3 A Framework for Secure Learning

In this chapter we introduce a framework for qualitatively assessing the security of
machine learning systems that captures a broad set of security characteristics common
to a number of related adversarial learning settings. There has been a rich set of work
that examines the security of machine learning systems; here we survey prior studies
of learning in adversarial environments, attacks against learning systems, and proposals
for making systems secure against attacks. We identify different classes of attacks on
machine learning systems (Section 3.3), categorizing a threat in terms of three crucial
properties.

We also present secure learning as a game between an atfacker and a defender—
the taxonomy determines the structure of the game and its cost model. Further, this
taxonomy provides a basis for evaluating the resilience of the systems described by
analyzing threats against them to construct defenses. The development of defensive
learning techniques is more tentative, but we also discuss a variety of techniques that
show promise for defending against different types of attacks.

The work we present not only provides a common language for thinking and writing
about secure learning, but goes beyond that to show how the framework applies to both
algorithm design and the evaluation of real-world systems. Not only does the frame-
work elicit common themes in otherwise disparate domains but it has also motivated
our study of practical machine learning systems as presented in Chapters 5, 6, and 8.
These foundational principles for characterizing attacks against learning systems are an
essential first step if secure machine learning is to reach its potential as a tool for use in
real systems in security-sensitive domains.

This chapter builds on earlier research (Barreno, Nelson, Sears, Joseph, & Tygar
2006; Barreno, Nelson, Joseph, & Tygar 2010; Barreno 2008).

3.1 Analyzing the Phases of Learning

Attacks can occur at each of the phases of the learning process that were outlined in
Section 2.2. Figure 2.1(a) depicts how data flows through each phase of learning. We
briefly outline how attacks against these phases differ.

The Measuring Phase
With knowledge of the measurement process, an adversary can design malicious
instances to mimic the measurements of innocuous data. After a successful attack
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against the measurement mechanism, the system may require expensive re-
instrumentation or redesign to accomplish its task.

The Feature Selection Phase

The feature selection process can be attacked in the same manner as the measuring
phase, except countermeasures and recovery are less costly since feature selection is
a dynamic process that can be more readily adapted. Potentially, retraining could even
be automated. However, feature selection can also be attacked in the same manner as
the training phase (below) if feature selection is based on training data that may be
contaminated.

Learning Model Selection

Once the learning model is known, an adversary could exploit assumptions inherent in
the model. Erroneous or unreasonable modeling assumptions about the training data
may be exploited by an adversary; e.g., if a model erroneously assumes linear sepa-
rability in the data, the adversary could use data that cannot be separated linearly to
deceive the learner or make it perform poorly. It is essential to explicitly state and cri-
tique the modeling assumptions to identify potential vulnerabilities since changing the
model may require that the system be redesigned.

The Training Phase

By understanding how the learner trains, an adversary can design data to fool the learner
into choosing a poor hypothesis, or to aid a later privacy breach of the training data dur-
ing prediction. Robust learning methods are promising techniques to counter the former
attacks as discussed in Section 3.5.4.3. These methods are resilient to adversarial con-
tamination although there are inherent tradeoffs between their robustness and perfor-
mance. Differential privacy is a leading approach to providing strong guarantees on the
level of privacy preserved by learners in the presence of powerful adversaries (Dwork
et al. 2006). We explore mechanisms for differentially private approximation of support
vector classification in Chapter 7.

The Prediction Phase

Once learned, an imperfect hypothesis can be exploited by an adversary who discovers
prediction errors made by the learner. Assessing how difficult it is to discover such
errors is an important question; e.g., the ACRE-learning framework of Lowd & Meek
(2005a) as discussed in Section 3.4.4. In addition, an adversary can exploit an imperfect
hypothesis to breach training data privacy during prediction. An interesting avenue of
future research is detecting that an adversary is exploiting these errors and retraining to
counter the attack.

To better understand these different abstract attacks, consider a spam filter that (7) has
some simple set of measurements of email such as hasAttachment, subjectLength,
bodyLength, etc., (ii) selects the top-ten most frequently appearing features in spam,
(iii) uses the naive Bayes model, (iv) trains class frequencies by empirical counts, and
(v) classifies email by thresholding the model’s predicted class probabilities. An attack
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against the measurement (or feature selection) phase would consist of first determining
the features used (for classification) and then producing spams that are indistinguishable
from normal email for those features. An attack against the learning model would entail
discovering a set of spams and hams that could not be classified correctly due to the
linearity of the naive Bayes boundary. Further, the training system (or feature selection)
could be attacked by injecting spams with misleading spurious features, causing it to
learn the wrong hypothesis or to learn a hypothesis that improves the odds of revealing
privacy-sensitive training emails that were not tampered with. Finally, the prediction
phase could be attacked by systematically probing the filter to find spams that are mis-
classified as ham (false negatives) or to infer information about the privacy-sensitive
training dataset.

Many learning methods make a stationarity assumption: training data and evaluation
data are drawn from the same distribution. Under this assumption minimizing the risk
on the training set is a surrogate for risk on the evaluation data. However, real-world
sources of data often are not stationary, and even worse, attackers can easily break the
stationarity assumption with some control of either training or evaluation instances.
Analyzing and strengthening learning methods to withstand or mitigate violations of
the stationarity assumption are the crux of the secure learning problem.

Qualifying the vulnerable components of the learning system is only the first step to
understanding the adversary. In the next section, we outline a framework designed to
qualify the adversary’s goals.

3.2 Security Analysis

Security is concerned with protecting assets from attackers. Properly analyzing the secu-
rity of a system requires identifying the security goals and a threat model for the system.
A security goal is a requirement that, if violated, results in the partial or total compro-
mise of an asset. A threat model is a profile of attackers who wish to harm the system,
describing their motivation and capabilities. Here we describe possible security goals
and threat models for machine learning systems.

In a security-sensitive domain, classifiers can be used to make distinctions that
advance the security goals of the system. For example, a virus detection system has
the goal of reducing susceptibility to virus infection, either by detecting the virus in
transit prior to infection or by detecting an extant infection to expunge. Another exam-
ple is an intrusion detection system (IDS), which has the goal of preventing harm from
malicious intrusion, either by identifying existing intrusions for removal or by detect-
ing malicious traffic and preventing it from reaching its intended target.' In this sec-
tion, we describe security goals and threat models that are specific to machine learning
systems.

! In the case of preventing intrusion, the whole system is more properly called an intrusion prevention system
(IPS). We have no need to distinguish between the two cases, so we use IDS to refer to both intrusion
detection systems and intrusion prevention systems.
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3.2.1 Security Goals

In a security context the classifier’s purpose is to classify malicious events and prevent
them from interfering with system operations. We split this general learning goal into
three goals:

« Integrity goal: To prevent attackers from reaching system assets

« Availability goal: To prevent attackers from interfering with normal operation

« Privacy goal: To protect the confidentiality of potentially privacy-sensitive data used
to train the classifier

There is a clear connection between false negatives and violation of the integrity goal:
malicious instances that pass through the classifier can wreak havoc. Likewise, false
positives tend to violate the availability goal because the learner itself denies benign
instances. Finally while an attacker attempting to breach privacy may cause false posi-
tives or false negatives, these will typically not be the end goal.

3.2.2 Threat Model

Attacker Goal and Incentives

In general the attacker wants to access system assets (typically with false negatives
or through inverting the learning process in the case of a training set privacy viola-
tion) or to deny normal operation (usually with false positives). For example, a virus
author wants viruses to pass through the filter and take control of the protected sys-
tem (a false negative). On the other hand, an unscrupulous merchant may want sales
traffic to a competitor’s web store to be blocked as intrusions (false positives). Finally
an over-zealous health insurer might reverse engineer an automated cancer detector to
breach the private medical records of the patients who make up the detector’s training
set.

We assume that the attacker and defender each have a cost function that assigns a
cost either to each labeling for any given instance or to each training instance privacy
violation. Cost can be positive or negative; a negative cost is a benefit. It is usually the
case that low cost for the attacker parallels high cost for the defender and vice versa; the
attacker and defender would not be adversaries if their goals aligned. Unless otherwise
stated, for ease of exposition we assume that every cost for the defender corresponds to a
similar benefit for the attacker and vice versa. However, this assumption is not essential
to this framework, which extends easily to arbitrary cost functions. In this chapter, we
take the defender’s point of view and use high cost to mean high positive cost for the
defender.

3.2.2.1  Attacker Capabilities
Making only weak assumptions on the adversary, we adopt a threat model in which the
attacker has knowledge of the training algorithm and in many cases partial or complete
information about the training set, such as its distribution. For example, the attacker may
have the ability to eavesdrop on all network traffic over the period of time in which the
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learner gathers training data. We examine different degrees of the attacker’s knowledge
and assess how much it gains from different sources of potential information.

In general, we assume the attacker can generate arbitrary instances; however, many
settings do impose significant restrictions on the instances generated by the attacker.
For example, when the learner trains on data from the attacker, sometimes it is safe to
assume that the attacker cannot choose the label for training, such as when training data
is carefully hand labeled. As another example, an attacker may have complete control
over data packets being sent from the attack source, but routers in transit may add to or
alter the packets as well as affect their timing and arrival order.

We consider an attacker with the ability to modify or generate data used in training,
and explore scenarios both when it has this capability and when it does not. When the
attacker controls training data, an important limitation to consider is what fraction of
the training data the attacker can control and to what extent. If the attacker has arbitrary
control over 100% of the training data, it is difficult to see how the learner can learn
anything useful; however, even in such cases there are learning strategies that can make
the attacker’s task more difficult (see Section 3.6). We examine intermediate cases and
explore how much influence is required for the attacker to defeat the learning procedure.

