Pattern Recognition

M OST OF THE ATTENDEES OF THE DARTMOUTH SUMMER PROJECT WERE INTER-
ested in mimicking the higher levels of human thought. Their work benefitted
from a certain amount of introspection about how humans solve problems. Yet, many
of our mental abilities are beyond our power of introspection. We don’t know how
we recognize speech sounds, read cursive script, distinguish a cup from a plate, or
identify faces. We just do these things automatically without thinking about them.
Lacking clues from introspection, early researchers interested in automating some
of our perceptual abilities based their work instead on intuitive ideas about how to
proceed, on networks of simple models of neurons, and on statistical techniques.
Later, workers gained additional insights from neurophysiological studies of animal
vision.

In this chapter, I’ll describe work during the 1950s and 1960s on what is called
“pattern recognition.” This phrase refers to the process of analyzing an input image,
asegment of speech, an electronic signal, or any other sample of data and classifying it
into one of several categories. For character recognition, for example, the categories
would correspond to the several dozen or so alphanumeric characters.

Most of the pattern-recognition work in this period dealt with two-dimensional
material, such as printed pages or photographs. It was already possible to scan
images to convert them into arrays of numbers (later called “pixels”), which could
then be processed by computer programs such as those of Dinneen and Selfridge.
Russell Kirsch and colleagues at the National Bureau of Standards (now the National
Institute for Standards and Technology) were also among the early pioneers in image
processing. In 1957, Kirsch built and used a drum scanner to scan a photograph of his
three-month-old son, Walden. Said to be the first scanned photograph, it measured
176 pixels on a side and is depicted in Fig. 4.1.! Using his scanner, he and colleagues
experimented with picture-procesing programs running on their SEAC (Standards
Eastern Automatic Computer) computer.’

4.1 Character Recognition

Early efforts at the perception of visual images concentrated on recognizing alphanu-
meric characters on documents. This field came to be known as “optical character
recognition.” A symposium devoted to reporting on progress on this topic was held
in Washington, DC, in January 1962.% In summary, devices existed at that time for
reasonably accurate recognition of fixed-font (typewritten or printed) characters on
paper. Perhaps the state of things then was best expressed by one of the participants
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Figure 4.1. An early scanned photograph. (Photograph
used with permission of NIST.)

of the symposium, J. Rabinow of Rabinow Engineering, who said “We think, in
our company, that we can read anything that is printed, and we can even read some
things that are written. The only catch is, ‘how many bucks do you have to spend?’”*

A notable success during the 1950s was the magnetic ink character recognition
(MICR) system developed by researchers at SRI International (then called the Stan-
ford Research Institute) for reading stylized magnetic ink characters at the bottom of
checks. (See Fig. 4.2.) MICR was part of SRI’s ERMA (Electronic Recording Method
of Accounting) system for automating check processing and checking account man-
agement and posting.

According to an SRI Web site, “In April 1956, the Bank of America announced
that General Electric Corporation had been selected to manufacture production
models. . .. In 1959, General Electric delivered the first 32 ERMA computing systems
to the Bank of America. ERMA served as the Bank’s accounting computer and check
handling system until 1970.”°

Most of the recognition methods at that time depended on matching a character
(after it was isolated on the page and converted to an array of 0’s and 1’s) against
prototypical versions of the character called “templates” (also stored as arrays in
the computer). If a character matched the template for an “A)” say, sufficiently
better than it matched any other templates, the input was declared to be an “A.”
Recognition accuracy degraded if the input characters were not presented in standard
orientation, were not of the same font as the template, or had imperfections.

The 1955 papers by Selfridge and Dinneen (which I have already mentioned on
p. 50) proposed some ideas for moving beyond template matching. A 1960 paper
by Oliver Selfridge and Ulrich Neisser carried this work further.® That paper is
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Figure 4.2. The MICR font set.
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important because it was a successful, early attempt to use image processing, feature
extraction, and learned probability values in hand-printed character recognition.
The characters were scanned and represented on a 32 x 32 “retina” or array of (’s
and 1’s. They were then processed by various refining operations (similar to those
I mentioned in connection with the 1955 Dinneen paper) for removing random
bits of noise, filling gaps, thickening lines, and enhancing edges. The “cleaned-up”
images were then inspected for the occurrence of “features” (similar to the features
I mentioned in connection with the 1955 Selfridge paper.) In all, 28 features were
used — features such as the maximum number of times a horizontal line intersected
the image, the relative lengths of different edges, and whether or not the image had
a “concavity facing south.”

Recalling Selfridge’s Pandemonium system, we can think of the feature-detection
process as being performed by “demons.” At one level higher in the hierarchy than
the feature demons were the “recognition demons” — one for each letter. (The ver-
sion of this system tested by Worthie Doyle of Lincoln Laboratory was designed to
recognize ten different hand-printed characters, namely, A) E, I, ., M, N, O, R, S,
and T.) Each recognition demon received inputs from each of the feature-detecting
demons. But first, the inputs to each recognition demon were multiplied by a weight
that took into account the importance of the contribution of the corresponding fea-
ture to the decision. For example, if feature 17 were more important than feature 22
in deciding that the input character was an “A,” then the input to the “A” rec-
ognizer from feature 17 would be weighted more heavily than would be the input
from feature 22. After each recognition demon added up the total of its weighted
inputs, a final “decision demon” decided in favor of that character having the largest
sum.

