1

The Learning Methodology

The construction of machines capable of learning from experience has for a long
time been the object of both philosophical and technical debate. The technical
aspect of the debate has received an enormous impetus from the advent of electronic
computers. They have demonstrated that machines can display a significant level
of learning ability, though the boundaries of this ability are far from being clearly
defined.

The availability of reliable learning systems is of strategic importance, as there
are many tasks that cannot be solved by classical programming techniques, since
no mathematical model of the problem is available. So for example it is not known
how to write a computer program to perform hand-written character recognition,
though there are plenty of examples available. It is therefore natural to ask if a
computer could be trained to recognise the letter ‘A’ from examples — after all this
is the way humans learn to read. We will refer to this approach to problem solving
as the learning methodology

The same reasoning applies to the problem of finding genes in a DNA sequence,
filtering email, detecting or recognising objects in machine vision, and so on. Solving
each of these problems has the potential to revolutionise some aspect of our life, and
Jor each of them machine learning algorithms could provide the key to its solution.

In this chapter we will introduce the important components of the learning
methodology, give an overview of the different kinds of learning and discuss why
this approach has such a strategic importance. After the framework of the learning
methodology has been introduced, the chapter ends with a roadmap for the rest of
the book, anticipating the key themes, and indicating why Support Vector Machines
meet many of the challenges confronting machine learning systems. As this roadmap
will descibe the role of the different chapters, we urge our readers to refer to it
before delving further into the book.

1.1 Supervised Learning

When computers are applied to solve a practical problem it is usually the
case that the method of deriving the required output from a set of inputs can
be described explicitly. The task of the system designer and eventually the

programmer implementing the specifications will be to translate that method

1

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

2 1 The Learning Methodology

into a sequence of instructions which the computer will follow to achieve the
desired effect.

As computers are applied to solve more complex problems, however, situa-
tions can arise in which there is no known method for computing the desired
output from a set of inputs, or where that computation may be very expensive.
Examples of this type of situation might be modelling a complex chemical reac-
tion, where the precise interactions of the different reactants are not known, or
classification of protein types based on the DNA sequence from which they are
generated, or the classification of credit applications into those who will default
and those who will repay the loan.

These tasks cannot be solved by a traditional programming approach since
the system designer cannot precisely specify the method by which the correct
output can be computed from the input data. An alternative strategy for solving
this type of problem is for the computer to attempt to learn the input/output
functionality from examples, in the same way that children learn which are
sports cars simply by being told which of a large number of cars are sporty
rather than by being given a precise specification of sportiness. The approach
of using examples to synthesise programs is known as the learning methodology,
and in the particular case when the examples are input/output pairs it is called
supervised learning. The examples of input/output functionality are referred to
as the training data.

The input/output pairings typically reflect a functional relationship mapping
inputs to outputs, though this is not always the case as for example when the
outputs are corrupted by noise. When an underlying function from inputs to
outputs exists it is referred to as the target function. The estimate of the target
function which is learnt or output by the learning algorithm is known as the
solution of the learning problem. In the case of classification this function is
sometimes referred to as the decision function. The solution is chosen from a set
of candidate functions which map from the input space to the output domain.
Usually we will choose a particular set or class of candidate functions known
as hypotheses before we begin trying to learn the correct function. For example,
so-called decision trees are hypotheses created by constructing a binary tree with
simple decision functions at the internal nodes and output values at the leaves.
Hence, we can view the choice of the set of hypotheses (or hypothesis space)
as one of the key ingredients of the learning strategy. The algorithm which
takes the training data as input and selects a hypothesis from the hypothesis
space is the second important ingredient. It is referred to as the learning
algorithm.

In the case of learning to distinguish sports cars the output is a simple
yes/no tag which we can think of as a binary output value. For the problem
of recognising protein types, the output value will be one of a finite number of
categories, while the output values when modelling a chemical reaction might be
the concentrations of the reactants given as real values. A learning problem with
binary outputs is referred to as a binary classification problem, one with a finite
number of categories as multi-class classification, while for real-valued outputs
the problem becomes known as regression. This book will consider all of these

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

1.2 Learning and Generalisation 3

types of learning, though binary classification is always considered first as it is
often the simplest case.

