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Nonnegative Matrix Factorization

In this chapter, we will explore the nonnegative matrix factorization problem.
It will be helpful to first compare it to the more familiar singular value
decomposition. In the worst case, the nonnegative matrix factorization problem
is NP-hard (seriously, what else did you expect?), but we will make domain-
specific assumptions (called separability) that will allow us to give provable
algorithms for an important special case of it. We then apply our algorithms to
the problem of learning the parameters of a topic model. This will be our first
case study in how to not back down in the face of computational intractability,
and to find ways around it.

2.1 Introduction

In order to better understand the motivations behind the nonnegative matrix
factorization problem and why it is useful in applications, it will be helpful
to first introduce the singular value decomposition and then compare the two.
Eventually, we will apply both of these to text analysis later in this section.

The Singular Value Decomposition

The singular value decomposition (SVD) is one of the most useful tools in
linear algebra. Given an m × n matrix M, its singular value decomposition is
written as

M = U�VT

where U and V are orthonormal and � is a rectangular matrix with nonzero
entries only along the diagonal, and its entries are nonnegative. Alternatively,
we can write

4
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2.1 Introduction 5

M =
r∑

i=1

σiuiv
T
i

where ui is the ith column of U, vi is the ith column of V , and σi is the ith

diagonal entry of �. Throughout this section we will fix the convention that
σ1 ≥ σ2 ≥ . . . ≥ σr > 0. In this case, the rank of M is precisely r.

Throughout this book, we will have occasion to use this decomposition as
well as the (perhaps more familiar) eigendecomposition. If M is an n×n matrix
and is diagonalizable, its eigendecomposition is written as

M = PDP−1

where D is diagonal. For now, the important facts to remember are:

(1) Existence: Every matrix has a singular value decomposition, even
if it is rectangular. In contrast, a matrix must be square to have an
eigendecomposition. Even then, not all square matrices can be
diagonalized, but a sufficient condition under which M can be
diagonalized is that all its eigenvalues are distinct.

(2) Algorithms: Both of these decompositions can be computed efficiently.
The best general algorithms for computing the singular value
decomposition run in time O(mn2) if m ≥ n. There are also faster
algorithms for sparse matrices. There are algorithms to compute an
eigendecomposition in O(n3) time and there are further improvements
based on fast matrix multiplication, although it is not clear whether such
algorithms are as stable and practical.

(3) Uniqueness: The singular value decomposition is unique if and only if its
singular values are distinct. Similarly, the eigendecomposition is unique if
and only if its eigenvalues are distinct. In some cases, we will only need
that the nonzero singular values/eigenvalues are distinct, because we can
ignore the others.

Two Applications

Two of the most important properties of the singular value decomposition are
that it can be used to find the best rank k approximation and that it can be used
for dimension reduction. We explore these next. First, let’s formalize what we
mean by the best rank k approximation problem. One way to do this is to work
with the Frobenius norm:

Definition 2.1.1 (Frobenius norm) ‖M‖F =
√∑

i,j M2
i,j
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6 2 Nonnegative Matrix Factorization

It is easy to see that the Frobenius norm is invariant under rotations. For
example, this follows by considering each of the columns of M separately
as a vector. The square of the Frobenius norm of a matrix is the sum of
squares of the norms of its columns. Then left-multiplying by an orthogonal
matrix preserves the norm of each of its columns. An identical argument holds
for right-multiplying by an orthogonal matrix (but working with the rows
instead). This invariance allows us to give an alternative characterization of
the Frobenius norm that is quite useful:

‖M‖F = ‖UTMV‖F = ‖�‖F =
√∑

σ 2
i

The first equality is where all the action is happening and uses the rotational
invariance property we established above.

Then the Eckart–Young theorem asserts that the best rank k approximation
to some matrix M (in terms of Frobenius norm) is given by its truncated
singular value decomposition:

Theorem 2.1.2 (Eckart–Young) argmin
rank(B)≤k

‖M − B‖F =
∑k

i=1 σiuivT
i

Let Mk be the best rank k approximation. Then, from our alternative definition

of the Frobenius norm, it is immediate that ‖M −Mk‖F =
√∑r

i=k+1 σ 2
i .

In fact, the same statement – that the best rank k approximation to M is its
truncated singular value decomposition – holds for any norm that is invariant
under rotations. As another application, consider the operator norm:

Definition 2.1.3 (operator norm) ‖M‖ = max‖x‖≤1 ‖Mx‖
It is easy to see that the operator norm is also invariant under rotations and,
moreover, ‖M‖ = σ1, again using the convention that σ1 is the largest singular
value. Then the Eckart–Young theorem with respect to the operator norm
asserts:

Theorem 2.1.4 (Eckart–Young) argmin
rank(B)≤k

‖M − B‖ =∑k
i=1 σiuivT

i

Again, let Mk be the best rank k approximation. Then ‖M − Mk‖ = σk+1. As
a quick check, if k ≥ r then σk+1 = 0, and the best rank k approximation is
exact and has no error (as it should). You should think of this as something you
can do with any algorithm to compute the singular value decomposition of M –
you can find the best rank k approximation to it with respect to any rotationally
invariant norm. In fact, it is remarkable that the best rank k approximation in
many different norms coincides! Moreover, the best rank k approximation to
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2.1 Introduction 7

M can be obtained directly from its best rank k + 1 approximation. This is not
always the case, as we will see in the next chapter when we work with tensors.

Next, we give an entirely different application of the singular value decom-
position in the context of data analysis before we move on to applications of it
in text analysis. Recall that M is an m×n matrix. We can think of it as defining
a distribution on n-dimensional vectors, which we obtain from choosing one
of its columns uniformly at random. Further suppose that E[x] = 0; i.e., the
columns sum to the all-zero vector. Let Pk be the space of all projections onto
a k-dimensional subspace.