The values of the weights were determined by a learning process during which
330 “training” images were analyzed. Counts were tabulated for how many times
each feature was detected for each different letter in the training set. These statistical
data were used to make estimates of the probabilities that a given feature would be
detected for each of the letters. These probability estimates were then used to weight
the features summed by the recognizing demons.

After training, the system was tested on samples of hand-printed characters that
it had not yet seen. According to Selfridge and Neisser, “This program makes
only about 10 percent fewer correct identifications than human readers make — a
respectable performance, to be sure.”

4.2 Neural Networks

4.2.1 Perceptrons

In 1957, Frank Rosenblatt (1928-1969; Fig. 4.3), a psychologist at the Cornell
Aeronautical Laboratory in Buffalo, New York, began work on neural networks
under a project called PARA (Perceiving and Recognizing Automaton). He was
motivated by the earlier work of McCulloch and Pitts and of Hebb and was interested
in these networks, which he called perceprrons, as potential models of human learning,
cognition, and memory.’
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Figure 4.3. Frank Rosenblatt (left) working (with Charles Wrightman) on a prototype A-unit.
(Courtesy of the Division of Rare and Manuscript Collections, Cornell University Library.)

Continuing during the early 1960s as a professor at Cornell University in Ithaca,
New York, he experimented with a number of different kinds of perceptrons. His
work, more than that of Clark and Farley and of the other neural network pioneers,
was responsible for initiating one of the principal alternatives to symbol-processing
methods in Al, namely, neural networks.

Rosenblatt’s perceptrons consisted of McCulloch—Pitts-style neural elements, like
the one shown in Fig. 4.4. Each element had inputs (coming in from the left in the
figure), “weights” (shown by bulges on the input lines), and one output (going out
to the right). The inputs had values of either 1 or 0, and each input was multiplied
by its associated weight value. The neural element computed the sum of these
weighted values. So, for example, if all of the inputs to the neural element in Fig. 4.4
were equal to 1, the sum would be 13. If the sum were greater than (or just equal
to) a “threshold value,” say 7, associated with the element, then the output of the
neural element would be 1, which it would be in this example. Otherwise the output
would be 0.

A perceptron consists of a network of these neural elements, in which the outputs
of one element are inputs to others. (There is an analogy here with Selfridge’s

&
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Figure 4.4. Rosenblatt’s neural element with weights.
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Figure 4.5. A perceptron.
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Pandemonium in which mid-level demons receive “shouts” from lower level demons.
The weights on a neural element’s input lines can be thought of as analogous to the
strength-enhancing or strength-diminishing “volume controls” in Pandemonium.)
A sample perceptron is illustrated in Fig. 4.5. [Rosenblatt drew his perceptron
diagrams in a horizontal format (the electrical engineering style), with inputs to
the left and output to the right. Here I use the vertical style generally preferred
by computer scientists for hierarchies, with the lowest level at the bottom and the
highest at the top. To simplify the diagram, weight bulges are not shown.] Although
the perceptron illustrated, with only one output unit, is capable of only two different
outputs (1 or 0), multiple outputs (sets of 1’s and 0’s) could be achieved by arranging
for several output units.

The input layer, shown at the bottom of Fig. 4.5, was typically a rectangular array
of I’s and 0’s corresponding to cells called “pixels” of a black-and-white image.
One of the applications Rosenblatt was interested in was, like Selfridge, character
recognition.

I'll use some simple algebra and geometry to show how the neural elements in
perceptron networks can be “trained” to produce desired outputs. Let’s consider,
for example, a single neural element whose inputs are the values x1, x2, and x3 and
whose associated weight values are w, w7, and w3. When the sum computed by this
element is exactly equal to its threshold value, say ¢, we have the equation

wix + waay + wixy =+

Inalgebra, such an equation is called a “linear equation.” It defines a linear boundary,
that is, a plane, in a three-dimensional space. The plane separates those input values
that would cause the neural element to have an output of 1 from those that would
cause it to have an output of 0. I show a typical planar boundary in Fig. 4.6.

An input to the neural element can be depicted as a point (that is, a vector) in
this three-dimensional space. Its coordinates are the values of x1, x7, and &3, each of
which can be either 1 or 0. The figure shows six such points, three of them (the small
circles, say) causing the element to have an output of 1 and three (the small squares,
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Figure 4.6. A separating plane in a three-dimensional
space.

say) causing it to have an output of 0. Changing the value of the threshold causes the
plane to move sideways in a direction parallel to itself. Changing the values of the
weights causes the plane to rotate. Thus, by changing the weight values, points that
used to be on one side of the plane might end up on the other side. “Training” takes
place by performing such changes. I’ll have more to say about training procedures
presently.

In dimensions higher than three (which is usually the case), a linear boundary is
called a “hyperplane.” Although it is not possible to visualize what is going on in
spaces of high dimensions, mathematicians still speak of input points in these spaces
and rotations and movements of hyperplanes in response to changes in the values of
weights and thresholds.

