

A configuration of the game is described by a pair of natural numbers (m, n),
m < n, where m and n are the number of tokens on the two piles. Note that
(0,n) as well as (n,n), n > 0 are winning configurations. The smallest losing
configuration is (1,2) and all configurations of the form (m + 1,m +2), (1,m)
and (2,m) for m > 0 are winning configurations.
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It is known that losing configurations follow a regular pattern determined
by the golden ratio. Thus we pose the following question.

Question. Is there any close relation between Wythoff’s game and the
infinite Fibonacci word?

Solution

Losing configurations in Wythoff’s game are closely related to the Fibonacci
word. Let WytLost denote the set of losing configurations. It contains pairs of
the form (m,n),0 < m < n:

WytLost = {(1,2), (3,5), (4,7),(6,10), (8,13), .. .}.
Denoting by (my,ny) the kth lexicographically smallest pair of the set we get
WytLost = {(m1,n1), (m2,n2), (m3,n3), ...},

withmi <my <m3 <---andn; <np, <nz < ---

Let pos(k,c), k > 0, denote the position of the kth occurrence of the letter ¢
in the infinite Fibonacci word f. The following property relating f to Wythoff’s
game is stated as follows.

Fact 1. my = pos(k,a) + 1 and ny = pos(k,b) + 1.
Let M = {m1,my,m3, ...} and N = {ny,n2,n3, ...}. The following fact is
well known and not proved here.

Fact 2.
OMNON=@and MUN ={1,2,3,...}.
(ii) ng = my + k for every k > 0.

Fact 2 is used to derive Fact 1. It is enough to prove that both properties (i)
and (ii) hold for the sets M’ = {pos(k,a) + 1 : k > 0} and N’ = {pos(k,b) +
1:k> 0}

Property (i) obviously holds and property (ii) follows from the hint pre-
sented and proved in Problem 6:

r(pos(k,a)) = 0-r(k—1) and r(pos(k,b)) = 10 -r(k — 1),

where r (i) stands for the Fibonacci representation of the natural number i. To
show that pos(k,b) + 1 — pos(k,a) + 1 = k it is sufficient to prove that for
any Fibonacci representation x of a positive integer we have (10x)r— (0x)f =
(x)r+ 1, where (y)r denotes the number i for which » (i) = y. But this follows
directly from the definition of the Fibonacci representation and achieves the
proof.

https://doi.org/10.1017/9781108835831.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108835831.003

30 Combinatorial Puzzles

Notes

The game was introduced by Wythoff [240] as a modification of the game of
Nim. He discovered the relation between losing configurations and the golden
ratio; see https://en.wikipedia.org/wiki/Wythoff's game.
Specifically, the kth losing configuration (mg,nr), k > 0, is given by
my = |k®] and ny = |k®%] = my + k. He also showed that sequences
of my’s and of ny’s are complementary; that is, each positive integer appears
exactly once in either sequence.

Another consequence of the above properties is a surprising algorithm that
generates the infinite Fibonacci word (or prefixes of it as long as required).
To do so, assume we start with the infinite word Fib = L°° and apply the
following instruction.

1 fork < 1toocodo

2 i < smallest position on Fib of LI
3 Fib[i] < a

4 Fibli + k] < b

Then properties (i) and (ii) imply Fib becomes the Fibonacci word.

8 Distinct Periodic Words

In this problem we examine how much different two periodic words of the
same length can be. The difference is measured with the Hamming distance.
The Hamming distance between x and y of the same length is HAM(x,y) =
{Jj = x[j1# yliBI.

We consider a word x whose period is p, a word y of length |x| whose
period ¢ satisfies ¢ < p and we assume there is at least a mismatch between
them. Let i be the position on x and on y of a mismatch, say, x[i] = a and
y[i] = b. On the picture x = u?, |u| = p,and |v| = q.

https://doi.org/10.1017/9781108835831.003 Published online by Cambridge University Press


https://en.wikipedia.org/wiki/Wythoff's_game
https://doi.org/10.1017/9781108835831.003
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Example. Let x = (abaababa)? of period 8 and y = (abaaa)’a of
period 5. The words are distinct and have more than one mismatch. They are
at positions 4, 9, 11, 12 and 14.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Question. What is the minimal Hamming distance between two distinct
periodic words of the same length?

[Hint: Consider different cases of position i according to periods p and q.]

Solution

Since x is periodic its length is at least 2p. W.l.o.g. it can be assumed that
x = x[0..2p — 1] = u®. By symmetry we can also consider the mismatch
position i satisfies 0 <i < p.Letv = y[0..q — 1] be the prefix period of y.
Note that # and v are primitive words.

For example, aa and bb of period 1 have exactly two mismatches, as well
as bbcabcbbcabce and abcabeabeabe of respective periods 6 and 3. In
fact, if p is a multiple of ¢, that is, p = hq for a positive integer #, it is clear
that there is another mismatch at position i + p. Then HAM(x, y) > 2.