Theorem 2.1.5 argmax
P∈Pk

E[‖Px‖2] =∑k
i=1 uiuT

i

This is another basic theorem about the singular value decomposition, and
from it we can readily compute the k-dimensional projection that maximizes
the projected variance. This theorem is often invoked in visualization, where
one can visualize high-dimensional vector data by projecting it to a more
manageable lower-dimensional subspace.

Latent Semantic Indexing

Now that we have developed some of the intuition behind the singular value
decomposition, we will see an application of it to text analysis. One of the
central problems in this area (and one that we will return to many times) is this:
given a large collection of documents, we want to extract some hidden thematic
structure. Deerwester et al. [60] invented latent semantic indexing (LSI) for this
purpose, and their approach was to apply the singular value decomposition to
what is usually called the term-by-document matrix:

Definition 2.1.6 The term-by-document matrix M is an m × n matrix where
each row represents a word and each column represents a document where

Mi,j = count of word i in document j

total number of words in document j
.

There are many popular normalization conventions, and here we have chosen
to normalize the matrix so that each of its columns sums to one. In this way,
we can interpret each document as a probability distribution on words. Also,
in constructing the term-by-document matrix, we have ignored the order in
which the words occur. This is called a bag-of-words representation, and the
justification for it comes from a thought experiment. Suppose I were to give
you the words contained in a document, but in a jumbled order. It should still
be possible to determine what the document is about, and hence forgetting all
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8 2 Nonnegative Matrix Factorization

notions of syntax and grammar and representing a document as a vector loses
some structure, but should preserve enough of the information to make many
basic tasks in text analysis still possible.

Once our data is in vector form, we can make use of tools from linear
algebra. How can we measure the similarities between two documents? The
naive approach is to base our similarity measure on how many words they
have in common. Let’s try

〈Mi, Mj〉.

This quantity computes the probability that a randomly chosen word w from
document i and a randomly chosen word w′ from document j are the same. But
what makes this a bad measure is that when documents are sparse, they may not
have many words in common just by accident because of the particular words
each author chose to use to describe the same types of things. Even worse,
some documents could be deemed to be similar because they contain many of
the same common words, which have little to do with what the documents are
actually about.

Deerwester et al. [60] proposed to use the singular value decomposition of
M to compute a more reasonable measure of similarity, and one that seems
to work better when the term-by-document matrix is sparse (as it usually is).
Let M = U�VT and let U1...k and V1...k be the first k columns of U and V ,
respectively. The approach is to compute

〈UT
1...kMi, UT

1...kMj〉

for each pair of documents. The intuition is that there are some topics that occur
over and over again in the collection of documents. And if we could represent
each document Mi on the basis of topics, then their inner product on that basis
would yield a more meaningful measure of similarity. There are some models –
i.e., hypotheses for how the data is stochastically generated – where it can be
shown that this approach provably recovers the true topics [118]. This is the
ideal interaction between theory and practice – we have techniques that work
(somewhat) well, and we can analyze/justify them.

However, there are many failings of latent semantic indexing that have
motivated alternative approaches. If we associate the top singular vectors with
topics, then

(1) topics are orthonormal.

However, topics like politics and finance actually contain many words in
common, so they cannot be orthonormal.
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2.1 Introduction 9

(2) topics contain negative values.

Hence, if a document contains such words, their contribution (to the topic)
could cancel out the contributions from other words. Moreover, a pair of
documents can be judged to be similar because of particular topics that they
are both not about.

Nonnegative Matrix Factorization

For exactly the failings we described in the previous section, nonnegative
matrix factorization is a popular alternative to the singular value decomposition
in many applications in text analysis. However, it has its own shortcomings.
Unlike the singular value decomposition, it is NP-hard to compute. And the
prevailing approach in practice is to rely on heuristics, with no provable
guarantees.

Definition 2.1.7 A nonnegative matrix factorization of inner-dimension r is a
decomposition

M = AW

where A is n × r, W is r × n, and both are entrywise nonnegative. Moreover,
let the nonnegative rank of M – denoted by rank+(M) – be the minimum r so
that such a factorization exists.

As we will see, this factorization, when applied to a term-by-document matrix,
can find more interpretable topics. Beyond text analysis, it has many other
applications in machine learning and statistics, including in collaborative filter-
ing and image segmentation. For now, let’s give an interpretation of a nonneg-
ative matrix factorization specifically in the context of text analysis. Suppose
we apply it to a term-by-document matrix. Then it turns out that we can always
put it in a convenient canonical form: Let D be a diagonal matrix where

Dj,j =
m∑

i=1

Ai,j

and further suppose that each Dj,j > 0. Then

Claim 2.1.8 Set Ã = AD−1 and W̃ = DW. Then

(1) Ã, W̃ are entrywise nonnegative and M = ÃW̃, and
(2) the columns of Ã and the columns of W̃ each sum to one.

We leave the proof of this claim as an exercise, but the hint is that property (2)

follows because the columns of M also sum to one.
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10 2 Nonnegative Matrix Factorization

Hence we can, without loss of generality, assume that our nonnegative
matrix factorization M = AW is such that the columns of A and the columns of
W each sum to one. Then we can interpret this factorization as follows: Each
document is itself a distribution on words, and what we have found is

(1) a collection of r topics – the columns of A – that are themselves
distributions on words, and

(2) for each document i, a representation of it – given by Wi – as a convex
combination of r topics so that we recover its original distribution on
words.