Rosenblatt defined several types of perceptrons. He called the one shown in
the diagram a “series-coupled, four-layer perceptron.” (Rosenblatt counted the
inputs as the first layer.) It was termed “series-coupled” because the output of
each neural element fed forward to neural elements in a subsequent layer. In more
recent terminology, the phrase “feed-forward” is used instead of “series-coupled.”
In contrast, a “cross-coupled” perceptron could have the outputs of neural elements
in one layer be inputs to neural elements in the same layer. A “back-coupled”
perceptron could have the outputs of neural elements in one layer be inputs to
neural elements in lower numbered layers.

Rosenblatt thought of his perceptrons as being models of the wiring of parts of
the brain. For this reason, he called the neural elements in all layers but the output
layer “association units” (“A-units”) because he intended them to model associations
performed by networks of neurons in the brain.

Of particular interest in Rosenblatt’s research was what he called an “alpha-
perceptron.” It consisted of a three-layer, feed-forward network with an input layer,
an association layer, and one or more output units. In most of his experiments, the
inputs had values of 0 or 1, corresponding to black or white pixels in a visual image
presented on what he called a “retina.” Each A-unit received inputs (which were
not multiplied by weight values) from some randomly selected subset of the pixels
and sent its output, through sets of adjustable weights, to the final output units,
whose binary values could be interpreted as a code for the category of the input
image.

Various “training procedures” were tried for adjusting the weights of the output
units of an alpha-perceptron. In the most successful of these (for pattern-recognition

https://doi.org/10.1017/CBO9780511819346.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.006

68 The Quest for Artificial Intelligence

purposes), the weights leading in to the output units were adjusted only when those
units made an error in classifying an input. The adjustments were such as to force
the output to make the correct classification for that particular input. This tech-
nique, which soon became a standard, was called the “error-correction procedure.”
Rosenblatt used it successfully in a number of experiments for training perceptrons
to classify visual inputs, such as alphanumeric characters, or acoustic inputs, such
as speech sounds. Professor H. David Block, a Cornell mathematician working with
Rosenblatt, was able to prove that the error-correction procedure was guaranteed
to find a hyperplane that perfectly separated a set of training inputs when such a
hyperplane existed.® (Other mathematicians, such as Albert B. Novikoff at SRI, later
developed more elegant proofs.” I give a version of this proof in my book Learning
Machines.\)

Although some feasibility and design work was done using computer simulations,
Rosenblatt preferred building hardware versions of his perceptrons. (Simulations
were slow on early computers, thus explaining the interest in building special-
purpose perceptron hardware.) The MARK I was an alpha-perceptron built at the
Cornell Aeronautical Laboratory under the sponsorship of the Information Systems
Branch of the Office of Naval Research and the Rome Air Development Center.
It was first publicly demonstrated on 23 June 1960. The MARK I used volume
controls (called “potentiometers” by electrical engineers) for weights. These had
small motors attached to them for making adjustments to increase or decrease the
weight values.

In 1959, Frank Rosenblatt moved his perceptron work from the Cornell Aero-
nautical Laboratory in Buffalo, New York, to Cornell University, where he became
a professor of psychology. Together with Block and several students, Rosenblatt
continued experimental and theoretical work on perceptrons. His book Principles
of Neurodynamics provides a detailed treatment of his theoretical ideas and experi-
mental results.!! Rosenblatt’s last system, called Tobermory, was built as a speech-
recognition device.'? [Tobermory was the name of a cat that learned to speak in The
Chronicles of Clovis, a group of short stories by Saki (H. H. Munro).] Several Ph.D.
students, including George Nagy, Carl Kessler, R. D. Joseph, and others, completed
perceptron projects under Rosenblatt at Cornell.

In his last years at Cornell, Rosenblatt moved on to study chemical memory
transfer in flatworms and other animals — a topic quite removed from his perceptron
work. Tragically, Rosenblatt perished in a sailing accident in Chesapeake Bay in
1969.

Around the same time as Rosenblatt’s alpha-perceptron, Woodrow W. (Woody)
Bledsoe (1921-1995) and Iben Browning (1918-1991), two mathematicians at Sandia
Laboratories in Albuquerque, New Mexico, were also pursuing research on character
recognition that used random samplings of input images. They experimented with
a system that projected images of alphanumeric characters on a 10 x 15 mosaic of
photocells and sampled the states of 75 randomly chosen pairs of photocells. Pointing
out that the idea could be extended to sampling larger groups of pixels, say N of
them, they called their method the “N-tuple” method. They used the results of this
sampling to make a decision about the category of an input letter.'3
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4.2.2 ADALINES and MADALINES

Independently of Rosenblatt, a group headed by Stanford Electrical Engineering
Professor Bernard Widrow (1929— ) was also working on neural-network systems
during the late 1950s and early 1960s. Widrow had recently joined Stanford after
completing a Ph.D. in control theory at MIT. He wanted to use neural-net systems
for what he called “adaptive control.” One of the devices Widrow built was called
an “ADALINE” (for adaptive linear network). It was a single neural element whose
adjustable weights were implemented by switchable (thus adjustable) circuits of
resistors. Widrow and one of his students, Marcian E. “Ted” Hoff Jr. (who later
invented the first microprocessor at Intel), developed an adjustable weight they called
a “memistor.” It consisted of a graphite rod on which a layer of copper could be
plated and unplated — thus varying its electrical resistance. Widrow and Hoff devel-
oped a training procedure for their ADALINE neural element that came to be called
the Widrow—Hoff least-mean-squares adaptive algorithm. Most of Widrow’s experi-
mental work was done using simulations on an IBM 1620 computer. Their most com-
plex network design was called a “MADALINE” (for many ADALINES). A training
procedure was developed for it by Stanford Ph.D. student William Ridgway.'*