3.23 Discussion of Machine Learning Applications in Security

Sommer & Paxson (2010) have raised a set of objections to some uses of machine
learning in security applications. In Section III of that paper, the authors outline five
challenges of using machine learning for network anomaly detection. Their first chal-
lenge is outlier detection, and the authors argue that network anomaly detection is best
done using filtering, instead of the classification that machine learning provides. They
also argue that machine learning excels at finding similar occurrences, but does not
work for finding novel occurrences. Their second challenge is the high cost of errors,
and the authors argue that network anomaly detection systems have a stringent limit
on the number of false positive and true positive errors that they can tolerate, with
false positives being particularly expensive due to the analyst time required to resolve
them. Their third challenge is the semantic gap between anomaly detection systems
and users/operators/analysts, and they argue that machine learning-based systems are
opaque in decisions they make. Their fourth challenge is that the diversity of network
traffic yields very bursty networks, making decision making challenging. They also
argue that diversity reduction techniques like aggregation make networks noisy and
also make decision making challenging. Their fifth challenge is around the difficulties
with evaluation and has multiple components: a lack of usable public datasets, a seman-
tic gap in explaining a machine learning-based system, decisions about novel attacks to
users/operators/analysts, and the adversarial setting of network anomaly detection.
Sommer & Paxson (2010) raise interesting points, with a full discussion lying out-
side the scope of this book. Elsewhere (Miller, Kantchelian, Afroz, Bachwani, Dauber,
Huang, Tschantz, Joseph, & Tygar 2014) we discuss frameworks based on adversar-
ial active learning specifically designed to handle novel occurrences of attacks and to
intelligently allocate human time required to respond to them, addressing the first two
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challenges presented by Sommer & Paxson (2010), and also the issue of evaluation
in the adversarial setting of their fifth challenge. The field of secure machine learning
is specifically designed to present robust machine learning, and in that paper we argue
for a way to intelligently allocate human resources in dealing with malicious input. Note
that the other challenges raised by Sommer & Paxson (2010) are challenges both for tra-
ditional filtering systems and for machine learning systems. For example, the question
of the availability of datasets is an issue for both researchers of secure machine learn-
ing and traditional filtering systems. In a number of research projects including Intel’s
“Canary” algorithm (Chandrashekar, Orrin, Livadas, & Schooler 2009), Google’s mali-
cious advertising detection system (Sculley, Otey, Pohl, Spitznagel, Hainsworth, & Zhou
2011), and UC Berkeley’s comment spam detection work (Kantchelian, Ma, Huang,
Afroz, Joseph, & Tygar 2012), researchers have been able to gain access to real-world
high-quality large datasets.

3.3 Framework

The framework we describe here has three primary components: a taxonomy based on
the common characteristics of attacks against learning algorithms, a high-level descrip-
tion of the elements of the game played between the attacker and defender (learner),
and set of common characteristics for an attacker’s capabilities. Each of these elements
helps organize and assess the threat posed by an attacker.

3.3.1 Taxonomy

A great deal of the work that has been done within secure learning is the analysis of
attack and defense scenarios for particular learning applications. Together with Marco
Barreno and Russell Sears, we developed a qualitative taxonomy of attacks against
machine learning systems that we used to categorize others’ research, to find common-
alities between otherwise disparate domains, and ultimately to frame our own research.
We present the taxonomy categorizing attacks against learning systems along three axes.
Each of these dimensions operates independently, so we have at least 12 distinct classes
of attacks on machine learning systems.

INFLUENCE

* Causative attacks influence learning with control over training data.

» Exploratory attacks exploit predictions, but do not affect training.

SECURITY VIOLATION

« Integrity attacks compromise assets via false negatives.

* Availability attacks cause denial of service, usually via false positives.

* Privacy attacks obtain information from the learner, compromising the privacy of
the learner’s training data.

SPECIFICITY

* Targeted attacks focus on a particular instance.

* Indiscriminate attacks encompass a wide class of instances.

https://doi.org/10.1017/9781107338548.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781107338548.003

3.3 Framework 35

The first axis describes the capability of the attacker: whether (a) the attacker has the
ability to influence the training data that is used to construct the classifier (a Causative
attack) or (b) the attacker does not influence the learned classifier, but can send new
instances to the classifier and possibly observe its decisions on these carefully crafted
instances (an Exploratory attack).

The second axis indicates the type of security violation the attacker causes: either (a)
allowing harmful instances to slip through the filter as false negatives (an Integrity vio-
lation); (b) creating a denial-of-service event in which benign instances are incorrectly
filtered as false positives (an Availability violation); or (¢) using the filter’s responses to
infer confidential information used in the learning process (a Privacy violation).

The third axis refers to how specific the attacker’s intention is: whether (a) the attack
is highly Targeted to degrade the classifier’s performance on one particular instance or
to violate the privacy of one particular training instance or (b) the attack aims to cause
the classifier to fail in an /ndiscriminate fashion on a broad class of instances. Each
axis, especially this one, can actually be a spectrum of choices, but for simplicity, we
will categorize attacks and defenses into these groupings.

These axes define the space of attacks against learners and aid in identifying uncon-
ventional threats. By qualifying where an attack lies in this space, one can begin to
quantify the adversary’s capabilities and assess the risk posed by this threat. Laskov
& Kloft (2009) have since extended these basic principles to propose a framework for
quantitatively evaluating security threats.

In Table 3.1, we use our taxonomy to classify past work on adversarial learning with
goals relating to misclassifications—Integrity and Availability attacks, but not Privacy

Table 3.1 Selected related work on misclassification attacks in the taxonomy

Integrity Availability
Causative: Kearns & Li (1993); Newsome et al.
Tureeted Kearns & Li (1993); Newsome et al. (2006); Chung & Mok (2007); Nelson,
argete (2006) Barreno, Chi, Joseph, Rubinstein, Saini,
Sutton, Tygar, & Xia (2008)
. ) Kearns & Li (1993); Newsome et al.
Indiscriminate E%%g)s & Li (1993); Newsome et al. (2006); Chung & Mok (2007); Nelson
et al. (2008)
Exploratory:
Turceted Tan et al. (2002); Lowd & Meek (20054, | Moore, Shannon, Brown, Voelker, &
argete 2005b); Wittel & Wu (2004) Savage (2006)
L Fogla & Lee (2006); Lowd & Meek
Indiscriminate (2005b); Wittel & Wu (2004) Moore et al. (2006)
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attacks. As we discuss in Section 3.7 while the taxonomy provides a useful classifica-
tion of possible privacy attacks on machine learning systems, past work (with a few
exceptions) tends to fall in most bins simultaneously.

3.3.2 The Adversarial Learning Game

We model the task of constructing a secure learning system as a game between an
attacker and a defender—the attacker manipulates data to mistrain or evade or violate
privacy of a learning algorithm chosen by the defender to thwart the attacker’s objective.
The characteristics specified by the taxonomy’s axes also designate some aspects of this
game. The INFLUENCE axis determines the structure of the game and the legal moves that
each player can make. The SPECIFICITY and SECURITY VIOLATION axes of the taxonomy
determine the general shape of the cost function: an Integrity attack benefits the attacker
on false negatives, and therefore focuses high cost (to the defender) on false negatives;
an Availability attack focuses high cost on false positives; and a Privacy attack focuses
high cost on leaking information about training instances. Similarly a Targeted attack
focuses high cost only on a small number of specific instances, while an Indiscriminate
attack spreads high cost over a broad range of instances.

We formalize the game as a series of moves, or steps. Each move either is a strate-
gic choice by one of the players or is a rneutral move not controlled by either player.
The choices and computations in a move depend on information produced by previ-
ous moves (when a game is repeated, this includes previous iterations) and on domain-
dependent constraints that we highlight in discussing prior work. Generally, though, in
an Exploratory attack, the attacker chooses a procedure 42D that affects the evaluation
data D©) and in a Causative attack, the attacker also chooses a procedure 4 to
manipulate the training data D" In either setting, the defender chooses a learning
algorithm H™). This formulation gives us a theoretical basis for analyzing the interac-
tions between attacker and defender.

3.3.3 Characteristics of Adversarial Capabilities

In this section we introduce three essential properties for constructing a model of an
attack against a learning algorithm that refine the game played between the learner and
the adversary as described by the taxonomy. These properties define a set of common
domain-specific adversarial limitations that allow a security analyst to formally describe
the capabilities of the adversary.

3.3.3.1  Corruption Models
The most important aspect of the adversary is how it can alter data to mislead or evade
the classifier, or reveal information about the training data. As previously stated, learn-
ing against an unlimited adversary is futile. Instead, the security analysis we propose
focuses on a limited adversary, but to do so, one must model the restrictions on the
adversary and justify these restrictions for a particular domain. We outline two common
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models for adversarial corruption, and we describe how the adversary is limited within
each.

Data Insertion Model

The first model assumes the adversary has unlimited control of a small fraction of the
data; i.e., the adversary is restricted to only modifying a limited amount of data, but can
alter those data points arbitrarily. We call this an insertion model because, in this sce-
nario, the adversary crafts a small number of attack instances and inserts them into the
dataset for training or evaluation (or perhaps replaces existing data points). For example,
in the case of a spam filter, the adversary (spammer) can create any arbitrary message
for their attack, but it is limited in the number of attack messages it can inject: the
spammer does not have control over innocuous email messages sent by third parties.
The spammer’s attack on the spam filter can be analyzed in terms of how many mes-
sages are required for the attack to be effective. For this reason, we use this model of
corruption in analyzing attacks on the SpamBayes spam filter in Chapter 5 and show
that, even with a relatively small number of attack messages, the adversarial spammer
can significantly mislead the filter.