Later on, we will get some insight into why nonnegative matrix factorization
is NP-hard. But what approaches are used in practice to actually compute such
a factorization? The usual approach is alternating minimization:

Alternating Minimization for NMF

Input: M ∈ R
m×n

Output: M ≈ A(N)W(N)

Guess entrywise nonnegative A(0) of dimension m× r
For i = 1 to N

Set W(i) ← argminW ‖M − A(i−1)W‖2
F s.t. W ≥ 0

Set A(i) ← argminA ‖M − AW(i)‖2
F s.t. A ≥ 0

End

Alternating minimization is quite general, and throughout this book we will
come back to it many times and find that problems we are interested in are
solved in practice using some variant of the basic approach above. However, it
has no provable guarantees in the traditional sense. It can fail by getting stuck
in a locally optimal solution that is much worse than the globally optimal one.
In fact, this is inevitable, because the problem it is attempting to solve really is
NP-hard.

However, in many settings we will be able to make progress by working
with an appropriate stochastic model, where we will be able to show that
it converges to a globally optimal solution provably. A major theme in this
book is to not take for granted heuristics that seem to work in practice “as
immutable,” because the ability to analyze them will itself provide new insights
into when and why they work, and also what can go wrong and how to
improve them.
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2.2 Algebraic Algorithms 11

2.2 Algebraic Algorithms

In the previous section, we introduced the nonnegative matrix factorization
problem and described some of its applications in machine learning and
statistics. In fact, because of the algebraic nature of the problem, it is far
from clear that there is any finite time algorithm for computing it in the
worst case. Here we will explore some of the fundamental results in solving
systems of polynomial equations, and derive algorithms for nonnegative matrix
factorization from these.

Rank vs. Nonnegative Rank

Recall that rank+(M) is the smallest value r such that M has a nonnegative
matrix factorization M = AW with inner dimension r. It is easy to see that the
following is an equivalent definition:

Claim 2.2.1 rank+(M) is the smallest r such that there are r entrywise
nonnegative rank one matrices {Mi} that satisfy M =∑i Mi.

We can now compare the rank and the nonnegative rank. There are, of
course, many equivalent definitions for the rank of a matrix, but the most
convenient definition to compare the two is the following:

Claim 2.2.2 rank(M) is the smallest r such that there are r rank one matrices
{Mi} that satisfy M =∑i Mi.

The only difference between these two definitions is that the former stipulates
that all of the rank one matrices in the decomposition are entrywise nonnega-
tive, while the latter does not. Thus it follows immediately that

Fact 2.2.3 rank+(M) ≥ rank(M)

Can the nonnegative rank of a matrix be much larger than its rank? We
encourage the reader to think about this question before proceeding. This is
equivalent to asking whether, for an entrywise nonnegative matrix M, one can,
without loss of generality, require the factors in its rank decomposition to be
entrywise nonnegative too. It is certainly true for a rank one matrix, and turns
out to be true for a rank two matrix too, but. . .

In general, the nonnegative rank cannot be bounded by any function of
the rank alone. In fact, the relationship (or lack thereof) between the rank
and the nonnegative rank is of fundamental importance in a number of areas
in theoretical computer science. Fortunately, there are simple examples that
illustrate that the two parameters can be far apart:
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12 2 Nonnegative Matrix Factorization

Example: Let M be an n× n matrix where Mij = (i− j)2.

It is easy to see that the column space of M is spanned by the following three
vectors: ⎡⎢⎢⎢⎣

1
1
...
1

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
1
2
...
n

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
1
4
...

n2

⎤⎥⎥⎥⎦ .

Hence rank(M)≤ 3. (In fact, rank(M)= 3.) However, M has zeros along
the diagonal and nonzeros off the diagonal. Furthermore, for any rank one
entrywise nonnegative matrix Mi, its pattern of zeros and nonzeros is a
combinatorial rectangle – i.e., the intersection of some set of rows and
columns – and it can be shown that one needs at least log n such rectangles
to cover the nonzeros of M without covering any of its zeros. Hence:

Fact 2.2.4 rank+(M) ≥ log n

A word of caution: For this example, a number of authors have incorrectly
tried to prove a much stronger lower bound (e.g., rank+(M) = n). In fact (and
somewhat surprisingly), it turns out that rank+(M) ≤ 2 log n. The usual error
is in thinking that because the rank of a matrix is the largest r such that it has
r linearly independent columns, the nonnegative rank is the largest r such that
there are r columns where no column is a convex combination of the other
r − 1. This is not true!

Systems of Polynomial Inequalities

We can reformulate the problem of deciding whether rank+(M) ≤ r is a
problem of finding a feasible solution to a particular system of polynomial
inequalities. More specifically, rank+(M) ≤ r if and only if⎧⎨⎩

M = AW
A ≥ 0
W ≥ 0

(2.1)

has a solution. This system consists of quadratic equality constraints (one for
each entry of M) and linear inequalities that require A and W to be entrywise
nonnegative. Before we worry about fast algorithms, we should ask a more
basic question (whose answer is not at all obvious):

Question 4 Is there any finite time algorithm for deciding if rank+(M) ≤ r?
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2.2 Algebraic Algorithms 13

This is equivalent to deciding if the above linear system has a solution,
but the difficulty is that even if there is one, the entries of A and W could
be irrational. This is quite different than, say, 3-SAT, where there is a simple
brute-force algorithm. In contrast, for nonnegative matrix factorization it is
quite challenging to design algorithms that run in any finite amount of time.

