2 Background and Notation

In this chapter we establish the mathematical notation used throughout this book and
introduce the basic foundation of machine learning that this text builds upon. Readers
generally familiar with this field can cursorily read this chapter to become familiar with
our notation. For a more thorough treatment of machine learning, the reader should refer
to a text such as (Hastie, Tibshirani, & Friedman 2003) or (Vapnik 1995).

2.1 Basic Notation

Here we give a brief overview of the formal notation we use throughout this text. For
more, along with foundations in basic logic, set theory, linear algebra, mathematical
optimization, and probability we refer the reader to Appendix A.

We use = to denote equality and £ to denote defined as. The typeface style of a
character is used to differentiate between elements of a set, sets, and spaces as follows.
Individual objects such as scalars are denoted with italic font (e.g., x) and multidimen-
sional vectors are denoted with bold font (e.g., x). A set is denoted using blackboard
bold characters (e.g., X). However, when referring to the entire set or universe that
spans a particular kind of object (i.e., a space), we use calligraphic script such as in &’
to distinguish it from subsets X contained within this space.

2.2 Statistical Machine Learning

Machine learning encompasses a vast field of techniques that extract information from
data as well as the theory and analysis relating to these algorithms. In describing the
task of machine learning, Mitchell (1997) wrote,

A computer program is said to learn from experience £ with respect to some class of tasks 7'
and performance measure P, if its performance at tasks in 7', as measured by P, improves with
experience E.

This definition encompasses a broad class of methods. We present an overview of the
terminology and mechanisms for a particular notion of learning that is often referred
to as statistical machine learning. In particular, the notion of experience is cast as
data, the task is to choose an action (or make a prediction/decision) from an action or
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(b) The learning framework with implicit data collection.

Figure 2.1 Diagrams depicting the flow of information through different phases of learning.

(a) All major phases of the learning algorithm except for model selection. Here objects from the
space 2 are drawn from the distribution P, and parsed into measurements that then are used in
the feature selector F'S. It selects a feature mapping ¢ that is used to create training and
evaluation datasets, D™ and D), The learning algorithm H™) selects a hypothesis f based
on the training data, and its predictions are assessed on D©"*) according to the loss function £.
(b) The training and prediction phases of learning with implicit data collection phases. Here the
data are assumed to be drawn directly from Pz instead of being drawn from P, and subsequently
mapped into the space Z by the measurement process.

decision space, and the performance metric is a loss function that measures the cost that
the learner incurs for a particular prediction/action compared to the best or correct one.
Figure 2.1 illustrates the data flow for learning in this setting. The data lies in a product
space Z = X x )Y composed of an input space X and an output space ), which are
discussed later. The training dataset D("") (consisting of N coupled training examples
from the product space) is drawn from the distribution Pz and is used by the learning
procedure H™Y) to produce a hypothesis (or classifier) . This classifier is a function
that makes predictions on a new set of data D('?) (assumed to be drawn from the same
distribution) and is assessed according to the loss function £. Figure 2.1(a) additionally
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depicts the data collection phase of learning discussed in Section 2.2.1. While measure-
ment and initial feature extraction are important aspects for the security of a learning
algorithm, our focus in this book is on the security of the learning algorithm.

Throughout this book, we only consider inductive learning methods for which learn-
ing takes the form of generalizing from prior experiences. The method of induction
requires an inductive bias: a set of (implicit) assumptions used to create generalizations
from a set of observations. An example of an inductive bias is Ockham’s Razor—the
preference for the simplest hypothesis that is consistent with the observations. Naive
Bayes methods use maximal conditional independence as their inductive bias, while the
inductive bias of a support vector machine is maximal margin. The inductive bias of
most methods is an implicit bias built into the learning procedure.