Data Alteration Model

The second corruption model instead assumes that the adversary can alter any (or all) of
the data points in the dataset, but is limited in the degree of alteration; i.e., an alteration
model. For example, to attack a detector that is monitoring network traffic volumes over
windows of time, the adversary can add or remove traffic within the network, but only
can make a limited degree of alteration. Such an adversary cannot insert new data since
each data point corresponds to a time slice and the adversary cannot arbitrarily control
any single data point because other actors are also creating traffic in the network. Here
the adversary is restricted by the total amount it can alter, and so the effectiveness of its
attack can be analyzed in terms of the size of alteration required to achieve the attacker’s
objective. This is the model we use for analyzing attacks on a PCA-subspace detector
for network anomaly detection in Chapter 6, and again we show that, with a relatively
small degree of control, the adversary can dramatically degrade the effectiveness of this
detector using data alterations.

3.3.3.2  Class Limitations

A second limitation on attackers involves which parts of the data the adversary is
allowed to alter—the positive (malicious) class, the negative (benign) class, or both.
Usually in settings where the adversary aims to affect misclassifications, attackers exter-
nal to the system are only able to create malicious data and so they are limited to only
manipulating positive instances. This is the model we use throughout this text. How-
ever, there is also an alternative threat that insiders could attack a learning system by
altering negative instances. We do not analyze this threat in this book but return to the
issue in the discussion in Chapter 9. In the setting of Privacy attacks, the learner may
not necessarily be classifying instances as malicious or benign so there may not be any
natural class limitation on the attacker’s influence.
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3.3.3.3  Feature Limitations

The final type of adversarial limitation we consider are limits on how an adversary can
alter data points in terms of each feature. Features represent different aspects of the
state of the world and have various degrees of vulnerability to attack. Some features
can be arbitrarily changed by the adversary, but others may have stochastic aspects that
the adversary cannot completely control, and some features may not be alterable at all.
For instance, in sending an email, the adversary can completely control the content of
the message, but cannot completely determine the routing of the message or its arrival
time. Further, this adversary has no control over meta-information that is added to the
message’s header by mail relays while the message is en route. Providing an accurate
description of the adversary’s control over the features is essential.

3.34 Attacks

In the remainder of this chapter, we survey prior research, we discuss how attack and
defense strategies were developed in different domains, we reveal their common themes,
and we highlight important aspects of the secure learning game in the context of this tax-
onomy. The related work discussed later is also presented in the taxonomy in Table 3.1.
For an Exploratory attack, we discuss realistic instances of the attacker’s choice for
A®) in Sections 3.4.2 and 3.4.3. Similarly, in Sections 3.5.2 and 3.5.3, we discuss
practical examples of the attacker’s choices in the Causative game.

We treat Privacy attacks separately from attacks aiming to produce misclassifications,
with a dedicated discussion in Section 3.7.

3.3.5 Defenses

The game between attacker and defender and the taxonomy also provide a foundation
on which to construct defense strategies against broad classes of attacks. We address
Exploratory and Causative misclassification attacks separately. For Exploratory attacks,
we discuss the defender’s choice for an algorithm ™ in Section 3.4.4 and we discuss
the defender’s strategies in a Causative setting in Section 3.5.4. Finally, in Section 3.6,
we discuss the broader setting of an iterated game.

We treat defenses against Exploratory and Causative Privacy attacks together in
Section 3.7.

In all cases, defenses present a tradeoff: changing the algorithms to make them more
robust against (worst-case) attacks will generally make them less effective on non-
adversarial data. Analyzing this tradeoff is an important part of developing defenses.

3.4 Exploratory Attacks

Based on the INFLUENCE axis of the taxonomy, the first category of attacks that we dis-
cuss are Exploratory attacks, which influence only the evaluation data as indicated in
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Figure 3.1 Diagram of an Exploratory attack against a learning system (see Figure 2.1).

Figure 3.1. The adversary’s transformation 42D alters the evaluation data either by
defining a procedure to change instances drawn from Pz or by changing Pz to an alto-
gether different distribution P(Zeval) chosen by the adversary. The adversary makes these
changes based on (partial) information gleaned about the training data D) the learn-
ing algorithm H™), and the classifier f. Further, the adversary’s transformation may
evolve as the adversary learns more about the classifier with each additional prediction
it makes.

3.4.1 The Exploratory Game

First we present the formal version of the game for Exploratory attacks and then explain
it in greater detail.

1 Defender Choose procedure H) for selecting an hypothesis
2 Attacker Choose procedure 4" for selecting an evaluation distribution
3 Evaluation:

« Reveal distribution Pgrain)

« Sample dataset D™ from PI™"

« Compute /< H™) (D(raim)

+ Compute ngal) <« Avah(pltrain) - £y

« Sample dataset D from P

* Assess total cost: Z L (f(x),»)

(x,y)eDfeval)

The defender’s move is to choose a learning algorithm (procedure) H™Y) for creating
hypotheses from datasets. Many procedures used in machine learning have the form of
Equation (2.1). For example, the defender may choose a support vector machine (SVM)
with a particular kernel, loss, regularization, and cross-validation plan. The attacker’s
move is then to choose a procedure 4©?) to produce a distribution on which to evaluate
the hypothesis that H¥) generates. (The degree of control the attacker has in generating
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the dataset and the degree of information about D™ and f that A©*2) has access to
are setting specific.)

After the defender and attacker have both made their choices, the game is evaluated.
A training dataset D" is drawn from some fixed and possibly unknown distribution
PL™™ . and training produces f = H™ (D). The attacker’s procedure A€ pro-
duces distribution P$*™”, which is based in general on D®*™ and £, and an evaluation
dataset D¥2D is drawn from Pg vah) Finally, the attacker and defender incur cost based on
the performance of f evaluated on D©'2) according to the loss function £, ( - , - ). Note
that, unlike in Section 2.2, here we allow the loss function to depend on the data point
x. This generalization allows this game to account for an adversary (or learner) with
instance-dependent costs (cf. Dalvi, Domingos, Mausam, Sanghai, & Verma 2004).

The procedure 4©*2) generally depends on D" and £, but the amount of informa-
tion an attacker actually has is setting specific (in the least restrictive case the attacker
knows D™ and £ completely). The attacker may know a subset of D™ or the family
F containing /. However, the procedure 4'2) may also involve acquiring information
dynamically. For instance, in some cases, the procedure 4©'?) can query the classifier,
treating it as an oracle that provides labels for query instances; this is one particular
degree of information that A©®'®) can have about f. An attack that uses this technique
is called a probing attack. Probing can reveal information about the classifier. On the
other hand, with sufficient prior knowledge about the training data and algorithm, the
attacker may be able to find high-cost instances without probing.

3.4.2 Exploratory Integrity Attacks

A frequently studied attack is the Exploratory Integrity attack in which the adversary
attempts to passively circumvent the learning mechanism to exploit blind spots in the
learner that allow miscreant activities to go undetected. In an Exploratory Integrity
attack, the attacker crafts intrusions so as to evade the classifier without direct influence
over the classifier itself. Instead, attacks of this sort often attempt to systematically make
the miscreant activity appear to be normal activity to the detector or obscure the mis-
creant activity’s identifying characteristics. Some Exploratory Integrity attacks mimic
statistical properties of normal traffic to camouflage intrusions; e.g., the attacker exam-
ines training data and the classifier, then crafts intrusion data. In the Exploratory game,
the attacker’s move produces malicious instances in D) that statistically resemble
normal traffic in the training data D(aim),

EXAMPLE 3.1 (The Shifty Intruder)

An attacker modifies and obfuscates intrusions, such as by changing network headers
and reordering or encrypting contents. If successful, these modifications prevent the IDS
from recognizing the altered intrusions as malicious, so it allows them into the system.
In the Targeted version of this attack, the attacker has a particular intrusion to get past
the filter. In the Indiscriminate version, the attacker has no particular preference and can
search for any intrusion that succeeds, such as by modifying a large number of different
exploits to see which modifications evade the filter.
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3.4.2.1 Polymorphic Blending Attack
Fogla & Lee (2006) introduce polymorphic blending attacks that evade intrusion detec-
tors using encryption techniques to make attacks statistically indistinguishable from
normal traffic according to the intrusion detection system. They present a formalism for
reasoning about and generating polymorphic blending attack instances to evade intru-
sion detection systems. The technique is fairly general and is Indiscriminate in terms of
the intrusion packets it modifies.

Feature deletion attacks instead specifically exclude high-value identifying features
used by the detector (Globerson & Roweis 2006); this form of attack stresses the impor-
tance of proper feature selection as was also demonstrated empirically by Mahoney
& Chan (2003) in their study of the behavior of intrusion detection systems on the
DARPA/Lincoln Lab dataset.

3.4.2.2  Attacking a Sequence-Based IDS

Tan et al. (2002) describe a mimicry attack against the stide sequence-based intru-
sion detection system (IDS) proposed by Forrest et al. (1996) and Warrender et al.
(1999). They modify exploits of the passwd and traceroute programs to accomplish
the same ends using different sequences of system calls: the shortest subsequence in
attack traffic that does not appear in normal traffic is longer than the IDS window size.
By exploiting the finite window size of the detector, this technique makes attack traffic
indistinguishable from normal traffic for the detector. This attack is more Targeted than
polymorphic blending since it modifies particular intrusions to look like normal traf-
fic. In subsequent work Tan, McHugh, & Killourhy (2003) characterize their attacks as
part of a larger class of information hiding techniques that they demonstrate can make
exploits mimic either normal call sequences or the call sequence of another less severe
exploit.

Independently, Wagner & Soto (2002) have also developed mimicry attacks against
a sequence-based IDS called pH proposed by Somayaji & Forrest (2000). Using the
machinery of finite automata, they construct a framework for testing whether an IDS
is susceptible to mimicry for a particular exploit. In doing so, they develop a tool for
validating IDSs on a wide range of variants of a particular attack and suggest that similar
tools should be more broadly employed to identify the vulnerabilities of an IDS.