But indeed there are algorithms (that run in some fixed amount of time)
to decide whether a system of polynomial inequalities has a solution or not
in the real RAM model. The first finite time algorithm for solving a system
of polynomial inequalities follows from the seminal work of Tarski, and there
has been a long line of improvements based on successively more powerful
algebraic decompositions. This line of work culminated in the following
algorithm of Renegar:

Theorem 2.2.5 [126] Given a system of m polynomial inequalities in k
variables, whose maximum degree is D and whose bit complexity is L, there
is an algorithm whose running time is

(nDL)O(k)

that decides whether the system has a solution. Moreover, if it does have a
solution, then it outputs a polynomial and an interval (one for each variable)
in which there is only one root, which is the value of the variable in the true
solution.

Notice that this algorithm finds an implicit representation of the solution, since
you can find as many bits of the solution as you would like by performing a
binary search for the root. Moreover, this algorithm is essentially optimal, and
improving it would yield subexponential time algorithms for 3-SAT.

We can use these algorithms to solve nonnegative matrix factorization, and
it immediately implies that there is an algorithm for deciding if rank+(M) ≤ r
runs in exponential time. However, the number of variables we would need in
the naive representation is nr + mr, one for each entry in A or W. So even if
r = O(1), we would need a linear number of variables and the running time
would still be exponential. It turns that even though the naive representation
uses many variables, there is a more clever representation that uses many fewer
variables.

Variable Reduction

Here we explore the idea of finding a system of polynomial equations that
expresses the nonnegative matrix factorization problem using many fewer

https://doi.org/10.1017/9781316882177.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.003


14 2 Nonnegative Matrix Factorization

variables. In [13, 112], Arora et al. and Moitra gave a system of polynomial
inequalities with f (r) = 2r2 variables that has a solution if and only if
rank+(M) ≤ r. This immediately yields a polynomial time algorithm to
compute a nonnegative matrix factorization of inner-dimension r (if it exists)
for any r = O(1). These algorithms turn out to be essentially optimal in a
worst-case sense, and prior to this work the best known algorithms even for
the case r = 4 ran in exponential time.

We will focus on a special case to illustrate the basic idea behind variable
reduction. Suppose that rank(M) = r, and our goal is to decide whether or
not rank+(M) = r. This is called the simplicial factorization problem. Can
we find an alternate system of polynomial inequalities that expresses this
decision problem but uses many fewer variables? The following simple but
useful observation will pave the way:

Claim 2.2.6 In any solution to the simplicial factorization problem, A and W
must have full column and row rank, respectively.

Proof: If M = AW, then the column span of A must contain the columns
of M, and similarly, the row span of W must contain the rows of M. Since
rank(M) = r, we conclude that A and W must have r linearly independent
columns and rows, respectively. Since A has r columns and W has r rows, this
implies the claim. �

Hence we know that A has a left pseudo-inverse A+ and W has a right
pseudo-inverse W+ so that A+A = WW+Ir, where Ir is the r × r identity
matrix. We will make use of these pseudo-inverses to reduce the number of
variables in our system of polynomial inequalities. In particular:

A+AW = W

so we can recover the columns of W from a linear transformation of the
columns of M. Similarly, we can recover the rows of A from a linear
transformation of the rows of M. This leads to the following alternative system
of polynomial inequalities: ⎧⎨⎩

MW+A+M= M
MW+ ≥ 0
A+M ≥ 0

(2.2)

A priori, it is not clear that we have made progress, since this system also
has nr + mr variables corresponding to the entries of A+ and W+. However,
consider the matrix MW+. If we represent S+ as an n × r matrix, then we are
describing its action on all vectors, but the crucial observation is that we only
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2.2 Algebraic Algorithms 15

need to know how S+ acts on the rows of M that span an r-dimensional space.
Hence we can apply a change of basis to write

MC = MU

where U is an n × r matrix that has a right pseudo-inverse. Similarly, we can
write

MR = VM

where V is an r × m matrix that has a left pseudo-inverse. Now we get a new
system: ⎧⎨⎩

MCSTMR= M
MCS ≥ 0
TMR ≥ 0

(2.3)

Notice that S and T are both r × r matrices, and hence there are 2r2 variables
in total. Moreover, this formulation is equivalent to the simplicial factorization
problem in the following sense:

Claim 2.2.7 If rank(M) = rank+(M) = r, then (2.3) has a solution.

Proof: Using the notation above, we can set S = U+W+ and T = A+V+.
Then MCS = MUU+W+ = A and similarly TMR = A+V+VM = W, and this
implies the claim. �

This is often called completeness, since if there is a solution to the original
problem, we want there to be a valid solution to our reformulation. We also
need to prove soundness, that any solution to the reformulation yields a valid
solution to the original problem:

Claim 2.2.8 If there is a solution to (2.3), then there is a solution to (2.1).

Proof: For any solution to (2.3), we can set A = MCS and W = TMR, and it
follows that A, W ≥ 0 and M = AW. �

It turns out to be quite involved to extend the ideas above to nonnegative
matrix factorization in general. The main idea in [112] is to first establish a
new normal form for nonnegative matrix factorization, and use the observation
that even though A could have exponentially many maximal sets of linearly
independent columns, their psueudo-inverses are algebraically dependent and
can be expressed over a common set of r2 variables using Cramer’s rule.
Additionally, Arora et al. [13] showed that any algorithm that solves even the
simplicial factorization problem in (nm)o(r) time yields a subexponential time
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16 2 Nonnegative Matrix Factorization

algorithm for 3-SAT, and hence the algorithms above are nearly optimal under
standard complexity assumptions.

