
2 Bayesian approach

This chapter describes a general concept and statistics of the Bayesian approach. The
Bayesian approach covers wide areas of statistics (Bernardo & Smith 2009, Gelman,
Carlin, Stern et al. 2013), pattern recognition (Fukunaga 1990), machine learning
(Bishop 2006, Barber 2012), and applications of these approaches. In this chapter, we
start the discussion from the basic probabilistic theory, and mainly describe the Bayesian
approach by aiming to follow a machine learning fashion of constructing and refining
statistical models from data. The role of the Bayesian approach in machine learning is
very important since the Bayesian approach provides a systematic way to infer unob-
served variables (e.g., classification category, model parameters, latent variables, model
structure) given data. This chapter limits the discussions considering the speech and lan-
guage problems in the latter chapters, by providing simple probabilistic rules, and prior
and posterior distributions in Section 2.1. The section also provides analytical solutions
of posterior distributions of simple models. Based on the basic introduction, Section
2.2 introduces a useful representation of the relationship of probabilistic variables in
the Bayesian approach, called the Graphical model. The graphical model representation
gives us an intuitive view of statistical models even when they have complicated rela-
tionships between their variables. Section 2.3 explains the difference between Bayesian
and maximum likelihood (ML) approaches. The following chapters extend the general
Bayesian approach described in this chapter to deal with statistical models in speech and
language processing.

2.1 Bayesian probabilities

This section describes the basic Bayesian framework based on probabilistic theory.
Although some of the definitions, equations, and concepts are trivial, this section reviews
the basics to assist readers to fully understand the Bayesian approach.

In the Bayesian approach, all the variables that are introduced when models are
parameterized, such as model parameters and latent variables, are regarded as proba-
bilistic variables. Thus, let a be a discrete valuable, then the Bayesian approach deals
with a as a probabilistic variable, and aims to obtain p(a):

a → p(a). (2.1)
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14 Bayesian approach

Hereinafter, we assume that a is a discrete variable, and the expectation is performed
by the summation over a for simplicity. Since p(a) is a probabilistic distribution, p(a)
always satisfies the following condition:∑

a

p(a) = 1, p(a) ≥ 0 ∀a. (2.2)

These properties help us to solve some calculations appearing in the following sections.
In the continuous variable case, the summation

∑
is replaced with the integral

∫
.

2.1.1 Sum and product rules

Since the Bayesian approach treats all variables as probabilistic variables, the proba-
bilistic theory gives us the two important probabilistic rules to govern the relationship
between the variables. Let a and b be arbitrary probabilistic variables,

• Sum rule

p(b) =
∑

a

p(a, b); (2.3)

• Product rule

p(a, b) = p(a|b)p(b) = p(b|a)p(a). (2.4)

Here, p(a, b) is a joint probability that represents a probability of all possible joint events
of a and b. p(a|b) or p(b|a) is a conditional probability. These are generalized to N
probabilistic variables, for example, if we have a1, · · · , aN probabilistic variables, there
rules are represented as:

• Sum rule

p(ai) =
∑
a1

· · ·
∑
ai−1

∑
ai+1

· · ·
∑
aN

p(a1, · · · , aN); (2.5)

• Product rule

p(a1, · · · , aN) = p(a1|a2, · · · , aN)p(a2, · · · , aN) = · · ·

= p(aN)
N−1∏
n=1

p(an|an+1, · · · , aN). (2.6)

In a Bayesian manner, we formulate the probability distributions based on these rules.
For example, the famous Bayes theorem can be derived by reforming the product rule
in Eq. (2.4), as follows:

p(a|b) = p(a, b)

p(b)
= p(b|a)p(a)

p(b)
(2.7)

= p(b|a)p(a)∑
a p(b|a)p(a)

. (2.8)

To derive Eq. (2.8), we use the sum and product rules for p(a). The following discussion
provides more practical examples based on this discussion.
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2.1 Bayesian probabilities 15

2.1.2 Prior and posterior distributions

The above Bayes theorem has an interesting meaning if we consider a conditional prob-
ability distribution of a given an observation x. The conditional distribution p(a|x) is
called posterior distribution, and the main purpose of the Bayesian approach is to infer
the posterior distribution of various valuables. Based on the Bayes theorem in Eq. (2.7),
the posterior distribution is decomposed in Eq. (2.9) to the following three distributions:

p(a|x) = p(x|a)p(a)

p(x)
(2.9)

= p(x|a)p(a)∑
a p(x|a)p(a)

, (2.10)

where p(x|a) is a likelihood function of x and p(a) is a distribution without considering
any observation, and called prior distribution. p(x) is a distribution of an observation,
and can be computed by using p(x|a) and p(a) based on Eq. (2.10). In most speech pro-
cessing applications, it is difficult to estimate the posterior distribution directly (Section
3.8 describes it in detail). Therefore, the posterior distribution p(a|x) is indirectly esti-
mated via this Bayes theorem, which is derived from the sum and product rules, which
are equivalence equations without approximation.

Since the posterior distribution provides a probability of a given data x, this matches
one of the machine learning goals of refining information of a from data x. Therefore,
the posterior distribution plays an important role in machine learning, and obtaining an
appropriate posterior distribution for our problems in speech and language processing is
a main goal of this book.

Once we obtain the posterior distribution p(a|x), we can obtain the values of a via:

• Maximum a-posteriori (MAP) procedure:

aMAP = arg max
a

p(a|x); (2.11)

• Expectation with respect to the posterior distribution:

aEXP = E(a)[a|x] �
∑

a

a · p(a|x). (2.12)

The MAP and expectation are typical ways to obtain meaningful information about a
given x in terms of the probabilistic theory. From Eq. (2.10), p(x) is disregarded in the
MAP procedure as a constant factor that is independent of a, MAP, and expectation,
which makes the calculation simple. The MAP and expectation are generalized to obtain
meaningful information f (a) given the posterior distribution p(a|x). More specifically, if
we consider a likelihood function of unseen data y given a, i.e., p(y|a), these procedures
are rewritten as:

• Maximum a-posteriori (MAP) procedure:

pMAP(y|a) = p(y| arg max
a

p(a|x)) = p(y|aMAP); (2.13)
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16 Bayesian approach

• Expectation with respect to the posterior distribution:

pEXP(y) = E(a)[p(y|a)|x] �
∑

a

p(y|a)p(a|x). (2.14)

Thus, we can predict y by using these procedures. Note that the MAP procedure decides
a deterministic value of a, while the expectation procedure keeps possible a for the
expectation. Therefore, the MAP procedure is called hard decision and the expectation
procedure is called soft decision.

The expectation is a more general operation than MAP in terms of considering the
distribution shape. For example, if we approximate p(a|x) with a specific Kronecker
delta function δ(a, aMAP) where aMAP = arg maxa p(a|x), Eq. (2.14) is represented as

pEXP(y) =
∑

a

p(y|a)δ(a, aMAP) = p(y|aMAP)

= p(y| arg max
a

p(a|x))

= pMAP(y|a), (2.15)

where

δ(a, a′) =
{

1 a = a′

0 otherwise.
(2.16)

Thus, the MAP value is obtained from the specific case of the expectation value without
considering the distribution shape of p(a|x). However, in many cases, the MAP value is
also often used since the expectation needs a complex computation due to the summa-
tion over a. Note that the above derivation via a Kronecker delta function (or Dirac
delta function when we consider continuous variables) is often used to provide the
relationship of the MAP and expectation values.

2.1.3 Exponential family distributions

The previous section introduces the posterior distribution. This section focuses on a
specific problem of posterior distributions that consider the model parameter � given
a set of D dimensional observation vectors, i.e., X = {xn ∈ R

D|n = 1, · · · , N}. The
problem here is to obtain the posterior distribution p(�|X), i.e., it is a general estimation
problem of obtaining the distribution of � from data X. Once we obtain p(�|X), for
example, we can estimate �MAP or compute some expectation values, as we discussed
in Section 2.1.2.

Then, the Bayes theorem, which provides the relationship between prior and posterior
distributions in Eq. (2.9) or (2.10), can be represented as follows:

p(�|X) = p(X|�)p(�)

p(X)
(2.17)

= p(X|�)p(�)∫
p(X|�)p(�)d�

. (2.18)
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2.1 Bayesian probabilities 17

Here, we use the integral
∫

rather than
∑

in Eq. (2.18), since model parameters are often
represented by continuous variables (e.g., mean and variance parameters in a Gaussian
distribution). In this particular case, the Bayes theorem has the more practical meaning
that the posterior distribution p(�|X) is represented by the likelihood function p(X|�),
and the prior distribution of the model parameters p(�). Thus

p(X) =
∫

p(X|�)p(�)d�, (2.19)

which is also called evidence function or marginal likelihood . The evidence plays an
important role in Bayesian inference, which is described in Chapter 5 in detail.

Basically, we can set any distributions (e.g., Gaussian, gamma, Dirichlet, Laplace,
Rayleigh distributions, etc.) to prior and posterior distributions. However, a particular
family of distributions called conjugate distribution makes analytical derivation sim-
pler. Before we describe the conjugate distributions, the following section explains
exponential family distributions, which are required to explain conjugate distributions.

Exponential family

The exponential family is a general distribution family, which contains standard distribu-
tions including Gaussian distribution, gamma distribution, and multinomial distribution.
Let θ be a vector form of model parameters. A distribution of a set of observation vec-
tors X = {x1, · · · , xN} given θ (likelihood function), which belongs to the exponential
family, is represented by the following exponential form:

p(X|θ ) � h(X) exp
(
γ (θ )ᵀt(X)− g(γ )

)
, (2.20)

where t(X) is a sufficient statistics vector obtained from observation vector X, g(γ ) is a
logarithmic normalization factor. γ is a transformed vector of θ , and is called a natural
parameter vector. If γ (θ) = θ , it is called the canonical form, that simplifies Eq. (2.20)
as follows:

p(X|θ) = h(X) exp
(
θᵀt(X)− g(θ )

)
. (2.21)

The canonical form makes the calculation of posterior distributions simple.
If we have J multiple parameter vectors, we can represent the exponential form as the

factorized form:

p(X|θ1, · · · , θJ) � h(X)
J∏

i=1

exp
(
γ i(θ i)

ᵀti(x)− gi(γ i)
)

. (2.22)

When the transformed model parameters are composed of a matrix or a vector, we can
also define the exponential family distribution. For example, a multivariate Gaussian
distribution N (·|μ, �) is parameterized by a mean vector μ and a covariance matrix �,
and the corresponding transformed parameters are also represented by vector γ 1 and
matrix �2. Then, the exponential family distribution for � = {θ1, �2} is defined as
follows:

p(X|�) � h(X) exp
(
γ

ᵀ
1 t1(X)+ tr[�ᵀ

2 T2(x)]− g(γ 1, �2)
)

. (2.23)
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18 Bayesian approach

Here, t1 and T2 are vector and matrix representations of sufficient statistics, respec-
tively. The rest of this section provides examples of h(·), g(·), γ (·), and t(·) for standard
distributions (Gaussian, multivariate Gaussian, and multinomial distributions).

