
P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II

Core Text Mining Operations

Core mining operations in text mining systems center on the algorithms that underlie
the creation of queries for discovering patterns in document collections. This chapter
describes most of the more common – and a few useful but less common – forms
of these algorithms. Pattern-discovery algorithms are discussed primarily from a
high-level definitional perspective. In addition, we examine the incorporation of
background knowledge into text mining query operations. Finally, we briefly treat
the topic of text mining query languages.

II.1 CORE TEXT MINING OPERATIONS

Core text mining operations consist of various mechanisms for discovering patterns
of concept occurrence within a given document collection or subset of a document
collection. The three most common types of patterns encountered in text mining are
distributions (and proportions), frequent and near frequent sets, and associations.

Typically, when they offer the capability of discovering more than one type of
pattern, text mining systems afford users the ability to toggle between displays of
the different types of patterns for a given concept or set of concepts. This allows
the richest possible exploratory access to the underlying document collection data
through a browser.

II.1.1 Distributions

This section defines and discusses some of text mining’s most commonly used dis-
tributions. We illustrate this in the context of a hypothetical text mining system that
has a document collection W composed of documents containing news wire stories
about world affairs that have all been preprocessed with concept labels.

Whether as an initial step, to create a baseline, or to create more meaningful
subdivisions of a single document collection for comparison purposes, text mining
systems generally need to refer to some subcollection of a complete document collec-
tion. This activity is commonly referred to as concept selection. Given some collection

19

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

20 Core Text Mining Operations

of documents D, a text mining system will have a requirement to refer to some sub-
collection of D that is labeled by one or more given concepts.

Definition II.1. Concept Selection: If D is a collection of documents and K is a set
of concepts, D/K is the subset of documents in D labeled with all of the concepts in
K. When it is clear from the context, given a single concept k, rather than writing
D/{k} we use the notation D/k.

For example, the collection W contains a subset of the World Affairs collection –
namely those documents that are labeled with the concepts iran, nicaragua, and
reagan; W/bush contains the subset of documents that are labeled (at least) with
reagan; and W/G8 contains those documents that are labeled with any terminal
node under G8 (i.e., labeled with any G8 country). G8 is treated as a concept here
when is being performed concept selection (rather than being viewed as the set of
concepts under it, in which case it would have required all of its descendants to be
present).

Text mining systems often need to identify or examine the proportion of a set of
documents labeled with a particular concept. This analytic is commonly referred to
as concept proportion.

Definition II.2. Concept Proportion: If D is a collection of documents and K is a set
of concepts, f (D, K) is the fraction of documents in D labeled with all of the concepts
in K, that is, f (D, K) = |D/ k|

|D| . Given one concept k, rather than writing f (D, {k}), we
use the notation f (D, k). When D is clear from context, we drop it and write f (k).

Thus, for example, f (W, {iran, nicaragua, reagan} is the fraction of documents in
the World Affairs collection labeled with iran, nicaragua, and reagan; f (reagan) is
the proportion of the collection labeled with the concept reagan; and f (G8) is the
proportion labeled with any (G8) country.

By employing definitions of selection and proportion, text mining systems can
already begin identifying some useful quantities for analyzing a set of documents.
For example, a text mining system might want to identify the proportion of those
documents labeled with K2 that are also labeled by K1, which could be designated
by expression f(D/K2, K1).

This type of proportion occurs regularly enough that it has received an explicit
name and notation: conditional concept proportion.

Definition II.3. Conditional Concept Proportion: If D is a collection of documents
and K1 and K2 are sets of concepts, f (D, K1 | K2) is the proportion of all those
documents in D labeled with K2 that are also labeled with K1, that is, f (D, K1 | K2) =
f (D/K2, K1). When D is clear from context, we will write this as f (K1 | K2).

Applying this definition, we find that f(reagan | iran) would represent the proportion
of all documents labeled by the concept iran that are also labeled by the concept
reagan.

Commonly, a text mining system needs to analyze the distribution of concepts
that are descendents of a particular node in a concept hierarchy. For example, a
text mining system might need to allow the analysis of the distribution of concepts
denoting finance topics – that is, descendents of the finance topics node in an example
concept hierarchy. To accomplish this, a text mining system could use the expression

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 21

PK(x) to refer to such distributions – it will assign to any concept x in K a value
between 0 and 1 – where the values are not required to add up to 1.

This type of proportion can be referred to as a concept distribution. In the follow-
ing sections we present several specific examples of such PK(x) distributions.

One particularly important concept distribution for knowledge discovery opera-
tions is the concept proportion distribution, which gives the proportion of documents
in some collection that are labeled with each of a number of selected concepts:

Definition II.4. Concept Proportion Distribution: If D is a collection of documents
and K is a set of concepts, FK(D, x) is the proportion of documents in D labeled with
x for any x in K. When D is clear from context, we will write this as FK(x).

Note the distinction between PK(x) and FK(x). PK(x) refers generically to any func-
tion that is a concept distribution. FK(x) is a specific concept distribution defined by
a particular concept-labeled set of documents.

Thus, for example Ftopics(R, x) would represent the proportions of documents
in W labeled with keywords under the topics node in the concept hierarchy. In this
expression, topics is used as shorthand for referring to a set of concepts – namely, all
those that occur under the topics node – instead of explicitly enumerating them all.

Also, note that F{k}(D, k) = f (D, k) – that is, FK subsumes the earlier defined f
when it is applied to a single concept. Unlike f, however, FK is restricted to refer
only to the proportion of occurrences of individual concepts (those occurring in the
set K).1 Thus f and F are not comparable.

Mathematically, F is not a true frequency distribution, for each document may
be labeled by multiple items in the set K. Thus, for example, a given document may
be labeled by two (or more) G8 countries because occurrences of concepts are not
disjoint events. Therefore, the sum of values in FG8 may be greater than one.

In the worst case, if all concepts in K label all documents, the sum of the values in
a distribution F can be as large as |K|. Furthermore, because some documents may
contain none of the concepts in a given K, the sum of frequencies in F might also
be smaller than one – in the worst case, zero. Nonetheless, the term “distribution” is
used for F, for many of the connotations this term suggests still hold true.

Just as was the case for concept proportions, text mining systems can also leverage
conditional keyword-proportion distributions, which are probably one of the most
used concept distributions in text mining systems.

Definition II.5. Conditional Concept Proportion Distribution: If D is a collection
of documents and K and K′ are sets of concepts, FK(D, x | K′) is the proportion of
those documents in D labeled with all the concepts in K′ that are also labeled with
concept x (with x in K), that is, FK(D, x | K′) = FK(D/K | K′, x). We often write this
as FK(x | K′) when D is clear from context.

Thus, for example, Ftopics(x | Argentina) would assign any concept x under topics in
the hierarchy with the proportion of documents labeled by x within the set of all
documents labeled by the concept Argentina, and Ftopics(x | {UK, USA) is the similar
distribution for those documents labeled with both the UK and USA concepts.

1 It is also quite simple to define a similar notion for sets of concepts, for example, by computing the
proportions for each subset of a set K (Feldman, Dagan, and Hirsh, 1998).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

22 Core Text Mining Operations

One of the baseline distributions text mining systems use to compare distributions
is the average distribution over a set of sibling nodes in the hierarchy. For example,
when looking at the proportions of loan within South American countries such as
f (W, loan | Argentina), f (W, loan | Brazil), and f (W, loan | Columbia)), an end user
may be interested in the average of all proportions of this form for all the South
American countries – that is, the average of all proportions of the form f (W, loan |k),
where k ranges over all South American countries.

Definition II.6. Average Concept Proportion: Given a collection of documents D,
a concept k, and an internal node in the hierarchy n, an average concept proportion,
denoted by a(D, k | n), is the average value of f (D, k | k′), where k′ ranges over all
immediate children of n – that is, a(D, k | n) = Avg{k′ is a child of n}{ f (D, k | k′)}. When
D is clear from context, this will be written a(k|n).

For example, a(loan | South America) is the average concept proportion of
f(loan | k′) as k′ varies over each child of the node South America in the concept
hierarchy; that is, it is the average conditional keyword proportion for loan within
South American countries.

This quantity does not average the values weighted by the number of documents
labeled by each child of n. Instead, it equally represents each descendant of n and
should be viewed as a summary of what a typical concept proportion is for a child
of n.

An end user may be interested in the distribution of averages for each economic
topic within South American countries. This is just another keyword distribution
referred to as an average concept distribution.

Definition II.7. Average Concept Distribution: Given a collection of docu-
ments D and two internal nodes in the hierarchy n and n′, an average con-
cept distribution, denoted by An(Dx | n′), is the distribution that, for any x
that is a child of n, averages x’s proportions over all children of n′ – that is,
An(D, x | n′) = Avg{k ′ is a child of n′}{Fn(D, x | k′)}. When clear from context, this will
be written An(x | n′).

For example Atopics(x|South America), which can be read as “the average dis-
tribution of topics within South American countries,” gives the average proportion
within all South American countries for any topic x.

A very basic operation for text mining systems using concept-distributions is the
display of conditional concept-proportion distributions. For example, a user may be
interested in seeing the proportion of documents labeled with each child of topics
for all those documents labeled by the concept Argentina, that is, the proportion of
Argentina documents that are labeled with each topic keyword.

This distribution would be designated by Ftopics(W, x | Argentina), and a correlat-
ing graph could be generated, for instance, as a bar chart, which might display the fact
that 12 articles among all articles of Argentina are annotated with sorghum, 20 with
corn, 32 with grain, and so on, providing a summary of the areas of economical activ-
ity of Argentina as reflected in the text collection. Conditional concept-proportion
distributions can also be conditioned on sets of concepts.

In some sense, this type of operation can be viewed as a more refined form of
traditional concept-based retrieval. For example, rather than simply requesting all

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 23

documents labeled by Argentina or by both UK and USA, the user can see the doc-
uments at a higher level by requesting documents labeled by Argentina for example,
and first seeing what proportions are labeled by concepts from some secondary set
of concepts of interest with the user being able to access the documents through this
more fine-grained grouping of Argentina-labeled documents.

Comparing with Average Distributions
Consider a conditional proportion of the form Fk(D, x | k) f , the distribution over K
of all documents labeled with some concept k (not necessarily in K). It is natural to
expect that this distribution would be similar to other distributions of this form over
conditioning events k′ that are siblings of k. When they differ substantially it is a sign
that the documents labeled with the conditioning concept k may be of interest.