Further Remarks

Earlier in this section, we gave a simple example that illustrates a separation
between the rank and the nonnegative rank. In fact, there are more interesting
examples of separations that come up in theoretical computer science, where
a natural question is to express a particular polytope P in n dimensions,
which has exponentially many facets as the projection of a higher dimensional
polytope Q with only polynomially many facets. This is called an extended
formulation, and a deep result of Yannakakis is that the minimum number
of facets of any such Q – called the extension complexity of P – is precisely
equal to the nonnegative rank of some matrix that has to do with the geometric
arrangement between vertices and facets of P [144]. Then the fact that there are
explicit polytopes P whose extension complexity is exponential is intimately
related to finding explicit matrices that exhibit large separations between their
rank and nonnegative rank.

Furthermore, the nonnegative rank also has important applications in com-
munication complexity, where one of the most important open questions – the
log-rank conjecture [108] – can be reformulated by asking: Given a Boolean
matrix M, is log rank+(M) ≤ (log rank(M))O(1)? Thus, in the example above,
the fact that the nonnegative rank cannot be bounded by any function of the
rank could be due to the entries of M taking on many distinct values.

2.3 Stability and Separability

Here we will give a geometric (as opposed to algebraic) interpretation of
nonnegative matrix factorization that will offer new insights into why it is hard
in the worst case and what types of features make it easy. In particular, we
will move beyond worst-case analysis and work with a new assumption called
separability that will allow us to give an algorithm that runs in polynomial time
(even for large values of r). This assumption was first introduced to understand
conditions under which the nonnegative matrix factorization problem has a
unique solution [65], and this is a common theme in algorithm design

Theme 1 Looking for cases where the solution is unique and robust will often
point to cases where we can design algorithms with provable guarantees in
spite of worst-case hardness results.
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2.3 Stability and Separability 17

Cones and Intermediate Simplicies

Here we will develop some geometric intuition about nonnegative matrix
factorization – or, rather, an important special case of it called simplicial
factorization that we introduced in the previous section. First, let us introduce
the notion of a cone:

Definition 2.3.1 Let A be an m × r matrix. Then the cone generated by the
columns of A is

CA = {Ax|x ≥ 0}.
We can immediately connect this to nonnegative matrix factorization.

Claim 2.3.2 Given matrix M, A of dimension m × n and m × r, respectively,
there is an entrywise nonnegative matrix W of dimension r × n with M = AW
if and only if CM ⊆ CA.

Proof: In the forward direction, suppose M = AW, where W is entrywise
nonnegative. Then any vector y ∈ CM can be written as y = Mx where x ≥ 0,
and then y = AWx and the vector Wx ≥ 0, and hence y ∈ CA too. In the reverse
direction, suppose CM ⊆ CA. Then any column Mi ∈ CA and we can write
Mi = AWi where Wi ≥ 0. Now we can set W to be the matrix whose columns
are {Wi}i and this completes the proof. �

What makes nonnegative matrix factorization difficult is that both A and W
are unknown (if one were known, say A, then we could solve for the other by
setting up an appropriate linear program, which amounts to representing each
column of M in CA).

Vavasis [139] was the first to introduce the simplicial factorization problem,
and one of his motivations was that it turns out to be connected to a purely
geometric problem about fitting a simplex in between two given polytopes.
This is called the intermediate simplex problem:

Definition 2.3.3 An instance of the intermediate simplex problem consists of P
and Q with P ⊆ Q ⊆ R

r−1, and P is specified by its vertices and Q is specified
by its facets. The goal is to find a simplex K with P ⊆ K ⊆ Q.

In the next section we will show that the simplicial factorization problem
and the intermediate simplex problem are equivalent.

Reductions

We will prove that the simplicial factorization problem and the intermediate
simplex problem are equivalent in the sense that there is a polynomial time
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18 2 Nonnegative Matrix Factorization

reduction in both directions. We will do so by way of a few intermediate
problems.

Suppose we are given an instance of the simplicial factorization problem.
Then we can write M = UV , where U and V have inner dimension r but are
not necessarily entrywise nonnegative. If we can find an invertible r× r matrix
T where UT and T−1V are both entrywise nonnegative, then we have found a
valid nonnegative matrix factorization with inner dimension r.

Claim 2.3.4 If rank(M) = r and M = UV and M = AW are two factorizations
that have inner-dimension r, then

(1) colspan(U) = colspan(A) = colspan(M) and

(2) rowspan(V) = rowspan(W) = rowspan(M).

This follows from basic facts in linear algebra, and implies that any two such
factorizations M = UV and M = AW can be linearly transformed into each
other via some invertible r × r matrix T . Hence the intermediate simplex
problem is equivalent to

Definition 2.3.5 An instance of the problem P1 consists of an m× n entrywise
nonnegative matrix M with rank(M) = r and M = UV with inner dimension
r. The goal is to find an invertible r × r matrix where both UT and T−1V are
entrywise nonnegative.

Caution: The fact that you can start out with an arbitrary factorization and
ask to rotate it into a nonnegative matrix factorization of minimum inner
dimension but haven’t painted yourself into a corner is particular to the
simplicial factorization problem only! It is generally not true when rank(M) <

rank+(M).

Now we can give a geometric interoperation of P1:

(1) Let u1, u2, . . . , um be the rows of U.

(2) Let t1, t2, . . . , tr be the columns of T .

(3) Let v1, v2, . . . , vn be the columns of V .

We will first work with an intermediate cone problem, but its connection to
the intermediate simplex problem will be immediate. Toward that end, let P
be the cone generated by u1, u2, . . . , um, and let K be the cone generated by
t1, t2, . . . , tr. Finally, let Q be the cone given by

Q = {x|〈ui, x〉 ≥ 0 for all i}.
It is not hard to see that Q is a cone in the sense that it is generated as all

nonnegative combinations of a finite set of vectors (its extreme rays), but we
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2.3 Stability and Separability 19

have instead chosen to represent it by its supporting hyperplanes (through the
origin).