If p is not a multiple of g, we prove the same inequality by contradiction,
then assume the two words x and y match except at position i on them. Let us
consider three cases illustrated by the three pictures that follow.

0 i p
a

Case i > g. The word v as a prefix of # occurs at position p on both x
and y. It is then an internal factor of v2, which contradicts its primitivity by
the Primitivity Lemma.
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0 i i+q p
x u b [ u
y bi v | biv [ v [

Casei < gandi+q < p.Since y[i] = y[i +¢q] = x[i + ¢q], we get
x[i] # x[i + q]. Then q is not a period of u though its occurrence at position
p has period ¢, a contradiction.

0 i P i+p
X a [ a
y v b| | v [ [ v
w

Casei <gandi+ g > p.Letus first show that w = y[i +1..i + p — 1]
has period p — ¢. Indeed, for a position j, ifi < j < p we have

yUl=xljl=xlj+pl=ylj +prl=yli +p—4q]
andif p < j <i+gq, we get
yil=ylj—ql=xlj —ql=xlj + p—ql

Then, w of length p — 1 has period p — ¢ in addition to period g as a factor
of y longer than v. The Periodicity Lemma implies that gcd(q, p — ¢) is also a
period, which contradicts the primitivity of v because p — g < q.

To conclude, when p is not a multiple of ¢, we have HAM(x, y) > 2 as before,
which achieves the whole proof.

Notes
A different proof of the result is by Amir et al. [12], and more developments
can be found in [9].
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9 A Relative of the Thue-Morse Word

Let ¢ = (cp,c1,02, ...) be the least increasing sequence of positive integers
starting with 1 and satisfying the condition

(%) neC<sn/2¢C,

where C is the set of elements in the sequence c. The first elements of the
sequence ¢ are

1,3,4,5,7,9,11,12,13,15,16,17, 19,20, 21, 23,25,27,28,29, . ..

Observe both that all odd integers are in the sequence and that gaps between
two consecutive elements are either 1 or 2.

Question. What is the relation between the sequence ¢ and the infinite
Thue—Morse word t?

Solution

Recall the Thue-Morse word t is ©*°(a), where the morphism u is defined
from {a, b} to itself by u(a) = ab and u(b) = ba. Let end-pos(x,y) denote
the set of ending positions of occurrences of a word x inside a word y.

Key property. For a positive integer n,
(k%) n & C < n € end-pos(aa, t) U end-pos(bb, 7).

The table below shows a prefix of t and a few first elements of C associated
with it (even values in bold) to illustrate the property.

o 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17

t a b b a b a a b b a a b a b b a b a
c 1 3 4 5 7 9 11 12 13 15 16 17

From its definition, the word t satisfies, for k > O:
() t[n] =tk]and t{n — 1] = t[k]if n = 2k + 1.

(i) t[n] = t[k] and t[n — 1] = t[k — 1] if n = 2k.

Then property (i) rules out equivalence (xx) for odd integers and property (ii)
does it by induction for even integers, which shows the relation between ¢
and t.

Notes
Referring to the equivalent definition of the Thue—Morse word using the parity
of the number of 1’s in the binary representation of integers (see page 8)

https://doi.org/10.1017/9781108835831.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108835831.003

34 Combinatorial Puzzles

the property ‘n € C < v(n) is even,” where v(n) denotes the length of the
end-block of 0’s in the binary representation of n and also characterises the
sequence c¢. (Note v(n) = 0 if and only if # is odd.)

10 Thue-Morse Words and Sums of Powers

For a finite set of natural numbers I let Sumy (1) = Zie I k_Given two finite
sets I and J of natural numbers we consider the property P(n, I, J):

for any k,0 < k < n, Sumy(I) = Sumi(J),

which we examine with regards to sets of positions on the nth Thue—Morse
word 7, of length 2". Namely, the sets are

Ta(n) ={i : tali]l = a} and T, (n) = {j : T[j] = b}.
For example, the Thue—-Morse word 73 = abbabaab provides
T2(3) ={0,3,5,6} and T, (3) = {1,2,4,7}.

The property P(3, T5(3), T, (3)) holds due to the equalities:
04+3+5+6=14+2+4+7= 14,
02 +32+524+6>=12+22+42+7> =170.

Question. Show that the property P(n, T3 (n), Ti; (1)) holds for any integer
n>1.

Solution
For a natural number d let I 4+ {d} = {a +d : a € I}. Note the following fact,
whose proof is a matter of simple calculation, for any number d and sets I, J.

Observation. Assume P(n, I, J) holds. Then the two other properties hold as
well:

P, I +{d},J +{d) and P(n + 1,1 U (J +{d}),J U (I +{d})).
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The solution of the problem, that is, the proof of the statement in the question,
reduces then to a simple induction on n, using the observation above and the
following recurrence on n > 1:

Ta(n+ 1) = Ta(n) U (T (n) +2") and Ty (n + 1) = T (n) U (Ta(n) +27).
Notes

The present problem is a particular case of the so-called Tarry—Escott problem;
see [6].