In this book, we focus on techniques from statistical machine learning that can be
described as empirical risk minimization procedures. Later, we summarize the compo-
nents of these procedures and provide notation to describe them, but first, their overall
goal is to minimize the expected loss (risk) incurred on predictions made for the unseen
evaluation data, D), Minimizing the average loss (or risk) on the training data is
often used as a surrogate for minimizing the expected loss on unseen random evaluation
data, and under the appropriate conditions, the error on the training data can be used to
bound generalization error (cf. Vapnik 1995, Chapter 1). Underlying such results is the
stationarity assumption that the training data and evaluation data are both drawn from
the same distribution Pz as depicted in Figure 2.1. Subsequently, we examine scenarios
that violate this stationarity assumption and evaluate the impact these violations have
on the performance of learning methods. However, while we study the impact on per-
formance of empirical risk minimizers, these violations would have similar effects on
any learner based on stationarity, which is often required to guarantee generalization.
Further we demonstrate that these violations have less impact on alternative empirical
risk minimizers that were designed to be robust against distributional deviations. Vul-
nerabilities are neither unique to empirical risk minimization procedures nor are they
inherent to them, but rather guarding against these exploits requires learners designed
to be resilient against violations of their assumptions. There is also a tradeoff between
the robustness and the effectiveness of the procedure, which we emphasize in each
chapter.

2.2.1 Data

Real-world objects such as emails or network packets are contained in a space Q2 of
all such objects. Usually, applying a learning algorithm directly to real-world objects is
difficult because the learner cannot parse the objects’ structures or the objects may have
extraneous elements that are irrelevant to the learner’s task. These objects are trans-
formed into a more amenable representation by a mapping from real-world abstrac-
tions (e.g., objects or events) into a space of representative observations—the process
of measurement. In this process, each real-world abstraction, w € €2, is measured and
represented to the learning algorithm as a composite object x € X. Often there are D
simple measurements of w; the i measurement (or feature) x; is from a space A;, and the
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composite representation (or data point) x € X is represented as a tuple (xy, x2, ..., xXp).
The space of all such data points is X £ X} x X, x ... x Xp. Each feature is usually
real-valued X; = N, integer-valued X; = 3, boolean X; = {true, false}, or categorical
X; ={A4,, 45, ..., A} Figure 2.1(a) formally represents the measurement process with
the measurement map £ : Q — X, which represents the learner’s perspective of the
world.

Data collection is the application of a measurement map £ to a sequence of N
objects ), @, ..., @™ resulting in an indexed set of N data points {x(")}i\/:1 c &N,
which we refer to as a dataset and denote it by ID. The dataset represents a sequence
of observations of the environment and serves as the basis for the learner’s ability
to generalize past experience to future events or observations. Various assumptions
are made about the structure of the dataset, but most commonly, the learner assumes
the data points are independent and identically distributed. All the learning algo-
rithms we investigate assume that the data is independently sampled from an unknown
but stationary distribution, although with various degrees of dependence on this
assumption.

Labels

In many learning problems, the learner is tasked with learning to predict the unobserved
state of the world based on its observed state. Observations are partitioned into two sets.
Those that are observed are the explanatory variables (also referred to as the covariates,
input, predictor, or controlled variables) and the unobserved quantities to be predicted
comprise the response variables (also referred to as the output or outcome variables).
In the context of this book and our focus on classification, we refer to the observed
independent quantities as the data point (as discussed earlier) and to the dependent
categorical quantity as its label. The learner is expected to be able to predict the label for
a data point having seen past instances of data points coupled with their labels. In this
form, each datum consists of two paired components: a data point x from an input space
X and a label y from a response space ). The components of the datum are also referred
to as the predictor (input) variable x and the response (output) variable y. These paired
objects belong to the Cartesian product: Z £ X x ). We also assume these instances
are randomly drawn from a joint distribution Pz over this paired space that may also be
denoted by Py, when convenient.