4.2.3 The MINOS Systems at SRI

Rosenblatt’s success with perceptrons on pattern-recognition problems led to a flurry
of research efforts by others to duplicate and extend his results. During the 1960s,
perhaps the most significant pattern-recognition work using neural networks was
done at the Stanford Research Institute in Menlo Park, California. There, Charles
A. Rosen (1917-2002) headed a laboratory that was attempting to etch microscopic
vacuum tubes onto a solid-state substrate. Rosen speculated that circuits containing
these tubes might ultimately be “wired-up” to perform useful tasks using some of the
training procedures being explored by Frank Rosenblatt. SRI employed Rosenblatt
as a consultant to help in the design of an exploratory neural network.

When I interviewed for a position at SRI in 1960, a team in Rosen’s lab, under
the leadership of Alfred E. (Ted) Brain (1923-2004), had just about completed
the construction of a small neural network called MINOS (Fig. 4.7). (In Greek
mythology, Minos was a king of Crete and the son of Zeus and Europa. After his
death, Minos was one of the three judges in the underworld.) Brain felt that computer
simulations of neural networks were too slow for practical applications, thus leading
to his decision to build rather than to program. (The IBM 1620 computer being
used at the same time by Widrow’s group at Stanford for simulating neural networks
had a basic machine cycle of 21 microseconds and a maximum of 60,000 “digits”
of random-access memory.) For adjustable weights, MINOS used magnetic devices
designed by Brain. Rosenblatt stayed in close contact with SRI because he was
interested in using these magnetic devices as replacements for his motor-driven
potentiometers.

Rosen’s enthusiasm and optimism about the potential for neural networks helped
convince me to join SRI. Upon my arrival in July 1961, I was given a draft of
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Figure 4.7. MINOS. Note the input switches and corresponding indicator lights in the
second-from-the-left rack of equipment. The magnetic weights are at the top of the third
rack. (Photograph used with permission of SRI International.)

Rosenblatt’s book to read. Brain’s team was just beginning work on the construction
of a large neural network, called MINOS II, a follow-on system to the smaller
MINOS. (See Fig. 4.8.)

Work on the MINOS systems was supported primarily by the U.S. Army Signal
Corps during the period 1958 to 1967. The objective of the MINOS work was “to
conduct a research study and experimental investigation of techniques and equip-
ment characteristics suitable for practical application to graphical data processing for
military requirements.” The main focus of the project was the automatic recognition
of symbols on military maps. Other applications — such as the recognition of military
vehicles, such as tanks, on aerial photographs and the recognition of hand-printed
characters — were also attempted. '

In the first stage of processing by MINOS II, the input image was replicated 100
times by a 10 x 10 array of plastic lenses. Each of these identical images was then sent
through its own optical feature-detecting mask, and the light through the mask was
detected by a photocell and compared with a threshold. The result was a set of 100
binary (off-on) values. These values were the inputs to a set of 63 neural elements
(“A-units” in Rosenblatt’s terminology), each with 100 variable magnetic weights.
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Figure 4.8. MINOS II: operator’s display board (left), an individual weight frame (middle),
and weight frames with logic circuitry (right). (Photographs used with permission of SRI
International.)

The 63 binary outputs from these neural elements were then translated into one
of 64 decisions about the category of the original input image. (We constructed 64
equally distant “points” in the sixty-three-dimensional space and trained the neural
network so that each input image produced a point closer to its own prototype point
than to any other. Each of these prototype points was one of the 64 “maximal-length
shift-register sequences” of 63 dimensions. )

During the 1960s, the SRI neural network group, by then called the Learning
Machines Group, explored many different network organizations and training pro-
cedures. As computers became both more available and more powerful, we increas-
ingly used simulations (at various computer centers) on the Burroughs 220 and 5000
and on the IBM 709 and 7090. In the mid-1960s, we obtained our own dedicated
computer, an SDS 910. (The SDS 910, developed at Scientific Data Systems, was
the first computer to use silicon transistors.) We used that computer in conjunction
with the latest version of our neural network hardware (now using an array of 1,024
preprocessing lenses), a combination we called MINOS III.

One of the most successful results with the MINOS III system was the automatic
recognition of hand-printed characters on FORTRAN coding sheets. (In the 1960s,
computer programs were typically written by hand and then converted to punched
cards by key-punch operators.) This work was led by John Munson (1939-1972;
Fig. 4.9), Peter Hart (1941— ; Fig. 4.9), and Richard Duda (1936 ; Fig. 4.9). The
neural net part of MINOS III was used to produce a ranking of the possible classifi-
cations for each character with a confidence measure for each. For example, the first
character encountered in a string of characters might be recognized by the neural net
asa “D” with a confidence of 90 and as an “O” with a confidence of 10. But accepting
the most confident decision for each character might not resultin a string thatisalegal
statement in the FORTRAN language — indicating that one or more of the decisions
was erroneous (where it is assumed that whoever wrote statements on the coding
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Figure 4.9. John Munson (left), Peter Hart (middle), and Richard Duda (right). (Photographs
courtesy of Faith Munson, of Peter Hart, and of Richard Duda.)

sheet wrote legal statements). Accepting the second or third most confident choices
for some of the characters might be required to produce a legal string.