11 Conjugates and Rotations of Words

Two words x and y are conjugate if there exist two words u and v for which
x = wuv and y = vu. They are also called rotations or cyclic shifts of one
another. For instance, the word abaab = aba-ab is a conjugate of ababa =
ab - aba. It is clear that conjugacy is an equivalence relation between words
but it is not compatible with the product of words.

Below are the seven conjugates of aabaaba (left) and the three conjugates
of aabaabaab (right).

aabaabaab
abaabaaba
baabaabaa

aa
a

[oaNenNoN

Q00w

UV UREURR)
oOoooDOoUT
VIV RO URE U]
[CINURECRNURR U]
UV UREURR)
oooUo0
VNNV

a
ab

Question. Show that two non-empty words of the same length are conjugate
if and only if their (primitive) roots are conjugate.

On the above example, aabaabaab = (aab)? and baabaabaa =
(baa)? are conjugate, like their respective roots aab and baa.
A more surprising property of conjugate words is stated in the next question.
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Question. Show that two non-empty words x and y are conjugate if and
only if xz = zy for some word z.

On the above example (left), aabaaba and baabaaa are conjugate and
aabaaba - aa = aa - baabaaa.

Solution
Assume words x and y of the same length have conjugate roots. Let uv be the
root of x and vu be the root of y. Then x = (uv)k and y = (vu)k with k > 0,
since they have the same length. Thus x = u - v(uv)k_1 and y = v(uv)k_1 -u,
which shows they are conjugate.

Conversely, assume x and y are conjugate and let u and v be such that
x = uv and y = vu. Let z be the root of x and k > 0 with x = zX. Let also u’
and v’ be defined by z = u’v’, u’ is a suffix of u and v’ is a prefix of v.

Then, y = vu = (V'u')K'v' W' v)* u’, where kK’ + k" = k — 1. This gives y =
(v'u’)* and shows that the root 7 of y satisfies || < |u'v’| = |z| using Lemma 2.
But since the roles of x and y are symmetric, this also proves |z| < |¢| and thus
|z| = |t] and t = v'u’. Therefore, the respective roots z and ¢ of x and y are
conjugate.

To answer the second question, let us first assume x and y are conjugate,
that is x = uv and y = vu. Then xu = (uv)u = u(vu) = uy, which proves
the conclusion with z = u.

Conversely, assume xz = zy for some word z. For any positive integer £
we get x'z = x'"lzy = x72zy? = ... = zy’. This is illustrated by the next
diagram, expansion of the initial left square diagram associated with xz = zy,
in which o denotes the concatenation.

X X X X
o [¢] (¢] » O —> O
JZ {Z {Z JZ Z Z
y y y vy
(@] (@] O O » O —>

Considering the integer k that satisfies (k — 1)|x| < |z| < k|x], z is a proper
prefix of x¥ at least as long as x*~! (k = 3 in the picture below).
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Then, there exist two words u and v for which x = uv and z = x*lu. It
follows that xz = (uv)*u = zvu, which implies y = vu from the condition
xz = zy. Therefore x and y are conjugate.

Notes
Conjugacy of words is intimately related to their periodicity as seen on page 3.
More on conjugate words may be found in Lothaire [175].

12 Conjugate Palindromes

The problem is related to the two operations on words consisting of reversing
a word and taking one of its conjugate. The operations are essentially incom-
patible in the sense that only a few conjugates of a word are also its reverse.

To examine the situation, we consider palindromes that are conjugates of
each other. For example, the words abba and baab are both palindromes
and conjugate of each other. On the contrary, the word aabaa has no other
conjugate palindrome, that is to say, its conjugacy class contains only one
palindrome.

Question. What is the maximal number of palindromes in the conjugacy
class of a word?

[Hint: Consider the primitive root of two conjugate palindromes.]

The conjugacy class of abba, set {abba,bbaa,baab,aabb}, contains
only two palindromes. This is also the case for the word (abba)® whose
conjugacy class contains abbaab baabba and baabba abbaab, two palin-
dromes. But the conjugacy class of (abba)? has only one palindrome among
its four conjugates.
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Solution
The preceding examples suggest a conjugacy class contains no more than two
palindromes. Before showing it we prove an intermediate result.

Lemma 4 If x # xR and xx® = w* for a primitive word w and a positive
integer k, then k is odd and w = uu® for some word u.

Proof If k is even, xx® = (w*/2)2 and then x = xR, a contradiction. So & is
odd and then |w]| is even. Let w = wv with |u| = |v|. Since u is a prefix of x

and v is a suffix of xR, we getv = uR, as expected. ]

For two non-empty words x and y, assume the conjugate words xy and
yx are distinct palindromes. We have both xy = (xy)R = yRxR and yx =
()R = xRyR.