Example 2.1 Gaussian (unknown mean):
We focus on the exponential family form of the Gaussian distribution for scalar observa-
tion X = {xn ∈ R|n = 1, · · · , N}. As a simple example, we only focus on the Gaussian
mean as a model parameter, and regard the precision parameter r as a constant value, i.e.,
N (xn|μ; r−1) where the variables located right after the semicolon; means that these are
not treated as probabilistic variables, but specific values. That is θ = μ in Eq. (2.20).
We use the precision parameter r instead of the variance parameter �,1 which makes
the solution simple. Based on the definition in Appendix C.5, the standard form of the
Gaussian distribution is represented as

N∏
n=1

N (xn|μ; r−1) =
(

2π

r

)−N
2

exp

(
−

N∑
n=1

r

2
(xn − μ)2

)
. (2.24)

We assume that x1, · · · , xN are independent and identically distributed random variables
from the Gaussian. The standard form of the Gaussian distribution is rewritten as the
following exponential form:

N∏
n=1

N (xn|μ; r−1) =
(

2π

r

)−N
2

exp

(
− r

2

N∑
n=1

x2
n

)
exp

(
rμ

N∑
n=1

xn − Nμ2r

2

)

=
(

2π

r

)−N
2

exp

(
− r

2

N∑
n=1

x2
n

)
︸ ︷︷ ︸

=h(X)

exp

⎛⎜⎜⎜⎜⎜⎝r
N∑

n=1

xn︸ ︷︷ ︸
=t(X)

μ︸︷︷︸
=γ

− Nμ2r

2︸ ︷︷ ︸
=g(γ )

⎞⎟⎟⎟⎟⎟⎠ .

(2.25)

Thus, the Gaussian distribution is represented by the following exponential form in
Eq. (2.20): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(X) = r
N∑

n=1

xn

h(X) =
(

2π

r

)−N
2

exp

(
− r
∑N

n=1 x2
n

2

)
γ (μ) = μ

g(γ ) = Nγ 2r

2
.

(2.26)

1 This book regards � as the variance parameter (not the standard deviation, which is represented as σ ), as
shown in Appendix C.5, to make the notation consistent with the covariance matrix �.

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


2.1 Bayesian probabilities 19

Since γ (μ) = μ in Eq. (2.26), it is regarded as a canonical form, as discussed in
Eq. (2.21). Note that the parameterization of γ (μ) and t(X) is not unique. For example,
we can obtain the following parameterization from:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(X) =
N∑

n=1

xn

h(X) =
(

2π

r

)−N
2

exp

(
− r
∑N

n=1 x2
n

2

)
γ (μ) = μr

g(γ ) = Nμ2r

2
= Nγ 2

2r
.

(2.27)

This is also another exponential form of the Gaussian distribution with unknown mean.

Example 2.2 Gaussian (unknown mean and precision):
Similarly to Example 2.1, we focus on the exponential family form of the Gaussian dis-
tribution for scalar observation X, but regard r as also unknown. Therefore, θ = [μ, r]ᵀ.
Thus, unlike the scalar forms of the natural parameter γ and sufficient statistics t in
Eq. (2.24), the Gaussian distribution is represented by the vector form of these as

N∏
n=1

N (xn|μ, r−1) =
(

2π

r

)−N
2

exp

(
−Nμ2r

2

)
exp

(
− r

2

N∑
n=1

x2
n + μr

N∑
n=1

xn

)

= exp

⎛⎜⎜⎜⎜⎝
[
μr
r

]ᵀ

︸ ︷︷ ︸
=γ (θ)

[∑N
n=1 xn

−
∑N

n=1 x2
n

2

]
︸ ︷︷ ︸

t(X)

−
(

N

2
log

(
2π

r

)
+ Nμ2r

2

)
︸ ︷︷ ︸

=g(γ )

⎞⎟⎟⎟⎟⎠ .

(2.28)

Therefore, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(X) =
[∑N

n=1 xn

−
∑N

n=1 x2
n

2

]
h(X) = 1

γ (θ) =
[
μr
r

]
g(γ ) = N

2

(
log

2π

r
+ μ2r

)
= N

2

(
log

2π

γ2
+ γ 2

1

γ2

)
.

(2.29)

Again, the parameterization of γ (θ ) and t(x) is not unique and the parameterization of
γ (θ) = [μr,− r

2

]ᵀ and t(X) = [
∑N

n=1 xn,
∑N

n=1 x2
n]ᵀ is also possible.
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20 Bayesian approach

Example 2.3 Multivariate Gaussian (unknown mean and precision):
The next example is to derive an exponential form of the multivariate Gaussian
distribution with D dimensional mean vector μ and D × D precision matrix R (we
use precision matrix R instead of covariance matrix � to make the solution simple).
A set of the parameters is � = {μ, R}. This is the most important example in this
book, since statistical models in speech and language processing are often represented
by multivariate Gaussian distributions, as discussed in Chapter 3. Let X = {xn ∈
R

D|n = 1, · · · , N} be independent and identically distributed random variables from
the multivariate Gaussian distribution. Again, based on the definition in Appendix C.6,
the standard form of the Gaussian distribution is represented as

N∏
n=1

N (xn|μ, R−1) =
N∏

n=1

(2π )−
D
2 |R| 1

2 exp

(
−1

2
(xn − μ)ᵀR(xn − μ)

)

= (2π )−
ND
2 |R| N

2 exp

(
−1

2

N∑
n=1

(xn − μ)ᵀR(xn − μ)

)
. (2.30)

Now we focus on the exponential part in Eq. (2.30), which is rewritten as follows:

N∑
n=1

(xn − μ)ᵀR(xn − μ)

= −μᵀR
N∑

n=1

xn −
(

N∑
n=1

xᵀ
n

)
Rμ+

N∑
n=1

xᵀ
n Rxn + NμᵀRμ. (2.31)

To make the observation vector and parameter the inner product form, we first use the
trace representation of the quadratic term of xn as

N∑
n=1

xᵀ
n Rxn = tr

[
N∑

n=1

xᵀ
n Rxn

]

= tr

[
N∑

n=1

Rxnxᵀ
n

]

= tr

[
R

N∑
n=1

xnxᵀ
n

]
, (2.32)

where we use the fact that the trace of the scalar value is equal to the original
scalar value, the cyclic property, and the distributive property of the trace as in
Appendix B:

a = tr[a], (2.33)

tr[ABC] = tr[BCA], (2.34)

tr[A(B+ C)] = tr[AB+ AC]. (2.35)
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2.1 Bayesian probabilities 21

In addition, we can also use the following equation:

μᵀR
N∑

n=1

xn +
(

N∑
n=1

xᵀ
n

)
Rμ = 2μᵀR

N∑
n=1

xn. (2.36)

Here, since these values are scalar values, we use the following equation to derive
Eq. (2.36).

(
N∑

n=1

xᵀ
n

)
Rμ =

((
N∑

n=1

xᵀ
n

)
Rμ

)ᵀ

= μᵀRᵀ
(

N∑
n=1

xᵀ
n

)ᵀ
= μᵀR

N∑
n=1

xn, (2.37)

since the transpose of the scalar value is the same as the original scalar value (aᵀ = a)
and R is a symmetric matrix (Rᵀ = R). Thus, by substituting Eqs. (2.32) and (2.36) into
Eq. (2.31), Eq. (2.31) is rewritten as

N∑
n=1

(xn − μ)ᵀR(xn − μ)

= −2μᵀR
N∑

n=1

xn + tr

[
R

N∑
n=1

xnxᵀ
n

]
+ NμᵀRμ. (2.38)

Note that Eq. (2.38) is a useful form, and it is used in the following sections to calculate
the various equations for the multivariate Gaussian distribution.

Therefore, by substituting Eq. (2.38) into Eq. (2.30), we can obtain the exponential
form of the multivariate Gaussian distribution as follows:

N∏
n=1

N (xn|μ, R−1)

= (2π )−
ND
2 |R| N

2 exp

(
μᵀR

N∑
n=1

xn − 1

2
tr

[
R

N∑
n=1

xnxᵀ
n

]
− N

2
μᵀRμ

)

= exp

(
μᵀR

N∑
n=1

xn − 1

2
tr

[
R

N∑
n=1

xnxᵀ
n

]
− N

2

(
log((2π )D|R|−1)+ μᵀRμ

))
.

(2.39)

Thus, by comparing with Eq. (2.23), we obtain the following parameterization for the
multivariate Gaussian distribution:

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


22 Bayesian approach

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1(X) =
N∑

n=1

xn

T2(X) = −1

2

N∑
n=1

xnxᵀ
n

h(x) = 1

γ 1(�) = Rμ

�2(�) = R

g(γ 1, �2) = N

2

(
log((2π )D|R|−1)+ μᵀRμ

)
= N

2

(
log((2π )D|�2|−1)+ γ

ᵀ
1 �−1

2 γ 1

)
.

(2.40)

Note that if D → 1, we have xn → xn, μ → μ, R → r, and Eq. (2.40) is equivalent to
Eq. (2.29).

Example 2.4 Multinomial distribution:
The standard form of the multinomial distribution (Eq. (C.2)) is represented as follows:

Mult(x1, · · · , xJ |ω1, · · · ,ωJ) � N!∏J
j=1 xj!