The overall confidence of a complete string of characters was calculated by adding
the confidences of the individual characters in the string. Then, what was needed
was a way of ranking these overall confidence numbers for each of the possible strings
resulting from all of the different choices for each character. Among this ranking of
all possible strings, the system then selected the most confident /egal string.

As Richard Duda wrote, however, “The problem of finding the 1st, 2nd, 3rd,
... most confident string of characters is by no means a trivial problem.” The key
to computing the ranking in an efficient manner was to use a method called dynamic
programming.” (In a later chapter, we’ll see dynamic programming used again in
speech recognition systems.)

An illustration of a sample of the original source and the final output is shown in
Fig. 4.10.

After the neural net part of the system was trained, the overall system (which
decided on the most confident legal string) was able to achieve a recognition accuracy
of just over 98% on a large sample of material that was not part of what the system
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A LARETAGRA 4 bt S Figure 4.10. Recognition of FORTRAN
DIMENSION IMACM[2] characters. Input is above and output (with
20 ACCEPT 31,I,J only two errors) is below. (Illustration used
31 FORMAT [215] with permission of SRI International.)
IF[I]79,99,40
40 IF[I-IMACHL]50,50,60
50 IMACH[I]=J
60 GO TO 20
99 RETURN
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was trained on. Recognizing handwritten characters with this level of accuracy was
a significant achievement in the 1960s.'®

Expanding its interests beyond neural networks, the Learning Machines Group
ultimately became the SRI Artificial Intelligence Center, which continues today as
a leading Al research enterprise.

4.3 Statistical Methods

During the 1950s and 1960s there were several applications of statistical methods to
pattern-recognition problems. Many of these methods bore a close resemblance to
some of the neural network techniques. Recall that earlier I explained how to decide
which of two tones was present in a noisy radio signal. A similar technique could
be used for pattern recognition. For classifying images (or other perceptual inputs),
it was usual to represent the input by a list of distinguishing “features,” such as
those used by Selfridge and his colleagues. In alphanumeric character recognition
for example, one first extracted features from the image of the character to be
classified. Usually the features had numerical values, such as the number of times
lines of different angles intersected the character or the length of the perimeter of the
smallest circle that completely enclosed the character. Selecting appropriate features
was often more art than science, but it was critical to good performance.

We’ll need a bit of elementary mathematical notation to help describe these statis-
tically oriented pattern-recognition methods. Suppose the list of features extracted
from a character is { f1, f2,..., fis---, fn}. Ill abbreviate this list by the bold-
face symbol X. Suppose there are k categories, Cy, C, ..., C;, ..., C; to which
the character described by X might belong. Using Bayes’s rule in a manner similar
to that described earlier, the decision rule is the following:

Decide in favor of that category for which p(X | C;)p(C;)is largest, where p(C;) is the a prior:
probability of category C; and p(X | C;) is the likelihood of X given C;. These likelihoods
can be inferred by collecting statistical data from a large sample of characters.

As I mentioned earlier, researchers in pattern recognition often describe the decision
process in terms of geometry. They imagine that the values of the features obtained
from an image sample can be represented as a point in a multidimensional space.
If we have several samples for each of, say, two known categories of data, we can
represent these samples as scatterings of points in the space. In character recognition,
scattering can occur not only because the image of the character might be noisy but
also because characters in the same category might be drawn slightly differently. I
show a two-dimensional example, with features f1 and f3, in Fig. 4.11. From the
scattering of points in each category we can compute an estimate of the probabilities
needed for computing likelihoods. Then, we can use the likelihoods and the prior
probabilities to make decisions.

I show in this figure the boundary, computed from the likelihoods and the prior
probabilities, that divides the space into two regions. In one region, we decide in
favor of category 1; in the other, we decide in favor of category 2. I also show a
new feature point, X, to be classified. In this case, the position of X relative to the
boundary dictates that we classify X as a member of category 1.
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Figure 4.11. A two-dimensional space of feature points and a separating boundary.

There are other methods also for classifying feature points. An interesting example
is the “nearest-neighbor” method. In that scheme, invented by E. Fix and J. L.
Hodges in 1951," a new feature point is assigned to the same category as that sample
feature point to which it is closest. In Fig. 4.11, the new point X would be classified
as belonging to category 2 using the nearest-neighbor method.

An important elaboration of the nearest-neighbor method assigns a new point to
the same category as the majority of the £ closest points. Such a decision rule seems
plausible (in the case in which there are many, many sample points of each category)
because there being more sample points of category C; closer to an unknown point,
X, than sample points of category C; is evidence that p(X | C;) p(C;) is greater than
(X | C;)p(C;). Expanding on that general observation, Thomas Cover and Peter
Hart rigorously analyzed the performance of nearest-neighbor methods.?’

Any technique for pattern recognition, even those using neural networks or near-
est neighbors, can be thought of as constructing separating boundaries in a multi-
dimensional space of features. Another method for constructing boundaries using
“potential functions” was suggested by the Russian scientists M. A. Aizerman,
E. M. Braverman, and L. I. Rozonoer in the 1960s.?!