In learning problems that include labels (e.g., supervised or semi-supervised learn-
ing), the learner trains on a set of paired data from Z. In particular, a labeled dataset is
an indexed set of N instances from Z: D £ {z(1), 2@ ..z} where z) € Z is drawn
from Pz. The indexed set of only the data points is Dy £ {xV), x®, ..., x™} and the
indexed set of only the labels is Dy = {y"), @, ..., y™} In the case that X = AP
for some numeric set A, the i data point can be expressed as a D-dimensional vector
x) and the data can be expressed as an N x D matrix X defined by X;, = x. Sim-
ilarly, when ) is a scalar set (e.g., booleans, reals), ) is a scalar, and the labels can
be expressed as a simple N-dimensional vector y. In the remainder of this book, N will
refer to the size of I, and where applicable, D will refer to the dimension of its data
points.
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Feature Selection

Typically, measurement is only the first phase in the overall process of data extraction.
After a dataset is collected, it is often altered through a process of feature selection. Fea-
ture selection is a mapping ¢p of the original measurements into a space X of features!:
ép : X — X. Unlike the data-independent measurement mapping &, the feature selec-
tion map often is selected in a data-dependent fashion according to the entire dataset D,
to extract aspects of the data most relevant to the learning task. Further, measurement
often is an irreversible physical process, whereas feature selection usually can be redone
by reprocessing the original measurements. In many settings, one can retroactively alter
the feature selection process by redefining the feature selection map and reapplying it
to the measured data, whereas it is impossible to make retroactive measurements on
the original objects unless the information required to reconstruct this raw data is still
available. For the purposes of this book, we do not distinguish between the feature selec-
tion and measurement phases because the attacks we study target downstream aspects
of learning. We merge them together into a single step and disregard X except explic-
itly in reference to feature selection. We revisit potential roles for feature selection in
security-sensitive settings in Section 9.1.1.2.

2.2.2 Hypothesis Space

A learning algorithm is tasked with selecting a hypothesis that best supports the data.
Here we consider the hypothesis to be a function f mapping from the data space X
to the response space ); i.e., f : X — ). Of course, there are many such hypothe-
ses, which together form the family F of all possible hypotheses or the hypothesis
space. This space is most generally the set of all functions that map & onto ) as
we discussed in Appendix A.1: F 2 {f | f: X — Y}. The hypothesis space F may
be constrained by assumptions made about the form of the hypotheses. For instance,
when X = WP, the family may be restricted to generalized linear functions of the
form faﬁ b (X) £ (aTx + b) where B : 1 — ) is some mapping from the reals to the
response space. In the case that ) = {0, 1}, the function 8 (x) = I [x > 0] yields the
family of all halfspaces on " parameterized by (a, b). In the case that ) = 9 the iden-
tity function B (x) = x defines the family of linear functions on R” also parameterized
by (a, b).

2.2.3 The Learning Model

We describe the learner as a model and a training procedure. The model captures
assumptions made about the observed data—this model provides limitations on the
space of hypotheses and also available prior knowledge or inductive bias on these
hypotheses (e.g., a prior distribution in a Bayesian setting or a regularizer in a risk

! In the literature, feature selection chooses a subset of the measurements (A:' C X&), and feature extraction
creates composite features from the original measurements. We do not differentiate between these two
processes and will refer to both as feature selection.
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2.2 Statistical Machine Learning 25

minimization setting). That is, the model is a set of assumptions about the relationship
between the observed data and the hypothesis space, but the model does not specify
how hypotheses are selected—that is done by a training procedure as discussed later.
For example, consider a simple location estimation procedure for normally distributed
data. The data model specifies that the data points are independently drawn from a unit-
variance Gaussian distribution centered at an unknown parameter 6; i.e., X ~ N (8, 1).
The mean and the median are procedures for estimating the location parameter 6. By
distinguishing between the model and the training procedure, we can study two different
aspects of a learner’s vulnerabilities.