To prove that no more than two palindromes can be conjugate we first show
that xy = (uu®)* and yx = (uRu)¥, where k is a positive integer and u is
a word for which uu®R is primitive. There are two cases according to x and y
having the same length or not.

If [x| = |y|, we have y = xR, which implies xy = xx® and yx = xRux.
In addition, x # xR because of the hypothesis xy # yx. Using the result of
Lemma 4, the primitive root of xy is of the form uu® and xy = (uu®)¥ for

some odd integer.

X y y X

Z [ x TR

If |x] # |y|, wlo.g. we assume |x| < |y| (see picture). Then, x is a
proper border of y® and xR is a proper border of y, which implies that xx®
is a proper border of xy. The word z = (x®)~!y is also a border of xy.
Then the word xy has two periods |xx®| and |z| that satisfy the Periodicity
Lemma condition. Thus ¢ = ged(|xxR|,|z]) is also a period of xy and divides
its length. Considering the primitive root w of xy, the latter word is of the
form w*, k > 1, where p = |w] is a divisor of ¢g. Using Lemma 4 again, the
primitive root is of the form uu®, with u # u®R because it is primitive. Then
xy = (uuR)¥, where k is an odd integer.

Whether x and y have the same length or not, we get the same conclusion.
To achieve the proof we just have to consider the conjugacy class of a
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palindrome (uu®)* where uu®R is primitive. Such a class contains another
palindrome, namely (uRu)F.

Since conjugates of (uRu)¥ are of the form (s7)* where st is a conjugate of
uu®, applying the above argument again, the inequalities u # u® and s # u®
would lead to a contradiction with the primitivity of uu®. This achieves the
proof that a conjugacy class contains no more than two palindromes.

Notes
The result of this problem is by Guo et al. [133] and the present proof is adapted
from their article.

13 Many Words with Many Palindromes

The problem deals with the number of words containing as many palindrome
factors as possible. A word w is called palindrome rich if it contains |w|
distinct non-empty palindromes as factors, including single-letter palindromes.

Example. The words poor, rich and abac are rich, while the words
maximal and abca are not. Indeed, the set of palindromes occurring in abac
is {a,aba,b, c}, while it is {a,b, c} for abca.

Let Richy(n) denote the number of rich words of length n over an alphabet
of size k.

Note that each position on a word is the (starting) position of the rightmost
occurrence of a palindrome that it contains at most once. This is due to the
fact that a second shorter palindrome sharing the position would be a proper
suffix of the longer palindrome and then would occur later, a contradiction.
This implies the following fact.

Observation. There are at most |w/| palindromes, factors of a word w.
The most interesting case to discuss is that of binary words, that is, k = 2,
because we have
Richy(n) =2" forn < 8,
Richy(n) < 2" forn > 8.
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Question. Show that Rich,(2n) grows exponentially; that is, there is a
positive constant ¢ for which Rich, (2n) > 2°".

[Hint: Use the fact that the number of partitions of integers grows
exponentially.]

Solution
Consider all partitions of the number n into different positive integers:

n=ny+ny+---+ngandn; <ny <--- < ng.

For each such partition ¥ = (ny,ny, ...,n) let us consider the word w, of
length n + k — 1 defined as follows:

wy; = a"lba™b...ba"t.

It is fairly easy to see that the word w, is palindrome rich.

The figure below displays non-unary palindromes occurring in the word
aba’ba’ba’ba® of length 21 associated with the partition of 17 (1,2,3,5,6).
In addition to the 14 palindromes shown in the picture, the word contains the
unary palindromes a, aa, aaa, aaaa, aaaaa, aaaaaa and b for a total of
21 palindromes.

aabaaaaa aaaaaa

)

Appending b"**1 to w, produces the word v; = w,b" %! of length
2n that contains the additional palindromes ba b, b2, b3, ..., b"%*1 Then
vy 18 also rich. It is known that the number of partitions of an integer n
into pairwise distinct positive integers grows exponentially with n. Hence
Richy(2n) also grows exponentially with .

Notes
The problem is based on the survey by Glen et al. [130] on the palindromic
richness of words.
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14  Short Superword of Permutations

The goal of the problem is to show that a certain set of patterns can be
packed into a single word in a space-economic way. This can be viewed as
a compression technique for the specific set.

The present patterns called n-permutations are drawn from the alphabet of
natural numbers. They are words on the alphabet {1,2, ...,n} in which every
number from {1,2,...,n} appears exactly once. The aim is to build words,
called n-superwords, which contain all the n-permutations as factors.

For n = 2 the word 121 is a shortest 2-superword, since it contains the two
2-permutations 12 and 21. Forn = 3,123121321 is a shortest 3-superword.
The six 3-permutations appear in it in the order

7 =123, 71y = 231, 13 = 312, 14 = 213, w5 = 132, g = 321.