Some important early books on the use of statistical methods in pattern recognition
are ones by George Sebestyen,?? myself,?® and Richard Duda and Peter Hart.?* My
book also describes some of the relationships between statistical methods and those
based on neural networks. The technology of pattern recognition as of the late 1960s
is nicely reviewed by George Nagy (who had earlier been one of Frank Rosenblatt’s
graduate students).?’

4.4 Applications of Pattern Recognition to Aerial Reconnaissance

The neural network and statistical methods for pattern recognition attracted much
attention in many aerospace and avionics companies during the late 1950s and early
1960s. These companies had ample research and development budgets stemming
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24 statistical tests, one for each
8 x 8 block

-1 Feature 1

Feature i Score Talley >

Feature 24

32 x 32 array of picture elements
segmented into 24 overlapping
8 x 8 blocks

Figure 4.12. A Philco tank-recognition system. (Adapted from Laveen N. Kanal and Neal C.
Randall, “Target Detection in Aerial Photography,” paper 8.3, Proceedings of the 1964 Western
Electronics Show and Convention (WESCON ), Los Angeles, CA, Institute of Radio Engineers
(now IEEE), August 25-28, 1964.)

from their contracts with the U.S. Department of Defense. Many of them were
particularly interested in the problem of aerial reconnaissance, that is, locating and
identifying “targets” in aerial photographs. Among the companies having substantial
research programs devoted to this and related problems were the Aeronutronic
Division of the Ford Motor Co.,?® Douglas Aircraft Company (as it was known
at that time), General Dynamics, Lockheed Missiles and Space Division, and the
Philco Corporation. (Philco was later acquired by Ford in late 1961.)

I’ll mention some of the work at Philco as representative. There, L.aveen N. Kanal
(1931-), Neil C. Randall (1930- ), and Thomas Harley (1929-) worked on both the
theory and applications of statistical pattern-recognition methods. The systems they
developed were for screening aerial photographs for interesting military targets such
as tanks. A schematic illustration of one of their systems is shown in Fig. 4.12.%

Philco’s apparatus scanned material from 9-inch film negatives gathered by a U2
reconnaissance airplane during U.S. Army tank maneuvers at Fort Drum, New York.
A small section of the scanned photograph, possibly containing an M-48 tank (in
standard position and size), was first processed to enhance edges, and the result was
presented to the target detection system as an array of 1’s and (’s. The first of their
systems used a 22 x 12 array; later ones used a 32 x 32 array as shown in Fig. 4.12.
The array was then segmented into 24 overlapping 8 x 8 “feature blocks.” The
data in each feature block were then subjected to a statistical test to decide whether
or not the small area of the picture represented by this block contained part of a
tank.
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The statistical tests were based on a “training sample” of 50 images contain-
ing tanks and 50 samples of terrain not containing tanks. For each 8 x 8 feature
block, statistical parameters were compiled from these samples to determine a (lin-
ear) boundary in the sixty-four-dimensional space that best discriminated the tank
samples from the nontank samples.

Using these boundaries, the system was then tested on a different set of 50
images containing tanks and 50 images not containing tanks. For each test image,
the number of feature blocks deciding “tank present” was tallied to produce a final
numerical “score” (such as 21 out of the 24 blocks decided a tank was present).
This score could then be used to decide whether or not the image contained a
tank.

The authors stated that “the experimental performance of the statistical classi-
fication procedure exceeded all expectations.” Almost half of the test samples had
perfect scores (that is, all 24 feature blocks correctly discriminated between tank and
nontank). Furthermore, all of the test samples containing tanks had a score greater
than or equal to 11, and all of the test samples not containing tanks had a score
less than or equal to 7.

An early tank-detecting system at Philco was built with analog circuitry — not
programmed on a computer. As Thomas Harley, the project leader for this system,
later elaborated,”®

It is important to remember the technological context of the era in which this work was
done. The system we implemented had no built-in computational capabilities. The weights
in the linear discriminant function were resistors that controlled the current coming from the
(binary) voltage source in the shift register elements. Those currents were added together,
and each feature was recognized or not depending whether on the sum of those currents
exceeded a threshold value. Those binary feature decisions were then summed, again in an
analog electrical circuit, not in a computer, and again a decision [tank or no tank] was made
depending on whether the sum exceeded a threshold value.

In another system, the statistical classification was implemented by a program,
called MULTINORM, running on the Philco 2000 computer.?’ In other experiments,
Philco used additional statistical tests to weight some of the feature blocks more
heavily than others in computing the final score. Kanal told me that these experiments
with weighting the outputs of the feature blocks “anticipated the support vector
machine (SVM) classification idea . . . [by] using the first layer to identify the training
samples close to the boundary between tanks and non-tanks.”3" (I’Il describe the
important SVM method in a later chapter.)

Of course, these systems had a rather easy task. All of the tanks were in standard
position and were already isolated in the photograph. (The authors mention, how-
ever, how the system could be adapted to deal with tanks occurring in any position
or orientation in the image.) The photograph in Fig. 4.13 shows a typical tank image.
(The nontank images are similar, except without the tank.)

I find the system interesting not only because of its performance but also because
it is a layered system (similar to Pandemonium and to the alpha-perceptron) and
because it is an example in which the original image is divided into overlap-
ping subimages, each of which is independently processed. As I’ll mention later,
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Figure 4.13. A typical tank image. (Photograph courtesy
of Thomas Harley.)

overlapping subimages play a prominent role in some computational models of the
neocortex.