There are other types of learning that will not be considered in this book.
For example unsupervised learning considers the case where there are no output
values and the learning task is to gain some understanding of the process that
generated the data. This type of learning includes density estimation, learning
the support of a distribution, clustering, and so on. There are also models of
learning which consider more complex interactions between a learner and their
environment. Perhaps the simplest case is when the learner is allowed to query
the environment about the output associated with a particular input. The study
of how this affects the learner’s ability to learn different tasks is known as query
learning. Further complexities of interaction are considered in reinforcement
learning, where the learner has a range of actions at their disposal which they
can take to attempt to move towards states where they can expect high rewards.
The learning methodology can play a part in reinforcement learning if we treat
the optimal action as the output of a function of the current state of the learner.
There are, however, significant complications since the quality of the output can
only be assessed indirectly as the consequences of an action become clear.

Another type of variation in learning models is the way in which the training
data are generated and how they are presented to the learner. For example, there
is a distinction made between batch learning in which all the data are given to the
learner at the start of learning, and on-line learning in which the learner receives
one example at a time, and gives their estimate of the output, before receiving
the correct value. In on-line learning they update their current hypothesis in
response to each new example and the quality of learning is assessed by the total
number of mistakes made during learning.

The subject of this book is a family of techniques for learning to perform
input/output mappings from labelled examples for the most part in the batch
setting, that is for applying the supervised learning methodology from batch
training data.

1.2 Learning and Generalisation

We discussed how the quality of an on-line learning algorithm can be assessed
in terms of the number of mistakes it makes during the training phase. It is
not immediately clear, however, how we can assess the quality of a hypothesis
generated during batch learning. Early machine learning algorithms aimed to
learn representations of simple symbolic functions that could be understood and
verified by experts. Hence, the goal of learning in this paradigm was to output
a hypothesis that performed the correct classification of the training data and
early learning algorithms were designed to find such an accurate fit to the data.
Such a hypothesis is said to be consistent. There are two problems with the goal
of generating a verifiable consistent hypothesis.

The first is that the function we are trying to learn may not have a simple
representation and hence may not be easily verified in this way. An example

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

4 1 The Learning Methodology

of this situation is the identification of genes within a DNA sequence. Certain
subsequences are genes and others are not, but there is no simple way to
categorise which are which.

The second problem is that frequently training data are noisy and so there
is no guarantee that there is an underlying function which correctly maps the
training data. The example of credit checking is clearly in this category since the
decision to default may be a result of factors simply not available to the system.
A second example would be the classification of web pages into categories, which
again can never be an exact science.

The type of data that is of interest to machine learning practitioners is
increasingly of these two types, hence rendering the proposed measure of quality
difficult to implement. There is, however, a more fundamental problem with this
approach in that even when we can find a hypothesis that is consistent with the
training data, it may not make correct classifications of unseen data. The ability
of a hypothesis to correctly classify data not in the training set is known as its
generalisation, and it is this property that we shall aim to optimise.

Shifting our goal to generalisation removes the need to view our hypothesis
as a correct representation of the true function. If the hypothesis gives the
right output it satisfies the generalisation criterion, which in this sense has now
become a functional measure rather than a descriptional one. In this sense the
criterion places no constraints on the size or on the ‘meaning’ of the hypothesis
— for the time being these can be considered to be arbitrary.

This change of emphasis will be somewhat counteracted when we later search
for compact representations (that is short descriptions) of hypotheses, as these
can be shown to have good generalisation properties, but for the time being the
change can be regarded as a move from symbolic to subsymbolic representations.

A precise definition of these concepts will be given in Chapter 4, when we
will motivate the particular models we shall be using,

1.3 Improving Generalisation

The generalisation criterion places an altogether different constraint on the
learning algorithm. This is most amply illustrated by the extreme case of
rote learning. Many classical algorithms of machine learning are capable of
representing any function and for difficult training sets will give a hypothesis that
behaves like a rote learner. By a rote learner we mean one that correctly classifies
the data in the training set, but makes essentially uncorrelated predictions on
unseen data. For example, decision trees can grow so large that there is a leaf for
each training example. Hypotheses that become too complex in order to become
consistent are said to overfit. One way of trying to control this difficulty is to
restrict the size of the hypothesis, for example pruning the size of the decision
tree. Ockham’s razor is a principle that motivates this approach, suggesting
that unnecessary complications are not helpful, or perhaps more accurately
complications must pay for themselves by giving significant improvements in the
classification rate on the training data.

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

1.3 Improving Generalisation 5

These ideas have a long history as the mention of Ockham suggests. They
can be used to motivate heuristic trade-offs between complexity and accuracy
and various principles have been proposed for choosing the optimal compromise
between the two. As an example the Minimum Description Length (MDL)
principle proposes to use the set of hypotheses for which the description of the
chosen function together with the list of training errors is shortest.