Note how is the structure of 123121321: each occurrence of letter 3 is
flanked by two occurrences of a 2-permutation.

The two examples of superwords are of respective lengths o = 3 and
a3 =9, where o, = D ;_;i!. But it is not clear whether a shortest
n-superword is of length o, for n > 4.

The problem consists in constructing a short n-superword, which may not
be of minimal length.

Question. Show how to construct an n-superword of length «,, for each
natural number 7.

[Hint: Use this above remark on the structure of 123121321 to build an
n-superword from an (n — 1)-superword.]

Solution
The construction is done iteratively, starting with the base case n = 2 (or
n = 3), as follows.

Let w;,,—1 be an (n — 1)-superword of length «;,_. The (n — 1)-permutations
are considered in their order of appearance along w,_1. Let i} be the ending
position on w,_ of the first occurrence of the kth (n — 1)-permutation in wy,_1.
This means that there are exactly k — 1 distinct (n — 1)-permutations with an
ending position i < i (some (n — 1)-permutations can repeat).

The n-superword w, is built by inserting some n-permutations in wy_j.
The selected n-permutations are all the words n - m; where my, 1 <k < (n —
1)!, is the kth (n — 1)-permutation occurring in w,—_;1. All these words are
inserted simultaneously immediately after their respective position iy in wy_j.
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From the definition of iy, insertions generate factors of the form 7y - n - 7 in
w, for each (n — 1)-permutation .

Example. Building w4 from w3 = 123121321. The ending positions on w3
of the six 3-permutations m; above are

i1=2,ip=3,i3=4,i4=06,i5 =7, ic = 8.

The insertion of the six 4-permutations of the form 4-7; produces the following
4-superword of length oy = 33:

123412314231243121342132413214321,
in which occurrences of 4 are emphasised.

The length of the word w,, is «;,. Since there are (n — 1)! insertions of words
of length n, the length of the resulting word wy, is |w,—1| + (n — D)!n =
Yo' i!'= ap, as required.

All n-permutations are factors of the word w,. A n-permutations occurring
in wy, is of the form u - n - v, where uv is a word of length n — 1 that does
not contain the letter n. This permutation occurs inside the factor vu - n - vu of
wy, where vu = my for some (n — 1)-permutation . Since by construction
all words of the form 7y - n - 7y appear in w,, all n-permutations appear in w;,.
This answers the question.

Notes

It was conjectured that «;, is the minimal length of the shortest n-superwords.
The conjecture was confirmed for n = 4 and n = 5 by Johnston [152] but was
disproved for n = 6 by Houston [143].
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15  Short Supersequence of Permutations

The problem deals with the idea of storing efficiently a set of patterns into a
word. Contrary to the definition of a superword, in this problem patterns are
stored as subsequences of a word called a supersequence.

The present patterns called n-permutations are drawn from the alphabet
{1,2,...,n}. They are words in which every number from {1,2,...,n}
appears exactly once. The aim is to build words, called n-supersequences, that
contain all n-permutations as subsequences.

Forn = 3 the word 1213212 of length 7 is a shortest 3-supersequence. For
n = 4 the word 123412314321 of length 12 is a shortest 4-supersequence.
These two supersequences are of lengths n> — 2n + 4 (for n = 3,4). Observe
that for n = 4 our 4-supersequence has length 12 while a shortest 4-superword,
obviously longer, is of length 33 (see Problem 14).

A simple way to produce an n-supersequence is to consider a word of the
form 7" for any n-permutation m, or of the form 7| 7o 73 ... m, where ;s
are any n-permutations. It is clear they contain all the n! n-permutations as
subsequences but their length is n2, far from optimal.

The aim of the problem is to show how to construct a moderately short
n-supersequence, which may not be of minimal length.

Question. Show how to construct an n-supersequence of length n? — 2n + 4
for each natural number n.

[Hint: Starting from a straight n-supersequence of length n2, show how to
tune it to get the required length.]

Solution
To get the result, the n-supersequence x = mmy w3 ... T, as above is
shortened in two steps.

Length n> — n + 1. The length of x is reduced by selecting permutations of
the form n - p;, fori = 1,...,n — 1, where p; is an (n — 1)-permutation, and
by considering the word

y:n.pl.n.p2.n...n.pn_l.n_

This obviously shortens the n-supersequence by n — 1 letters and gives the
expected length.

Length n> — 2n + 4. Now the construction technique becomes slightly more
tricky. The main idea is to choose more carefully the (n — 1)-permutations p;
of y.
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Having solutions for n < 4 we develop a solution for n > 5. To do so, let yy,
y2 and y3 be three (n — 1)-permutations of respective forms 3 - y{-2,1-y, -3
and 2 -y3’~1, where yl’ is a permutation of {1,2, ...,n—1}\{2, 3} and similarly
for the other y’s.