Unfortunately, the Philco reports giving details of this work aren’t readily avail-
able.’! Furthermore, Philco and some of the other groups engaged in this work have
disappeared. Here is what Tom Harley wrote me about the Philco reports and about
Philco itself:3

Most of the pattern recognition work done at Philco in the 1960s was sponsored by the
DoD [Department of Defense], and the reports were not available for public distribution.
Since then, the company itself has really vanished into thin air. Philco was bought by Ford
Motor Company in 1961, and by 1966, they had eliminated the Philco research labs where
Laveen [Kanal] and I were working. Ford tried to move our small pattern recognition group to
Newport Beach, CA [the location of Ford’s Aeronutronic Division, whose pattern recognition
group folded later also], and when we all decided not to go, they transferred us to their
Communications Division, and told us to close out our pattern recognition projects. Laveen
eventually went off to the University of Maryland, and in 1975, I transferred to the Ford
Aerospace Western Development Labs (WDL) in Palo Alto, where I worked on large systems
for the intelligence community. In later years, what had been Philco was sold to Loral, and
most of that was later sold to Lockheed Martin. I retired from Lockheed in 2001.

Approaches to Al problems involving neural networks and statistical techniques
came to be called “nonsymbolic” to contrast them with the “symbol-processing”
work being pursued by those interested in proving theorems, playing games, and
problem solving. These nonsymbolic approaches found application mainly in pattern
recognition, speech processing, and computer vision. Workshops and conferences
devoted especially to those topics began to be held in the 1960s. A subgroup of
the IEEE Computer Society (the Pattern Recognition Subcommittee of the Data
Acquisition and Transformation Committee) organized the first “Pattern Recogni-
tion Workshop,” which was held in Puerto Rico in October 1966.3* A second one
(which T attended) was held in Delft, The Netherlands, in August 1968. In 1966,
this subgroup became the IEEE Computer Society Pattern Analysis and Machine
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Intelligence (PAMI) Technical Committee, which continued to organize conferences
and workshops.*

Meanwhile, during the late 1950s and early 1960s, the symbol-processing people
did their work mainly at MIT, at Carnegie Mellon University, at IBM, and at
Stanford University. I’ll turn next to describing some of what they did.

Notes

1. See http://www.nist.gov/public_affairs/techbeat/tb2007_0524.htm. [62]

2. Russell A. Kirsch et al., “Experiments in Processing Pictorial Information with a Digital
Computer,” Proceedings of the Eastern Joint Computer Conference, pp. 221-229, Institute
of Radio Engineering and Association for Computing Machinery, December 1957. [62]

3. The proceedings of the conference were published in George L. Fischer Jr. et al., Optical
Character Recognition, Washington, DC: Spartan Books, 1962. [62]

4. From J. Rabinow, “Developments in Character Recognition Machines at Rabinow Engi-
neering Company,” in George L. Fischer Jr. et al., op. cit., p. 27.[63]

5. From http://www.sri.com/about/timeline/erma-micr.html. [63]

6. Oliver G. Selfridge and Ulrich Neisser, “Pattern Recognition by Machine,” Scientific
American, Vol. 203, pp. 60-68, 1960. (Reprinted in Edward A. Feigenbaum and Julian
Feldman (eds.), Computers and Thought, pp. 237ft, New York: McGraw Hill, 1963.) [63]

7. An early reference is Frank Rosenblatt, “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain,” Psychological Review, Vol. 65,
pp. 386ft, 1958. [64]

8. H. David Block, “The Perceptron: A Model for Brain Functioning,” Reviews of Modern
Physics, Vol. 34, No. 1, pp. 123-135, January 1962. [68]

9. Albert B. J. Novikoff, “On Convergence Proofs for Perceptrons,” in Proceedings of the
Symposium on Mathematical Theory of Automata, pp. 615-622, Brooklyn, NY: Polytechnic
Press of Polytechnic Inst. of Brooklyn, 1963. [68]

10. Nils J. Nilsson, Learning Machines: Foundations of Trainable Pattern-Classifying Systems,
New York: McGraw-Hill Book Co., 1965; republished as The Mathematical Foundations
of Learning Machines, San Francisco: Morgan Kaufmann Publishers, 1990. [68]

11. Frank Rosenblatt, Principles of Neurodynamics, Washington, DC: Spartan Books, 1962.
[68]

12. Frank Rosenblatt, “A Description of the Tobermory Perceptron,” Collected Technical
Papers, Vol. 2, Cognitive Systems Research Program, Cornell University, 1963. [68]

13. Woodrow W. Bledsoe and Iben Browning, “Pattern Recognition and Reading by
Machine,” Proceedings of the Eastern Joint Computer Conference, pp. 225-232, New York:
Association for Computing Machinery, 1959. [68]

14. William C. Ridgway, “An Adaptive Logic System with Generalizing Properties,” Stanford
Electronics Laboratories Technical Report 1556-1, Stanford University, Stanford, CA, 1962.
[69]

15. For a description of MINOS II, see Alfred E. Brain, George Forsen, David Hall,
and Charles Rosen, “A Large, Self-Contained Learning Machine,” Proceedings of the
Western Electronic Show and Convention, 1963. The paper was reprinted as Appendix
C of an SRI proposal and is available online at http://www.ai.sri.com/pubs/files/
rosen65-esu65-1tech.pdf. [70]

16. For a discussion of shift-register codes and other codes, see W. Peterson, Error-Correcting
Codes, New York: John Wiley & Sons, 1961. Our technique was reported in A. E.
Brain and N. J. Nilsson, “Graphical Data Processing Research Study and Experimental

https://doi.org/10.1017/CBO9780511819346.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.006

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.
31.