To facilitate this kind of comparison of concept-labeled documents with the aver-
age of those labeled with the concept and its siblings, a user can specify two internal
nodes of the hierarchy and compare individual distributions of concepts under one
of the nodes conditioned on the concept set under the other node – that is, compute
D(Fn(x | k)||An(x | n′)) for each k that is a child of n ′.

In addition to their value in finding possible interesting concept labelings, com-
parisons of this type also provide a hierarchical browsing mechanism for concept
co-occurrence distributions. For example, an analyst interested in studying the topic
distribution in articles dealing with G8 countries may first browse the average class
distribution for G8. This might reveal the major topics that are generally common
for G8 countries. Then, an additional search could be used to reveal the major char-
acteristics specific for each country.

Comparing Specific Distributions
The preceding mechanism for comparing distributions with an average distribution
is also useful for comparing conditional distributions of two specific nodes in the
hierarchy. For example, one could measure the distance from the average topic dis-
tribution of Arab League countries to the average topic distribution of G8 countries.
An answer set could be returned from a query into a table with countries sorted in
decreasing order of their contribution to the distance (second column) – namely
d(Atopics(K | Arab League) || Atopics(k | G8)).

Additional columns could show, respectively, the percentage of the topic in the
average topic distribution of the Arab League countries (Atopics(x | G8)) and in
the average topic distribution of the G8 countries (Atopics(x | G8)). One could also
show the total number of articles in which the topic appears with any Arab League
country and any G8 country. This would reveal the topics with which Arab League
countries are associated much more than G8 countries such as grain, wheat, and crude
oil. Finally, one could show the comparison in the opposite direction, revealing the
topics with which G8 countries are highly associated relative to the Arab League.

II.1.2 Frequent and Near Frequent Sets

Frequent Concept Sets
In addition to proportions and distributions, another basic type of pattern that can
be derived from a document collection is a frequent concept set. This is defined as

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

24 Core Text Mining Operations

a set of concepts represented in the document collection with co-occurrences at or
above a minimal support level (given as a threshold parameter s; i.e., all the concepts
of the frequent concept set appear together in at least s documents). Although origi-
nally defined as an intermediate step in finding association rules (see Section II.1.3),
frequent concept sets contain a great deal of information of use in text mining.

The search for frequent sets has been well treated in data mining literature,
stemming from research centered on investigating market basket–type associations
first published by Agrawal et al. in 1993. Essentially, a document can be viewed as a
market basket of named entities. Discovery methods for frequent concept sets in text
mining build on the Apriori algorithm of Agrawal et al. (1993) used in data mining
for market basket association problems. With respect to frequent sets in natural
language application, support is the number (or percent) of documents containing
the given rule – that is, the co-occurrence frequency. Confidence is the percentage of
the time that the rule is true.

L1 = {large 1 − itemsets}
for (k = 2; Lk−1 �= Ø; k ++) do begin

Ck = apriori-gen (Lk−1) // new candidates
forall transactions t ∈ D do begin

C1 = subset (Ck, t) // candidates contained in t
forall candidates c ∈ Ct do

c.count ++;
end
Lk = {c ∈ Ck | c.count ≥ minsupport}

end
Answer = ⋃

k
Lk;

Algorithm II.1: The Apriori Algorithm (Agrawal and Srikant 1994)2

A frequent set in text mining can be seen directly as a query given by the conjunc-
tion of concepts of the frequent set. Frequent sets can be partially ordered by their
generality and hold the simple but useful pruning property that each subset of a
frequent set is a frequent set. The discovery of frequent sets can be useful both as a
type of search for patterns in its own right and as a preparatory step in the discovery
of associations.

Discovering Frequent Concept Sets
As mentioned in the previous section, frequent sets are generated in relation to
some support level. Because support (i.e., the frequency of co-occurrence) has been
by convention often expressed as the variable σ , frequent sets are sometimes also
referred to as σ -covers, or σ -cover sets. A simple algorithm for generating frequent
sets relies on incremental building of the group of frequent sets from singleton σ -
covers, to which additional elements that continue to satisfy the support constraint

2 In data mining, the expression item is commonly used in a way that is roughly analogous to the expression
feature in text mining. Therefore, the expression item set can be seen here, at least, as analogous to the
expression concept set.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 25

are progressively added. Algorithm II.2 is a typical algorithm for discovering frequent
concept sets.

L1 = {{A} | A ∈ R and [A] ≥ σ}
i = 1
While Li �= Ø do

Li+1 = {S1 ∪ S2 | S1, S2 ∈ Li , | S1 ∪ S2 | = i + 1,
all subsets of S1 ∪ S2 are in Li}

i = i + 1
end do
return ({X | X ∈ ⋃

i
Li and |[X]| ≥ σ })

Algorithm II.2: Algorithm for Frequent Set Generation

Near Frequent Concept Sets
Near frequent concept sets establish an undirected relation between two frequent sets
of concepts. This relation can be quantified by measuring the degree of overlapping,
for example, on the basis of the number of documents that include all the concepts of
the two concept sets. This measure can be regarded as a distance function between
the concept sets. Several distance functions can be introduced (e.g., based on the
cosine of document vectors, Tanimoto distance, etc.).

Directed relations between concept sets can also be identified. These are consid-
ered types of associations (see Section II.1.3).

II.1.3 Associations

A formal description of association rules was first presented in the same research on
“market basket” problems that led to the identification of frequent sets in data mining.
Subsequently, associations have been widely discussed in literature on knowledge
discovery targeted at both structured and unstructured data.

In text mining, associations specifically refer to the directed relations between
concepts or sets of concepts. An association rule is generally an expression of the
form A ⇒ B, where A and B are sets of features. An association rule A ⇒ B indicates
that transactions that involve A tend also to involve B.

For example, from the original market-basket problem, an association rule might
be 25 percent of the transactions that contain pretzels also contain soda; 8 percent of all
transactions contain both items. In this example, 25 percent refers to the confidence
level of the association rule, and 8 percent refers to the rule’s level of support.

With respect to concept sets, association rule A⇒B, relating two frequent concept
sets A and B, can be quantified by these two basic measures of support and confidence.
Confidence is the percentage of documents that include all the concepts in B within
the subset of those documents that include all the concepts in A. Support is the
percentage (or number) of documents that include all the concepts in A and B.

More precisely, we can describe association rules as follows:

� Let r = {t1, . . . , tn} be a collection of documents, each labeled with some subset
of concepts from the m-concept set R = {I1, I2, . . . , Im}.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

26 Core Text Mining Operations

� Given a concept A and document t, we write t(A) = 1 if A is one of the concepts
labeling t, and t(A) = 0 otherwise.

� If W is a subset of the concepts in R, t(W) = 1 represents the case that t(A) = 1
for every concept A ∈ W.

� Given a set X of concepts from R, define (X) = {i | ti(X) = 1}; (X) is the set of
all documents ti that are labeled (at least) with all the concepts in X.

� Given some number σ (the support threshold), X is called a σ -covering if
|(X)| ≥ σ .

W ⇒ B is an association rule over r if W ⊆ R and B ⊆ R\W. We refer to W as
the left-hand side (LHS) of the association and B as the right-hand side (RHS).

Finally, we say that r satisfies W ⇒ B with respect to 0 < γ ≤ 1 (the confidence
threshold) and σ (the support threshold) if W ∪ B is a σ -covering (i.e., |(W ∪ B)| ≥ σ

and |(W ∪ B)|/|(W)| ≥ γ). Intuitively, this means that, of all documents labeled with
the concepts in W, at least a proportion γ of them are also labeled with the concepts
in B; further, this rule is based on at least σ documents labeled with all the concepts
in both W and B.

For example, a document collection has documents labeled with concepts in the
following tuples: {x, y, z, w}, {x, w}, {x, y, p}, {x, y, t}. If γ = 0.8 and σ = 0.5, and
{x}, {y}, {w}, {x, w}, and {x, y} are coverings, then {y} ⇒ {x} and {w} ⇒ {x} are
the only associations.

Discovering Association Rules
The discovery of association rules is the problem of finding all the association rules
with a confidence and support greater than the user-identified values minconf (i.e.,
γ , or the minimum confidence level) and minsup (i.e., σ , or the minimum support
level) thresholds.

The basic approach to discovering associations is a generally straightforward two-
step process as follows:

� Find all frequent concept sets X (i.e., all combinations of concepts with a support
greater than minsup);

� Test whether X \B ⇒ B holds with the required confidence.

The first step – namely the generation of frequent concept sets (see
Algorithm II.2) – has usually been found to be by far the most computationally
expensive operation. A typical simple algorithm for the second step – generating
associations (after the generation of maximal frequent concept sets has been com-
pleted) – can be found below in Algorithm II.3.

foreach X maximal frequent set do
generate all the rules X \ {b} ⇒ {b}, where b ∈ X, such that∣∣[X\{b}]

∣∣∣∣[X]
∣∣ ≥ σ

endfch

Algorithm II.3: Simple Algorithm for Generating Associations (Rajman and
Besancon 1998)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 27

Thus, essentially, if{w, x}and{w, x, y, z}are frequent concept sets, then the association
rule {w, x} ⇒ {y, z} can be computed by the following ratio:

c = support ({w, x, y, z})
support ({w, x}) .

Again, however, in this case the association rule will only hold if c ≥ σ .
Given these steps, if there are m concepts in a document collection, then, in

a single pass, all possible 2m subsets for that document collection can be checked.
Of course, in extremely large, concept-rich document collections, this can still be
a nontrivial computational task. Moreover, because of the implications of generat-
ing an overabundance of associations, additional procedures – such as structural or
statistical pruning, redundancy elimination, and so on – are sometimes used to sup-
plement the main association rule extraction procedure in order to limit the number
of generated associations.

Maximal Associations
Association rules are very useful in helping to generally describe associations rel-
evant between concepts. Maximal associations represent a more specialized type
of relationship between concepts in which associations are identified in terms of
their relevance to one concept and their lack of relevance to another. These asso-
ciations help create solutions in the particular problem space that exists within text
document collections, where closely related items frequently appear together. Con-
ventional association rules fail to provide a good means for allowing the specific
discovery of associations pertaining to concepts that most often do not appear alone
(but rather together with closely related concepts) because associations relevant only
to these concepts tend to have low confidence. Maximal association rules provide a
mechanism for discovering these types of specialized relations.