Overall, these mimicry attacks against sequence-based anomaly detection systems
underscore critical weaknesses in these systems that allow attackers to obfuscate the
necessary elements of their exploits to avoid detection by mimicking normal behaviors.
Further they highlight how an IDS may appear to perform well against a known exploit,
but unless it captures necessary elements of the intrusion, the exploit can easily be
adapted to circumvent the detector. See Section 3.4.4 for more discussion.

3.42.3 Good Word Attacks
Adding or changing words in a spam message can allow the message to bypass the filter.
Like the attacks against an IDS described earlier, these attacks all use both training
data and information about the classifier to generate instances intended to bypass the
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filter. They are somewhat independent of the Targeted/Indiscriminate distinction, but
the Exploratory game captures the process used by all of these attacks.

Studying these techniques was first suggested by John Graham-Cumming. In his
presentation How to Beat an Adaptive Spam Filter delivered at the 2004 MIT Spam
Conference, he presented a Bayes vs. Bayes attack that uses a second statistical spam
filter to find good words based on feedback from the filter under attack. Several authors
have further explored evasion techniques used by spammers and demonstrated attacks
against spam filters using similar principles as those against IDSs as discussed earlier.
Lowd & Meek (20055) and Wittel & Wu (2004) develop attacks against statistical spam
filters that add good words, or words the filter considers indicative of non-spam, to spam
emails. This good word attack makes spam emails appear innocuous to the filter, espe-
cially if the words are chosen to be ones that appear often in non-spam email and rarely
in spam email. Finally, obfuscation of spam words (i.e., changing characters in the word
or the spelling of the word so it is no longer recognized by the filter) is another popular
technique for evading spam filters that has been formalized by several authors (cf. Liu
& Stamm 2007 and Sculley, Wachman, & Brodley 2006).

3.4.2.4 Cost-Based Evasion
Another line of research focuses on the costs incurred due to the adversary’s evasive
actions; i.e., instances that evade detection may be less desirable to the adversary. By
directly modeling adversarial cost, this work explicitly casts evasion as a problem in
which the adversary wants to evade detection, but wants to do so using high-value
instances (an assumption that was implicit in the other work discussed in this section).

Game-Theoretic Approaches

Dalvi et al. (2004) exploit these costs to develop a cost-sensitive game-theoretic classi-
fication defense that is able to successfully detect optimal evasion of the original classi-
fier. Using this game-theoretic approach, this technique preemptively patches the naive
classifier’s blind spots by constructing a modified classifier designed to detect optimally
modified instances.

Subsequent game-theoretic approaches to learning have extended this setting and
solved for equilibria of the game (Briickner & Scheffer 2009; Kantarcioglu, Xi, &
Clifton 2009). Further, Biggio, Fumera, & Roli (2010) extend this game-theoretic
approach and propose hiding information or randomization as additional defensive
mechanisms for this setting. Grohans, Sawade, Briickner, & Scheffer (2013) explore
Bayesian games between Bayesian statistician defender and attacker, in the non-zero-
sum case under incomplete information and with continuous action spaces. Here they
model the defender’s (partial) knowledge of the attacker as encoded in the prior, demon-
strate sufficient conditions for unique equilbrium existence (under sufficiently strong
regularization of costs), and present an algorithm for computing such an equilibrium.

Evasion by Membership Queries

Cost models of the adversary also led to a theory for query-based near-optimal evasion
of classifiers first presented by Lowd & Meek (2005a), in which they cast the difficulty
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of evading a classifier into a abstract query complexity problem. They give algorithms
for an attacker to reverse engineer a classifier. The attacker seeks the highest cost (lowest
cost for the attacker) instance that the classifier labels negative. In Near-Optimal Eva-
sion of Convex-Inducing Classifiers, we developed an extension to this work (Nelson,
Rubinstein, Huang, Joseph, Lau, Lee, Rao, Tran, & Tygar 2010). We generalized the the-
ory of near-optimal evasion to a broader class of classifiers and demonstrated that the
problem is easier than reverse-engineering approaches. We go into greater detail on this
work in Chapter 8. The ACRE framework (Lowd & Meek 2005a) is further extended
by Stevens & Lowd (2013) to encompass concept classes that are convex polytopes
representing unions or intersections of linear classifiers, in the difficult case of discrete
features (contrasting with the continuous case explored for convex-inducing classifiers
in Chapter 8). Query complexity upper bounds for this nonlinear discrete setting sug-
gest that these classes are difficult to evade via membership queries, unlike their linear
counterparts.

Attacks on Deployed Systems

Reverse-engineering attacks have been deployed by Tramer, Zhang, Juels, Reiter, and
Ristenpart (2016) against major cloud-based Machine-Learning-as-a-service systems.
When target learning systems output prediction confidence values, the researchers probe
the model randomly to obtain a set of instance-confidence pairs from which they solve
a system of equations to determine decision boundaries in the case of logistic regres-
sion and neural networks. When the target model is a tree, they leverage the confi-
dence values output at leaves to develop an efficient and exact path-finding algorithm to
reconstruct the tree. Without access to the confidence values, the authors apply the idea
of membership queries (see Chapter 8), specifically extending the technique of Lowd
& Meek (2005a) when models are linear under an invertible feature mapping, such
as used for certain support vector machine models. In an earlier work, the deployed
system PDFrate—an online service for detecting PDF malware—is the subject of eva-
sion attacks in Srndic & Laskov (2014). Given their work’s focus on practical evasion
attacks, the authors present a sub-taxonomy of attacks sharing the same goal, distin-
guishing between cases of attacker information around knowledge of the feature set,
training data, and details of the classifier.

Attack Generation by Gradient Descent

Computing the best response in the game-theoretic formulation corresponds to find-
ing (near) optimal attacks under adversary-agnostic learners. An apparent advantage
of this approach, over computing equilibria over both attacker and defender actions,
is that more nonlinear models and learners can be tackled efficiently. Building on
their work formulating Causative attacks as optimization (see Section 3.5.2), Big-
gio, Corona, Maiorca, Nelson, Srndic, Laskov, Giacinto, & Roli (2013) formulate
Exploratory attacks on the support vector machine as gradient descent. By the Repre-
senter Theorem, the prediction function for the SVM can be written as a sum of kernel
terms; hence gradients exist and are easily computed provided the kernel function is
differentiable in the test point.
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3.4.2.5 Evasion of Deep Learning Methods

There has been a great deal of interest and success in the field of deep neural net-
work learners (for example see LeCun, Bengio, & Hinton 2015), which focuses on
training multilayer (deep) neural networks (DNNSs). Unlike prior neural network archi-
tectures, DNNs use cascades of hidden layers to implicitly undertake complex tasks
such as feature extraction and transformation as part of the learning process. However,
because of the large model size, DNNs are prone to overfitting and may be suscep-
tible to evasion attacks. In particular Goodfellow, Shlens, & Szegedy (2015) demon-
strated a simple fast gradient sign method for generating adversarial examples. Their
work showed that even models with multiple nonlinear layers can be easily misled by
applying linear perturbations of the test data. The authors observed that these attacks
are transferable; i.e., can be applied to other target DNN models with different archi-
tectures that are used for the same learning task. Based on the transferability of these
attacks, Papernot, McDaniel, Goodfellow, Jha, Celik, and Swami (2017) demonstrated
black-box attacks against deep neural network systems in which the adversary is able to
train a surrogate DNN model based on the output of the targeted DNN and craft adver-
sarial examples for the surrogate model that also can evade the targeted model. Liu,
Chen, Liu, & Song (2017) explore these transferable attacks at scale: for larger datasets
and larger architectures better reflecting the state-of-the-art models used in industrial
systems. They find that while indiscriminate attacks transfer easily, an ensembling
technique is required to generate an attack example when transferring in the targeted
case.

The success of deep learning and the risk of DNN model overfitting have triggered
broad interest in adversarial learning. The application of adversarial learning as a form
of regularization has enjoyed particular interest; we return to the topic in Section 3.4.4.1.

343 Exploratory Availability Attacks

In an Exploratory Availability attack, the attacker interferes with the normal behav-
ior of a learning system without influence over training. This type of attack against
non-learning systems abounds in the literature: almost any denial-of-service (DoS)
attack falls into this category, such as those described by Moore et al. (2006). How-
ever, Exploratory Availability attacks against the learning components of systems are
not common and we are not aware of any studies of them. It seems the motivation for
attacks of this variety is not as compelling as for other attacks against learners.

One possible attack is described in the following example: if a learning IDS has
trained on intrusion traffic and has the policy of blocking hosts that originate intru-
sions, an attacker could send intrusions that appear to originate from a legitimate host,
convincing the IDS to block that host. Another possibility is to take advantage of
a computationally expensive learning component: for example, spam filters that use
image processing to detect advertisements in graphical attachments can take signifi-
cantly more time than text-based filtering (Dredze, Gevaryahu, & Elias-Bachrach 2007;
Wang, Josephson, Lv, Charikar, & Li 2007). An attacker could exploit such overhead by
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sending many emails with images, causing the time-consuming processing to delay and
perhaps even block messages.

EXAMPLE 3.2 (The Mistaken Identity)

An attacker sends intrusions that appear to come from the IP address of a legitimate
machine. The IDS, which has learned to recognize intrusions, blocks that machine. In
the Targeted version, the attacker has a particular machine to target. In the Indiscrimi-
nate version, the attacker may select any convenient machine or may switch IP addresses
among many machines to induce greater disruption.

344 Defending against Exploratory Attacks

Exploratory attacks do not corrupt the training data, but attempt to find vulnerabilities
in the learned hypothesis. Through control over the evaluation data, the attacker can
violate the assumption of stationarity. When producing the evaluation distribution, the
attacker attempts to construct an unfavorable evaluation distribution that concentrates
probability mass on high-cost instances; in other words, the attacker’s procedure 42D
constructs an evaluation distribution ngal) on which the learner predicts poorly (violat-
ing stationarity); i.e., the attacker chooses Pg’val) to maximize the cost computed in the
last step of the Exploratory game. This section examines defender strategies that make
it difficult for the attacker to construct such a distribution.