J∏
j=1

ω
xj
j , (2.41)

where xj is a non-negative integer, and

J∑
j=1

xj = N. (2.42)

The parameter {ω1, · · · ,ωJ} has the following constraint:

J∑
j=1

ωj = 1, 0 ≤ ωj ≤ 1 ∀j. (2.43)

Therefore, the number of the free parameters is J−1. To deal with the constraint, we first
consider the {ω1, · · · ,ωJ−1} as the target vector parameters, i.e., θ � [ω1, · · · ,ωJ−1]ᵀ.
ωJ is represented by

ωJ = 1−
J−1∑
j=1

ωj. (2.44)

Similarly to the previous Gaussian-based distributions, the multinomial distribution is
also represented as the exponential form as follows:

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


2.1 Bayesian probabilities 23

Mult(x1, · · · , xJ |ω1, · · · ,ωJ) = N!∏J
j=1 xj!

exp

⎛⎝log

⎛⎝ J∏
j=1

ω
xj
j

⎞⎠⎞⎠
= N!∏J

j=1 xj!
exp

⎛⎝ J∑
j=1

xj logωj

⎞⎠ . (2.45)

By using Eqs. (2.42) and (2.44) for xJ and ωJ , respectively, the exponential part of
Eq. (2.45) is rewritten as

Mult(x1, · · · , xJ |ω1, · · · ,ωJ)

∝ exp

⎛⎝J−1∑
j=1

xj logωj +
⎛⎝N −

J−1∑
j=1

xj

⎞⎠ log

⎛⎝1−
J−1∑
j=1

ωj

⎞⎠⎞⎠
= exp

⎛⎝J−1∑
j=1

xj logωj −
J−1∑
j=1

xj log

⎛⎝1−
J−1∑
j=1

ωj

⎞⎠+ N log

⎛⎝1−
J−1∑
j=1

ωj

⎞⎠⎞⎠

= exp

⎛⎜⎜⎜⎜⎜⎜⎝
J−1∑
j=1

xj log
ωj

1−∑J−1
j=1 ωj︸ ︷︷ ︸

�xᵀγ

+N log

⎛⎝1−
J−1∑
j′=1

ωj′

⎞⎠
⎞⎟⎟⎟⎟⎟⎟⎠ , (2.46)

where ∝ denotes the proportional relation between left- and right-hand-side equations.
Since the probabilistic function has the normalization factor, which can be neglected
for most of the calculations, ∝ is often used to omit the normalization constant from
the equations. Thus, we can derive the linear relationship between xj and γj, which is
defined with {ωj}J−1

j=1 as follows:

γj � log
ωj

1−∑J−1
j′=1 ωj′

. (2.47)

Note that ωj is represented by γj by using the following equation:

ωj = exp(γj)

1+∑J−1
j′=1 exp(γj′)

. (2.48)

This is confirmed by substituting Eq. (2.47) into Eq. (2.48) as

exp(γj)

1+∑J−1
j′=1 γj′

=
ωj

1−∑J−1
j′=1

ωj′

1+∑J−1
j′=1

ωj′
1−∑J−1

j′′=1
ωj′′

= ωj

1−∑J−1
j′=1 ωj′ +∑J−1

j′=1 ωj′
= ωj. (2.49)
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Therefore, the canonical form of the multinomial distribution with the parameter θ =
[ω1, · · · ,ωJ−1]ᵀ for x = [x1, · · · , xJ−1]ᵀ is represented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(x) = x

h(x) = N!∏J
j=1 xj!

γ (θ ) =
[
log ω1

1−∑J−1
j=1 ωj

, · · · , log ωJ−1

1−∑J−1
j=1 ωj

]ᵀ
g(γ ) = −N log

⎛⎝1−
J−1∑
j=1

ωj

⎞⎠
= −N log

⎛⎝1−
J−1∑
j=1

exp(γj)

1+∑J−1
j′=1 exp(γj′)

⎞⎠
= N log

⎛⎝1+
J−1∑
j=1

exp(γj)

⎞⎠ .

(2.50)

Note that since the multinomial distribution has constraints for the observation xj in
Eq. (2.42) and the parameter ωj in Eq. (2.44), the obtained canonical form of the multi-
nomial distribution involves these constraints with J−1 variables for sufficient statistics
t and the transformed vector γ .

The obtained exponential family forms for Gaussian, multivariate Gaussian, and multi-
nomial distributions are often used in the Bayesian treatment of statistical models in
speech and language processing.

2.1.4 Conjugate distributions

The previous section introduces the exponential family distributions and provides some
examples of these distributions. Based on the exponential family distributions, this sec-
tion explains how to obtain the posterior distributions when we use the exponential
family distributions as the likelihood functions. For such a distribution, we can find a
nice property to obtain the posterior distribution analytically if we set a particular type
of distribution.

Let p(X|θ) be a likelihood function for a set of observation vectors X = {x1, · · · , xN}.
We first start the discussion from the simple case that the parameters are represented
as a vector form, i.e., θ . An exponential family distribution of p(X|θ ) is defined in
Eq. (2.20) as

p(X|θ) = h(X) exp
(
γ ᵀt(X)− g(γ )

)
. (2.51)

Here use γ (θ ) → γ for simplicity. Then, we use the following Bayes theorem for θ

based on Eq. (2.18) to calculate the posterior distribution p(θ |X):

p(θ |X) ∝ p(X|θ )p(θ), (2.52)

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


2.1 Bayesian probabilities 25

where we disregard the normalization factor p(X). For this calculation, we need to pre-
pare a prior distribution p(θ ). Instead of considering the prior distribution of p(θ ), we
consider the prior distribution of p(γ ). We set a prior distribution for p(γ ), which is
parameterized with additional variables ν and φ, where the parameters of prior and pos-
terior distributions are called hyperparameters. The hyperparameter appearing in this
book is often used as the parameter of prior or posterior distributions. Then, the prior
distribution is proportional to the following function form:

p(θ ) → p(γ |ν,φ) ∝ exp
(
γ ᵀν − φg(γ )

)
. (2.53)

Here, g(γ ) is introduced in Eqs. (2.20) and (2.51) as a logarithmic normalization factor
of the likelihood function. This form of prior distribution is called conjugate prior
distribution.

We can calculate the posterior distribution of p(θ |X) via γ by substituting Eqs. (2.51)
and (2.53) into Eq. (2.52):

p(θ |X) → p(X|θ )p(γ |ν,φ)

= h(X) exp
(
γ ᵀt(X)− g(γ )

)
exp
(
γ ᵀν − φg(γ )

)
∝ exp

(
γ ᵀ(ν + t(X))− (φ + 1)g(γ )

)
= p(γ |ν + t(X),φ + 1), (2.54)

where we use the definition used in the conjugate prior distribution (Eq. (2.53)). This
solution means that the conjugate posterior distribution is analytically obtained with the
same distribution function as the conjugate prior distribution by just using the simple
rule of changing hyperparameters from (ν, φ) to (ν + t(X), φ + 1).

Note that the setting of φ is not unique. We consider the case that g(γ ) is decomposed
into M functions, i.e.,

g(γ ) �
M∑

m=1

gm(γ ). (2.55)

Then, similarly to Eq. (2.53), we can provide M hyperparameters for a prior distribution
as follows:

p(θ ) → p(γ |ν,φ) ∝ exp

(
γ ᵀν −

M∑
m=1

φmgm(γ )

)
. (2.56)

The corresponding posterior distribution is similarly derived by substituting Eqs. (2.51),
(2.55), and (2.56) into Eq. (2.52) as:

p(θ |X) → p(X|θ)p(γ |ν, {φm}Mm=1)

= h(X) exp

(
γ ᵀt(X)−

M∑
m=1

gm(γ )

)
exp

(
γ ᵀν −

M∑
m=1

φmgm(γ )

)

∝ exp

(
γ ᵀ(ν + t(X))−

M∑
m=1

(φm + 1)gm(γ )

)
= p(γ |ν + t(X), {φm + 1}Mm=1). (2.57)
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Thus, we can derive the posterior distribution with M hyperparameters. The setting of
{φm} is an additional flexibility of the prior distribution. If we use many {φm}, we could
precisely represent a prior distribution. However, by using a few {φm}, we can easily
control the shape of a prior distribution with a few free parameters.

If the transformed model parameters are composed of a vector γ 1 and matrix �2,
as discussed in Eq. (2.23), we also have similar result. A likelihood function of this
exponential family distribution is represented by the following general form:

p(X|�) � h(X) exp

(
γ

ᵀ
1 t1(X)+ tr[�ᵀ

2 T2(x)]−
M∑

m=1

gm(γ 1, �2)

)
. (2.58)

Here, similarly to Eq. (2.55), we use the following equation for the g(·) function:

g(γ 1, �2) �
M∑

m=1

gm(γ 1, �2). (2.59)

Therefore, by providing the following prior distribution form as a conjugate prior with
hyperparameters ν1, N2 and {φm}Mm=1:

p(γ 1, �2|ν1, N2, {φ}Mm=1) ∝ exp

(
γ

ᵀ
1 ν1 + tr[�ᵀ

2 N2]−
M∑

m=1

φmgm(γ 1, �2)

)
. (2.60)

We can calculate the posterior distribution by substituting Eqs. (2.60), (2.58), and (2.59)
into Eq. (2.52):

p(�|X)

→ p(X|�)p(γ 1, �2|N, {φm}Mm=1)

∝ exp

(
γ ᵀ(ν1 + t1(X))+ tr[�ᵀ

2 (N2 + T2(X))]−
M∑

m=1

(φm + 1)gm(γ 1, �2)

)
= p(γ 1, �2|ν1 + t1(X), N2 + T2(X), {φm + 1}Mm=1). (2.61)

Here we use the distributive property of the trace in Appendix B that:

tr[AB]+ tr[AC] = tr[A(B+ C)]. (2.62)

Now, we summarize the conjugate prior and posterior distributions. The exponential
family distributions with the vector form parameters θ have the following relationship:{

Prior: p(γ |ν, {φm}Mm=1)

Posterior: p(γ |ν + t(X), {φm + 1}Mm=1).
(2.63)

When the distribution has vector and matrix parameters, we have the following
relationship:{

Prior: p(γ 1, �2|ν1, N2, {φm}Mm=1)

Posterior: p(γ 1, �2|ν1 + t1(X), N2 + T2(X), {φm + 1}Mm=1).
(2.64)
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Therefore, the posterior distribution of the natural parameters (γ , γ 1, �2) is analytically
obtained by using Eqs. (2.63) and (2.64) as a rule. The posterior distribution of the
original parameters p(�|X) is obtained by transforming the posterior distribution of the
natural parameters.