For example, in a document collection, the concept “Saddam Hussein” may most
often appear in association with “Iraq” and “Microsoft” most often with “Windows.”
Because of the existence of these most common relationships, associations especially
relevant to the first concept in the association, but not the other, will tend to have
low confidence. For instance, an association between “Iraq” and the “Arab League”
would have low confidence because of the many instances in which “Iraq” appears
with “Saddam Hussein” (and not “Arab League”). Likewise, an association between
“Microsoft” and “Redmond” would potentially be left unidentified because of the
many more instances in which “Microsoft” appears with “Windows.” Maximal asso-
ciations identify associations relevant to one concept but not the other – that is,
associations relating to “Iraq” or “Microsoft” alone.

Maximal Association Rules: Defining M-Support and M-Confidence
Fundamentally, a maximal association rule X

max⇒ Y states that, whenever X is the
only concept of its type in a transaction (i.e., when X appears alone), then Y also
appears with some confidence. To understand the notion of a maximal association
rule it is important define the meaning of alone in this context. We can do so with
respect to categories of G:

Definition II.8. Alone with Respect to Maximal Associations: For a transaction t, a
category g, and a concept-set X ⊆ gi, one would say that X is alone in t if t ∩ gi = X.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

28 Core Text Mining Operations

That is, X is alone in t if X is the largest subset of gi that is in t. In such a case, one
would say that X is maximal in t and that t M-supports X. For a document collection
D, the M-support of X in D, denoted as s max

D
(X), is the number of transactions t ∈ D

that M-support X.

A maximal association rule, or M-association, is a rule of the form X
max⇒ Y, where

X and Y are subsets of distinct categories that could be identified as g (X) and
g (Y), respectively. The M-support for the maximal association X

max⇒ Y, which can
be denoted as s max

D
(X

max⇒ Y), can be defined as

s max
D

(X
max⇒ Y) = |{t : t M-supports X and t supports Y}|.

That is, (X
max⇒ Y) is equal to the number of transactions in D that M-support X and

also support Y in the conventional sense, which suggests that, whenever a transaction
M-supports X, then Y also appears in the transaction with some probability.

In measuring this probability, we are generally interested only in those transac-
tions in which some element of g(Y) (i.e., the category of Y) appears in the transac-
tion. Thus, we define confidence in the following manner. If D(X, g(Y)) is the subset
of the document collection D consisting of all the transactions that M-support X and
contain at least one element of g(Y), then the M-confidence of the rule X

max⇒ Y,
denoted by c max

D
(X

max⇒ Y), is

c max
D

(X
max⇒ Y) =

s max
D

(X
max⇒ Y)

|D(X, g(Y))| .

A text mining system can search for associations in which the M-support is higher than
some user-specified minimum M-support, which has been denoted by the designation
s, and the M-confidence is higher than some user-specified minimum M-confidence,
which has been denoted by c. A set X that has M-support of at least s is said to be
M-frequent.

M-Factor
Any maximal association rule is also a conventional association with perhaps differ-
ent levels of support and confidence. The M-factor of the rule X

max⇒ Y is the ratio
between the M-confidence of the maximal association X

max⇒ Y and the confidence
of the corresponding conventional association X ⇒ Y. Specifically, if D is a subset of
the transaction that contains at least one concept of g(Y), then, the M-factor of the
association X

max⇒ Y is

M-factor (X
max⇒ Y) = c max

D
(X

max⇒ Y) =
c max

D
(X

max⇒ Y)

cD′(X ⇒ Y)
.

Here, the denominator is the confidence for the rule X ⇒ Y with respect to D′. This
is because, given that the M-confidence is defined with respect to D′, the comparison
to conventional associations must also be with respect to the set.

From a practical perspective, one generally seeks M-associations with a higher
M-factor. Such M-associations tend to represent more interesting rules.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 29

II.1.4 Isolating Interesting Patterns

The notion of interestingness with respect to knowledge discovery in textual data has
been viewed from various subjective and contextual perspectives. The most common
method of defining interestingness in relation to patterns of distributions, frequent
sets, and associations has been to enable a user to input expectations into a system
and then to find some way of measuring or ranking patterns with respect to how far
they differ from the user’s expectations.

Text mining systems can quantify the potential degree of “interest” in some piece
of information by comparing it to a given “expected” model. This model then serves
as a baseline for the investigated distribution.

For example, a user may want to compare the data regarding Microsoft with an
averaged model constructed for a group of computer software vendors. Alternatively,
a user may want to compare the data relating to Microsoft in the last year with a
model constructed from the data regarding Microsoft in previous years.

Interestingness with Respect to Distributions and Proportions
Because text mining systems rely on concept proportions and distributions to describe
the data, one therefore requires measures for quantifying the distance between an
investigated distribution and another distribution that serves as a baseline model
(Feldman, Dagan, and Hirsh 1998). So long as the distributions are discrete, one can
simply use sum-of-squares to measure the distance between two models:

D(p′ || p) =
∑

x

(p′(x) − p(x))2
,

where the target distribution is designated by p and the approximating distribution
by p′ and the x in the summation is taken over all objects in the domain. This measure
is always nonnegative and is 0 if and only if p′ = p.

Given this measure, one can use it as a heuristic device. With respect to
distribution-based patterns, this could be used as a heuristic for judging concept-
distribution similarities. This measure is referred to as concept distribution distance.

Definition II.9. Concept Distribution Distance: Given two concept distributions
P ′

K(x) and PK(x), the distance D(P ′
K || PK) between them is defined by

D(P ′
K(x) || PK(x)) = ∑

x∈K (P ′
K(x)−PK(x))2.

Text mining systems are also sometimes interested in the value of the difference
between two distributions at a particular point. This measure is called concept pro-
portion distance.

Definition II.10. Concept Proportion Distance: Given two concept distributions
P ′

K(x) and PK(x), and a concept k in K, the distance d(P ′
K(k) || PK(k)) between

them is defined by D(P′
K(k) || PK(k)) = P′

K(k) − PK(k).

Thus, another way to state D(P ′
K || PK) would be∑

x∈K

[d(PK(x) || PK(x))] 2
.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

30 Core Text Mining Operations

As an example, the distance between the distribution of topics within Argentina
and the distribution of topics within Brazil would be written as D(Ftopics

(x | Argentina) || Ftopics(x | Brazil)), and the distance between the distribution of
topics within Argentina and the average distribution of topics within South America
would be written as D(Ftopics(x | Argentina) || A topics(x | South−America)).

II.1.5 Analyzing Document Collections over Time

Early text mining systems tended to view a document collection as a single, mono-
lithic entity – a unitary corpus consisting of one coherent and largely static set of
textual documents. Many text mining applications, however, benefit from viewing
the document collection not as a monolithic corpus but in terms of subsets or divi-
sions defined by the date and time stamps of documents in the collection. This type of
view can be used to allow a user to analyze similarities and differences between con-
cept relationships across the various subdivisions of the corpus in a way that better
accounts for the change of concept relationships over time.

Trend analysis, in text mining, is the term generally used to describe the analysis
of concept distribution behavior across multiple document subsets over time. Other
time-based analytics include the discovery of ephemeral associations, which focuses
on the influence or interaction of the most frequent or “peak” concepts in a period on
other concepts, and deviation, which concentrates on irregularities such as documents
that have concepts differing from more typical documents in a document collection
(or subcollection) over time. In addition, text mining systems can enable users to
explore the evolution of concept relationships through temporal context graphs and
context-oriented trend graphs.

Although trend analysis and related time-based analytics attempt to better
account for the evolving nature of concept relationships in a document collection,
text mining systems have also developed practical approaches to the real-world chal-
lenges inherent in supporting truly dynamic document collections that add, mod-
ify, or delete documents over time. Such algorithms have been termed incremen-
tal algorithms because they tend to be aimed at more efficient incremental update
of the search information that has already been mined from a document collec-
tion to account for new data introduced by documents added to this collection
over time.

Both trend analysis and incremental algorithms add a certain dynamism to text
mining systems, allowing these systems to interact with more dynamic document
collections. This can be critical for developing useful text mining applications targeted
at handling time series–type financial reports, topical news feeds, text-based market
data, time-sensitive voter or consumer sentiment commentary, and so on.

Trend Analysis
The origin of the problem of discovering trends in textual data can be traced to
research on methods for detecting and presenting trends in word phrases. These
methods center on a two-phase process in which, in the first phase, phrases are created
as frequent sequences of words using the sequential patterns mining algorithm first

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 31

mooted for mining structured databases and, in the second phase, a user can query
the system to obtain all phrases whose trend matches a specified pattern (i.e., “recent
upward trend”).

More recent methods for performing trend analysis in text mining have been
predicated on the notion that the various types of concept distributions are functions
of document collections. It is therefore possible to compare two distributions that
are otherwise identical except that they are for different subcollections. One notable
example of this is having two collections from the same source (such as from a news
feed) but from different points in time.

For instance, one can compare the distribution of topics within Argentina-labeled
documents, as formed by documents published in the first quarter of 1987, with
the same distribution formed by documents from the second quarter of 1987. This
comparison will highlight those topics whose proportion changed between the two
time points, directing the attention of the user to specific trends or events in these
topics with respect to Argentina. If R1 is used to designate a portion of a Reuters
newswire data collection from the first quarter of 1987, and R2 designates the portion
from the second quarter of 1987, this would correspond to comparing Ftopics(R1, x |
Argentina) and Ftopics(R2, x | Argentina).

This knowledge discovery operation can be supplemented by listing trends that
were identified across different quarters in the time period represented by the
Reuters collection by computing R(Fcountries(R1, x | countries) || Fcountries(R2, x |
countries)), where R1 and R2 correspond to different subcollections from different
quarters.3 A text mining system could also calculate the percentage and absolute
frequency for Fcountries(x | countries) for each such pair of collections.

Ephemeral Associations
An ephemeral association has been defined by Montes-y-Gomez et al. (2001b) as
a direct or inverse relation between the probability distributions of given topics
(concepts) over a fixed time span. This type of association differs notionally from the
more typical association form A ⇒ B because it not only indicates the co-occurrence
of two topics or sets of topics but primarily indicates how these topics or sets of topics
are related within the fixed time span.