In the Exploratory game, the defender makes a move before observing contaminated
data; that is, here we do not consider scenarios where the defender is permitted to
react to the attack. The defender can impede the attacker’s ability to reverse engineer
the classifier by limiting access to information about the training procedure and data.
With less information, 42 has difficulty producing an unfavorable evaluation dis-
tribution. Nonetheless, even with incomplete information, the attacker may be able to
construct an unfavorable evaluation distribution using a combination of prior knowledge
and probing.

The defender’s task is to design data collection and learning techniques that make it
difficult for an attacker to reverse engineer the hypothesis. The primary task in analyzing
Exploratory attacks is quantifying the attacker’s ability to reverse engineer the learner.

3.4.4.1  Defenses against Attacks without Probing
Part of a security analysis involves identifying aspects of the system that should be kept
secret. In securing a learner, the defender can limit information to make it difficult for
an adversary to conduct its attack.

Training Data

Preventing the attacker from obtaining the training data limits the attacker’s ability to
reconstruct internal states of the classifier. There is a tension between collecting training
data that fairly represents the real-world instances and keeping all aspects of that data
secret. In most situations, it is difficult to use completely secret training data, though
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the attacker may have only partial information about it. Securing training data relates to
privacy-preserving learning (see Section 3.7).

Feature Selection

The defender can also harden classifiers against attacks through attention to features in
the feature selection and learning steps (which are both internal steps of the defender’s
hypothesis selection procedure H®™)). Feature selection is the process of choosing a
feature map that transforms raw measurements into the feature space used by the learn-
ing algorithm. In the learning step, the learning algorithm builds its model or signature
using particular features from the map’s feature space; this choice of features for the
model or signature is also sometimes referred to as feature selection, though we con-
sider it to be part of the learning process, after the feature map has been established.
For example, one feature map for email message bodies might transform each token
to a Boolean feature indicating its presence; another map might specify a real-valued
feature indicating the relative frequency of each word in the message compared to its
frequency in natural language; yet another map might count sequences of #n characters
and specify an integer feature for each character n-gram indicating how many times it
appears. In each of these cases, a learner will construct a model or signature that uses
certain features (tokens present or absent; relative frequency of words present; character
n-gram counts) to decide whether an instance is benign or malicious.

Obfuscation of spam-indicating words (an attack on the feature set) is a common 7ar-
geted Exploratory Integrity attack. Sculley et al. (2006) use inexact string matching in
feature selection to defeat obfuscations of words in spam emails. They choose a feature
map based on character subsequences that are robust to character addition, deletion, and
substitution.

Globerson & Roweis (2006) present a feature-based learning defense for the feature
deletion attack; an Exploratory attack on the evaluation data D). In feature dele-
tion, features present in the training data, and perhaps highly predictive of an instance’s
class, are removed from the evaluation data by the attacker. For example, words present
in training emails may not occur in evaluation messages, and network packets in training
data may contain values for optional fields that are missing from future traffic. Glober-
son & Roweis formulate a modified support vector machine classifier that is robust in
its choice of features against deletion of high-value features.

It has been observed that high dimensionality serves to increase the attack surface of
Exploratory attacks (Sommer & Paxson 2010; Amsaleg, Bailey, Erfani, Furon, Houle,
Radovanovi¢, & Vinh 2016), suggesting that (possibly randomized) feature selection
be used as a defensive strategy. In game-theoretic models of Causative attacks, high
dimensions also have computational consequences on finding equilibrium solutions.
Alpcan, Rubinstein, & Leckie (2016) approach such settings through random projec-
tions, exploring conditions where solutions lift from projected spaces to the original
action spaces; as a case study they apply their ideas to Causative attacks on the linear
support vector machine.

The work of Li & Vorobeychik (2014), however, should bring a note of caution:
in exploring traditional approaches to feature reduction in applications to email spam,
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they observe vulnerabilities to attackers using feature substitution that is particularly
well motivated in spam. Next they explore counter-measures including learning equiv-
alence classes of features and then using these in feature reduction to mitigate feature
substitution; and formulation of the Stackelberg game as a bilevel mixed linear integer
program, with heuristics for making approximate solutions tractable that yield an inter-
esting trade-off between sparse regularized learning and evasion, thereby producing an
approach to adversarial feature selection. Zhang, Chan, Biggio, Yeung, & Roli (2016)
also explore the interplay between feature selection and attacks. The authors propose
a wrapper-based adversarial feature selector that optimizes both classifier generaliza-
tion capability and classifier security with optimization via greedy approaches: forward
feature selection or backward feature elimination.

One particularly important consideration when the learner builds its model or sig-
nature is to ensure that the learner uses features related to the intrusion itself. In their
study of the DARPA/Lincoln Laboratory intrusion dataset, Mahoney & Chan (2003)
demonstrate that spurious artifacts in training data can cause an IDS to learn to distin-
guish normal from intrusion traffic based on those artifacts rather than relevant features.
Ensuring that the learner builds a model from features that describe the fundamental dif-
ferences between malicious and benign instances should mitigate the effects of mimicry
attacks (Section 3.4.2) and red herring attacks (Section 3.5.2).

Using spurious features in constructing a model or signature is especially problematic
in cases where any given intrusion attempt may cause harm only probabilistically or
depending on some internal state of the victim’s system. If the features relevant to the
intrusion are consistent for some set of instances but the actual cost of those instances
varies widely, then a learner risks attributing the variation to other nonessential features.

Hypothesis Space/Learning Procedures

A complex hypothesis space may make it difficult for the attacker to infer precise infor-
mation about the learned hypothesis. However, hypothesis complexity must be balanced
against the capacity to generalize, through appropriate regularization.

Wang, Parekh, & Stolfo (2006) present Anagram, an anomaly detection system using
n-gram models of bytes to detect intrusions. They incorporate two techniques to defeat
Exploratory attacks that mimic normal traffic (mimicry attacks): 7) they use high-order
n-grams (with n typically between 3 and 7), which capture differences in intrusion traffic
even when that traffic has been crafted to mimic normal traffic on the single-byte level;
and ii) they randomize feature selection by randomly choosing several (possibly over-
lapping) subsequences of bytes in the packet and testing them separately, so the attack
will fail unless the attacker makes not only the whole packet but also any subsequence
mimic normal traffic.

Dalvi et al. (2004) develop a cost-sensitive game-theoretic classification defense
to counter Exploratory Integrity attacks. In their model, the attacker can alter natural
instance features in 4©®) but incurs a known cost for each change. The defender can
measure each feature at a different known cost. Each has a known cost function over
classification/true label pairs. The classifier H") is a cost-sensitive naive Bayes learner
that classifies instances to minimize expected cost, while the attacker modifies features
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to minimize its own expected cost. The defense constructs an adversary-aware classifier
by altering the likelihood function of the learner to anticipate the attacker’s changes.
The defender adjusts the likelihood that an instance is malicious by considering that the
observed instance may be the result of an attacker’s optimal transformation of another
instance. This defense relies on two assumptions: i) the defender’s strategy is a step
ahead of the attacker’s strategy (i.e., their game differs from ours in that the attacker’s
procedure 4¥4) cannot take f into account), and i) the attacker plays optimally against
the original cost-sensitive classifier . It is worth noting that while the approach defends
against optimal attacks, it does not account for nonoptimal attacks. For example, if the
attacker does not modify any data, the adversary-aware classifier misclassifies some
instances that the original classifier correctly classifies.

Some defensive methods for deep neural network learners in adversarial settings have
been developed. Based on their fast gradient sign method for generating adversarial
examples, Goodfellow et al. (2015) developed an alternative adversarial objective func-
tion for training DNN models. In this formulation, a regularizer is added to the original
objective function. This regularizer is the objective function with an adversarial pertur-
bation applied to each training instance; i.e., a gradient step in the opposing direction
to the optimization. This regularizer transforms the objective into a minimax problem,
which generally encourages flatter gradients in the neighborhood of the training data.
An application of attacks on deep learners is represented by the framework of generative
adversarial networks of Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair,
Courville, & Bengio (2014), whereby a pair of DNNs are trained: a generative (adver-
sarial) model that captures the training data distribution and a discriminative model that
is trained to discriminate between samples drawn from the training data and samples
drawn from the generative network. The models together are trained via a minimax
(zero-sum) game. Significant interest has followed from the approach’s strong experi-
mental results across several domains.

3.44.2 Defenses against Probing Attacks

In the game described in Section 3.4.1, the attacker chooses an evaluation distribu-
tion ngal) for selecting the evaluation data D2 based on knowledge obtained from
the training data D™ and/or the classifier /. However, the procedure 4*?) need not
select a stationary distribution P(Ze ¥ In fact, the attacker may incrementally change the
distribution based on the observed behavior of the classifier to each data point generated
from ngal)—a probing or query-based adaptive attack. The ability for 4©¥4) to query a
classifier gives an attacker powerful additional attack options, which several researchers
have explored.

Analysis of Reverse Engineering

Lowd & Meek (2005a) observe that the attacker need not model the classifier
explicitly, but only find lowest-attacker-cost instances as in the setting of Dalvi et al.
(2004). They formalize a notion of reverse engineering as the adversarial classifier
reverse-engineering (ACRE) problem. Given an attacker cost function, they analyze the
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complexity of finding a lowest-attacker-cost instance that the classifier labels as nega-
tive. They assume no general knowledge of training data, though the attacker does know
the feature space and also must have one positive example and one negative example.
A classifier is ACRE-learnable if there exists a polynomial-query algorithm that finds
a lowest-attacker-cost negative instance. They show that linear classifiers are ACRE-
learnable with linear attacker cost functions and some other minor technical restrictions.