The rest of this section provides examples of the conjugate prior and posterior
distributions for some exponential family distributions.

Example 2.5 Conjugate distributions for Gaussian (unknown mean):
We first describe the case that we only consider a Gaussian mean parameter μ, and the
precision parameter r = �−1 is regarded as a constant value. Based on the discussion in
Example 2.1, the canonical form of the Gaussian distribution is represented as follows:

N∏
n=1

N (xn|μ; r−1) = h(X) exp (γ t(X)− g(γ )) , (2.65)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(X) =
N∑

n=1

xn

h(X) =
(

2π

r

)−N
2

exp

(
− r
∑N

n=1 x2
n

2

)
γ = μr

g(γ ) = Nγ 2

2r
.

(2.66)

Therefore, by substituting γ and g(γ ) in Eq. (2.66) into the general form of the conjugate
distribution in Eq. (2.53), we can derive the function of mean μ as follows:

p(γ |ν,φ) ∝ exp (γ ν − φg(γ )) = exp

(
μrν − φ

Nμ2r

2

)
∝ exp

(
−Nφr

2

(
μ− ν

Nφ

)2
)

. (2.67)

Thus, the prior distribution of μ is represented by a Gaussian distribution with ν
Nφ

and
Nφr as the mean and precision parameters, respectively:

p(μ) ∝ N
(
μ

∣∣∣∣ ν

Nφ
, (Nφr)−1

)
. (2.68)

Based on the conjugate distribution rule (Eq. (2.63)), the posterior distribution is easily
solved by just replacing ν → ν + t(X) and φ → φ + 1 in Eq. (2.68) without complex
calculations:
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p (γ |ν + t(X),φ + 1 ) ∝ exp

⎛⎝−N(φ + 1)r

2

(
μ− ν +∑N

n=1 xn

N(φ + 1)

)2
⎞⎠

→ N
(
μ

∣∣∣∣∣ν +
∑N

n=1 xn

N(φ + 1)
, (N(φ + 1)r)−1

)
. (2.69)

Therefore, similarly to the prior distribution, the posterior distribution of μ is repre-

sented by a Gaussian distribution with ν+∑N
n=1 xn

N(φ+1) and (N(φ + 1)r)−1 as the mean and
variance parameters, respectively:

p(μ|X) ∝ N
(
μ

∣∣∣∣∣ν +
∑N

n=1 xn

N(φ + 1)
, (N(φ + 1)r)−1

)
. (2.70)

Thus, both prior and posterior distributions are represented in the same form as a
Gaussian distribution with different parameters.

Now we consider the meaning of the solution of Eqs. (2.68) and (2.70). We
parameterize the φ and ν by newly introducing the following parameters:

φ � φμ

N
ν � φμμ0. (2.71)

Then, the prior and posterior distributions of μ in Eqs. (2.68) and (2.70) are rewritten
as: ⎧⎪⎨⎪⎩

p(μ) = N
(
μ

∣∣∣μ0, (φ0r)−1
)

p(μ|X) = N
(
μ

∣∣∣μ̂, (φ̂μr)−1
)

.
(2.72)

where

φ̂μ � φμ + N

μ̂ � φμμ0 +∑N
n=1 xn

φμ + N
. (2.73)

These are famous Bayesian solutions of the posterior distribution of the Gaussian mean.
We can consider the two extreme cases that the amount of data is zero or very large.
Then, the posterior distribution is represented as:
• N → 0

lim
N→0

p(μ|X) = N
(
μ

∣∣∣μ0, (φμr)−1
)
= p(μ). (2.74)

This solution means that we only use the prior information when we don’t have data.
• N � 1

lim
N→∞ p(μ|X) ≈ lim

N→∞N
(
μ

∣∣∣∣∣
∑N

n=1 xn

N
,

1

Nr

)
→ δ(μ− μML), (2.75)
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where μML is the ML estimate of μ, and the posterior distribution is close to the ML
value with small standard deviation, which is similar to the delta function that has a
peak value at the ML estimate.

Thus, the solution of Eq. (2.72) approaches the delta function with the ML estimate
when the amount of data is very large and approaches the prior distribution when the
amount of data is very small. The mean parameter of the posterior distribution,

φμμ0 +∑N
n=1 xn

φμ + N
, (2.76)

is interpolated by the prior mean parameter μ0 and the ML estimate, and φμ can control
an interpolation ratio.

Example 2.6 Conjugate distributions for Gaussian (unknown mean and precision):
Similarly to Example 2.5, we first rewrite a Gaussian distribution. In this situation, the
set of the parameters is θ = {μ, r}. From Eq. (2.29), the Gaussian distribution with
precision r has the following exponential form:

N∏
n=1

N (xn|μ, r−1) = h(X) exp
(
γ t(X)ᵀ − g(γ )

)
= h(X) exp

(
γ t(X)ᵀ − φ1g1(γ )− φ2g2(γ )

)
, (2.77)

where we introduce φ1 and φ2 that are discussed in Eq. (2.55). The variables in the above
equations are represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(X) =
[∑N

n=1 xn

−
∑N

n=1 x2
n

2

]
h(X) = 1

γ =
[
μr
r

]
g1(γ ) = N

2

(
γ 2

1

γ2

)

g2(γ ) = N

2

(
log

2π

γ2

)
.

(2.78)

Therefore, by substituting γ , g1(γ ), and g2(γ ) in Eq. (2.78) into the general form of the
conjugate distribution in Eq. (2.56), we can derive the function of mean μ and precision
r as follows:

p(γ |ν,φ1,φ2) ∝ exp
(
γ ᵀν − φ1g1(γ )− φ2g2(γ )

)
∝ exp

(
[μr, r]

[
ν1

ν2

]
− Nφ1

2
rμ2 − Nφ2

2
log

(
2π

r

))
∝ r

Nφ2
2 exp

(
ν1rμ− Nφ1

rμ2

2
+ rν2

)
, (2.79)
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where we omit the factor that does not depend on r and μ. By making a complete square
form of μ, we can obtain a Gaussian distribution of μ with mean ν1

Nφ1
and precision

Nφ1r:

p(γ |ν,φ1,φ2)

∝ r
Nφ2

2 exp

(
−Nφ1r

2

(
μ− ν1

Nφ1

)2

+ rν2
1

2Nφ1
+ rν2

)

= r
Nφ2

2

(
2π

Nφ1r

) 1
2
(

2π

Nφ1r

)− 1
2

exp

(
−Nφ1r

2

(
μ− ν1

Nφ1

)2

+ rν2
1

2Nφ1
+ rν2

)

∝ N
(
μ

∣∣∣∣ ν1

Nφ1
, (Nφ1r)−1

)
r

Nφ2
2 r−

1
2 exp

(
r

ν2
1

2Nφ1
+ rν2

)
︸ ︷︷ ︸

�(∗1)

. (2.80)

Now we consider the rest of the exponential factor (∗1). By focusing on r and using the
definition of a gamma distribution (Appendix C.11), the factor is rewritten as follows:

(∗1) ∝ r
Nφ2+1

2 −1 exp

(
−
(
− ν2

1

2Nφ1
− ν2

)
r

)

∝ Gam

(
r

∣∣∣∣∣Nφ2 + 1

2
,− ν2

1

2Nφ1
− ν2

)
, (2.81)

where the definition of a gamma distribution is as follows:

Gam(r|α,β) � 1

�(α)
βαrα−1 exp (−βr) , (2.82)

where �(·) is a Gamma function (Appendix A.4). Thus, precision r = 1
�

is represented

by a gamma distribution with Nφ2+1
2 and − ν2

1
2Nφ1

− ν2 as parameters.
This representation can be simplified by using the following definition for the other

definition of the gamma distribution Gam2(y|φ, r0) described in Eq. (C.81) instead of
the original gamma distribution defined in Eq. (C.74):

Gam2(y|φ, r0) � Gam

(
y

∣∣∣∣φ2 ,
r0

2

)
∝ y

φ
2−1 exp

(
− r0y

2

)
. (2.83)

Equation (2.81) is rewritten as

(∗1) ∝ Gam2

(
r

∣∣∣∣∣Nφ2 + 1,− ν2
1

Nφ1
− 2ν2

)
. (2.84)
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Thus, the conjugate prior distribution is represented as the product form of the
following Gaussian and gamma distributions:

p(μ, r) = N
(
μ

∣∣∣∣ ν1

Nφ1
, (Nφ1r)−1

)
Gam2

(
r

∣∣∣∣∣Nφ2 + 1,− ν2
1

Nφ1
− 2ν2

)
. (2.85)

This can be also represented as a Gaussian-gamma distribution (or so-called normal-
gamma) defined in Appendix C.13, as follows:

p(μ, r) = NGam

(
μ, r

∣∣∣∣∣ ν1

Nφ1
, (Nφ1r)−1,− ν2

1

Nφ1
− 2ν2, Nφ2 + 1

)
. (2.86)

The Gaussian-gamma distribution is a conjugate prior distribution of the joint variable
μ and r.

Similarly to the previous example, we introduce the following new parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φμ � Nφ1

μ0 � ν1

Nφ1

φr � Nφ2 + 1

r0 � − ν2
1

Nφ1
− 2ν2.

(2.87)

By using Eq. (2.87), the conjugate prior distribution of Eq. (2.85) is rewritten by using
these new parameters as follows:

p(μ, r) = N
(
μ

∣∣∣μ0, (φμr)−1
)

Gam2

(
r
∣∣∣φr, r0

)
. (2.88)

Note that we can also use Gaussian-gamma distribution as:

p(μ, r) = N (μ|μ0, (rφμ)−1) Gam2

(
r
∣∣∣φr, r0

)
= NGam(μ, r|μ0,φμ, r0,φr). (2.89)

Thus, we can derive the prior distribution of joint variable μ and r as the product of
the Gaussian and gamma distributions in Eq. (2.88), or the single Gaussian-gamma
distribution in Eq. (2.89).