The approach that we will adopt is to motivate the trade-off by reference to
statistical bounds on the generalisation error. These bounds will typically depend
on certain quantities such as the margin of the classifier, and hence motivate
algorithms which optimise the particular measure. The drawback of such an
approach is that the algorithm is only as good as the result that motivates it. On
the other hand the strength is that the statistical result provides a well-founded
basis for the approach, hence avoiding the danger of a heuristic that may be
based on a misleading intuition.

The fact that the algorithm design is based on a statistical result does not
mean that we ignore the computational complexity of solving the particular
optimisation problem. We are interested in techniques that will scale from toy
problems to large realistic datasets of hundreds of thousands of examples. It is
only by performing a principled analysis of the computational complexity that
we can avoid settling for heuristics that work well on small examples, but break
down once larger training sets are used. The theory of computational complexity
identifies two classes of problems. For the first class there exist algorithms that
run in time polynomial in the size of the input, while for the second the existence
of such an algorithm would imply that any problem for which we can check a
solution in polynomial time can also be solved in polynomial time. This second
class of problems is known as the NP-coiplete problems and it is generally
believed that these problems cannot be solved efficiently.

In Chapter 4 we will describe in more detail the type of statistical result
that will motivate our algorithms. We distinguish between results that measure
generalisation performance that can be obtained with a given finite number of
training examples, and asymptotic results, which study how the generalisation
behaves as the number of examples tends to infinity. The resuits we will
introduce are of the former type, an approach that was pioneered by Vapnik
and Chervonenkis.

We should emphasise that alternative algorithms to those we will describe
can be motivated by other approaches to analysing the learning methodology.
We will point to relevant literature describing some other approaches within the
text. We would, however, like to mention the Bayesian viewpoint in a little more
detail at this stage.

The starting point for Bayesian analysis is a prior distribution over the set
of hypotheses that describes the learner’s prior belief of the likelihood of a
particular hypothesis generating the data. Once such a prior has been assumed
together with a model of how the data have been corrupted by noise, it is possible
in principle to estimate the most likely hypothesis given the particular training
set, and even to perform a weighted average over the set of likely hypotheses.

If no restriction is placed over the set of all possible hypotheses (that is all

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

6 1 The Learning Methodology

possible functions from the input space to the output domain), then learning is
impossible since no amount of training data will tell us how to classify unseen
examples. Problems also arise if we allow ourselves the freedom of choosing
the set of hypotheses after seeing the data, since we can simply assume all of
the prior probability on the correct hypotheses. In this sense it is true that all
learning systems have to make some prior assumption of a Bayesian type often
called the learning bias. We will place the approach we adopt in this context in
Chapter 4.

1.4 Attractions and Drawbacks of Learning

It is not surprising that the promise of the learning methodology should be so
tantalising. Firstly, the range of applications that can potentially be solved by
such an approach is very large. Secondly, it appears that we can also avoid much
of the laborious design and programming inherent in the traditional solution
methodology, at the expense of collecting some labelled data and running an
off-the-shelf algorithm for learning the input/output mapping. Finally, there
is the attraction of discovering insights into the way that humans function, an
attraction that so inspired early work in neural networks, occasionally to the
detriment of scientific objectivity.

There are, however, many difficulties inherent in the learning methodology,
difficulties that deserve careful study and analysis. One example is the choice
of the class of functions from which the input/output mapping must be sought.
The class must be chosen to be sufficiently rich so that the required mapping or
an approximation to it can be found, but if the class is too large the complexity
of learning from examples can become prohibitive, particularly when taking into
account the number of examples required to make statistically reliable inferences
in a large function class. Hence, learning in three-node neural networks is
known to be NP-complete, while the problem of minimising the number of
training errors of a thresholded linear function is also NP-hard. In view of
these difficulties it is immediately apparent that there are severe restrictions on
the applicability of the approach, and any suggestions of a panacea are highly
misleading.

In practice these problems manifest themselves in specific learning difficulties.
The first is that the learning algorithm may prove inefficient as for example in
the case of local minima. The second is that the size of the output hypothesis
can frequently become very large and impractical. The third problem is that if
there are only a limited number of training examples too rich a hypothesis class
will lead to overfitting and hence poor generalisation. The fourth problem is that
frequently the learning algorthm is controlled by a large number of parameters
that are often chosen by tuning heuristics, making the system difficult and
unreliable to use.

Despite the drawbacks, there have been notable successes in the application
of the learning methodology to problems of practical interest. Unfortunately,
however, there is frequently a lack of understanding about the conditions that

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

1.5 Support Vector Machines for Learning 7

will render an application successful, in both algorithmic and statistical inference
terms. We will see in the next section that Support Vector Machines address all
of these problems.