Examples of ephemeral associations can be found in news feeds in which one very
frequently occurring or “peak” topic during a period seems to influence either the
emergence or disappearance of other topics. For instance, news stories (documents)
about a close election that involve allegations of election machine fraud may correlate
with the emergence of stories about election machine technology or vote fraud stories
from the past. This type of ephemeral association is referred to as a direct ephemeral
association.

On the other hand, news stories relating to the victory of a particular tennis
player in a major tournament may correlate with a noticeable and timely decrease in
stories mentioning other tennis players who were formerly widely publicized. Such

3 It would also be quite fair to ask for a distribution FK(x | K), which analyzes the co-occurrences of
different keywords under the same node of the hierarchy. Thus, for example, Fcountries(x | countries)
would analyze the co-occurrences of country labels on the various documents.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

32 Core Text Mining Operations

momentary negative influence between one topic and another is referred to as an
inverse ephemeral association.

One statistical method suggested by Montes-y-Gomez et al. (2001b) to detect
ephemeral associations has been the correlation measure r. This method has been
expressed as

r = S01√
S00S01

,

Skl =
n∑

i=1

(
pi

k, pi
l

) − 1
n

(
n∑

i=1

pi
k

) (
n∑

i=1

pi
l

)
,

k, l = 0, 1.

Within this method, pi
0 is the probability of the peak topic, and pi

1 is the probability
of the other topic in the period i. The correlation coefficient r attempts to measure
how well two variables – here, topics or concepts – are related to one another. It
describes values between −1 and 1; the value −1 means there is a perfect inverse
relationship between two topics, whereas the value 1 denotes a perfect direct
relationship between two topics. The value 0 indicates the absence of a relation.

Deviation Detection
Users of text mining systems are sometimes interested in deviations – that is, the
identification of anomalous instances that do not fit a defined “standard case” in
large amounts of data. The normative case is a representation of the average ele-
ment in a data collection. For instance, in news feed documents and the topics (con-
cepts) that they contain, a particular topic can be considered a deviation if its prob-
ability distribution greatly diverges from distributions of other topics in the same
sample set.

Research into deviation detection for text mining is still in its early, formative
stages, and we will not discuss it in detail here. However, work has been done by
Montes-y-Gomez, Gelbukh, and Lopez-Lopez (Montes-y-Gomez et al. 2001b) and
others to examine the difficult task of detecting deviations among documents in
large collections of news stories, which might be seen as an application of knowledge
discovery for distribution-type patterns. In such applications, time can also be used
as an element in defining the norm.

In addition, one can compare norms for various time-based subsets of a document
collection to find individual news documents whose topics substantially deviate from
the topics mentioned by other news sources. Sometimes such deviating individual
documents are referred to as deviation sources.

From Context Relationships to Trend Graphs
Another approach to to exploring the evolution of concept relationships is to exam-
ine temporal context relationships. Temporal context relationships are most typi-
cally represented by two analytical tools: the temporal context graph and the trend
graph.

Before describing these time-based, context-oriented analytical tools, we expend
a little effort explicating the more general notions of context in document collections.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 33

Indeed, both temporal context graphs and trend graphs build on the notion of the
context relationship and its typical visual representation in the form of the context
graph.

Context Phrases and Context Relationships
Generally, a context relationship in a document collection is the relationship within a
set of concepts found in the document collection in relation to a separately specified
concept (sometimes referred to as the context or the context concept). A context
relationship search might entail identifying all relationships within a set of company
names within the context of the concept “bankruptcy.” A context phrase is the name
given to a subset of documents in a document collection that is either labeled with
all, or at least one, of the concepts in a specified set of concepts.

Formal definitions for both context phrases and the context relationship are as
follows:

Definition II.11. Context Phrase: If D is a collection of documents and C is a set of
concepts, D/A(C) is the subset of documents in D labeled with all the concepts in C,
and D/O(C) is the subset of documents in D labeled with at least one of the concepts
in C. Both A(C) and O(C) are referred to as context phrases.

Definition II.12. Context Relationship: If D is a collection of documents, c1 and c2

are individual concepts, and P is a context phrase, R(D, c1, c2 | P) is the number
of documents in D/P which include both c1 and c2. Formally, R(D, c1, c2 | P) =
|(D/A({c1, c2}))|P|.

The Context Graph
Context relationships are often represented by a context graph, which is a graphic rep-
resentation of the relationship between a set of concepts (e.g., countries) as reflected
in a corpus respect to a given context (e.g., crude oil).

A context graph consists of a set of vertices (also sometimes referred to as nodes)
and edges. The vertices (or nodes) of the graph represent concepts. Weighted “edges”
denote the affinity between the concepts.

Each vertex in the context graph signifies a single concept, and two concepts are
connected by an edge if their similarity, with respect to a predefined similarity func-
tion, is larger than a given threshold (similarity functions in graphing are discussed
in greater detail in Chapter X). A context graph is defined with respect to a given
context, which determines the context in which the similarity of concepts is of interest
(see Figure II.1).

A context graph also has a formal definition:

Definition II.13. Context Graph: If D is a collection of documents, C is a set of con-
cepts, and P is a context phrase, the concept graph of D, C, P is a weighted graph G =
(C, E), with nodes in C and a set of edges E = ({c1, c2} | R(D, c1, c2 | P) > 0).
For each edge, {c1, c2} ∈ E, one defines the weight of the edge, w{c1, c2} =
R(D, c1, c2 | P).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P
1:JZ

Z
0521836573c02

C
B

1028/Feldm
an

0
521

83657
3

O
ctober

13,2006
14:41

nynec
corp

mca inc

seagram
co. ltd

ford
motor co.

general
motor corp.

chrysler
corp.

compuserve
inc

america
online inc

bertelsmann
aq

international
business machine corp.

prodigy
service co.

apple
computer inc

microsoft
corp

boeing
co

general
electric co

h r block
inc

dow coming
inc

dow coming
corp

coming
inc

dow chemical
co inc

dow chemical
inc

deutsche
telekom ag

france
telecom sa

sprint
corp

mci communication
corp

news
corp ltd.

bell atlantic
corp

21

25

29

20
16

27

2736

35

35

38

34

20

211524

20

24

22

29

26

2231

19

16 16

40

29

30

23

19
15

20

Figure II.1. Context graph for companies in the context of “joint venture.” (From Feldman, Fresko, Hirsh, et al.
1998.)

34

Cambridge Books Online © Cambridge University Press, 2009

https://doi.org/10.1017/CBO
9780511546914.003 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 35

It is often useful to be able to examine not just concept relationships within a given
concept context but also to analyze the similarities and differences in context rela-
tionships across different temporal segments of the corpus. A temporal context rela-
tionship refers specifically to the relationship between a set of concepts, as reflected
across these segments (identified by individual document date and time stamps) with
respect to specified contexts over time. For investigation across segments, a selected
subset of documents must be created that constitute a given temporal “segment” of
the document collection as a whole.

Definition II.14. Temporal Selection (“Time Interval”): If D is a collection of doc-
uments and I is a time range, date range, or both, DI is the subset of documents
in D whose time stamp, date stamp, or both, is within I. The resulting selection is
sometimes referred to as the time interval.

The formal definition for temporal context relationship builds on both this defi-
nition and that supplied earlier for a generic concept relationship (Definition II.12).

Definition II.15. Temporal Context Relationship: If D is a collection of documents,
c1 and c2 are individual concepts, P is a context phrase, and I is the time interval,
then RI(D, c1, c2 | P) is the number of documents in DI in which c1 and c2 co-occur
in the context of P – that is, RI(D, c1, c2 | P) is the number of DI/P that include both
c1 and c2.

A temporal context graph, then, can be defined as follows:

Definition II.16. Temporal Context Graph: If D is a collection of documents, C is a
set of concepts, P is a context phrase, and I is the time range, the temporal concept
graph of D, C, P, I is a weighted graph G = (C, EI) with set nodes in C and a set of
edges EI, where EI = ({c1, c2} | R(D, c1, c2 | P) > 0). For each edge, {c1, c2} ∈ E, one
defines the weight of the edge by wI{c1, c2} = RI(D, c1, c2 | P).

The Trend Graph
A trend graph is a very specialized representation that builds on the temporal context
graph as informed by the general approaches found in trend analysis. A trend graph
can be obtained by partitioning the entire timespan covered by a time- or date-
stamped document collection, or both, into a series of consecutive time intervals.
These intervals can then be used to generate a corresponding sequence of temporal
context graphs.

This sequence of temporal context graphs can be leveraged to create combined
or cumulative trend graphs that display the evolution of concept relationships in a
given context by means of visual cues such as the character and relative weight of
edges in the graph. For instance, several classes of edges may be used to indicate
various conditions:

� New Edges: edges that did not exist in the previous graph.
� Increased Edges: edges that have a relatively higher weight in relation to the

previous interval.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

36 Core Text Mining Operations

� Decreased Edges: edges that have a relatively decreased weight than the previous
interval.

� Stable Edges: edges that have about the same weight as the corresponding edge
in the previous interval.

Handling Dynamically Updated Data
There are many situations in which the document collection for a text mining system
might require frequent – perhaps even constant – updating. This regularly occurs in
environments in which the maintenance of data currency is at a premium such as
when a user wants iteratively run searches on topical news, time-sensitive financial
information, and so on. In such situations, there is a need for documents to be added
dynamically to the document collection and a concurrent need for a user of the text
mining system always – that is to say, at every instance of a new document’s being
added to the collection – to know the full and current set of patterns for the searches
that he or she has run.

An obvious solution is simply to rerun the search algorithm the user is employing
from scratch whenever there is a new data update. Unfortunately, this approach is
computationally inefficient and resource intensive (e.g., I/O, memory capacity, disk
capacity), resulting in unnecessary performance drawbacks. Additionally, users of
text mining systems with large document collections or frequent updates would have
to endure more significant interruptions in their knowledge mining activities than if
a quicker updating mechanism employing methods of modifying search results on
an increment-by-increment basis were implemented.

The more useful and sophisticated approach is to leverage knowledge from previ-
ous search runs as a foundation to which new information can be added incrementally.
Several algorithms have been described for handling the incremental update situ-
ations in data mining, and these algorithms also have applicability in text mining.
These include the FUP, FUP2, and Delta algorithms, which all attempt to minimize
the recomputation required for incremental updating of Apriori-style, frequent set,
and association rule search results. Another algorithm, based on the notion of bor-
der sets in data mining, however, also offers a very efficient and robust mechanism
for treating the incremental case when dealing with discovered frequent sets and
associations from natural language documents.