224 Supervised Learning

The primary focus of this work will be analyzing the task of prediction in a supervised
learning setting. In the supervised learning framework, the observed data is a paired
dataset D = {(x), y?)}, which we assume to be drawn from an unknown distribution
Pyy. The objective of prediction is to select the best hypothesis or function f for pre-
dicting the response variable based on the observed predictor variable. More precisely,
given a hypothesis space F of functions mapping from the input space X to the output
space ), the prediction task is to select a classification hypothesis (classifier) ]‘ e F
with the smallest expected prediction cost; i.e., the cost incurred in predicting the label
y of a new random instance (x, y) when only the predictor variable x is revealed to the
classifier. To accomplish this task, the learner is given a labeled training dataset D and a
cost or loss function £. This cost function assigns a numeric cost to each combination of
data instance, true label, and classifier label (most commonly, however, the cost function
used is identical for every data instance).

To accomplish the prediction task, a learning algorithm H®™) (also called a training
algorithm) is used to select the best hypothesis from F based on the training data and
the cost function. This learner is a mapping from a dataset D € Z" to a hypothesis f in
the hypothesis space: H® : ZV — F; that is, a mapping from N training examples in
Z to some hypothesis f in the hypothesis space F. If the algorithm has a randomized
element we use the notation H™) : ZV x % — F to capture that fact that the hypothesis
depends on a random element R ~ Py.

Training

The process we describe here is batch learning—the learner trains on a training set
D20 and is evaluated on an evaluation set D€¥4)_ This setting can be generalized to
a repeated process of online learning in which the learner continually retrains on eval-
uation data after obtaining evaluation labels (we return to this setting in Section 3.6).
In a pure online setting, prediction and retraining occur every time a new data point is
received. In the batch learning setting (or in a single epoch of online learning), the
learner H™) forms a hypothesis / based on the collected data D" _—the process
known as training. A plethora of different training procedures have been used in the
supervised learning setting for (regularized) empirical risk minimization under a wide
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variety of settings. We will not detail these methods further, but instead introduce the
basic setting for classification.

In a classification problem the response space is a finite set of labels each of which
corresponds to some subset of input space (although these subsets need not be disjoint).
The learning task is to construct a classifier that can best assign these labels to new data
points based on labeled training examples from each class. In a binary classification
setting there are only two labels, "—" and "+"; i.e., the response spaceis ) = {"—", "+"}.
Where mathematically convenient, we will use 0 and 1 in place of the labels "—" and
"+" respectively; i.e., we will implicitly redefine the label y to be I [y = "+"]. In binary
classification, we refer to the two classes as the negative class (y = "—") and the positive
class (y = "+"). The training set D" consists of labeled instances from both classes.
We primarily focus on binary classification for security applications in which a defender
attempts to separate instances (i.e., data points), some or all of which come from a
malicious attacker, into harmful and benign classes. This setting covers many important
security applications, such as host and network intrusion detection, virus and worm
detection, and spam filtering. In detecting malicious activity, the positive class (with
label "+") indicates malicious intrusion instances while the negative class (with label
"—") indicates benign or innocuous normal instances. In Chapter 6, we also consider the
anomaly detection setting, in which the training set only contains normal instances from
the negative class.

Risk Minimization

The goal of the learner is to find the best hypothesis /* from the hypothesis space F that
best predicts the target concept (according to some measure of correctness) on instances
drawn according to the unknown distribution Pz. Ideally the learner is able to distinguish
S from any other hypothesis /" € F, with high probability, based on the observed data
D of data points drawn from Pz, but this is seldom realistic or even possible. Instead,
the learner should choose the best hypothesis in the space according to some criteria for
preferring one hypothesis over another—this is the performance measure. The measure
can be any assessment of a hypothesis; in statistical machine learning, the most common
goal is risk minimization, which is based on a loss function £ : ) x Y > Ny, the non-
negative reals. The learner selects a hypothesis f € F that minimizes the expected loss,
or risk, over all hypotheses (;” € argmin . r R (Pz, f)) where the risk is given by

R(Ps. [) 2 /( L) dPo(e)
X,y)E

and Pz (x, y) is a probability measure for the distribution Pz. Unfortunately, this min-
imization is infeasible since this distribution is unknown. Instead, in the empirical risk
minimization framework (cf. Vapnik 1995) the learner selects f to minimize the empir-
ical risk on the dataset D ~ Pz defined as

o 1
Rvin= 22 L0 /()