The ACRE-learning problem provides a means of quantifying how difficult it is to use
queries to reverse engineer a classifier from a particular hypothesis class using a partic-
ular feature space. We now suggest defense techniques that can increase the difficulty
of reverse engineering a learner.

Randomization
A randomized hypothesis may decrease the value of feedback to an attacker. Instead of
choosing a hypothesis f : X — {0, 1}, we generalize to hypotheses that predict a real
value on [0, 1]. This generalized hypothesis returns a probability of classifying x € X
as 1; i.e., a randomized classifier. By randomizing, the expected performance of the
hypothesis may decrease on regular data drawn from a nonadversarial distribution, but
it also may decrease the value of the queries for the attacker.

Randomization in this fashion does not reduce the information available in principle
to the attacker, but merely requires more work from the attacker. It is likely that this
defense is appropriate in only a small number of scenarios.

Limiting/Misleading Feedback

Another potential defense is to limit the feedback given to an attacker. For example,
common techniques in the spam domain include eliminating bounce emails, delivery
notices, and remote image loading and imposing other limits on potential feedback
channels. In most settings, it is impossible to remove all feedback channels; however,
limiting feedback increases work for the attacker. Moreover in some settings, it may also
be possible to mislead the attacker by sending fraudulent feedback. Actively mislead-
ing the attacker by fabricating feedback suggests an interesting battle of information
between attacker and defender. In some scenarios the defender may be able to give the
attacker no information via feedback, and in others the defender may even be able to
return feedback that causes the attacker to come to incorrect conclusions. Of course,
misinformation can also degrade the usefulness of the classifier when evaluated on
benign data.

35 Causative Attacks

The second broad category of attacks according to the taxonomy’s INFLUENCE axis are
Causative attacks, which influence the training data (as well as potentially subsequently
modifying the evaluation data) as indicated in Figure 3.2. Again, the adversary’s trans-
formation 4¥2) alters the evaluation data either by defining a procedure to change
instances drawn from Pz or by changing Pz to an alternative distribution Pg * chosen
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Figure 3.2 Diagram of a Causative attack against a learning system (see Figure 2.1).

by the adversary (see Section 3.4). However, in addition to changing evaluation data,
Causative attacks also allow the adversary to alter the training data with a second trans-
formation A" which either transforms instances drawn from Pz or changes Pz to
an alternative distribution Pgram) during training. Of course, the adversary can synchro-
nize A" and A2 to best achieve its desired objective, although in some Causative
attacks, the adversary can only control the training data (e.g., the attacker we describe
in Chapter 5 cannot control the non-spam messages sent during evaluation). Also note
that, since the game described here corresponds to batch learning, an adaptive procedure
A1) is ynnecessary, although the distribution Pgrain) can be nonstationary.

3.5.1 The Causative Game

The game for Causative attacks is similar to the game for Exploratory attacks with an
augmented move for the attacker.

1 Defender Choose procedure H™) for selecting hypothesis
2 Attacker Choose procedures 4™ and 42 for selecting distributions
3 Evaluation:

» Compute Pgrai“) <« Alrain) (P FT)

« Sample dataset D™ from Pi™"

+ Compute f < H®™) (]D)(train))

+ Compute ngal) « Aleval) (]D)(train)’f)

« Sample dataset D from P

* Assess total cost: Z L (f(x), )

(ry)eDiED

This game is very similar to the Exploratory game, but the attacker can choose A"
to affect the training data D™ The attacker may have various types of influence over
the data, ranging from arbitrary control over some fraction of instances to a small bias-
ing influence on some aspect of data production; details depend on the setting. Again,
the loss function £, ( -, - ) allows for instance-dependent costs.
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Control over data used for training opens up new strategies to the attacker. Cost is
based on the interaction of £ and D). In the Exploratory game the attacker chooses
D2 while the defender controls £7; in the Causative game the attacker also has influ-
ence on /. With this influence, the attacker can proactively cause the learner to produce
bad classifiers.

Contamination in PAC Learning

Kearns & Li (1993) extend Valiant’s probably approximately correct (PAC) learning
framework (cf. Valiant 1984, 1985) to prove bounds for maliciously chosen errors in the
training data. In PAC learning, an algorithm succeeds if it can, with probability at least
1 — 4, learn a hypothesis that has at most probability € of making an incorrect prediction
on an example drawn from the same distribution. Kearns & Li examine the case where
an attacker has arbitrary control over some fraction 8 of the training examples (this
specifies the form that 4" takes in our Causative game). They prove that in general
the attacker can prevent the learner from succeeding if 8 > €¢/(1 + €), and for some
classes of learners they show this bound is tight.

This work provides important limits on the ability to succeed at PAC learning in a
particular adversarial setting. The analysis broadly concerns both Infegrity and Avail-
ability attacks as well as both Targeted and Indiscriminate variants. However, not all
learning systems fall into the PAC learning model.

3.5.2 Causative Integrity Attacks

In these attacks, the adversary actively attempts to corrupt the learning mechanism
so that miscreant activities can take place that would be otherwise disallowed. In a
Causative Integrity attack, the attacker uses control over training to cause intrusions
to slip past the classifier as false negatives.

EXAMPLE 3.3 (The Intrusion Foretold)

An attacker wants the defender’s IDS not to flag a novel virus. The defender trains peri-
odically on network traffic, so the attacker sends non-intrusion traffic that is carefully
chosen to look like the virus and mis-train the learner to fail to block it. This example
would be Targeted if the attacker already has a particular virus executable to send and
needs to cause the learner to miss that particular instance. It would be Indiscriminate, on
the other hand, if the attacker has a certain payload but could use any of a large number
of existing exploit mechanisms to transmit the payload, in which case the attack need
only fool the learner on any one of the malicious executables.

Red Herring Attack

Newsome et al. (2006) present Causative Integrity and Causative Availability
attacks against Polygraph (Newsome et al. 2005), a polymorphic-virus detector
that learns virus signatures using both a conjunction learner and a naive-Bayes-
like learner. Their red herring attacks against conjunction learners exploit certain
weaknesses not generally present in other learning algorithms. The attack introduces
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spurious features along with their payload; once the learner constructs a signature, the
spurious features are removed from subsequent malicious instances to evade the con-
junction rules, which require all identified features to be present to match the signature
learned by Polygraph. This attack allows the attacker to maintain a high false-negative
rate even when retraining occurs because the attacker can introduce many spurious fea-
tures and remove them incrementally. Conceptually, this attack corresponds to a trans-
formation of Pz into P(Ztmm) and Pg“’al) . This transformation introduces spurious features
into all malicious instances that the defender uses for training. The malicious instances
produced by ngal), however, lack some of the spurious features and therefore bypass
the filter, which erroneously generalized that all the spurious features were necessary
elements of the malicious behavior. Venkataraman, Blum, and Song (2008) also present
lower bounds for learning worm signatures based on red herring attacks.

ANTIDOTE

We also collaborated with our colleagues at Berkeley and Intel Labs to explore the
vulnerability of network-wide traffic anomaly detectors based on principal component
analysis (PCA) as introduced by Lakhina et al. (2004b). Our work examines how an
attacker can exploit the sensitivity of PCA to form Causative Integrity attacks (Rubin-
stein, Nelson, Huang, Joseph, Lau, Rao, Taft, & Tygar 2009a). In anticipation of a DoS
attack, the attacker systematically injects traffic to increase variance along the links of
their target flow and mislead the anomaly detection system. We also studied how the
projection pursuit-based robust PCA algorithm of Croux, Filzmoser, & Oliveira (2007)
significantly reduces the impact of poisoning. We detail this work in Chapter 6.

Optimization Formulations

Biggio, Nelson, & Laskov (2012) formulate Causative attacks on the support vector
machine as optimization, leveraging work in incremental learning (Cauwenberghs &
Poggio 2000) to determine contamination points to inject into the training set. The opti-
mization is approximated via gradient descent. Attack as optimization has appeared
many times in the literature since. The effect of feature selection on training robustness
is examined by Xiao, Biggio, Brown, Fumera, Eckert, & Roli (2015), complement-
ing the evaluation on Exploratory robustness by Li & Vorobeychik (2014), where it is
demonstrated on malware samples for example that the performance of LASSO can be
reduced to random choice with only 5% control over the training set. Li, Wang, Singh,
& Vorobeychik (2016) explore Causative attacks on collaborative filtering methods also
using gradient-descent based approaches, but for nonsmooth nuclear normed objectives,
using alternating minimization and nuclear norm minimization.

Mei & Zhu (2015b) formulate early moves of the adversarial learning game for
Causative attacks as a bilevel optimization where the defender learns in a lower-level
optimization while the attacker contaminates training data at a top level. They show that
under differentiability and convexity of the learner’s objectives, the optimization can be
reduced via KKT methods to a single-level optimization and use (projected) gradient
descent to find attack training sets. Finally they draw connections to machine teaching
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and teaching dimension (Goldman & Kearns 1995), where training data is generated by
a teacher guiding a learner to a predetermined hypothesis.

As an application of these ideas the authors explore the security of latent Dirich-
let allocation (Mei & Zhu 2015a), demonstrating the promotion (demotion) of words
to (from) topics. Alfeld, Zhu, & Barford (2016) also apply these attacks to autore-
gressive models for time series analysis, motivated by futures market manipulation in
gas prices. The attacker possess a target forecast and optimizes poisoning data under
the quadratic loss on forecasts achieved. The adversary is capable of perturbing past
covariates at the time of attack optimization, modelling a scenario of “cooking the
books” whereby past reporting may be manipulated. Hard and soft constraints on the
attacker’s perturbations are considered. While their examples are computed for weakly
stationary models (where the first moment and covariance are stationary through time),
their approach of convex optimization for finding contaminating data is general. Torka-
mani & Lowd (2013) consider adversarial learning for collective classification: a learn-
ing task where labels of instances may experience dependencies provided that related
objects are more likely to have similar labels (associativity). They present a convex
quadratic program formulation. Their experimental results show that in some cases
techniques that increase robustness against attack also can lead to better non-attacked
performance.