The Borders Incremental Text Mining Algorithm
The Borders algorithm can be used to update search pattern results incrementally.
It affords computational efficiency by reducing the number of scans for relations,
reducing the number of candidates, and then performing no scan if there is no fre-
quent set. This algorithm is also robust because it supports insertions and deletions
as well as absolute and percentage-based thresholds.

The Borders algorithm is based on the notions of border sets and negative borders.
In a sense, a border set can be seen as a notion related to that of a frequent set and
may be defined as follows:

Definition II.17. Border Set: X is a border set if it is not a frequent set, but any
proper subset Y ⊂ X is a frequent set (see also Figure II.2).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 37

R = {(a,b,c), (a,b,d), (a,c), (b,c)} s* = 2

a b c

a,b a,c b,c a,d b,d c,d

a,b,c,d

a,b,c b,c,d a,b,d a,c,d

d

Figure II.2. Illustration of border sets.

The full benefit of the Borders algorithm can be appreciated when one attempts to
accommodate incremental data updates of association rules. The Apriori algorithm
for generating associations entails two main steps, beginning with the discovery of
frequent sets through multiple scans of relations. This “first-step” search for frequent
sets is very often the most computationally expensive part of association discovery.
For each of the relation scans, a set of candidates is assembled and, during each scan,
the support of each candidate is computed. The Borders algorithm functions initially
to reduce the number of relation scans. Generally this serves to reduce the number
of candidates. In addition, the algorithm does not perform a scan if no frequent set
is identified.

Some important notational elements for discussing of the Borders algorithm are
described below.

� Concept set A = {A1, . . . , Am}
� Relations over A:

Rold: old relation
Rinc: increment
Rnew: new combined relation

� s(X/R): support of concept set X in the relation R
� s *: minimum support threshold (minsup).

The Borders algorithm also makes use of two fundamental properties.

� Property 1: if X is a new frequent set in Rnew, then there is a subset Y ⊆ X such
that Y is a promoted border.

� Property 2: if X is a new k-sized frequent set in Rnew, then for each subset Y ⊆
X of size k − 1, Y is one of the following: (a) a promoted border, (b) a frequent
set, or (c) an old frequent set with additional support in Rinc.

The Borders algorithm itself can be divided into two stages.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

38 Core Text Mining Operations

R = {(a,b,c), (a,b,d), (a,c), (b,c)} s* = 2, add: (a,b,d)

a b c

a,b a,c b,c a,d b,d c,d

a,b,c,d

a,b,c a,b,d a,c,d

d

b,c,d

Figure II.3. Illustration of promoted borders and new borders.

� Stage 1: Finding Promoted Borders and Generating Candidates.
Maintain the support for all borders and frequent sets.
When new data arrive for each border B of Rold,

Compute s(B, Rinc)
s(B, Rnew) = s(B, Rold) + s(B, Rinc)

If s(B, Rnew) ≥ s∗, then B is a promoted border.
If a promoted border does exist,

Run an Apriori-like algorithm, and
Generate candidates using the Property 1 and Property 2.

� Stage 2: Processing Candidates.
L0 = PB(1), i = 1
Although (L1 �= Ø or i ≤ the largest promoted border)

Candidates (I + 1) = {X | |X| = i + 1
∃ Y ⊂ X, |Y| = 1, Y ∈ PB(i) ∪ Li

∀ Z ⊂ X, |Z| = 1, Z ∈ PB(i) ∪ F(i) ∪ Li }
Scan relation and compute s(X, Rnew) for each candidate X
Li+1 = {X candidate: s(X, Rnew) ≥ s *}.

See Figure II.3 for an illustration of promoted borders. With the Borders algorithm,
full relations are never scanned if there is no new frequent set. Moreover, because
of its parsimony in scanning for relations, the algorithm is likely to yield a small
candidate set.

Percentage thresholds can be incorporated into incremental update schemes for
text mining systems in conjunction with the Borders algorithm. For instance, we can
define a threshold as σ percent of the size of the relations, and thus S ∗ = σ |R|. The
key point for this type of operation is to redetermine the type of each set according
to the new threshold before running the algorithm.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.1 Core Text Mining Operations 39

Deletions with absolute thresholds for incremental data can be accommodated
relatively straightforwardly:

s(X, Rnew) = s(X, Rold) − s(X, Rinc).

For percentage-type thresholds, the approach to handling deletions is perhaps a bit
less intuitive but not too complex. In these cases, one can simply look at a deletion
as a decrease in the absolute threshold and approach the deletion with the following
equation:

s∗
new = σ (|Rold| + |Rinc|) = s∗

old − s∗
inc.

General changes to the threshold value should also be generally supported. Increas-
ing the threshold is relatively easy, for only borders and frequent sets need be consid-
ered. On the other hand, an approach to decreasing the threshold might be to view
border X with s(B, Rnew) ≥ s∗

new as a promoted border before running the Borders
algorithm.

II.1.6 Citations and Notes

Section II.1.–II.1.1
The primary source leveraged for information throughout Section II.1 is Feldman,
Dagan, et al. (1998). Although focused more on visualization, Hearst (1995) also pro-
vides some interesting general background for the topic. Definitions II.1. through II.7.
derive from descriptions of distribution and proportion types identified in Feldman,
Dagan, et al. (1998).

Section II.1.2
Agrawal, Imielinski, and Swami (1993) and Agrawal and Srikant (1994) introduce
the generation of frequent sets as part of the Apriori algorithm. Beyond Agrawal
et al.’s seminal research on investigating market basket–type associations (Agrawal
et al. 1993), other important works shaping the present-day understanding of frequent
concept sets include Agrawal and Srikant (1994) and Silverstein, Brin, and Motwani
(1999). In addition, Clifton and Cooley (1999) provides a useful treatment of market
basket problems and describes how a document may be viewed as a market basket
of named entities. Feldman, Aumann, Amir, et al. (1997); Rajman and Besancon
(1997b); and Rajman and Besancon (1998) discuss the application of elements of the
Apriori algorithm to textual data.

Algorithm 1 in Section II.1.2. was taken from Agrawal and Srikant (1994).
Rajman and Besancon (1997b) provides the background for Section II.1.2.’s dis-

cussion of the discovery of frequent concept sets. Although Algorithm 2 in Section
II.1.2 is a generalized and simple one for frequent set generation based on the notions
set forth in Agrawal et al. (1993) and Agrawal and Srikant (1994), Rajman and Besan-
con (1997b) provides a slightly different but also useful algorithm for accomplishing
the same task.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

40 Core Text Mining Operations

Section II.1.3
In addition to presenting the framework for generating frequent sets, the treatment of
the Apriori algorithm by Agrawal et al. (1993) also provided the basis for generating
associations from large (structured) data sources. Subsequently, associations have
been widely discussed in literature relating to knowledge discovery targeted at both
structured and unstructured data (Agrawal and Srikant 1994; Srikant and Agrawal
1995; Feldman, Dagan, and Kloesgen 1996a; Feldman and Hirsh 1997; Feldman and
Hirsh 1997; Rajman and Besancon 1998; Nahm and Mooney 2001; Blake and Pratt
2001; Montes-y-Gomez et al. 2001b; and others).

The definitions for association rules found in Section II.1.3. derive primarily from
Agrawal et al. (1993), Montes-y-Gomez et al. (2001b), Rajman and Besancon (1998),
and Feldman and Hirsh (1997). Definitions of minconf and minsup thresholds have
been taken from Montes-y-Gomez et al. (2001b) and Agrawal et al. (1993). Rajman
and Besancon (1998) and Feldman and Hirsh (1997) both point out that the discovery
of frequent sets is the most computationally intensive stage of association generation.

The algorithm example for the discovery of associations found in Section II.3.3’s
Algorithm 3 comes from Rajman and Besancon (1998); this algorithm was directly
inspired by Agrawal et al. (1993). The ensuing discussion of this algorithm’s implica-
tions was influenced by Rajman and Besancon (1998), Feldman, Dagan, and Kloesgen
(1996a), and Feldman and Hirsh (1997).

Maximal associations are most recently and comprehensively treated in Amir
et al. (2003), and much of the background for the discussion of maximal associations
in Section II.1.3 derives from this source. Feldman, Aumann, Amir, et al. (1997) is
also an important source of information on the topic. The definition of a maximal
association rule in Section II.1.3, along with Definition II.8 and its ensuing discussion,
comes from Amir, Aumann, et al. (2003); this source is also the basis for Section
II.1.3’s discussion of the M-factor of a maximal association rule.

Section II.1.4
Silberschatz and Tuzhilin (1996) provides perhaps one of the most important discus-
sions of interestingness with respect to knowledge discovery operations; this source
has influenced much of Section II.1.5. Blake and Pratt (2001) also makes some gen-
eral points on this topic.

Feldman and Dagan (1995) offers an early but still useful discussion of some of the
considerations in approaching the isolation of interesting patterns in textual data, and
Feldman, Dagan, and Hirsh (1998) provides a useful treatment of how to approach
the subject of interestingness with specific respect to distributions and proportions.
Definitions II.9 and II.10 derive from Feldman, Dagan, and Hirsh (1998).

Section II.1.5
Trend analysis in text mining is treated by Lent et al. (1997); Feldman and Dagan
(1995); Feldman, Dagan, and Hirsh (1998); and Montes-y-Gomez et al. (2001b).
Montes-y-Gomez et al. (2001b) offers an innovative introduction to the notions of
ephemeral associations and deviation detection; this is the primary recent source for
information relating to these two topics in Section II.1.5.

The analysis of sequences and trends with respect to knowledge discovery in struc-
tured data has been treated in several papers (Mannila, Toivonen, and Verkamo 1995;

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.2 Using Background Knowledge for Text Mining 41

Srikant and Agrawal 1996; Keogh and Smyth 1997; Bettini, Wang, and Joiodia 1996;
Mannila et al. 1995; and Mannila, Toivonen, and Verkamo 1997). Algorithms based
on the identification of episodes (Mannila et al. 1995) and sequential patterns (Srikant
and Agrawal 1996) in large data repositories have been described as mechanisms for
better mining of implicit trends in data over time. Related work on the discovery of
time series analysis has also been discussed (Agrawal and Srikant 1995; Keogh and
Smyth 1997).