(x.y)eD

with N = |D].
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Regularization

If the space of hypotheses F is too expressive, there will be a hypothesis that fits
the empirical observations exactly, but it may not be able to make accurate predic-
tions about unseen instances; e.g., consider constructing a lookup table mapping from
observed data points to their responses: this classifier can perfectly predict observed
instances, but does not generalize to unobserved instances. This phenomenon is known
as overfitting the training data. One possibility to avoid overfitting is to only consider
a small or restricted space of hypotheses; e.g., the space of linear functions. Alterna-
tively, one could allow for a large space of hypotheses, but penalize the complexity of a
hypothesis—a practice known as regularization. The learner selects a hypothesis f that
minimizes the modified objective

Rv(N+2x-p(f) 2.1

where the function p : F — % is a measure of the complexity of a hypothesis and A €
N, the positive reals, is a regularization parameter that controls the tradeoff between
risk minimization and hypothesis complexity.

Prediction and Evaluation

Once trained on a dataset, the learned hypothesis is subsequently used to predict the
response variables for a set of unlabeled data. We call this the evaluation phase although
it may also be referred to as the test or prediction phase. Initially, only a new data point x
is presented to the predictor (or rather the predictor is queried with the data point). The
learned hypothesis ]‘ predicts a value y = f (x) in the space ) of all possible responses.”
Finally, the actual label y is revealed, and the agent receives a loss £ (p, ) as an assess-
ment of its performance. In the binary classification setting, there are generally two
types of classification mistakes: a false positive (FP) is a normal instance classified as
positive, and a false negative (FN) is a malicious instance classified as negative. Select-
ing an appropriate tradeoff between false positives and false negatives is an application-
specific task.

The performance of a learner is typically assessed on a labeled evaluation dataset,
D, Predictions are generated by ; for each data point X € D™ in the evalu-
ation dataset, and the losses incurred are aggregated into various performance mea-
sures. In the binary classification setting, the typical performance measures are the
false-positive rate (FPR), the fraction of negative instances classified as positive, and the
false-negative rate (FNR), the fraction of positive instances classified as negatives. Often
a classifier is tuned to have a particular (empirical) false-positive rate based on held-out
training data (validation dataset), and its resulting false-negative rate is assessed at that
FP level.

2 The space of allowed predictions or actions .A need not be the same as the space of allowed responses, .
This allows the learner to choose from a larger range of responses (hedging bets) or to restrict the learner
to some desired subset. However, unless explicitly stated, we will assume A = ).
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2.2.5 Other Learning Paradigms

It is also important to consider cases where a classifier has more than two classes or a
real-valued output. Indeed, the spam filter SpamBayes, which we study in Chapter 5,
uses a third label, unsure, to allow the end-user to examine these potential spam more
closely. However, generalizing the analysis of errors to more than two classes is not
straightforward, and furthermore most systems in practice make a single fundamental
distinction (for example, regardless of the label applied by the spam filter, the end-user
will ultimately decide to treat each class as either junk messages or legitimate mail).
For these reasons, and in keeping with common practice in the literature, we limit our
analysis to binary classification and leave extensions to the multi-class or real-valued
prediction as a future discussion.

In Chapter 6, we also study an anomaly detection setting. Like binary classification,
anomaly detection consists of making one of two predictions: the data is normal ("—")
or the data is anomalous ("'+"). Unlike the classification setting, the training data usually
only consist of examples from the negative class. Because of this, it is common practice
to calibrate the detector to achieve a desired false-positive rate on held-out training data.

There are other interesting learning paradigms to consider such as semi-supervised,
unsupervised, and reinforcement learning. However, as they do not directly affect our
discussion in this text, we will not discuss these frameworks. For a thorough discussion
of different learning settings refer to (Hastie et al. 2003) or (Mitchell 1997).
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