3.5.3 Causative Availability Attacks

This less common (but nonetheless well-motivated) attack attempts to corrupt the learn-
ing system to cause innocuous data to significantly be misclassified so as to disrupt
normal system operation. In a Causative Availability attack, the attacker uses control
over training instances to interfere with operation of the system, such as by blocking
legitimate traffic.

EXAMPLE 3.4 (The Rogue IDS)

An attacker uses an intrusion detection system (IDS) to disrupt operations on the
defender’s network. The attacker wants traffic to be blocked so the destination does
not receive it. The attacker generates attack traffic similar to benign traffic when the
defender is collecting training data to train the IDS. When the learner retrains on the
attack data, the IDS will start to filter away benign instances as if they were intrusions.
This attack could be Targeted at a particular protocol or destination. On the other hand,
it might be Indiscriminate and attempt to block a significant portion of all legitimate
traffic.

Allergy Attack

Chung & Mok (2006, 2007) present allergy attacks against the Autograph worm signa-
ture generation system (Kim & Karp 2004). Autograph operates in two phases. First, it
identifies infected nodes based on behavioral patterns, in particular scanning behavior.
Second, it observes traffic from the suspect nodes and infers blocking rules based on
observed patterns. Chung and Mok describe an attack that targets traffic to a particular
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resource. In the first phase, an attack node convinces Autograph that it is infected by
scanning the network. In the second phase, the attack node sends crafted packets mim-
icking targeted traffic, causing Autograph to learn rules that block legitimate access and
create a denial-of-service event.

In the context of the Causative game, the attacker’s choice of Pgrain) provides the
traffic for both phases of Autograph’s learning. When Autograph produces a hypothesis
f that depends on the carefully crafted traffic from the attacker, it will block access to
legitimate traffic from Pg ¥ that shares patterns with the malicious traffic.

Correlated Outlier Attack

Newsome et al. (2006) also suggest a correlated outlier attack against the Polygraph
virus detector Newsome et al. (2005). This attack targets the naive-Bayes-like compo-
nent of the detector by adding spurious features to positive training instances, causing
the filter to block benign traffic with those features. As with the red herring attacks, these
correlated outlier attacks fit neatly into the Causative game; this time Pgmi") includes
spurious features in malicious instances, causing H™) to produce an f that classifies
many benign instances as malicious.

Attacking SpamBayes

In the spam filtering domain we also explored Causative Availability attacks against the
SpamBayes statistical spam classifier (Nelson et al. 2008, Nelson, Barreno, Chi, Joseph,
Rubinstein, Saini, Sutton, Tygar, & Xia 2009). In these attacks, we demonstrated that by
sending emails containing entire dictionaries of tokens, the attacker can cause a signif-
icant fraction of normal email to be misclassified as spam with relatively little contam-
ination (an Indiscriminate attack). Similarly, if an attacker can anticipate a particular
target message, then the attacker can also poison the learner to misclassify the target
as spam (a Targeted attack). We also investigated a principled defense to counter these
dictionary attacks: the reject on negative impact (RONI) defense. We discuss this work
in detail in Chapter 5.

Attacking Malheur

In the realm of unsupervised learners, the Malheur, an open-source behavioral malware
clustering tool (Rieck, Trinius, Willems, & Holz 2011), has been found highly vul-
nerable to even very low levels of Indiscriminate Causative Availability attacks (Big-
gio, Rieck, Ariu, Wressnegger, Corona, Giacinto, & Roli 2014): DoS attacks against
the malware clustering through poisoning of the data to which the clustering is fit.
The authors avoid the feature inversion problem by essentially walking in the space
of malware samples, performing only feature addition in a similar vein to dictionary
attacks.

3.5.4 Defending against Causative Attacks

Most defenses presented in the literature of secure learning combat Exploratory
Integrity attacks (as discussed earlier) while relatively few defenses have been presented
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to cope with Causative attacks. In Causative attacks, the attacker has a degree of control
over not only the evaluation distribution but also the training distribution. Therefore the
learning procedures we consider must be resilient against contaminated training data,
as well as satisfy the evaluation considerations discussed in Section 3.4.4.

Two general strategies for defense are to remove malicious data from the training set
and to harden the learning algorithm against malicious training data. We first present one
method for the former and then describe two approaches to the latter that appear in the
literature. The foundations of these approaches primarily lie in adapting game-theoretic
techniques to analyze and design resilient learning algorithms.

3.54.1 The Reject on Negative Impact Defense

Insidious Causative attacks make learning inherently more difficult. In many circum-
stances, data sanitization may be the only realistic mechanism to achieve acceptable
performance. For example, Nelson et al. (2009) introduce such a sanitization technique
called reject on negative impact, a technique that measures the empirical effect of adding
each training instance and discards instances that have a substantial negative impact on
classification accuracy. To determine whether a candidate training instance is malicious
or not, the defender trains a classifier on a base training set, then adds the candidate
instance to the training set, and trains a second classifier. The defender applies both
classifiers to a quiz set of instances with known labels and measures the difference in
accuracy between the two classifiers. If adding the candidate instance to the training set
causes the resulting classifier to produce substantially more classification errors, then
the defender permanently removes the instance as detrimental in its effect. We refine
and explore the reject on negative impact defense experimentally in Section 5.5.5.

3.5.4.2 Learning with Contaminated Data

Several approaches to learning under adversarial contamination have been studied in
the literature. The effect of adversarial contamination on the learner’s performance is
incorporated into some existing learning frameworks. As outlined earlier, Kearns & Li
(1993) extended the PAC learning model to allow for adversarial noise within the train-
ing data and bounded the amount of contamination a learner could tolerate. Separately,
the field of robust statistics (Huber 1981; Hampel et al. 1986; Maronna, Martin, & Yohai
2006). has formalized adversarial contamination with a worst-case contamination model
from which researchers derived criteria for designing and comparing the robustness of
statistical procedures to adversarial noise. Research incorporated these robustness cri-
teria with more traditional learning domains (Christmann & Steinwart 2004; Wagner
2004), but generally these techniques have not been widely incorporated within machine
learning and even less so within security. We discuss this area further in the next
section.

To derive secure kernel methods, Russu, Demontis, Biggio, Fumera, & Roli (2016)
leverage results of Xu, Caramanis, & Mannor (2009) on the equivalence of support
vector machine learning, with unregularized hinge-loss minimization under adversar-
ial perturbations with size bounded by the dual norm of the original SVM problem.
They upper-bound change to nonlinear SVM predicted values in terms of the change
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in a datum and the norm through which the change is measured. For sparse evasion
attacks, the authors argue that Laplace kernels are more appropriate for defense, while
for dense attacks the defender should employ the RBF kernel. The authors argue for
choices of regularizer, kernel, and regularization parameters (potentially being class or
example dependent), leveraging the connection between robustness and regularization
parameters. Earlier, Torkamani & Lowd (2014) explored related questions for struc-
tured prediction models, specifically for the case of the structural SVM leveraging the
connection between optimization robust to perturbation and appropriate regularization
of a nonrobust learner. Here the space of structured outputs however is exponentially
large.

Alfeld, Zhu, & Barford (2017) revisit their early work on Causative attacks on autore-
gressive models Alfeld et al. (2016) and consider defensive strategies based on bilevel
optimization where the defender’s action set includes linear projections that define an
ellipse from which the attacker chooses a poisoning attack. By assuming a rational
attacker in a zero-sum game, they frame the defense as a bilevel optimization that
reduces to minimax. More generally the framework operates under discrete action sets.
Under this framework they compute optimal defenses that significantly reduce defender
loss in experiments on futures market datasets.

Another model of adversarial learning is based on the online expert learning set-
ting (Cesa-Bianchi & Lugosi 2006). Rather than designing learners to be robust against
adversarial contamination of well-behaved stationary, stochastic data, techniques here
focus on regret minimization to construct aggregate learners that adapt to completely
adversarial conditions. The objective of regret minimization techniques is to dynami-
cally aggregate the decisions of many experts based on their past performance so that
the composite learner does well with respect to the best single expert in hindsight. We
discuss this set of techniques in Section 3.6.

3.54.3 Robustness

The field of robust statistics explores procedures that limit the impact of a small frac-
tion of deviant (adversarial) training data. In the setting of robust statistics, it is assumed
that the bulk of the data is generated from a known well-behaved stochastic model, but
a fraction of the data comes from an unknown adversarial model—the goal is to bound
the effect of this adversarial data on statistical estimates. There are a number of mea-
sures of a procedure’s robustness: the breakdown point is the level of contamination
required for the attacker to arbitrarily manipulate the procedure, and the influence func-
tion measures the impact of contamination on the procedure. Robustness measures can
be used to assess the susceptibility of an existing system and to suggest alternatives
that reduce or eliminate the vulnerability. Ideally one would like to use a procedure
with a high breakdown point and a bounded influence function. These measures can
be used to compare candidate procedures and to design procedures ") that are opti-
mally robust against adversarial contamination of the training data. Here we summarize
these concepts, but for a full treatment of these topics, refer to the books by Huber
(1981), Hampel et al. (1986), and Maronna et al. (2006).
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To motivate applications of robust statistics for adversarial learning, recall the tra-
ditional learning framework presented in Section 2.2. Particularly, in Section 2.2.4, we
discuss selecting a hypothesis that minimizes the empirical risk. Unfortunately in adver-
sarial settings, assumptions made by the learning model, such as stationarity leading to
this empirical risk minimization, may be violated. Ideally one would hope that minor
deviations from the modeling assumptions would not have a large impact on the opti-
mal procedures that were derived under those assumptions. Unfortunately, this is not
always the case—small adversarial deviations from the assumptions can have a pro-
found impact on many real-world learning procedures. As stated by Tukey (1960),

A tacit hope in ignoring deviations from ideal models was that they would not matter; that sta-
tistical procedures which were optimal under the strict model would still be approximately opti-
mal under the approximate model. Unfortunately, it turned out that this hope was often drasti-
cally wrong; even mild deviations often have much larger effects than were anticipated by most
statisticians.