Lent et al. (1997) and Feldman, Aumann, Zilberstein, et al. (1997) emphasize that
trend analysis focused on text mining relates to collections of documents that can be
viewed as subcollections defined, in part, by time. These two works are among the
most important entry points for the literature of trend analysis in text mining. Montes-
y-Gomez et al. (2001b) also makes very interesting contributions to the discussion
of the topic.

Definitions related to ephemeral associations come from Montes-y-Gomez
et al. (2001b); the terms ephemeral association and deviation detection are used in
this chapter within the general definitional context of this source. Use of the cor-
relation measure r in the detection of ephemeral associations also comes from this
source, building on original work found in Freund and Walpole (1990). Finally, the
examples used to illustrate direct and inverse ephemeral associations are based on
the discussions contained in Montes-y-Gomez et al. (2001b).

The discussion of deviation detection in Section II.1.5 has been shaped by sev-
eral sources, including Montes-y-Gomez et al. (2001b); Knorr, Ng, and Tucatov
(2000); Arning, Agrawal, Raghavan (1996); Feldman and Dagan (1995); and
Feldman, Aumann, Zilberstein, et al. (1997). Much of the terminology in this section
derives from Montes-y-Gomez et al. (2001b). The term deviation sources was coined
in Montes-y-Gomez et al. (2001b).

Much of Section II.1.5’s discussion of context and trend graphs derives directly
from Feldman, Aumann, Zilberstein, et al. (1997) as do Definitions II.11, II.12, II.13,
II.14, II.15, and II.16. The trend graph described in Section II.3.5 has also, in a general
way, been influenced by Lent et al. (1997).

Feldman, Amir, et al. (1996) was an early work focusing on measures that would
support a text mining system’s ability to handle dynamically updated data. The FUP
incremental updating approach comes from Cheung et al. (1996), the FUP2 is for-
malized in Cheung, Lee, and Kao (1997), and the Delta algorithms were identified in
Feldman, Amir, et al. (1996).

The notion of border sets was introduced, with respect to data mining, in Mannila
and Toivonen (1996). Much of the discussion of border sets in this section is an
application of the border set ideas of Mannila and Toivonen (1996) to collections of
text documents. The Apriori algorithm for generating associations was identified in
Agrawal et al. (1993) and Agrawal and Srikant (1994).

II.2 USING BACKGROUND KNOWLEDGE FOR TEXT MINING

II.2.1 Domains and Background Knowledge

As has already been described in Section II.1, concepts derived from the representa-
tions of documents in text mining systems belong not only to the descriptive attributes

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

42 Core Text Mining Operations

of particular documents but generally also to domains. A domain can be loosely
defined as a specialized area of interest for which formal ontologies, lexicons, and
taxonomies of information may be created. Domains can exist for very broad areas of
interest (e.g., economics or biology) or for more narrow niches (e.g., macroeconomics,
microeconomics, mergers, acquisitions, fixed income, equities, genomics, proteomics,
zoology, virology, immunology, etc.).

Much of what has been written about the use of domain knowledge (also referred
to as background knowledge) in classic data mining concerns its use as a mecha-
nism for constraining knowledge discovery search operations. From these works, it
is possible to generalize three primary forms of usable background knowledge from
external sources for data mining applications: (a) constraints, (b) attribute relation-
ship rules, and (c) “hierarchical trees” or “category domain knowledge.” More recent
literature, however, suggests that other types and implementations of background
knowledge may also be useful in data mining operations.

Text mining systems, particularly those with some pronounced elements of
domain specificity in their orientation, can leverage information from formal external
knowledge sources for these domains to greatly enhance a wide variety of elements
in their system architecture. Such elements include those devoted to preprocessing,
knowledge discovery, and presentation-layer operations. Even text mining systems
without pronounced elements of domain specificity in their design or usage, how-
ever, can potentially benefit by the inclusion of information from knowledge sources
relating to broad but still generally useful domains such as the English language or
world almanac–type facts.

Indeed, background knowledge can be used in text mining preprocessing oper-
ations to enhance concept extraction and validation activities. Furthermore, access
to background knowledge can play a vital role in the development of meaningful,
consistent, and normalized concept hierarchies.

Background knowledge, in addition, may be utilized by other components of
a text mining system. For instance, one of the most clear and important uses of
background knowledge in a text mining system is the construction of meaningful
constraints for knowledge discovery operations. Likewise, background knowledge
may also be used to formulate constraints that allow users greater flexibility when
browsing large result sets or in the formatting of data for presentation.

II.2.2 Domain Ontologies

Text mining systems exploit background knowledge that is encoded in the form of
domain ontologies. A domain ontology, sometimes also referred to less precisely as a
background knowledge source or knowledge base, might be informally defined as the
set of all the classes of interest and all the relations between these classes for a given
domain. Perhaps another way of describing this is to say that a domain ontology
houses all the facts and relationships for the domain it supports. Some see a grouping
of facts and relationships as a vocabulary constructed in such a way as to be both
understandable by humans and readable by machines.

A more formal – albeit very generic – definition for a domain ontology can be
attempted with the following notation proposed by Hotho et al. (2003) derived gen-
erally from research into formal concept analysis:

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.2 Using Background Knowledge for Text Mining 43

Definition II.18. Domain Ontology with Domain Hierarchy: A domain ontology is
a tuple O := (C, ≤ c) consisting of a set C whose elements are called concepts and a
partial order ≤ c on C, which is labeled a concept hierarchy or taxonomy.

One example of a real-world ontology for a broad area of interest can be found in
WordNet, an online, public domain ontology originally created at Princeton Univer-
sity that has been designed to model the domain of the English language. Version 1.7
of WordNet contains approximately 110,000 unique concepts (referred to as synsets
by WordNet’s designers); the ontology also has a sophisticated concept hierarchy
that supports relation-type information.

WordNet can be used as a “terminological knowledge base” of concepts, con-
cept types, and concept relations to provide broadly useful background knowledge
relating to the domain of the English language. A WordNet synset represents a sin-
gle unique instance of a concept meaning related to other synsets by some type of
specified relation.

Interestingly, WordNet also supports a lexicon of about 150,000 lexical entries
(in WordNet’s terminology “words”) that might more generally be viewed as a list
of lexical identifiers or “names” for the concepts stored in the WordNet ontology.
Users of WordNet can query both its ontology and its lexicon.

Another ontology implementation that models a narrower subject area domain
is the Gene OntologyTM or GO knowledge base administered by the Gene Ontology
Consortium. The GO knowledge base serves as a controlled vocabulary that describes
gene products in terms of their associated biological processes, cellular components,
and molecular functions. In this controlled vocabulary, great care is taken both to
construct and define concepts and to specify the relationships between them. Then,
the controlled vocabulary can be used to annotate gene products.

GO actually comprises several different structured knowledge bases of infor-
mation related to various species, coordinates, synonyms and so on. Each of these
ontologies constitutes structured vocabularies in the form of directed acyclic graphs
(DAGs) that represent a network in which each concept (“term” in the GO terminol-
ogy) may be the “child” node of one or more than one “parent” node. An example of
this from the GO molecular function vocabulary is the function concept transmem-
brane receptor protein-tyrosine kinase and its relationship to other function concepts;
it is a subclass both of the parent concept transmembrane receptor and of the parent
concept protein tyrosine kinase. Figure II.4 provides a high-level view of the Gene
Ontology structure.

Several researchers have reported that the GO knowledge base has been used for
background knowledge and other purposes. Moreover, the Gene Ontology Consor-
tium has developed various specialized browsers and mapping tools to help devel-
opers of external systems leverage the background knowledge extractable from the
GO knowledge base.

II.2.3 Domain Lexicons

Text mining systems also leverage background knowledge contained in domain lexi-
cons. The names of domain concepts – and the names of their relations – make up a
domain ontology’s lexicon. The following definitions come from Hotho et al. (2003).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

44 Core Text Mining Operations

Top of ontology

Parent term

Child term

Genes to which
these GO terms
are annotated

This term
has two
parents

Directed
acyclic graph

e.g. Lamin B
receptor

e.g. Werner syndrome
helicase

e.g. Bloom's syndrome
protein

AT Pase

DNA-dependent
AT Pase

ATP-dependent
helicase

Holliday-junction
helicase

DNA helicase

Enzyme

Helicase

Molecular function

Binding

Nucleic acid binding

DNA binding

Chromatin binding

Lamin chromatin binding

Figure II.4. Schematic of the Gene Ontology structure. (From GO Consortium 2001.)

Definition II.19. Domain Lexicon: A lexicon for an ontology O is a tuple Lex: =
(SC, RefC) consisting of a set SC, whose elements are called names of concepts, and
a relation RefC ⊆ SC × c called lexical reference for concepts for which (c, c) ∈ RefC

holds for all c ∈ C ∩ SC.
Based on RefC, we define, for s ∈ SC, RefC (s): = {c ∈ C | (s, c) ∈ RefC} and, for

c ∈ C, Ref−1
C (c): = {s ∈ SC | (s, c) ∈ RefC}.

For the typical situation – such as the WordNet example – of an ontology with a
lexicon, one could also use a simple notation:

Definition II.20. Domain Ontology with Lexicon: An ontology with lexicon is a pair
(O, Lex), where O is an ontology and Lex is a lexicon for O.

A lexicon such as that available with WordNet can serve as the entry point to
background knowledge. Using a lexicon, a text mining system could normalize the
concept identifiers available for annotation of documents in its corpus during prepro-
cessing in a way that supports, by means of the lexicon’s related ontology, both the
resolution of synonyms and the extraction of rich semantic relationship information
about concepts.

II.2.4 Introducing Background Knowledge into Text Mining Systems

Background knowledge can be introduced into text mining systems in various ways
and at various points in a text mining system’s architecture. Although there are may
be any number of arguments about how background knowledge can enrich the value
of knowledge discovery operations on document collections, there are three main
practical reasons why background information is so universally important in text
mining systems.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.2 Using Background Knowledge for Text Mining 45

First, background knowledge can be used in a text mining system to limit pattern
abundance. Background knowledge can be crafted into constraints that allow for
more efficient and meaningful queries; such constraints can be used for a variety
of other purposes as well. Second, background knowledge is an extremely efficient
mechanism for resolving questions of concept synonymy and polysemy at the level
of search. Access to an ontology that stores both lexical references and relations
allows for various types of resolution options. Third, background knowledge can be
leveraged in preprocessing operations to create both a consistent lexical reference
space and consistent hierarchies for concepts that will then be useful throughout
other subsequent query, presentation, and refinement operations.