We first concatenate in an alternative way n — 1 blocks of type y; and then
insert n between them, which gives successively

YiV2:-V3-V1-V2:V3---»
wW=n-y - n-y n-y3-n---n,

w=n-3-y-2-n-1-y-3-n-2-y;-1-n...n.

It follows from the previous case that this is an n-supersequence and that its
length is n> —n + 1.

The main step of the technique eventually consists in removing n — 3 letters
in w, which gives the required length n> —n 4+ 1 — (n — 3) = n> — 2n + 4.
This is done by removing the letter i from each y; occurring in w, except from
their first and last occurrences, to produce the word z.

The word z is an n-supersequence. Observe that the removal of letter i from
the block yl.’ , fori = 1,2,3, is compensated by the presence of i to the left
and to the right of y; beyond the letter n. Then an argument similar to the one
applied to the above word y proves that z is an n-supersequence.

It achieves the construction of an n-supersequence of length n> — 2n + 4.

Example. We illustrate the construction by the case n = 6. Let y; = 31452,
y» = 12453 and y3 = 23451 be the selected 5-permutations. Let also yiRem
be the word y; after removal of letter i.

Considering the sequence

W=6-Y6-y2:6-y3-6-Y1:6-)2-6,

the required 6-supersequence is obtained by removing the letter i from each
block y;, except from the first and last blocks, which produces

Rem

6]

Rem

Rem

Z=6-Y1-6-7, -6y 6
that is

7 =6 31452 6 1453 6 2451 6 3452 6 12453 6.
Notes

The above method is a version of the construction by Mohanty [191]. It is
known that the present construction gives a shortest supersequence of length
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n2—2n+4for2 <n<T7. However, for n > 10 the construction by Zalinescu
[242] gives supersequences of length n> — 2n + 3. The exact general formula
for the smallest length of n-supersequences is still unknown; it is only known
so far that it is n2 — o(n2).

16 Skolem Words

A Skolem word of order n, for a positive integer n, is a word over the alphabet
A, ={1,2,...,n} satisfying, for each i € A,, the properties:

(i) The letter i appears exactly twice in the word,
(i) Consecutive occurrences of i are at distance i.

Skolem words have a definition very similar to that of Langford words
(Problem 17) but the small change in the distance makes a big difference.

If igi is a factor of a Skolem word, the gap word g does not contain the
letter i and |g| = i — 1. For example, 11 is an obvious Skolem word of order
1,23243114 a Skolem word of order 4 and 4511435232 is a Skolem word
of order 5. But a mere checking shows there is no Skolem word of order 2 or
of order 3.

Question. Discuss for which positive integer n there exists a Skolem word
of order n and design an algorithm to build it when possible.

[Hint: Discuss according to n modulo 4.]

Solution
We examine different cases depending on n modulo 4.

Case n = 4k. The word 23243114 is an example of a Skolem word of
order 4. Let n = 4k for k > 1. The following procedure builds a Skolem
word of order .

The basic bricks of the construction are the two words weyen and wedqq. The
first is made of the increasing sequence of even numbers in A, and the second
of the increasing sequence of odd numbers in A, \ {n — 1} (the largest odd
number is discarded).
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Algorithm SKOLEM produces the expected word.

SKOLEM(n multiple of 4 larger than 4)

1 (¢,d) < n/2—1,n—1)
Wodd < 1 3---n—3pnolettern — 1 in wegq
a-c-B-11-BR.c.aR « decomposition of wR; wead
v<a-11-B-c-d-BR-aR.¢
Weyen <— 2 4---n

R
even

[©) WY BSOS I S

return v - w d - Weven

The instruction at line 3 factorises the two ends of the word w(l}ddwodd around
letter c.

Example. For n = 12 the algorithm computes successively, from the words
Wodd = 1 3 5 7 9 and Weyen = 2 4 6 8 10 12, the decomposition of
w(l}ddwodd withc =5

97-5-3-11-3-5-79,
where « = 9 7 and § = 3; then

v=97-11-3-5-11-3-79-5

and eventually produces the Skolem word of order 12:
971135113795121086421124681012,

in which d = 11 is emphasised.

Why does it work? First note that property (i) is satisfied. Then it is clear that
occurrences of each letterin u = w(lfddwodd, in v and in the suffix wR -
of the output are at correct distances.

So it remains to show property (ii) holds for letters ¢ and d. Inside v the
distance between the occurrences of c¢ is || + |8| + 1, the number of odd
numbers different from 1 and c; that is, n/2 — 2, as required.

The distance between the two occurrences of letter d in the output is
|| 4+ 18] + 1 4 |weyenl, thatis, |[A, \ {1,d}| = n — 2, as required as well.