Pattern Recognition 79

Investigation,” Quarterly Progress Report No. 8§, p. 11, SRI Report, June 1962; available
online at http://www.ai.sri.com/pubs/files/1329.pdf. [71]

Robert E. Larsen of SRI suggested using this method. The online encyclopedia Wikipedia
has a clear description of dynamic programming. See http://en.wikipedia.org/wiki/
Dynamic_programming. [72]

The technical details of the complete system are described in two papers: John Munson,
“Experiments in the Recognition of Hand-Printed Text: Part I — Character Recognition,”
and Richard O. Duda and Peter E. Hart, “Experiments in the Recognition of Hand-
Printed Text: Part IT — Context Analysis,” AFIPS Conference Proceedings, (of the 1968
Fall Joint Computer Conference), Vol. 33, pp. 1125-1149, Washington, DC: Thompson
Book Co., 1968. Additional information can be found in SRI AI Center Technical reports,
available online at http://www.ai.sri.com/pubs/files/1343.pdf and http://www.ai.sri.
com/pubs/files/1344.pdf. [73]

E. Fix and J. L. Hodges Jr., “Discriminatory analysis, nonparametric discrimination,”
USAF School of Aviation Medicine, Randolph Field, Texas, Project 21-49-004, Report 4,
Contract AF41(128)-31, February 1951. See also B. V. Dasarathy (ed.), Nearest Neighbor
(NN) Norms: NN Pattern Classification Techniques, Los Alamitos, CA: IEEE Computer
Society Press, which is a reprint of 1951 unpublished work of Fix and Hodges. [74]
Thomas M. Cover and Peter E. Hart, “Nearest Neighbor Pattern Classification,” /EEE
Transactions on Information Theory, pp. 21-27, January 1967. Available online at http://
ieeexplore.ieee.org/iel5/18/22633/01053964.pdf. [74]

See M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical Foundations
of the Potential Function Method in Pattern Recognition Learning,” Automation and
Remote Control, Vol. 25, pp. 917-936, 1964, and A. G. Arkadev and E. M. Braverman,
Computers and Pattern Recognition, (translated from the Russian by W. Turski and J. D.
Cowan), Washington, DC: Thompson Book Co., Inc., 1967. [74]

George S. Sebestyen, Decision-Making Processes in Pattern Recognition, Indianapolis, IN:
Macmillan Publishing Co., Inc., 1962. [74]

Nils J. Nilsson, 0p. cit. [74]

Richard O. Duda and Peter E. Hart, Pattern Classification and Scene Analysis, New York:
John Wiley & Sons, 1973; updated version: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification, 2nd Edition, New York: John Wiley & Sons, 2000. [74]
George Nagy, “State of the Art in Pattern Recognition,” Proceedings of the IEEE,
Vol. 56, No. 5, pp. 836-857, May 1968. [74]

See, for example, Joseph K. Hawkinsand C. J. Munsey, “An Adaptive System with Direct
Optical Input,” Proceedings of the IEEE, Vol. 55, No. 6, pp. 1084—1085, June 1967. Avail-
able online for IEEE members at http://ieeexplore.ieee.org/iel5/5/31078/01446273.
pdf’tp=&arnumber=1446273&isnumber=31078. [75]

Laveen N. Kanal and Neal C. Randall, “Target Detection in Aerial Photography,”
paper 8.3, Proceedings of the 1964 Western Electronics Show and Convention (WESCON ),
Los Angeles, CA, Institute of Radio Engineers (now IEEE), August 25-28, 1964. (Several
other papers on pattern recognition were presented at this conference and are contained
in the proceedings.) [75]

Thomas Harley, personal e-mail communication, July 15, 2007. [76]

Laveen N. Kanal and Neal C. Randall, op. ciz. [76]

Laveen Kanal, personal e-mail communication, July 13, 2007. [76]

Laveen N. Kanal, “Statistical Methods for Pattern Classification,” Philco Report, 1963;
originally appeared in T. Harley ez al., “Semi-Automatic Imagery Screening Research
Study and Experimental Investigation,” Philco Reports VO43-2 and VO43-3, Vol. I,

https://doi.org/10.1017/CBO9780511819346.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.006

80 The Quest for Artificial Intelligence

Sec. 6, and Appendix H, prepared for U.S. Army Electronics Research and Development
Laboratory under Contract DA-36-039-SC-90742, March 29, 1963. [77]

32. Thomas Harley, personal e-mail communication, July 11, 2007. [77]

33. Laveen N. Kanal (ed.), Pattern Recognition, Proceedings of the IEEE Workshop on Pattern
Recognition, held at Dorado, Puerto Rico, Washington, DC: Thompson Book Co., 1968.
[77]

34. See the Web page at http://tab.computer.org/pamitc/. [78]

https://doi.org/10.1017/CBO9780511819346.006 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.006