Perhaps the simplest method to integrate background knowledge into a text
mining system is by using it in the construction of meaningful query constraints. For
instance, with respect to association discovery, concepts in a text mining system can
be preprocessed into either some hierarchical form or clusters representing some
limited number of categories or classes of concepts. These categories can then be
compared against some relevant external knowledge source to extract interesting
attributes for these categories and relations between categories.

A tangible example of this kind of category- or class-oriented background knowl-
edge constraint is a high-level category like company, which might, after reference
to some commercial ontology of company information, be found to have com-
monly occurring attributes such as ProductType, Officers, CEO, CFO, BoardMem-
bers, CountryLocation, Sector, Size, or NumberOfEmployees. The category com-
pany could also have a set of relations to other categories such as IsAPartnerOf,
IsACustomerOf, IsASupplierTo, IsACompetitorTo, or IsASubsidiaryOf. These cate-
gory attributes and relations could then be used as constraints available to a user on
a pick list when forming a specific association-discovery query relating either to the
class company or to a concept that is a particular member of that class.

The resulting query expression (with constraint parameter) would allow the user
to specify the LHS and RHS of his or her query more carefully and meaningfully.
The inclusion of these types of constraints not only increases user interactivity with
a text mining system because the user will be more involved in specifying interesting
query parameters but can also limit the amount of unwanted patterns resulting from
underspecified or inappropriately specified initial queries.

Further, background information constraints can be used in an entirely different
way – namely, in the formatting of presentation-level displays of query results. For
instance, even if a user did not specify particular constraints as parameters to his or
her query expression, a text mining system could still “add value” to the display of the
result set by, for instance, highlighting certain associations for which particular preset
constraint conditions have been met. An example of this might be that, in returning
a result set to a query for all companies associated with crude oil, the system could
highlight those companies identified as suppliers of crude oil in blue whereas those
companies that are buyers of crude oil could be highlighted in red. Such color coding
might aid in users’ exploration of data in the result set because these data provide
more information to the user than simply presenting a bland listing of associations
differentiated only by confidence level.

Another common use of background knowledge is in the creation of consis-
tent hierarchical representations of concepts in the document collection. During

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

46 Core Text Mining Operations

preprocessing – or even during a query – groups of concepts can be compared against
some normalized hierarchical form generated from an ontology. The resulting con-
cept hierarchy has the benefit of being both informed by the domain knowledge
about relationships collected in the ontology and more consistently integrated with
the external source in the event that other types of system operations require refer-
ence to information contained in the ontology.

II.2.5 Real-World Example: FACT

FACT (Finding Associations in Collections of Text) was a text mining system devel-
oped by Feldman and others during the late 1990s. It represented a focused effort at
enhancing association discovery by means of several constraint types supplied by a
background knowledge source. In this, it created a very straightforward example of
how background knowledge could be leveraged to clear practical effect in knowledge
discovery operations on document collections.

General Approach and Functionality
The FACT system might essentially be seen as an advanced tool focused specifically
on the discovery of associations in collections of keyword (concept)-labeled text
documents. Centering on the association discovery query, the FACT system provided
a robust query language through which a user could specify queries over the implicit
collection of possible query results supported by the documents in the collection.

Rather than requiring the specification of an explicit query expression in this
language, FACT presented the user with a simple-to-use graphical interface in which
a user’s various discovery tasks could be specified, and the underlying query language
provided a well-defined semantics for the discovery actions performed by the user
through the interface (see Figure II.5).

Perhaps most importantly, FACT was able to exploit some basic forms of back-
ground knowledge. Running against a document collection of newswire articles,
FACT used a simple textual knowledge source (the CIA World Factbook) to exploit
knowledge relating to countries. FACT was able to leverage several attributes relating
to a country (size, population, export commodities, organizational memberships, etc.)
as well as information about relationships between countries (e.g., whether countries
were neighbors or trading partners, had a common language, had a common border,
etc.).

Using this background knowledge to construct meaningful constraints, FACT
allowed a user, when making a query, to include constraints over the set of desired
results. Finally, FACT also exploited these constraints in how it structured its search
for possible results. This background knowledge thus enabled FACT to, for example,
discover associations between a G7 country, for instance, that appeared as a concept
label of a document and some other nonbordering G7 countries that also appeared
as concept labels of the document.

System Architecture
FACT’s system architecture was straightforward. In a sense, all system components
centered around the execution of a query (see Figure II.6). The system’s query

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.2 Using Background Knowledge for Text Mining 47

Figure II.5. FACT’s query specification interface. (From Feldman and Hirsh 1997. Reprinted
with permission of John Wiley and Sons.)

execution core operations took three inputs – the annotated document collection,
distilled background knowledge, and a user’s knowledge-discovery query – to create
output that was passed to a presentation-layer tool that formatted the result set for
display and user browsing.

The system provided an easy-to-use interface for a user to compose and execute
an association discovery query, supplemented by constraints for particular types of
keywords that had been derived from an external knowledge source. The system
then ran the fully constructed query against a document collection whose documents
were represented by keyword annotations that had been pregenerated by a series of
text categorization algorithms.

Result sets could be returned in ways that also took advantage of the background
knowledge–informed constraints. A user could explore a result set for a query and
then refine it using a different combination of constraints.

Implementation
The document collection for the FACT system was created from the Reuters-22173
text categorization test collection, a collection of documents that appeared on the
Reuters newswire in 1987. This collection obviated the need to build any system
elements to preprocess the document data by using categorization algorithms.

The Reuters-22173 documents were preassembled and preindexed with cate-
gories by personnel from Reuters Ltd. and Carnegie Group, Inc., and some final
formatting was manually applied. The Reuters personnel tagged each document

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

48 Core Text Mining Operations

Parsing Graphical User Interface Text Categorization
Algorithms

Query Execution

Presentation Module

Keyword
Annotated

Documents

Backgroud
Knowledge

Knowledge
Sources

Text Collections

Query

Associations

Figure II.6. System architecture of FACT. (From Feldman and Hirsh 1997. Reprinted with
permission of John Wiley and Sons.)

with a subset of 135 keywords that fell into five overarching categories: countries,
topics, people, organizations, and stock exchanges.

The 1995 CIA World Factbook that served as the FACT system’s ostensible ontol-
ogy amd background knowledge source was a structured document containing infor-
mation about each of the countries of the world and was divided into six sections:
Geography, People, Government, Economy, Communications, and Defense Forces.
For experimentation with the Reuters-22173 data, the following background infor-
mation was extracted for each country C:

� MemberOf: all organizations of which C is a member (e.g., G7, Arab League,
EC),

� LandBoundaries: the countries that have a land border with C,
� NaturalResources: the natural resources of C (e.g., crude, coal, copper, gold),
� ExportCommodities: the main commodities exported by C (e.g., meat, wool,

wheat),
� ExportPartners: the principal countries to which C exports its ExportCommodi-

ties,
� ImportCommodities: the main commodities imported by C (e.g., meat, wool,

wheat),

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.2 Using Background Knowledge for Text Mining 49

Figure II.7. FACT’s background knowledge viewer showing the countries having land bound-
aries with Saudi Arabia. (From Feldman and Hirsh 1997. Reprinted with permission of John
Wiley and Sons.)

� ImportPartners: the principal countries from which C imports its Import Com-
modities,

� Industries: the main industries of C (e.g., iron, steel, machines, textiles, chemi-
cals), and

� Agriculture: the main agricultural products of C (e.g., grains, fruit, potatoes,
cattle).

The first boldfaced element before the colon defines a unary predicate, and the
remainder of each entry constitutes a binary predicate over the set of keywords that
can label the documents in the Reuters-22173 collection. Users could browse this
background knowledge in FACT by means of a utility (see Figure II.7).

For its main association-discovery algorithm, FACT implemented a version of the
two-phase Apriori algorithm. After generating σ -covers, however, FACT modified
the traditional association-discovery phase to handle the various types of constraints
that had been generated from the CIA World Factbook.

Upon completion of a query, FACT executed its query code and passed a
result set back to a specialized presentation tool, the FACT system’s association
browser. This browser performed several functions. First, it filtered out redun-
dant results. Second, it organized results hierarchically – identifying commonalties
among the various discovered associations and sorting them in decreasing order of
confidence.

Further, the tool housed this hierarchical, sorted representation of the result
set in a screen presentation that enabled a user to browse the titles of documents
supporting each of the individual associations in the result set simply by pointing and
clicking on that association (see Figure II.8).

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

50 Core Text Mining Operations

Figure II.8. FACT’s association browser presentation module showing a result set for asso-
ciations of Arab League countries with countries sharing a border. (From Feldman and Hirsh
1997. Reprinted with permission of John Wiley and Sons.)

Experimental Performance Results
FACT appeared to perform well on queries of the form “find all associations between
a set of countries including Iran and any person” and “find all associations between
a set of topics including Gold and any country” as well as more complex queries that
included constraints. One interesting – albeit still informal and crude – experiment
performed on the system was to see if there was any performance difference (based on
a comparison of CPU time) between query templates with and without constraints. In
most cases, the queries involving constraints extracted from background knowledge
appeared to be noticeably more efficient in terms of CPU time consumption.

Some practical difficulties were encountered when trying to convert the CIA
World Factbook into unary and binary predicates when the vocabulary in the
Factbook differed from the universe of keywords labeling the Reuters documents
(Feldman and Hirsh 1997). This is a problem that can creep into almost any text
mining system that attempts to integrate background knowledge. FACT’s designers
put in place a point solution to resolve this problem by including additional back-
ground knowledge from a standard reference dictionary to help at least provide a
basic definition of synonyms.

Obviously, today, advanced text mining systems involving background knowl-
edge can integrate with more sophisticated dictionary-type ontologies like WordNet
to resolve problems with synonymy. Further, today’s designers of text mining sys-
tems can also consider various strategies for including background knowledge in
preprocessing routines to help create more consistency in the concept tags that

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.3 Text Mining Query Languages 51

annotate document collections before the execution of any knowledge discovery
algorithms.

II.2.6 Citations and Notes

Section II.2.1
For general discussion of the use of background knowledge to construct constraints
in classic data mining, see Anand, Bell, and Hughes (1995) and Yoon et al. (1999).
Kopanis, Avouris, and Daskalaki (2002) discusses other uses for background knowl-
edge in data mining systems. Feldman and Hirsh (1996a) provides an early discussion
of various uses of background knowledge within a text mining system.