Therefore SKOLEM(n) is a Skolem word of order 7.

d-Weven

Case n = 4k + 1. This case works essentially in the same way as the previous
case, except that d is set ton and c is set to [n/2] — 1. Let weyen be, as before,
the increasing sequence of even numbers in A, and let wogq be the increasing
sequence of odd numbers in A, \ {n} (the largest odd number is discarded).
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With this instance of length n, Algorithm SKOLEM produces the expected word.
Observe that in the first case v and the output contain the factor ¢ - d while in
the present case they contain the factor d - c.

SKOLEM(n in the form 4k + 1 larger than 4)

1 (¢,d) < (In/2] — 1,n)
Wodd < 1 3---n — 21> no letter n in woqq
a-c-B-11-BR. c.aR « decomposition of wR; weqd
vea-11-B-d-c-BR-aR-¢
Weyen < 24 ---n—1

R |
even

AN B

return v - w d - Weven

Example. For n = 13 the algorithm computes successively, from the words
Wodd = 1357 9 11 and Weyen = 2 4 6 8 10 12, the decomposition of
wR  Woda With [n/2] — 1 =c¢ = 5:

1197-5-3-11-3-5-7911,
where « = 11 9 7 and 8 = 3; then
v=1197113135379115
and eventually produces the Skolem word of order 13:
v=1197113135379115121086421324681012,

in which ¢ = 5 and d = 13 are emphasised.

Impossibility of other cases. Let odd(n) be the number of odd natural
numbers not exceeding n.

Observation. If there is a Skolem word of order n, we have the equality
odd(n) mod 2 = n mod 2.

To prove the observation we consider sums modulo 2, called 2-sums, of
positions on a Skolem word w of order n. First, the 2-sum of all positions on
w is n mod 2. Second, let us pair positions of the same letter i to compute the
sum. If i is even the (two) positions of its occurrences have the same parity, so
their contribution to the 2-sum is null. But if i is odd the corresponding posi-
tions have different parities. Hence the 2-sum of positions is odd(n) mod 2.
Consequently we have odd(n) mod 2 = n mod 2, as stated.

The impossibility of having Skolem words for n = 4k+2 and forn = 4k+3
follows directly from the observation, since odd(n) mod 2 # n mod 2 in these
cases.
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To conclude, Skolem words exist only if » is of the form 4k or 4k + 1.

Notes
Words considered in the problem have been introduced by Skolem [227].

17 Langford Words

A Langford word of order n, for a positive integer n, is a word over the alphabet
A, =1{1,2,...,n} satisfying, for eachi € A, the properties:

(i) Letter i appears exactly twice in the word,

(i) Consecutive occurrences of i are at distance i + 1.

Langford words have a definition very similar to that of Skolem words
(Problem 16) but the small change in the distance makes a big difference.

If igi is a factor of a Langford word the gap word g does not contain the
letter i and |g| = i. For example, 312132 is a Langford word of order 3 and
41312432 a Langford word of order 4.

Question. Discuss for which positive integer n there exists a Langford word
of order n and show how to build it when possible.

[Hint: Discuss according to n modulo 4.]

Solution
We examine different cases depending on n modulo 4.

Case n = 4k + 3. The above example shows a Langford word of order 3. For
n > 7, thatis, k > 0,let X, = {2k + I,n — Ln} and A}, = A, \ X,. Let
both weyen be the increasing sequence of even numbers in A), and wodq be the
increasing sequence of odd numbers in A),.

Note that A;I has 4k elements, then exactly 2k even letters and 2k odd letters.
Both weyen and wegg can be split into halves: weyven = pi1 - p2, Where |p1| =
|p2| = k, and wodd = p3 - p4, Where |p3| = |pa| = k.
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To get a solution let start with the following word that is almost a Langford
word:

u=pX pX x p3 * pox pR PR % % p1 x pa,

where * stands for a missing letter to be inserted. It is clear that the distance
between the two occurrences of each i € A), equals i + 1.

Now it is enough to substitute twice the remaining elements of A, to *,
which is done in the order

4k +2, 4k + 3, 2k + 1, 4k + 2, 2k + 1, 4k + 3.

Since each p; has length k, it is straightforward to compute the distances
between copies of inserted elements from {2k+1,n—1,n} and see they comply
with property (ii), producing a Langford word of order n.

Example. Let n = 11 = 4 x 2 4+ 3, k = 2. We have X;; = {5,10,11}
and A}, = {1,2,3,4,6,7,8,9};then py =2 4, p» =6 8, p3 =1 3 and
pa = 7 9. The first step produces

Uu=8631 %x 13 %x68*%x 9742 % %x24 %x 79,
which leads to the Langford word of order 11
86311013116859742105241179,
in which2k4+1=5,n—1=10 and n = 11 are emphasised.

Case n = 4k. An example of Langford word of order 4 is shown above. Then
letn = 4k 44, with k > 0. This case is similar to the previous case. A solution
u associated with 4k 4 3 is first built. Then a few changes are made to insert
in it the largest element n. It is done by substituting it for the first copy of
2k + 1, an element that is moved to the end of the word and becomes its second
occurrence. The second copy of n is placed after it.