Claim 2.3.6 UT is entrywise nonnegative if and only if {t1, t2, . . . , tr} ⊆ Q.

This follows immediately from the definition of Q, because the rows of U are
its supporting hyperplanes (through the origin). Hence we have a geometric
reformulation of the constraint UT that is entrywise nonnegative in P1. Next,
we will interpret the other constraint, that T−1V is entrywise nonnegative too.

Claim 2.3.7 T−1V is entrywise nonnegative if and only if {v1, v2, . . . , vm}⊆K.

Proof: Consider xi = T−1vi. Then Txi = T(T−1)vi = vi, and hence xi is a
representation of vi as a linear combination of {t1, t2, . . . , tr}. Moreover, it is
the unique representation, and this completes the proof. �

Thus P1 is equivalent to the following problem:

Definition 2.3.8 An instance of the intermediate cone problem consists of
cones P and Q with P ⊆ Q ⊆ R

r−1, and P is specified by its extreme rays
and Q is specified by its supporting hyperplanes (through the origin). The goal
is to find a cone K with r extreme rays and P ⊆ K ⊆ Q.

Furthermore, the intermediate cone problem is easily seen to be equivalent
to the intermediate simplex problem by intersecting the cones in it with a
hyperplane, in which case a cone with extreme rays becomes a convex hull
of the intersection of those rays with the hyperplane.

Geometric Gadgets

Vavasis made use of the equivalences in the previous section to construct
certain geometric gadgets to prove that nonnegative matrix factorization is NP-
hard. The idea was to construct a two-dimensional gadget where there are only
two possible intermediate triangles, which can then be used to represent the
truth assignment for a variable xi. The description of the complete reduction
and the proof of its soundness are involved (see [139]).

Theorem 2.3.9 [139] Nonnegative matrix factorization, simplicial factoriza-
tion, intermediate simplex, intermediate cone, and P1 are all NP-hard.

Arora et al. [13] improved upon this reduction by constructing low-
dimensional gadgets with many more choices. This allows them to reduce from
the d-SUM problem, where we are given a set of n numbers and the goal is to
find a set of d of them that sum to zero. The best known algorithms for this
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problem run in time roughly n�d/2
. Again, the full construction and the proof
of soundness are involved.

Theorem 2.3.10 Nonnegative matrix factorization, simplicial factorization,
intermediate simplex, intermediate cone, and P1 all require time at least
(nm)�(r) unless there is a subexponential time algorithm for 3-SAT.

In all of the topics we will cover, it is important to understand what makes
the problem hard in order to identify what makes it easy. The common feature
in all of the above gadgets is that the gadgets themselves are highly unstable
and have multiple solutions, and so it is natural to look for instances where
the answer itself is robust and unique in order to identify instances that can be
solved more efficiently than in the worst case.

Separability

In fact, Donoho and Stodden [64] were among the first to explore the question
of what sorts of conditions imply that the nonnegative matrix factorization of
minimum inner dimension is unique. Their original examples came from toy
problems in image segmentation, but it seems like the condition itself can most
naturally be interpreted in the setting of text analysis.

Definition 2.3.11 We call A separable if, for every column i of A, there is a
row j where the only nonzero is in the ith column. Furthermore, we call j an
anchor word for column i.

In fact, separability is quite natural in the context of text analysis. Recall
that we interpret the columns of A as topics. We can think of separability as the
promise that these topics come with anchor words; informally, for each topic
there is an unknown anchor word, and if it occurs in a document, the document
is (partially) about the given topic. For example, 401k could be an anchor word
for the topic personal finance. It seems that natural language contains many
such highly specific words.

We will now give an algorithm for finding the anchor words and for
solving instances of nonnegative matrix factorization where the unknown A
is separable in polynomial time.

Theorem 2.3.12 [13] If M = AW and A is separable and W has full row rank,
then the Anchor Words Algorithm outputs A and W (up to rescaling).

Why do anchor words help? It is easy to see that if A is separable, then the
rows of W appear as rows of M (after scaling). Hence we just need to determine
which rows of M correspond to anchor words. We know from our discussion
in Section 2.3 that if we scale M, A, and W so that their rows sum to one, the

https://doi.org/10.1017/9781316882177.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.003
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convex hull of the rows of W contains the rows of M. But since these rows
appear in M as well, we can try to find W by iteratively deleting rows of M that
do not change its convex hull.

Let Mi denote the ith row of M and let MI denote the restriction of M to the
rows in I for I ⊆ [n]. So now we can find the anchor words using the following
simple procedure:

Find Anchors [13]

Input: matrix M ∈ R
m×n satisfying the conditions in Theorem 2.3.12

Output: W = MI

Delete duplicate rows:
Set I = [n]
For i = 1, 2, . . . , n

If Mi ∈ conv({Mj|j ∈ I, j �= i}), set I ← I − {i}
End

Here in the first step, we want to remove redundant rows. If two rows are scalar
multiples of each other, then one being in the cone generated by the rows of W
implies the other is too, so we can safely delete one of the two rows. We do this
for all rows, so that in the equivalence class of rows that are scalar multiples of
each other, exactly one remains. We will not focus on this technicality in our
discussion, though.

It is easy to see that deleting a row of M that is not an anchor word
will not change the convex hull of the remaining rows, and so the above
algorithm terminates with a set I that only contains anchor words. Moreover,
at termination

conv({Mi|i ∈ I}) = conv({Mj}j).
Alternatively, the convex hull is the same as at the start. Hence the anchor
words that are deleted are redundant and we can just as well do without them.