Section II.2.2
The informal definition for a domain ontology in Section II.2.2 comes from Craven
and Kumlien (1999). The definition for a domain vocabulary was derived from
Gruber (1993). Definition II.18 has been taken from Hotho et al. (2003); this source
provides much of the background and definitional information for the topics dis-
cussed throughout Sections II.2.2 through II.2.4.

A large body of literature exists on the subject of WordNet, but the basic overview
is contained in Martin (1995); the identification of WordNet as a “terminologi-
cal knowledge base” also comes from this source. Descriptions of WordNet’s lex-
icon, concept hierarchy, and ontological structure rely on information published in
Rodriguez, Gomez-Hidalgo, and Diaz-Agudo (1997) and Hotho et al. (2003).

The Gene Ontology knowledge base is described in GO Consortium (2000).
The schematic of the GO knowledge base displayed in Figure II.4 comes from GO
Consortium (2001); the example in Section II.2.2 involving the function concept
transmembrane receptor protein-tyrosine kinase was also taken from this source.
Hill et al. (2002) and Hirschman et al. (2002) have both reported use of the
GO knowledge base for background knowledge purposes in knowledge discovery
systems.

Section II.2.3
Definitions II.19 and II.20 as well as the WordNet examples used in discussing these
definitions come from Hotho et al. (2003).

Sections II.2.4.–II.2.5
The FACT system is described in Feldman and Hirsh (1996a), Feldman and Hirsh
(1996b), and Feldman and Hirsh (1997), and it influenced a substantial amount of
later discussion of text mining systems (Landau, Feldman, Aumann, et al. 1998; Blake
and Pratt 2001; Montes-y-Gomez et al. 2001b; Nahm and Mooney 2001; and others).
Most of the descriptions of the FACT system found in Section II.2.5 derive from
Feldman and Hirsh (1997).

II.3 TEXT MINING QUERY LANGUAGES

Query languages for the type of generalized text mining system described in this chap-
ter must serve several straightforward purposes. First, these languages must allow

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

52 Core Text Mining Operations

for the specification and execution of one of the text mining system’s search algo-
rithms. Second, they generally need to allow for multiple constraints to be appended
to a search argument; such constraints need to be specifiable by a user. Third, the
query languages typically also need to perform some types of auxiliary filtering and
redundancy to minimize pattern overabundance in result sets.

Most text mining systems offer access to their query language either through a
more abstracted and “friendly” interface that acts to assist the user by means of pick
lists, pull-down menus, and scroll bars containing preset search types and constraints
or through more direct “command-line” access to the query language that exposes
query language expressions in their full syntax. Some text mining systems offer both.

It is important in any implementation of a query language interface for designers
of text mining systems to consider carefully the usage situations for the interfaces they
provide. For instance, having a user-friendly, graphically oriented tool may greatly
enhance a system’s ease of use, but if this tool severely limits the types of queries
that may be performed it may not meet a strict cost–benefit analysis.

Similarly, direct access to a text mining system’s query language to support the
construction of ad hoc queries can be very advantageous for some users trying to
experiment with queries involving complex combinations of constraints. If, however,
such a direct query interface does not allow for robust storage, reuse, renaming, and
editing of ad hoc queries as query templates, such “low level” access to the query
language can become very inefficient and frustrating for users.

II.3.1 Real World Example: KDTL

The text mining query language KDTL (knowledge discovery in text language) was
first introduced in 1996 as the query language engine supporting the FACT system and
was subsequently more fully described as a central element of Feldman, Kloesgen,
et al.’s later Document Explorer system.

KDTL’s primary function is to provide a mechanism for performing queries that
isolate interesting patterns. A Backus Naur Form (BNF) description of KDTL is
shown in Figure II.9.

KDTL supports all three main patter-discovery query types (i.e., distributions,
frequent sets, and associations) as well as less common graphing outputs (i.e., key-
word graph, directed keyword graph). Also notice that each query contains one
algorithmic statement and several constraint statements.

The constraint part of the query is structured in such a way that the user needs
first to select a single relevant component – that is, the left-hand side (LHS) of the
association, right-hand side (RHS), frequent set, or a path in a keyword graph. Then,
all subsequent constraint statements are applied to this component.

When specifying set relations, the user can optionally specify background pred-
icates to be applied to the given expressions. KDTL intentionally contains some
redundancy in the constraints statements to facilitate easier specification of queries.

II.3.2 KDTL Query Examples

Here are some typical examples of KDTL queries executed on the Reuters-22173
document collection used by FACT and described in Section II.5.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.3 Text Mining Query Languages 53

Algorithmic statements:

gen_rule() : generate all matching association rules
gen_frequent_set(): generate all matching frequent sets
gen_kg() : generate a keyword graph
gen_dkg() : generate a directed keyword graph
gen_dist() : generate a distribution

Constraint statements:

set_filter(<Set>) - the set MUST meet the following
constraints
set_not_filter(<Set>) - the set MUST NOT meet the following
constraints

<Set> ::= frequent_set | left | right | path

contain([<background predicate>], <Expression>) –
the designated set must contain <expression> (or
<background predicate>(<expression>))

subset([<background predicate>],<Expression>) –
the designated set is a subset of <expression> (or
<background predicate>(<expression>))

disjoint([<background predicate>],<Expression>) –
the designated set and <expression> are disjoint (or
<background predicate>(<expression>))

equal([<background predicate>],<Expression>) –
the designated set is equal to <expression> (or
<background predicate>(<expression>))

all_has(<Expression>) –
all members of the designated set are descendents of
<expression> in the taxonomy

one_has(<Expression>) –
at least one of the members of the designated set is a
descendent of <expression>

property_count(<Expression>,<low>,<high>) –
of members that are descendents of <expression> is in
the specified range

size(<Expression>,<low>,<high>) –
size of the designated set is in the specified range

Set_conf(real)
Set_supp(integer)

<Expression> ::= Keyword | Category |
<Expression>,<Expression> |

 <Expression> ; <Expression>
<high> ::= integer
<low> ::= integer

Figure II.9. BNF description of KDTL. (From Feldman, Kloesgen, and Zilberstein 1997a.
Reprinted with permission of Springer Science and Business Media.)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

54 Core Text Mining Operations

In order to query only those associations that correlate between a set of countries
including Iran and a person, the KDTL query expression would take the following
form:

set filter(left); all has({“countries”}); contain({“iran”});
set filter(right); all has({“people”}); property count(“people”,1,1);
set supp(4); set conf(0.5); gen rule();

Run against the Reuters collection, the system would find four associations as a
result of this particular query, all of which would have Reagan in the RHS.

(6.54%) Iran, Nicaragua, USA ⇒ Reagan
(6.50%) Iran, Nicaragua ⇒ Reagan
(18.19%) Iran, USA ⇒ Reagan
(19.10%) Iran ⇒ Reagan

The interesting associations are those that include Iran and Nicaragua on the
LHS. Upon querying the document collection, one can see that, when Iran and
Nicaragua are in the document, then, if there is any person in the document, Rea-
gan will be in that document too. In other words, the association Iran, Nicaragua,
<person> ⇒ Reagan has 100-percent confidence and is supported by six documents.
The <person> constraint means that there must be at least one person name in the
document.

As another example, if one wanted to infer which people were highly correlated
with West Germany (Reuters collection was from a period before the reunion of
Germany), a query that looked for correlation between groups of one to three people
and West Germany would be formulated.

set filter(“left”); size(1,3); all has({“people”});
set filter(“right”); equal({“west germany”});
set supp(10); set conf(0.5); gen rule();

The system found five such associations; in all them the people on the LHS were
senior officials of the West German government. Kohl was the Chancellor, Poehl
was the president of the Central Bank, Bangemann was the Economic Minister,
and Stoltenberg was the Finance Minister. If one wanted to infer from a document
collection who the high officials of a given country are, a similar query would probably
yield a reasonably accurate answer.

This type of example can also be used to show how background knowledge can
be leveraged to eliminate trivial associations. For instance, if a user is very famil-
iar with German politics and not interested in getting these particular associations,
he or she might like to see associations between people who are not German cit-
izens and Germany. Adding the constraints set filter not(“left”); equal(nationality,
“west germany”); will eliminate all the associations shown below.

(8.100%) Poehl, Stoltenberg ⇒ West Germany
(6.100%) Bangemann ⇒ West Germany
(11.100%) Kohl ⇒ West Germany
(21.80%) Poehl ⇒ West Germany
(44.75%) Stoltenberg ⇒ West Germany

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

II.3 Text Mining Query Languages 55

II.3.3 KDTL Query Interface Implementations

In Figures II.10 and II.11, one can see two elements of a sample GUI for defining
KDTL queries. In the KDTL Query Editor (see Figure II.10), a user builds a query
expression with one constraint at a time.

The tabbed dialog boxes in Figure II.11 demonstrate how the user defines a
single constraint. Several different types of set constraints are supported, including
background and numerical size constraints.

The results of a typical query – of the kind defined in Figures II.10 and II.11 – can
be seen in Figure II.12.

In this query, the object was to find all associations that connect a set of countries
and a set of economical indicator topics if trade is not in the set. Only one association
satisfies all these constraints. If the last constraint had been lifted – and one allowed
“trade” to be in the RHS of the association – the system would have returned 18
associations.

II.3.4 Citations and Notes

Sections II.3–II.3.2
The descriptions of KDTL in Section II.3, as well as the example of the language and
the various screen shots of query interfaces, primarily come from Feldman, Kloesgen,
and Zilberstein (1997a). See also Feldman and Hirsh (1997).

Figure II.10. Defining a KDTL query. (From Feldman, Kloesgen, and Zilberstein 1997a.
Reprinted with permission of Springer Science and Business Media.)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

P1: JZZ
0521836573c02 CB1028/Feldman 0 521 83657 3 October 13, 2006 14:41

56 Core Text Mining Operations

Figure II.11. Defining a KDTL set constraint. (From Feldman, Kloesgen, and Zilberstein 1997a.
Reprinted with permission of Springer Science and Business Media.)

Figure II.12. Interface showing KDTL query results. (From Feldman, Kloesgen, and Zilberstein
1997a. Reprinted with permission of Springer Science and Business Media.)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546914.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546914.003