Now, we focus on the posterior distribution of μ and r. Based on the conjugate
distribution theory, the posterior distribution is represented as the same form of the
Gaussian-gamma distribution as the prior distribution (2.89) with hyperparameters
φ̂μ, μ̂, φ̂r, and r̂ as follows:

p(μ, r|X) = NGam(μ, r|μ̂0, φ̂μ, r̂0, φ̂r). (2.90)

Based on the conjugate distribution rule (Eq. (2.63)), the hyperparameters of the poste-
rior distribution are easily solved by just replacing ν → ν + t(X) and φm → φm + 1 in
Eq. (2.87) without complex calculations, as follows:

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


32 Bayesian approach

φ̂μ = N(φ1 + 1) = φμ + N

μ̂ = ν1 +∑N
n=1 xn

N(φ1 + 1)
= φμμ0 +∑N

n=1 xn

φμ + N

φ̂r = N(φ2 + 1+ 1)+ 1 = N(φ2 + 1)+ 1+ N

= φr + N

r̂ = −
(
ν1 +∑N

n=1 xn

)2

N(φ1 + 1)
−
(

2ν2 −
N∑

n=1

x2
n

)

= −
(
φμμ0 +∑N

n=1 xn

)2

φμ + N
−
(
− ν2

1

Nφ1
− r0 −

N∑
n=1

x2
n

)

= −
(
φμμ0 +∑N

n=1 xn

)2

φμ + N
+ φμ(μ0)2 + r0 +

N∑
n=1

x2
n. (2.91)

Thus, we summarize the result of the hyperparameters of the conjugate posterior
distribution as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̂μ = φμ + N

μ̂ = φμμ0 +∑N
n=1 xn

φμ + N

φ̂r = φr + N

r̂ = −φ̂μ(μ̂)2 + φμ(μ0)2 + r0 +
N∑

n=1

x2
n.

(2.92)

Note that in this representation, the posterior distribution parameters of φ̂μ and φ̂r

are obtained by simply adding the number of observations N to the prior distribution
parameters of φμ and φr, respectively.

Finally, we summarize the result. The prior and posterior distributions of μ and r in
Eqs. (2.89) and (2.90) are also summarized as:{

p(μ, r) = NGam(μ, r|μ0,φμ, r0,φr)

p(μ, r|X) = NGam(μ, r|μ̂, φ̂μ, r̂, φ̂r),
(2.93)

or {
p(μ, r) = p(μ|r)p(r) = N (μ|μ0, (φμr)−1) Gam2(r|φr, r0)

p(μ, r|X) = p(μ|r, X)p(r|X) = N (μ|μ̂ (φ̂μr)−1) Gam2(r|φ̂r, r̂).
(2.94)

Similarly to the discussion about the mean parameter μ in Example 2.5, we can consider
the two extreme cases, that the amount of data is zero or very large, for the behavior of
the precision parameter solution r. The posterior distribution of r is represented as:
• N → 0

lim
N→0

p(r|X) = Gam2(r|φr, r0) = p(r). (2.95)
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This solution means that we only use the prior information when we don’t have data.
• N � 1

lim
N�1

p(r|X) ≈ Gam2

(
r

∣∣∣∣∣N,
N∑

n=1

x2
n −

(
∑N

n=1 xn)2

N

)
. (2.96)

Since the mean of the gamma distribution rMean (with 1
2 factor) is defined in

Eq. (C.83), the mean of r in this limit is represented as:

rMean = N∑N
n=1 x2

n − (
∑N

n=1 xn)2

N

=
⎛⎝∑N

n=1 x2
n

N
−
(∑N

n=1 xn

N

)2
⎞⎠−1

. (2.97)

This is equivalent to the maximum likelihood estimation of rML represented as
follows:

rML =
(

Mean[x2]− (Mean[x])2
)−1 = rMean. (2.98)

Thus, the mean of the posterior distribution approaches the ML estimate of r when
the amount of data is large.

Similarly, based on the definition of the variance of the gamma distribution (with
1
2 factor) in Eq. (C.84), the variance is also represented as

rVariance = 2N(∑N
n=1 x2

n − (
∑N

n=1 xn)2

N

)2

=
2
N(∑N

n=1 x2
n

N −
(∑N

n=1 xn
N

)2
)2

= 2
(
rML

)2
N

≈ 0. (2.99)

Note that the order of rML in Eq. (2.98) is a constant for N, and the variance of the
precision parameter rVariance approaches 0, i.e., the posterior distribution of r has a
strong peak at rML with a very small variance. Therefore, the posterior distribution of
precision parameter p(r|X) in the case of a large amount of data can be approximated
as the following Dirac delta function with the ML estimate:

lim
N�1

p(r|X) ≈ δ(r − rML). (2.100)

This conclusion is similar to the case of the large amount limitation of the posterior
distribution of mean parameter p(μ|X) in Eq. (2.75).

This Gaussian-gamma distribution is used to model the prior and posterior distributions
of Gaussian parameters (μ and r) for scalar continuous observations, or can be used for
vector continuous observations when we use a diagonal covariance matrix.
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Example 2.7 Conjugate distributions for multivariate Gaussian (unknown mean vector
and precision matrix):
Based on the discussion of Eq. (2.39) in Example 2.3, the canonical form of the
multivariate Gaussian distribution is represented as follows:

N∏
n=1

N (xn|μ, R−1)

∝ exp

(
μᵀR

N∑
n=1

xn − 1

2
tr

[
R

N∑
n=1

xnxᵀ
n

]
− N

2

(
log(2π |R|−1)+ μᵀRμ

))
,

(2.101)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1(X) =
N∑

n=1

xn

T2(X) = −1

2

N∑
n=1

xnxᵀ
n

h(x) = 1

γ 1(�) = Rμ

�2(�) = R

g1(γ 1, �2) = N

2
γ

ᵀ
1 �−1

2 γ 1

g2(γ 1, �2) = N

2
log(2π |�2|−1).

(2.102)

Therefore, by substituting γ , g1(γ 1, �2), and g2(γ 1, �2) in Eq. (2.102) into the general
form of the conjugate distribution in Eq. (2.60), we can derive the function of mean μ

and r as follows:

p(γ 1, �2|ν1, N2,φ1,φ2)

∝ exp
(
γ

ᵀ
1 ν1 + tr[�ᵀ

2 N2]− φ1g1(γ 1, �2)− φ2g2(γ 1, �2)
)

∝ exp

(
μᵀRν1 + tr[RᵀN2]− Nφ1

2
γ

ᵀ
1 �−1

2 γ 1 −
Nφ2

2
log(2π |�2|−1)

)
∝ exp

(
μᵀRν1 + tr[RN2]− Nφ1

2
μᵀRμ− Nφ2

2
log(|R|−1)

)
, (2.103)

where we omit the factor that does not depend on R and μ. Similarly to Example 2.6, we
first use a complete square form of μ to derive a Gaussian distribution from Eq. (2.103).

In Appendix B.4, we have the following formula for the complete square form of
vectors:

xᵀAx− 2xᵀb+ c = (x− u)ᵀ A (x− u)+ v, (2.104)

where

u � A−1b

v � c− bᵀA−1b. (2.105)
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Therefore, by x → μ, A → Nφ1R, and b → Rν1 in Eqs. (2.104) and (2.105),
Eq. (2.103) is rewritten as follows:

p(γ 1, �2|ν1, N2,φ1,φ2)

∝ |R| Nφ2
2 exp

⎛⎜⎜⎜⎝−Nφ1

2

(
μ− ν1

Nφ1

)ᵀ
R
(

μ− ν1

Nφ1

)
+ ν

ᵀ
1 Rν1

2Nφ1
+ tr[RN2]︸ ︷︷ ︸
(∗)

⎞⎟⎟⎟⎠ .

(2.106)

Now we focus on the (∗) term in Eq. (2.106). By using the matrix formula in Appendix
B, (∗) is rewritten as

(∗) = tr

[
ν1ν

ᵀ
1 R

2Nφ1
+ N2R

]
= tr

[(
ν1ν

ᵀ
1

2Nφ1
+ N2

)
R
]

. (2.107)

Thus, the conjugate prior distribution is rewritten as:

p(γ 1, �2|ν1, N2,φ1,φ2)

∝ |R| Nφ2
2 exp

(
−Nφ1

2

(
μ− ν1

Nφ1

)ᵀ
R
(

μ− ν1

Nφ1

)
+ tr

[(
ν1ν

ᵀ
1

2Nφ1
+ N2

)
R
])

.

(2.108)

Therefore, Eq. (2.108) is represented as the following Gaussian–Wishart distribution in
Appendix C.15:

NW(μ, R|μ0,φμ, R0,φR)

� CNW (φμ, R0,φR)|R| φ
R−D

2

× exp

(
−1

2
tr
[
R0R

]
− φμ

2
(μ− μ0)ᵀR(μ− μ0)

)
, (2.109)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φμ = Nφ1

μ0 = ν1

Nφ1

φR = Nφ2 + D

R0 = −ν1ν
ᵀ
1

Nφ1
− 2N2.