To say it differently, insertions inside the word u associated with 4k 4 3 are
done in the order

4k +2, 4k 43, n, 4k +2, 2k + 1, 4k 4+ 3, 2k + 1, n,

where the last two letters are appended at the end of the word.

Distances between elements smaller than n are not changed and the distance
between occurrences of the largest element n = 4k+4 is as required, producing
a Langford word of order n.

Impossibility of other cases. Any Langford word w over A,_; can be
transformed into a Skolem word over A, by adding 1 to all elements in w
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and by inserting at the beginning the two copies of letter 1. For example, the
Langford word 312132 is so transformed into the Skolem word 11423243.
It is known that Skolem words do not exist for n of the forms 4k + 2 nor
4k + 3 (see Problem 16). The same observation works for Langford words and
proves none exist when 7 is of the forms 4k + 1 or 4k + 2.
To conclude, a Langford word exists only when n is of the form 4k + 4 or
4k + 3 (k = 0).

Notes

There are various notions of Langford words. For example, property (i) can
be dropped. In this case Berstel [32] showed that the associated words are
square free.

18 From Lyndon Words to de Bruijn Words

The combinatorial result of the problem provides the basis for an efficient
online construction of de Bruijn words.

A binary word (on the alphabet {0, 1}) is a de Bruijn word of order (rank or
span) k if it contains cyclically each binary word of length k exactly once as
a factor. The word is of length 2. There is a surprising relation between these
words and the lexicographic ordering, which shows once more that ordering
words is a powerful tool in text algorithms.

A Lyndon word is a primitive word that is the (lexicographically) smallest
word in its conjugacy equivalence class.

Let p be a prime number and £, = (Lo, L1, ..., L) the sorted sequence
of binary Lyndon words of length p or 1. Let also

b,=Lo-L;-- Ly

be the concatenation of words in £,.
For example, the sorted list of Lyndon words of length 5 or 1 is

L5 =(0,00001,00011,00101,00111,01011,01111,1)

https://doi.org/10.1017/9781108835831.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781108835831.003

18 From Lyndon Words to de Bruijn Words 51

and the concatenation of its words is
bs = 000001 00011 00101 00111 0101101111 1.

It is the lexicographically smallest de Bruijn word of order 5 and has length
32=2%

Question. For a prime number p, show that the word b, is a de Bruijn word
of order p.

Solution
The number of binary Lyndon words of length p in £, is (2”7 —2)/p (see
Problem 1). Therefore the length of b, is p(2” — 2)/p + 2 = 27. Then to
show it is a de Bruijn word we just have to prove that each word w of length p
appears cyclically in by,.

Let us start with a preliminary observation. For a word x in £, x # 1, let
next(x) denote the word following x in the sequence.

Observation. If |x| = |next(x)| = p, x = uv and v contains an occurrence of
0, then u is a prefix of next(x).

Proof Assume, to the contrary, that next(x) = u'v’ with |u| = |u’| = ¢ and
u' # u. Then u < u’ due to the order of elements in £,. However, the word
u-1"""is a Lyndon word that is lexicographically between uv and u’v’, which
contradicts next(x) = u'v’. Thus u is a prefix of next(x). [

Lyndon words of length p are all factors of b, by construction. Words 07
and 17 are respectively prefix and suffix of b,. Words of length p in 170%
occur cyclically at the last p — 1 positions of b,. Thus it remains to prove that
words of length p which are not Lyndon words and do not belong to 1*0*
appear (non-cyclically) in b,. Let w be such a word and L; be its Lyndon
conjugate; then

w=vuand L; = uv

for v and u non-empty words because w # L;.
There are two cases to consider whether v contains an occurrence of
0 or not.

Case v contains 0. Then u is a prefix of L; | = next(L;) from the observation.
Hence w = vu is a factor of L; L; 1.

Case v does not contain 0. Then v = 1/, for some ¢ > 0. Let L ; be the first
word in L, prefixed by u and let L;_; = u'v’ with [v'| = 7. Then v’ cannot
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contain the letter 0, because otherwise u’ = u and L j would not be the first
word in £, prefixed by u. Consequently v" = 1’ = v and the concatenation
Lj (Lj= u'-v-u--- contains vu as a factor.

In both cases w has an occurrence in b,. This concludes the proof that b, is
a de Bruijn word.

Notes
The list £, can be generated online using only O (p) memory space. The above
construction then leads to an online generation of a de Bruijn word, using only
a window of size O (p) for storing the last computed letters of the word.
When the order k of de Bruijn words is not a prime number, a similar
construction applies. In that case, the sorted list £ is composed of Lyndon
words whose length divides k. The concatenation of these sorted words gives
in fact the lexicographically smallest de Bruijn word of order k over the given
alphabet. The algorithm was initially developed by Fredricksen and Maiorana
[120]. See also [192] for a simplified complete proof of the general case.
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