1.5 Support Vector Machines for Learning

Support Vector Machines (SVM) are learning systems that use a hypothesis
space of linear functions in a high dimensional feature space, trained with a
learning algorithm from optimisation theory that implements a learning bias
derived from statistical learning theory. This learning strategy introduced by
Vapnik and co-workers is a principled and very powerful method that in the few
years since its introduction has already outperformed most other systems in a
wide variety of applications.

This book gives an introduction to Support Vector Machines by describing
the hypothesis space and its representation in Chapters 2 and 3, the learning bias
in Chapter 4, and the learning algorithm in Chapters 5 and 7. Chapter 6 is the
key chapter in which all these components are brought together, while Chapter
8 gives an overview of some applications that have been made to real-world
problems. The book is written in a modular fashion so that readers familiar with
the material covered in a particular chapter can safely bypass that section. In
particular, if the reader wishes to get a direct introduction to what an SVM is
and how to implement one, they should move straight to Chapters 6 and 7.

Chapter 2 introduces linear learning machines one of the main building blocks
of the system. Chapter 3 deals with kernel functions which are used to define the
implicit feature space in which the linear learning machines operate. The use of
kernel functions is the key to the efficient use of high dimensional feature spaces.
The danger of overfitting inherent in high dimensions requires a sophisticated
learning bias provided by the statistical learning theory covered in Chapter 4.
Optimisation theory covered in Chapter 5 gives a precise characterisation of the
properties of the solution which guide the implementation of efficient learning
algorithms described in Chapter 7, and ensure that the output hypothesis has
a compact representation. The particular choice of a convex learning bias also
results in the absence of local minima so that solutions can always be found effi-
ciently even for training sets with hundreds of thousands of examples, while the
compact representation of the hypothesis means that evaluation on new inputs is
very fast. Hence, the four problems of efficiency of training, efficiency of testing,
overfitting and algorithm parameter tuning are all avoided in the SVM design.

1.6 Exercises
1. Describe the process of distinguishing between reptiles and mammals as
a binary classification problem. What is the input space? How might

the inputs be represented for computer processing of such data? Give an
example of a function realising the classification rule.

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

8 1 The Learning Methodology

2. Repeat Exercise 1 for the following categories of animals: birds/fishes;
fishes/mammals; mammals/birds. Write down the list of decision functions
used in the four decision rules.

3. You are given a set of correctly labelled mammals and fishes:
{dog, cat, dolphin}, {goldfish, shark, tuna}.

Taking the hypothesis space as the set of four functions obtained in
Exercises 1 and 2, how would you pick the correct decision rule?

1.7 Further Reading and Advanced Topics

The problem of learning from data has been investigated by philosophers
throughout history, under the name of ‘inductive inference’. Although this might
seem surprising today, it was not until the 20th century that pure induction was
recognised as impossible unless one assumes some prior knowledge. This concep-
tual achievement is essentially due to the fundamental work of Karl Popper [119].

There is a long history of studying this problem within the statistical frame-
work. Gauss proposed the idea of least squares regression in the 18th century,
while Fisher’s approach [40] to classification in the 1930s still provides the
starting point for most analysis and methods.

Researchers in the area of artificial intelligence started to consider the problem
of learning from its very beginning. Alan Turing [154] proposed the idea of
learning machines in 1950, contesting the belief of Lady Lovelace that ‘the
machine can only do what we know how to order it to do’. Also there is a
foresight of subsymbolic learning in that paper, when Turing comments: ‘An
important feature of a learning machine is that its teacher will often be very
largely ignorant of quite what is going on inside, although he may still be
able to some extent to predict his pupil’s behaviour” Just a few years later
the first examples of learning machines were developed, for example Arthur
Samuel’s draughts player [124] was an early example of reinforcement learning,
while Frank Rosenblatt’s perceptron [122] contained many of the features of the
systems discussed in the next chapter. In particular, the idea of modelling learning
problems as problems of search in a suitable hypothesis space is characteristic of
the artificial intelligence approach. Solomonoft also formally studied the problem
of learning as inductive inference in the famous papers [151] and [152].

The development of learning algorithms became an important sub field of
artificial intelligence, eventually forming the separate subject area of machine
learning. A very readable ‘first introduction’ to many problems in machine
learning is provided by Tom Mitchell’s book Machine learning [99]. Support
Vector Machines were introduced by Vapnik and his co-workers in the COLT
paper [19] and is described in more detail in Vapnik’s book [159].

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.

https://doi.org/10.1017/CBO9780511801389.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.003