(2.110)

Thus, we can derive the prior distribution as the Gaussian–Wishart distribution.
Now, we focus on the posterior distribution of μ and R. Similarly, the posterior distri-

bution is represented as the same form of the Gaussian–Wishart distribution as the prior
distribution (2.109), with hyperparameters φ̂μ, μ̂, φ̂R, and R̂ as follows:

p(μ, R|X) = NW(μ, R|μ̂, φ̂μ, R̂, φ̂R). (2.111)
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Based on the conjugate distribution rule, Eq. (2.64), the hyperparameters of the poste-
rior distribution are easily solved by just replacing ν1 → ν1 + t(X), N2 → N2 + T(X),
and φm → φm + 1 in Eq. (2.110) without complex calculations, as follows:

φ̂μ = N(φ1 + 1) = φμ + N,

μ̂ = ν1 +∑N
n=1 xn

N(φ1 + 1)
= φμμ0 +∑N

n=1 xn

φμ + N
,

φ̂R = N(φ2 + 1)+ D = φR + N,

R̂ = −
(
ν1 +∑N

n=1 xn

) (
ν1 +∑N

n=1 xn

)ᵀ

N(φ1 + 1)
− 2

(
N2 − 1

2

N∑
n=1

xnxᵀ
n

)

= −φ̂μμ̂μ̂
ᵀ + ν1ν

ᵀ
1

Nφ1
+ R0 +

N∑
n=1

xnxᵀ
n

= −φ̂μμ̂μ̂
ᵀ + φμμμᵀ + R0 +

N∑
n=1

xnxᵀ
n . (2.112)

Thus, we derive the posterior distribution that is also represented as a Gaussian–Wishart
distribution. Finally, the prior and posterior distributions of μ and R in Eqs. (2.109) and
(2.111) are also summarized as:{

p(μ, R) = NW(μ, R|μ0,φμ, R0,φR)

p(μ, R|X) = NW(μ, R|μ̂, φ̂μ, R̂, φ̂R),
(2.113)

or {
p(μ, R) = p(μ|R)p(R) = N (μ|μ0, (φμR)−1)W(R|φR, R0)

p(μ, R|X) = p(μ|R, X)p(R|X) = N (μ|μ̂, (φ̂μR)−1)W(R|φ̂R, R̂).
(2.114)

Example 2.8 Conjugate distributions for multinomial distribution:
Based on the discussion of Eq. (2.50) in Example 2.4, the canonical form of the
multivariate Gaussian distribution is represented as follows:

Mult(x1, · · · , xJ |ω1, · · · ,ωJ) = h(x) exp
(
γ ᵀt(x)

)
, (2.115)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t(x) = x

h(x) = N!∏J
j=1 xj!

γ =
[
log ω1

1−∑J−1
j=1 ωj

, · · · , log ωJ−1

1−∑J−1
j=1 ωj

]ᵀ
g(γ ) = N log

⎛⎝1+
J−1∑
j=1

exp(γj)

⎞⎠ .

(2.116)
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Note that we have the following constraints:
J∑

j=1

xj = N

J∑
j=1

ωj = 1. (2.117)

Therefore, by substituting γ , g1(γ ), and g2(γ ) in Eq. (2.78) into the general form of the
conjugate distribution in Eq. (2.56), we can derive the function of γ as follows:

p(γ |ν,φ) ∝ exp
(
γ ᵀν − φg(γ )

)
= exp

⎛⎝[log ω1

1−∑J−1
j=1 ω1

, · · · , log ωJ−1

1−∑J−1
j=1 ωj

]
ν + Nφ log

⎛⎝1−
J−1∑
j=1

ωj

⎞⎠⎞⎠
= exp

([
logω1, · · · , logωJ

] [
νᵀ, Nφ −∑J−1

j=1 νj

]ᵀ)
=

J∏
j=1

(ωj)
φω

j −1, (2.118)

where hyperparameters {φω
j }Jj=1 are defined as follows:

φω
j � νj + 1 for j = 1, · · · , J − 1

φω
J � Nφ −

J−1∑
j=1

νj + 1. (2.119)

Thus, the conjugate prior distribution is represented as a Dirichlet distribution defined
in Appendix C.4 as

Dir({ωj}Jj=1|{φω
j }Jj=1) �

�(
∑J

j=1 φ
ω
j )∏J

j=1 �(φω
j )

J∏
j=1

(ωj)
φω

j −1. (2.120)

Based on the conjugate distribution rule, Eq. (2.63), the hyperparameters of the pos-
terior distribution are easily solved by just replacing ν → ν + t(x) and φ → φ + 1 in
Eq. (2.118) without complex calculations, as follows:

p(γ |X) → Dir({ωj}Jj=1|{φ̂ω
j }Jj=1), (2.121)

where hyperparameters {φ̂ω
j }Jj=1 are obtained as follows:

φ̂ω
j � νj + xj + 1 = φω

j + xj

φ̂ω
J � N(φ + 1)−

J−1∑
j=1

(νj + xj)+ 1

= Nφ + xJ −
J−1∑
j=1

νj + 1

= φω
J + xJ . (2.122)
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Thus, we derive the posterior distribution that is represented as a Dirichlet distribution.
Finally, the prior and posterior distributions of ω are given as:⎧⎪⎨⎪⎩

p({ωj}Jj=1) = Dir
(
{ωj}Jj=1

∣∣∣{φω
j }Jj=1

)
p({ωj}Jj=1|X) = Dir

(
{ωj}Jj=1

∣∣∣{φ̂ω
j }Jj=1

)
.

(2.123)

Table 2.1 shows a recipe of the kind of distributions we use as a conjugate prior.
This section provides a solution of the posterior distribution for rather simple statisti-

cal models. However, in practical applications, we still face the problems of solving the
equations, and often require the approximation to solve them efficiently. The next sec-
tion explains a powerful approximation method, conditional independence, in Bayesian
probabilities.

2.1.5 Conditional independence

Another important mathematical operation of the Bayesian approach, as well as the
product and sum rules (Section 2.1.1), is called conditional independence. Let a, b, and
c be probabilistic variables, the conditional independence of a and b on c is represented
as follows:

p(a, b|c) = p(a|b, c)p(b|c) = p(a|c)p(b|a, c), (2.124)

≈ p(a|c)p(b|c). (2.125)

This is a useful assumption for the Bayesian approach when factorizing the joint proba-
bility distribution. For example, Eq. (2.124) based on the product rule needs to consider
p(b|a, c) or p(a|b, c). Suppose a, b, and c are discrete elements of sets, i.e., a ∈ A,
b ∈ B, and c ∈ C, p(b|a, c) or p(a|b, c) considers the probability of all combinations of
a, b, and c, which correspond to |A|×|B|×|C|. The number of combinations is increased
exponentially, if the number of valuables is increased. Therefore, it is computationally
very expensive to obtain the conditional distribution, and almost impossible to consider

Table 2.1 Conjugate priors.

Likelihood function Unknown variable Conjugate prior

Gaussian μ ∈ R Gaussian C.5
Gaussian r ∈ R>0 Gamma C.11
Gaussian μ, r Gaussian–gamma C.13
Multivariate Gaussian μ ∈ R

D Multivariate Gaussian C.6
Multivariate Gaussian R ∈ R

D×D Wishart C.14
Multivariate Gaussian μ, R Gaussian–Wishart C.15
Multinomial ωi ∈ [0, 1],

∑
i ωi = 1 Dirichlet C.4
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large amounts of data as probabilistic valuables. Thus, the conditional independence
approximation in Eq. (2.125) greatly reduces the computational complexity, and makes
the Bayesian treatment of speech and language processing tractable.

By using the product rule, the conditional independence equation is rewritten as
follows:

p(a|c) ≈ p(a, b|c)

p(b|c)
= p(a|b, c)p(b|c)

p(b|c)
= p(a|b, c). (2.126)

Thus,

p(a|b, c) ≈ p(a|c) (2.127)

is also equivalently used as the conditional independence assumption of Eq. (2.125).
The conditional independence is often used in the following sections to make the

complicated relationship between probabilistic variables simple. For example, speech
recognition has many probabilistic variables which come from acoustic and language
models. It is very natural and effective to assume conditional independence between
acoustic model and language model variables because these do not depend on each
other explicitly.

Example 2.9 Naive Bayes classifier:
One of the simplest classifiers in the machine learning approach is the naive Bayes
classifier. The approach is used for many applications including document classification
(Lewis 1998, McCallum & Nigam 1998). For example, if we have N data (x1, x2, · · · xN),
and want to classify the data to a specific category ĉ, this can be performed by using the
posterior distribution of category c as follows:

ĉ = arg max
c

p(c|{xn}Nn=1). (2.128)

The naive Bayes classifier approximates this posterior distribution with the product rule
and conditional independence assumption as follows:

p(c|{xn}Nn=1) ∝ p({xn}Nn=1|c)p(c)

≈
N∏

n−1

p(xn|c)p(c). (2.129)

This approach approximates the posterior distribution p(c|{xn}Nn=1) with the product of
likelihood p(xn|c) for all samples and prior distribution p(c). Since the naive Bayes clas-
sifier is very simple and easy to implement, it is often used as an initial attempt of the
machine learning approach if we have training data with labels to obtain p(xn|c) for all c.
For example, in document classification, a multinomial distribution is used to represent
the likelihood function p(xn|c).
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2.2 Graphical model representation

The previous sections (especially Sections 2.1.1 and 2.1.5) discuss how to provide
the mathematical relationship between probabilistic variables in a Bayesian manner.
This section briefly introduces a graphical model representation that visualizes the
relationship between these probabilistic valuables to provide a more intuitive way of
understanding the model. A graphical model framework is also widely used in Bayesian
machine learning studies, and this book introduces basic graphical model descriptions,
which are used in the following sections.

2.2.1 Directed graph

First, we simply consider the following joint distribution of a and b, which can be
rewritten as the following two factorization forms based on the product rule:

p(a, b) = p(b|a)p(a), (2.130)

= p(a|b)p(b). (2.131)

Therefore, to obtain the joint distribution, we compute either Eq. (2.130) or (2.131)
depending on the problem. The graphical model can separately represent these factor-
ization forms intuitively. Figure 2.1 represents the graphical models of p(b|a)p(a) and
p(a|b)p(b), respectively. The node represents a probabilistic variable, and the directed
link represents the conditional dependency of two probabilistic variables. For example,
Eq. (2.130) is composed of the conditional distribution p(b|a) and then the corre-
sponding graphical representation provides the directed link from node a to node
b in Figure 2.1(a). Conversely, the conditional distribution p(a|b) in Eq. (2.131) is
represented by the directed link from node b to node a in Figure 2.1(b).

Thus, the graphical model specifies a unique factorization form of a joint distribution,
intuitively. The graph composed of the directed link, which represents the conditional
distribution, is called a directed graph. The graphical model can also deal with an undi-
rected graph, which is a graphical representation of a Markov random field, but this
book focuses on the directed graph representation, which is often used in the later
applications.

2.2.2 Conditional independence in graphical model

As we discussed in Section 2.1.5, practical applications often need some approximations
in the dependency of probabilistic variables to avoid a complicated dependency of the

Figure 2.1 Graphical models of p(b|a)p(a) and p(a|b)p(b).