Anchor Words [13]

Input: matrix M ∈ R
n×m satisfying the conditions in Theorem 2.3.12

Output: A, W

Run Find Anchors on M, let W be the output
Solve for nonnegative A that minimizes ‖M−AW‖F (convex programming)
End
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The proof of theorem follows immediately from the proof of correctness of
Find Anchors and the fact that conv({Mi}i) ⊆ conv({Wi}i) if and only if there
is a nonnegative A (whose rows sum to one) with M = AW.

The above algorithm, when naively implemented, would be prohibitively
slow. Instead, there have been many improvements to the algorithm ([33],
[100], [78]), and we will describe one in particular that appears in [12].
Suppose we choose a row Mi at random. Then it is easy to see that the farthest
row from Mi will be an anchor word.

Similarly, if we have found one anchor word, the farthest row from it will
be another anchor word, and so on. In this way we can greedily find all of the
anchor rows, and moreover, this method only relies on pairwise distances and
projection, so we can apply dimension reduction before running this greedy
algorithm. This avoids linear programming altogether in the first step in the
above algorithm, and the second step can also be implemented quickly, because
it involves projecting a point into a k − 1-dimensional simplex.

2.4 Topic Models

In this section, we will work with stochastic models to generate a collection of
documents. These models are called topic models, and our goal is to learn their
parameters. There is a wide range of types of topic models, but all of them fit
into the following abstract framework:

Abstract Topic Model

Parameters: topic matrix A ∈ R
m×r, distribution μ on the simplex in R

r

For i = 1 to n
Sample Wi from μ

Generate L words by sampling i.i.d. from the distribution AWi

End

This procedure generates n documents of length L, and our goal is to infer
A (and μ) from observing samples from this model. Let M̃ be the observed
term-by-document matrix. We will use this notation to distinguish it from its
expectation

E[M̃|W] = M = AW.

In the case of nonnegative matrix factorization, we were given M and not
M̃. However, these matrices can be quite far apart! Hence, even though
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each document is described as a distribution on words, we only have partial
knowledge of this distribution in the form of L samples from it. Our goal is to
design algorithms that provably work even in these challenging models.

Now is a good time to point out that this model contains many well-studied
topic models as a special case. All of them correspond to different choices of
μ, the distribution that is used to generate the columns of W. Some of the most
popular variants are:

(a) Pure Topic Model: Each document is about only one topic, hence μ is a
distribution on the vertices of the simplex and each column in W has
exactly one nonzero.

(b) Latent Dirichlet Allocation [36]: μ is a Dirichlet distribution. In
particular, one can generate a sample from a Dirichlet distribution by
taking independent samples from r (not necessarily identical) gamma
distributions and then renormalizing so that their sum is one. This topic
model allows documents to be about more than one topic, but its
parameters are generally set so that it favors relatively sparse vectors Wi.

(c) Correlated Topic Model [35]: Certain pairs of topics are allowed to be
positively or negatively correlated, and μ is constrained to be log-normal.

(d) Pachinko Allocation Model [105]: This is a multilevel generalization of
LDA that allows for certain types of structured correlations.

In this section, we will use our algorithm for separable nonnegative matrix
factorization to provably learn the parameters of a topic model for (essentially)
any topic model where the topic matrix is separable. Thus this algorithm will
work even in the presence of complex relationships between the topics.

The Gram Matrix

In this subsection, we will introduce two matrices, G and R, which we will call
the Gram matrix and the topic co-occurrence matrix, respectively. The entries
of these matrices will be defined in terms of the probability of various events.
And throughout this section, we will always have the following experiment in
mind: We generate a document from the abstract topic model, and let w1 and
w2 denote the random variables for its first and second word, respectively. With
this experiment in mind, we can define the Gram matrix:

Definition 2.4.1 Let G denote the m× m matrix where

Gj,j′ = P[w1 = j, w2 = j′].

Moreover, for each word, instead of sampling from AWi, we can sample
from Wi to choose which column of A to sample from. This procedure still
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24 2 Nonnegative Matrix Factorization

generates a random sample from the same distribution AWi, but each word
w1 = j is annotated with the topic from which it came, t1 = i (i.e., the column
of A we sampled it from). We can now define the topic co-occurrence matrix:

Definition 2.4.2 Let R denote the r × r matrix where

Ri,i′ = P[t1 = i, t2 = i′].

Note that we can estimate the entries of G directly from our samples, but
we cannot directly estimate the entries of R. Nevertheless, these matrices are
related according to the following identity:

Lemma 2.4.3 G = ARAT

Proof: We have

Gj,j′ = P[w1 = j, w2 = j′] =
∑
i,i′

P[w1= j, w2= j′|t1= i, t2= i′]P[t1= i, t2 = i′]

=
∑
i,i′

P[w1 = j|t1 = i]P[w2 = j′|t2 = i′]P[t1 = i, t2 = i′]

=
∑
i,i′

Aj,iAj′,i′Ri,i′

where the second-to-last line follows, because conditioned on their topics, w1

and w2 are sampled independently from the corresponding columns of A. This
completes the proof. �

The crucial observation is that G = A(RAT) where A is separable and RAT is
nonnegative. Hence if we renormalize the rows of G to sum to one, the anchor
words will be the extreme points of the convex hull of all of the rows and
we can identify them through our algorithm for separable nonnegative matrix
factorization. Can we infer the rest of A?