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


2.2 Graphical model representation 41

Figure 2.2 Graphical models of p(a|b, c)p(b|c)p(c) and p(a|c)p(b|c)p(c).

factorized distribution. We can represent this approximation in the graphical model rep-
resentation. If we consider the joint distribution of a, b, and c, the joint distribution is,
for example, represented as the following factorization form based on the product rule:

p(a, b, c) = p(a|b, c)p(b|c)p(c). (2.132)

The graphical model of Eq. (2.132) is represented in Figure 2.2(a). Note that all nodes
are connected to each other by directed links. This graph is called a full connected graph.

On the other hand, the joint distribution with the following conditional independence
can also be represented as a graphical model in Figure 2.2(b):

p(a, b, c) = p(a, b|c)p(c) ≈ p(a|c)p(b|c)p(c). (2.133)

Note that the link between a and b has disappeared from Figure 2.2(b). Thus, the condi-
tional independence in the graphical model is represented by pruning links in the graphs,
which corresponds to reducing the dependencies in probabilistic variables, and leads to
reduced computational cost.

In real applications, we need to consider large numbers of variables. For example, the
naive Bayes classifier introduced in Example 2.9 has to consider N + 1 probabilistic
variables ( {xn}Nn=1 and c):

p(x1, · · · , xN |c)p(c) ≈ p(x1|c) · · · p(xN |c)p(c) =
N∏

n=1

p(xn|c)p(c). (2.134)

The graphical model of this case can be simplified from Figure 2.3(a) to 2.3(b) by using
the plate. Based on the plate, we can represent a complicated relationship of probabilis-
tic variables intuitively. In Section 8.2, we also consider the case when the number of
probabilistic variables is dealt with as infinite in Bayesian nonparametrics. Then, the
number of variables can be represented by using ∞ in a graphical model, as shown in
Figure 2.4.

Thus, the graphical model can represent the dependencies of variables based on the
product rule and conditional independence graphically. This dependency-network-based
Bayesian method is also called a Bayesian network. In particular the Bayesian treatment
that considers the dynamical relationship between probabilistic variables is also called
a dynamic Bayesian network (Ghahramani 1998, Murphy 2002). A dynamic Bayesian

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003


42 Bayesian approach

…….…….

Figure 2.3 Graphical model of p(x1|c) · · · p(xN |c) =∏N
n=1 p(xn|c).

Figure 2.4 Graphical model of p(x1|c) · · · p(x∞|c) =∏∞n=1 p(xn|c).

network provides efficient solutions to the time-series statistical models similarly to
HMM and Kalman filters, which are also used in speech recognition (Zweig & Russell
1998, Nefian, Liang, Pi et al. 2002, Livescu, Glass & Bilmes 2003). It is helpful to
understand probabilistic models, even when they are very complicated in the equation
form.

2.2.3 Observation, latent variable, non-probabilistic variable

Previous sections deal with the graphical model of all probabilistic variables. However,
our machine learning problems for speech and language processing have three types of
variables: observation, latent variables, and non-probabilistic variables. For example, let
x be an observation, z is a latent variable, and θ is a model parameter, which we don’t
deal with as a probabilistic variable in this section, unlike the full Bayesian approach.
The probability distribution of x is represented as follows:

p(x|θ ) =
∑

z

p(x, z|θ ) =
∑

z

p(x|z, θ )p(z|θ ). (2.135)

The corresponding graphical model is represented in Figure 2.5(a). Note that three vari-
ables x, z, θ have different roles in this equation. For example, x is a final output of this
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Figure 2.5 Graphical models that have observation x, latent variable z, model parameter θ , and
hyperparameter ψ . Part (a) treats θ as a non-probabilistic variable, and (b) treats θ as a
probabilistic variable to be marginalized.

equation as an observation, which is not marginalized, while z is a latent variable and
should be marginalized. To distinguish the observation and latent variables, the node
representing an observation is tinted. θ is not a probabilistic variable in this explanation,
and so it is put in the graph without a circle.

Similarly, if we consider the same model, but treat θ as a probabilistic variable, θ
is marginalized by the prior distribution of θ with hyperparameter ψ . The probability
distribution of x is represented as follows:

p(x|ψ) =
∫ ∑

z

p(x, z, θ |ψ)dθ

=
∫ ∑

z

p(x|z, θ )p(z|θ )p(θ |ψ)dθ . (2.136)

Here we assume θ to be a continuous variable, and use the integral instead of the sum-
mation. We can regard θ as a latent variable in a broad sense, but the other sections
distinguish the model parameters and latent variables. The corresponding graphical
model is represented in Figure 2.5(b). Thus, by using the representations of observa-
tion, latent variables, and non-probabilistic variables, we can provide graphical models
of various distributions other than joint distributions. These are basic rules of providing
a directed graphical model from the corresponding probabilistic equation.

The directed graph basically describes how observation variables are generated con-
ditioned on the other probabilistic variables. This statistical model of describing the
generation of observation variables is called a Generative model. HMM, GMM, Kalman
filter, n-gram, latent topic model, and deep belief network are typical examples of gen-
erative models that can generate speech feature vectors and word sequences. The next
section also introduces another way of intuitively understanding our complicated statisti-
cal models by describing how observation variables are generated from the distributions
in our models.
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2.2.4 Generative process

This section also explains another representation of the Bayesian approach based on the
generative process. This representation is used to generate the probabilistic variables in
an algorithmic way. The generative process is used to express the joint distribution. The
basic syntax of the generative process is as follows:

• Non-probabilistic variables: placed as “require”;
• Latent variables: “drawn” from their probability distribution;
• Model parameters: “drawn” from their (prior) probability distribution;
• Observations: finally “drawn” from their probability distribution given sampled latent

variables and model parameters.

If we also want to represent the marginalization of a probabilistic variable, we can use
an additional syntax “Average” for the marginalization.

As an example of Eq. (2.136), Algorithm 1 represents the generative process of the
joint distribution p(x, z, θ |ψ), which is represented as:

p(x, z, θ |ψ) = p(x|z, θ )p(z|θ )p(θ |ψ), (2.137)

where x, z, θ , and ψ are observations, latent variables, model parameters, and hyperpara-
meter (non-probabilistic variables), respectively.

Algorithm 1 Generative process of p(x, z, θ |ψ) = p(x|z, θ )p(z|θ )p(θ |ψ)

Require: ψ

1: Draw θ from p(θ |ψ)
2: Draw z from p(z|θ )
3: Draw x from p(x|z, θ )

This generative process also helps us to understand models intuitively by under-
standing how probabilistic variables are generated algorithmically. Therefore, both the
generative process and graphical model are often provided in the Bayesian approach
to represent a complicated generative model. In some of the statistical models used in
this book, we provide the generative process and graphical model to allow readers to
understand the models intuitively.

2.2.5 Undirected graph

Another example of a graphical model is called an undirected graph (Figure 2.6), that
represents the relationship of probabilistic variables but does not have explicit parent–
child relationships compared with the directed graph. The network is called a Markov
random field, and the probabilistic distribution is usually expressed by a potential
function ψ(a, b, c) (a positive, but otherwise arbitrary, real-valued function):

p(a, b, c) = 1

Z
ψ(a, b, c), (2.138)
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Figure 2.6 Undirected graph.

Figure 2.7 Factor graph.

where Z is a normalization constant of this distribution, and is called the partition
function for this special case. This approach is often used as a context of a log linear
discriminative model, where ψ(a, b, c) is a linear function of a feature obtained by a, b,
and c and the corresponding weight.

A factor graph is another class of graphical model representing the conditional inde-
pendence relationship between variables. Actually, the factor graph can provide a more
concrete representation of the joint distribution of variables than that of the undirected
graph. The factor graph introduces additional square nodes to a graph, which can
explicitly represent the dependency of several variables.

For example, the partition function can be represented by several cases, as shown in
Figures 2.7 and 2.8. Both graphs are fully connected and can represent the joint distri-
bution of a, b, and c. However, the partition function of Figure 2.7 is computed by using
the three pairs of partition functions as follows:

p(a, b, c) = 1

Z
ψ(a, b)ψ(b, c)ψ(c, a). (2.139)

The possible partition functions are |A|× |B|+ |B|× |C|+ |A|× |C|. On the other hand,
Figure 2.8 considers the potential function of the joint event for a, b, and c:

p(a, b, c) = 1

Z
ψ(a, b, c). (2.140)
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Figure 2.8 Factor graph.

The possible partition functions are |A|× |B|× |C|. Therefore, if the number of possible
variables (|A|, |B|, and |C|) is very large, Figure 2.7 is a more compact representation
since the number of possible functions would be smaller.

Thus, factor graphs are more specific about the precise form of the factorization of
undirected graphs, and can be used to mainly represent some discriminative models
(logistic regression, conditional random field (Lafferty, McCallum & Pereira 2001)).
This book generally deals with generative models (HMM, GMM, n-gram, and latent
topic model), and does not deal with these discriminative models. However, there are
several important applications of discriminative models to speech and language process-
ing (e.g., Gunawardana, Mahajan, Acero et al. 2005, Fosler & Morris 2008, Zweig &
Nguyen 2009, Gales et al. 2012) in addition to the recent trend of deep neural networks
(Hinton et al. 2012). We present an example of a Bayesian treatment of neural network
acoustic models in Section 6.4. The fully Bayesian treatment of the other discriminative
models in speech and language processing is an interesting future direction.

2.2.6 Inference on graphs

One of the powerful advantages of the graphical model representation is that once we
fix a graphical model, we can infer all variables in the graph efficiently by using belief
propagation if the graph does not have a loop.

For example, belief propagation provides a sum product algorithm that can efficiently
compute the distribution p(xi) of the probabilistic variable in an arbitrary node by using
message passing. In the HMM case, this sum product algorithm corresponds to the
forward–backward algorithm, as discussed in Section 3.3.1. Similarly, belief propa-
gation provides a max sum algorithm that can efficiently compute the arg max value
(x̂i = arg maxxi p(xi)) in an arbitrary node by using message passing. Similarly to the
sum product algorithm, the max sum algorithm corresponds to the Viterbi algorithm,
as discussed in Section 3.3.2. A detailed discussion about the relationship between the
forward–backward/Viterbi algorithms in the HMM and these algorithms can be found
in Bishop (2006).