Recovery via Bayes’s Rule

Consider the posterior distribution P[t1|w1= j]. This is the posterior distribu-
tion on which topic generated w1= j when you know nothing else about the
document. The posterior distributions are just renormalizations of A so that the
rows sum to one. Then suppose j is an anchor word for topic i. We will use the
notation j = π(i). It is easy to see

P[t1 = i′|w1 = π(i)] =
{

1, if i′ = i

0 else.
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Now we can expand:

P[w1 = j|w2 = j′] =
∑

i′
P[w1 = j|w2 = j′, t2 = i′]P[t2 = i′|w2 = j′]

=
∑

i′
P[w1 = j|t2 = i′]P[t2 = i′|w2 = j′]

In the last line we used the following identity:

Claim 2.4.4 P[w1 = j|w2 = j′, t2 = i′] = P[w1 = j|t2 = i′]

We leave the proof of this claim as an exercise. We will also use the identity
below:

Claim 2.4.5 P[w1 = j|t2 = i′] = P[w1 = j|w2 = π(i′)]

Proof:

P[w1 = j|w2 = π(i′)] =
∑

i′′
P[w1= j|w2=π(i′), t2= i′′]P[t2 = i′′|w2 = π(i′)]

= P[w1 = j|w2 = π(i′), t2 = i′]

where the last line follows, because the posterior distribution on the topic
t2 = i′′, given that w2 is an anchor word for topic i′, is equal to one if and
only if i′′ = i′. Finally, the proof follows by invoking Claim 2.4.4. �

Now we can proceed:

P[w1 = j|w2 = j′] =
∑

i′
P[w1 = j|w2 = π(i′)]P[t2 = i′|w2 = j′]︸ ︷︷ ︸

unknowns

Hence this is a linear system in variables P[w1 = j|w2 = π(i′)] and it is not
hard to show that if R has full rank, then it has a unique solution.

Finally, by Bayes’s rule we can compute the entries of A:

P[w = j|t = i] = P[t = i|w = j]P[w = j]

P[t = i]

= P[t = i|w = j]P[w = j]∑
j′ P[t = i|w = j′]P[w = j′]

And putting it all together, we have the following algorithm:
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Recover [14], [12]

Input: term-by-document matrix M ∈ R
n×m

Output: A, R

Compute the Gram matrix G
Compute the anchor words via Separable NMF
Solve for P[t = i|w = j]
Compute P[w = j|t = i] from Bayes’s rule

Theorem 2.4.6 [14] There is a polynomial time algorithm to learn the topic
matrix for any separable topic model, provided that R is full rank.

Remark 2.4.7 The running time and sample complexity of this algorithm
depend polynomially on m, n, r, σmin(R), p, 1/ε, log 1/δ where p is a lower
bound on the probability of each anchor word, ε is the target accuracy, and
δ is the failure probability.

Note that this algorithm works for short documents, even for L = 2.

Experimental Results

Now we have provable algorithms for nonnegative matrix factorization and
topic modeling under separability. But are natural topic models separable or
close to being separable? Consider the following experiment:

(1) UCI Dataset: A collection of 300, 000 New York Times articles
(2) MALLET: A popular topic-modeling toolkit

We trained MALLET on the UCI dataset and found that with r = 200,
about 0.9 fraction of the topics had a near anchor word – i.e., a word where
P[t = i|w = j] had a value of at least 0.9 on some topic. Indeed, the algorithms
we gave can be shown to work in the presence of some modest amount of
error – deviation from the assumption of separability. But can they work with
this much modeling error?

We then ran the following additional experiment:

(1) Run MALLET on the UCI dataset, learn a topic matrix (r = 200).
(2) Use A to generate a new set of documents synthetically from an LDA

model.
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(3) Run MALLET and our algorithm on a new set of documents, and
compare their outputs to the ground truth. In particular, compute the
minimum cost matching between the columns of the estimate and the
columns of the ground truth.

It is important to remark that this is a biased experiment – biased against
our algorithm! We are comparing how well we can find the hidden topics (in a
setting where the topic matrix is only close to separable) to how well MALLET
can find its own output again. And with enough documents, we can find it
more accurately and hundreds of times faster! This new algorithm enables us
to explore much larger collections of documents than ever before.

2.5 Exercises

Problem 2-1: Which of the following are equivalent definitions of nonnegative
rank? For each, give a proof or a counterexample.

(a) The smallest r such that M can be written as the sum of r rank-one
nonnegative matrices

(b) The smallest r such that there are r nonnegative vectors v1, v2, . . . , vr such
that the cone generated by them contains all the columns of M

(c) The largest r such that there are r columns of M, M1, M2, . . . , Mr such
that no column in the set is contained in the cone generated by the
remaining r − 1 columns

Problem 2-2: Let M ∈ R
n×n where Mi,j = (i − j)2. Prove that rank(M) = 3

and that rank+(M) ≥ log2 n. Hint: To prove a lower bound on rank+(M), it
suffices to consider just where it is zero and where it is nonzero.

Problem 2-3: Papadimitriou et al. [118] considered the following document
model: M = AW and each column of W has only one nonzero and the support
of each column of A is disjoint. Prove that the left singular vectors of M
are the columns of A (after rescaling). You may assume that all the nonzero
singular values of M are distinct. Hint: MMT is a block diagonal after applying
a permutation π to its rows and columns.

Problem 2-4: Consider the following algorithm:

Greedy Anchor Words [13]

Input: matrix M ∈ R
n×m satisfying the conditions in Theorem 2.3.12

Output: A, W
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Set S = ∅
For i = 2 to r

Project the rows of M orthogonal to the span of vectors in S
Add the row with the largest �2 norm to S

End

Let M = AW where A is separable and the rows of M, A, and W are normalized
to sum to one. Also assume W has full row rank. Prove that Greedy Anchor
Words finds all the anchor words and nothing else. Hint: the �2 norm is strictly
convex — i.e., for any x �= y and t ∈ (0, 1), ‖tx + (1 − t)y‖2 < t‖x‖2 +
(1− t)‖y‖2.
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