However, most of our applications have a loop in a graph, and we cannot use the
exact inference based on the above algorithms. The following chapters introduce the
approximations of the Bayesian inferences, and especially variational Bayes (VB), as
discussed in Chapter 7, and Markov chain Monte Carlo (MCMC), as discussed in
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Chapter 8, these being promising approaches to obtain approximate inferences in a
graphical model. Actually, progress of the graphical model approach has been linked
to the progress of these Bayesian inference techniques.

The other approximated approach to inference in a graphical model that contains
cycles or loops is to use the sum-product algorithm for the graph even though there is
no guarantee of convergence. This approach is called loopy belief propagation, and it is
empirically known that it is convergent in some applications.

2.3 Difference between ML and Bayes

As discussed in previous sections, the Bayesian approach deals with all variables intro-
duced for modeling as probabilistic variables. This is the unique difference between the
Bayesian approach and the other standard statistical framework, the Maximum Likeli-
hood (ML) approach. Actually this difference can yield various advantages over ML.
This section overviews the advantage of the Bayesian approach over the ML approach
in general. We discuss this, along with a general pattern recognition problem, as we
consider practical speech and language processing issues in the following chapters.

Let O, Z,�, M, and W be a set of observation features, latent variables, model
parameters, model structure (hyperparameter) variables, and classification categories,
respectively, details of which will be introduced in the following chapters. For compar-
ison, we summarize the difference between the approaches in terms of model setting,
training, and classification.

• Model setting
– ML:

Generative model distribution p(O, Z|�, M).
– Bayes:

Generative model distribution p(O, Z|�, M)
Prior distributions p(�|M) and p(M).

In addition to the generative model distribution, the Bayesian approach needs to set
prior distributions.

• Training
– ML: Point estimation

�̂.
– Bayes: Distribution estimation

p(�|M, O) and p(M|O).

ML point-estimates are given by the optimal values �̂ by using the EM algorithm
generally when the model has latent variables, while the Bayesian approach estimates
posterior distributions. In addition, ML only focuses on model parameters �, but the
Bayesian approach focuses on both model parameters � and model M.
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• Classification
– ML:

arg max
W ′

∑
Z′

p(O′, Z′|�̂, M̂, W ′)p(W ′). (2.141)

– Bayes:

arg max
W ′

∫ ∑
M,Z′

p(O′, Z′|�, M, W ′)p(�|M, O, W)p(M|O, W)p(W ′)d�. (2.142)

Here, �̂ is obtained in the ML training step, and M̂ is usually set in advance by an
expert or optimized by evaluating the performance of model M using a development
set. Equation (2.142) is obtained by the probabilistic sum and product rules and con-
ditional independence, as discussed in the previous sections. Compared with ML,
the Bayes approach marginalizes � and M through the expectations of the posterior
distributions p(�|M, O, W) and p(M|O, W), respectively.

Thus, the main differences between ML and Bayes are (i) use of prior distributions,
(ii) use of distributions of model M, (iii) expectation with respect to probabilistic vari-
ables based on posterior distributions. These differences yield several advantages of the
Bayesian approach over ML. The following sections describe the three main advantages.

2.3.1 Use of prior knowledge

First, we describe the most famous Bayesian advantage over ML based on the use of
prior knowledge. Figure 2.9 depicts this advantage focusing on the estimation of model
parameters (the mean and variance of a Gaussian). The dashed line shows the true dis-
tribution, and the solid line shows the estimated Gaussian distributions based on ML
and Bayes. If data to be used to estimate parameters are not sufficient and biased to the

Q Q Q

Figure 2.9 Use of prior knowledge.
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small peak of the true distribution, ML tends to estimate the wrong parameter by using
the biased data. This is because ML estimates only consider the likelihood function,
which leads it to estimate the parameters that generate the observed data:

�ML = arg max
�

p(O|�, M). (2.143)

Thus, ML can correctly estimate parameters only when the amount of data is sufficient.
On the other hand, the Bayesian approach also considers the prior distribution of

model parameters p(�|M). Now, we consider point estimation using the maximum a-
posteriori (MAP) value, instead of considering the Bayesian distribution estimation for
simply comparing the prior effect with ML. For example, based on Eq. (3.345), the MAP
estimate of � is represented as follows:

�MAP = arg max
�

p(�|O, M)

= arg max
�

p(O|�, M)p(�|M). (2.144)

The result considers the prior distribution as a regularization term. So if we set a con-
straint on a distribution form by appropriate prior knowledge, we can recover a wrong
estimation due to the sparse data problem in ML, and we can estimate the parameter
correctly. Details are discussed in Chapter 4.

2.3.2 Model selection

The model selection is a unique function of the Bayesian approach, which determines
a model structure from data automatically. For example, Figure 2.10 shows how many
Gaussians we use to estimate the parameters. It is well known that likelihood values
always increase as the number of parameters increases. Therefore, if we enforce use
of the ML criterion for the model selection, ML tends to select too many Gaussians,
which results in over-fitting. There are some extensions of ML to deal with model
selection based on information criteria (e.g., Akaike 1974, Rissanen 1984). However,
in most cases of speech and language processing, the ML framework usually optimizes
model structure by evaluating the performance of the model using a development set.
The development set is usually obtained from a part of training/test data. Although this

Figure 2.10 Model selection.
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optimization is straightforward, it is very difficult to use in some of the applications
when the performance evaluation is difficult (e.g., it has a large computational cost for
evaluation or there is no objective performance measure).

The Bayesian approach can deal with model selection within the framework. For
example, our Bayesian approach to acoustic modeling involves the posterior distribu-
tion of model p(M|O), which will be described in Section 3.8.7. Once we obtain the
posterior disquisition, we can select an appropriate model structure in terms of the MAP
procedure introduced in Section 2.1.2, as follows:

MMAP = arg max
M

p(M|O). (2.145)

Thus, an appropriate model structure (e.g., the topology of HMMs (Stolcke & Omo-
hundro 1993, Watanabe, Minami, Nakamura et al. 2004)) can be selected according to
training data, without splitting them to create development data.

Instead of using the MAP procedure, we can use expectation based on p(M|O). This is
stricter in the Bayesian sense, and Eq. (2.142) actually includes the expectation over the
posterior distribution of models. This approach corresponds to using multiple models
with different model structures to classify unseen categories. However, in terms of the
computational costs (needs large memory and computational time for the multiple model
case), people usually carry out model selection by using the MAP procedure.

We also note that M involves other model variations than model structure as ele-
ments. For example, hyperparameters introduced in the model can be optimized by
using the same MAP procedure or marginalized out by using the expectation. In par-
ticular, the optimization of hyperparameters through the posterior distributions of M is
also a powerful example of the Bayesian advantage over ML.

2.3.3 Marginalization

The final Bayesian advantage over ML is the marginalization effect, which was dis-
cussed in the expectation effect of the Bayesian approach in the previous section. Since
the stochastic fluctuation in the expectation absorbs estimation errors, the marginaliza-
tion improves the robustness in estimation, classification, and regression over unknown
data. In Figure 2.11, the left figure shows the maximum likelihood based distribu-
tion with �̂, while the right figure shows the example of marginalization over model

Q Q Q

Figure 2.11 Marginalization over a set of model parameters �.
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parameters � in the likelihood function p(O′|�, M) given a model structure M. Since
the right figure considers the probabilistic fluctuations of � by the posterior distribu-
tion p(�|O, M), the marginalized function (expected with respect to �) can mitigate the
error effects in estimating � with the variance, and make the likelihood function robust
to unseen data. The marginalization can be performed to all probabilistic variables in a
model including latent variables Z, model structure M (and hyperparameters), in addi-
tion to the model parameter � example in Figure 2.11, if we obtain the prior/posterior
distributions of these probabilistic variables.

The marginalization is another unique advantage of the Bayesian approach over ML,
whereby incorporating the uncertainty of variables introduced in a model based on prob-
abilistic theory achieves robustness for unseen data. However, it requires an expectation
with respect to variables that essentially needs to consider the integral or summations
over the variables. Again, this is the main difficulty of the practical Bayesian approach,
and it needs some approximations especially to utilize the Bayesian advantage of this
marginalization effect.

Although marginalization is not usually performed for observation O, observation
features in speech and language processing often include noises, and marginalization
over observation features is effective for some applications. For example, if we use a
speech enhancement technique as a front-end denoising process of automatic speech
recognition, the process inevitably includes noise estimation errors, and the errors can
be propagated to speech recognition, which degrades the performance greatly. The
approach called uncertainty techniques tries to mitigate the errors by using the follow-
ing Bayesian marginalization of the conventional continuous-density HMM (CDHMM)
likelihood function over observation features O (Droppo, Acero & Deng 2002, Delcroix,
Nakatani & Watanabe 2009, Kolossa & Haeb-Umbach 2011):

p(�,�uns
O′ , M) ≈

∫
p(O′|�, M)p(O′|�uns

O′ )dO′. (2.146)

The main challenges of the uncertainty techniques are how to estimate feature uncer-
tainties �uns

O′ (the distribution of observation features p(O|�uns
O′ ) with hyperparameter

�uns
O′ ) and how to integrate the marginal likelihood function with the decoding algo-

rithm of the HMM. The approaches have been successfully applied to noisy speech
recognition tasks, and show improvements by mitigating the error effects in speech
enhancement techniques (Barker, Vincent, Ma et al. 2013, Vincent, Barker, Watanabe
et al. 2013).

Thus, we have explained the three main practical advantages of the Bayesian
approaches. Note that all of the advantages are based on the posterior distributions,
and obtaining the posterior distributions for our target applications is a main issue of the
Bayesian approaches. Once we obtain the posterior distributions, Bayesian inference
allows us to achieve robust performance for our applications.

2.4 Summary

This chapter introduces the selected Bayesian approaches used for speech and language
processing by starting from the basic Bayesian probabilistic theory with graphical
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models, and concludes with a summarization of the Bayesian advantages over ML. The
discussion is rather general, and to apply Bayesian approaches to our practical prob-
lems in speech and language processing, we still need to bridge a gap between the
theoretical Bayesian approaches and these practical problems. This is the main goal
of this book. The next chapter deals with basic statistical models used in speech and
language processing based on ML, and it will be extended in the latter chapters toward
this main goal.

https://doi.org/10.1017/CBO9781107295360.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.003