These flaws can also be exploited by an adversary to mistrain a learning algorithm
even when limited to a small amount of contamination. To avoid such vulnerabilities,
one must augment the notion of optimality to include some form of robustness to the
assumptions of the model; as defined by Huber (1981), “robustness signifies insensitiv-
ity to small deviations from the assumptions.” There is, however, a fundamental tradeoff
between the efficiency of a procedure and its robustness—this issue is addressed in the
field of robust statistics.

The model used to assess the distributional robustness of a statistical estimator H is
known as the gross-error model, which is a mixture of the known distribution Fz and
some unknown distribution Gz parameterized by some fraction of contamination e,

P.(Fz) 2 {(1 —€)Fz +€Gz | Gz € Pz}

where Pz is the collection of all probability distributions on Z. This concept of
a contamination neighborhood provides for the minimax approach to robustness by
considering a worst-case distribution within the gross-error model. Historically, the
minimax approach yielded a robust class of estimators known as Huber estimators.
Further it introduced the concept of a breakdown point e*—intuitively, the smallest
level of contamination where the minimax asymptotic bias of an estimator becomes
infinite.

An alternative approach is to consider the (scaled) change in the estimator H due to
an infinitesimal fraction of contamination. Again, consider the gross-error models and
define a derivative in the direction of an infinitesimal contamination localized at a single
point z. By analyzing the scaled change in the estimator due to the contamination, one
can assess the influence that adding contamination at point z has on the estimator. This
gives rise to a functional known as the influence function and is defined as

H((1 —€)Fz+€eA.)— H (Fz)
€

IF (z; H,Fz) & lirr(l)
€~

where A is the distribution that has all its probability mass at the point z. This
functional was derived for a wide variety of estimators and gives rise to several
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(infinitesimal) notions of robustness. The most prominent of these measures is the
gross-error sensitivity defined as

y*(H,Fz) £ sup |IF (z; H, Fz)|.

Intuitively, a finite gross-error sensitivity gives a notion of robustness to infinitesimal
point contamination.

Research has highlighted the importance of robust procedures in security and learn-
ing tasks. Wagner (2004) observes that common sensor net aggregation procedures,
such as computing a mean, are not robust to adversarial point contamination, and he
identifies robust alternatives as a defense against malignant or failed sensors. Christ-
mann & Steinwart (2004) study robustness for a general family of learning methods.
Their results suggest that certain commonly used loss functions, along with proper reg-
ularization, lead to robust procedures with a bounded influence function. These results
suggest such procedures have desirable properties for secure learning, which we return
to in Section 9.1.

3.6 Repeated Learning Games

In Sections 3.4.1 and 3.5.1, the considered learning games are one-shot games, in which
the defender and attacker minimize their cost when each move happens only once. We
generalize these games to an iterated game, in which the players make a series of K
repetitions of the iterated Causative game with the ultimate aim of minimizing their
total accumulated cost. We assume players have access to all information from previous
iterations of the game, and grant the attacker unspecified (potentially arbitrary) control
of the training data. At each iteration the defender produces a prediction after which it
learns the true label and suffers some loss.

Evaluating the defender’s absolute cumulative cost of playing—the analog of risk
in the stochastic or PAC settings—is impossible due to the strongly adversarial nature
of the data. Instead it is conventional to compare the accumulated cost incurred by
the learner relative to the minimum cost achievable (in hindsight) by any one of M
experts—i.e., a set of classifiers each designed to provide different security properties.
This relative (additive) performance measure is known as regret, since it represents the
regret that the learner feels for not heeding the advice of the best expert in hindsight.
The analogous multiplicative ratio of the learner’s total cost to the minimum total cost
of an expert is the related competitive ratio.

Most commonly, online learners form a composite prediction based on the advice
of the experts. As such, the experts can be seen as providing advice to the defender
(hence their name), who weighs the advice to produce the composite prediction; e.g.,
the aggregate prediction could be a weighted majority of the experts’ predictions (Lit-
tlestone & Warmuth 1994). Further, at the end of each iteration, the defender uses
the newly revealed true label to reweigh each expert based on the expert’s predictive
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performance. No assumption is made about how the experts form their advice or about
their performance; in fact, their advice may be adversarial and may incur arbitrary loss.

By developing algorithms with provable small regret, the composite predictor per-
forms comparably to the best expert without knowing which one will be best a priori.
By designing strategies that minimize regret, online learning provides an elegant mech-
anism to combine several predictors, each designed to address the security problem in
a different way, into a single predictor that adapts relative to the performance of its
constituents—all while facing arbitrarily adversarial data. As a result, the attacker must
design attacks that are uniformly successful on the set of predictors rather than just on
a single predictor because the composite learner can perform almost as well as the best
without knowing ahead of time which expert to follow.

We now delve more deeply into the online learning setting, but for a full description
and several regret minimizing algorithms see Cesa-Bianchi & Lugosi (2006).

As discussed earlier, the learner forms a prediction from the M expert predictions and
adapts its predictor 2% based on their performance during K repetitions. At each step k
of the game, the defender receives a prediction $* from the m™ expert? and makes a
composite prediction $*) via /¥ After the defender’s prediction is made, the true label
y® is revealed, and the defender evaluates the instantaneous regret for each expert; i.e.,
the difference in the loss for the composite prediction and the loss for the m' expert’s
prediction. More formally, the k™ round of the expert-based prediction game follows>:

1 Defender Update function 2% : YM — )
2 Attacker Choose distribution Pg{)
3 Evaluation:
« Sample an instance (x*), y®) ~ PY
+ Compute expert advice {ﬁ(k””)}anl; e.g., pEm = fim (x®)
+ Predict 5 = j®) (p0, k)" pkan)
« Compute instantaneous regret: rkm = ¢ (§®, y®) — ¢ (p&m y®) for each
expertm=1...M

This game has a slightly different structure from the games we presented in
Sections 3.4.1 and 3.5.1—here the defender chooses one strategy at the beginning of
the game and then in each iteration updates the function 2*) according to that strat-
egy. Based only on the past performance of each expert (i.e., the regrets observed over
the previous k& — 1 iterations of the game), the defender chooses an online strategy for
updating 4 at the k™ step of the game to minimize regret (Cesa-Bianchi & Lugosi

2 An expert’s advice may be based on the data, but the defender makes no assumption about how experts
form their advice.

3 We again assume that costs are symmetric for the defender and adversary and are represented by the loss
function. Further, as in Section 2.2.4 we simplify the game to use the surrogate loss function used in place
of a 0-1 loss: Finally, this game is also easily generalized to the case where several instances/labels are
generated in each round.
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2006). The attacker, however, may select a new strategy at each iteration and can con-
trol the subsequent predictions made by each expert based on the defender’s choice for
"o,

Finally, at the end of the game, the defender is assessed in terms of its worst-case
regret R*, which is defined in terms of the cumulative regret R™ with respect to the m'
expert as

K
R(m) A Zr(k,m)
k=1

R* £ max R™. (3.1)

m

If R* is small (relative to K), then the defender’s aggregation algorithm has performed
almost as well as the best expert without knowing which expert would be best. Further,
as follows from the Equation (3.1) and the definition of instantaneous regret, the average
regret is simply the difference of the risk of 2%) and the risk of £, If the average
worst-case regret is small (i.e., approaches 0 as K goes to infinity) and the best expert
has small risk, the predictor 4 also has a small risk. This motivates the study of regret
minimization procedures. A substantial body of research has explored strategies for
choosing 4 to minimize regret in several settings.

Online expert-based prediction splits risk minimization into two subproblems:
(7) minimizing the risk of each expert and (i7) minimizing the average regret; that is,
as if we had known the best predictor f*) before the game started and had simply used
its prediction at every step of the game. The defenses we have discussed approach the
first problem. Regret minimization techniques address the second problem. For certain
variants of the game, there exist composite predictors whose regret is o (K )—that is, the
average regret approaches 0 as K increases. This effectively allows the defender to use
several strategies simultaneously and forces the attacker to design attacks that do well
against them all.

3.6.1 Repeated Learning Games in Security

Thus far the game-theoretic form of online learning outlined earlier has had relatively
little application to security. While naturally aimed at managing a form of worst-case
risk, these techniques have traditionally only been applied to mitigating risk in finance
such as for universal portfolio management (Cover 1991; Helmbold, Singer, Schapire,
& Warmuth 1998; Kalai & Vempala 2002).

There has been slowly growing interest in online learning within the security com-
munity, however. Our work with collaborators at Berkeley and Stanford applies online
learning to develop a reactive risk management strategy for an abstract Chief Infor-
mation Security Officer (CISO) (Barth, Rubinstein, Sundararajan, Mitchell, Song, &
Bartlett 2012). In this game, the CISO must defend against a powerful adversary who
can penetrate the CISO’s organization passing from one state of intrusion to another
(nodes in an attack graph) via various sets of actions (edges or hyperedges in gen-
eral). The defender incurs certain costs when the attacker reaches certain nodes, but
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the defender can apply a limited defense budget to the graph’s edges, forcing a cost
on the attacker proportional to the applied budget. The defender faces a seemingly
up-hill battle, since it is never made aware of the attacker’s node payoffs and is only
made aware of the graph’s structure after it is first attacked. However we show that
under the adaptive CISO, the attacker’s return on investment/profit always approaches
the attacker’s ROI/profit under an optimal (minimax) fixed defensive strategy corre-
sponding to proactive risk management. Further we show that in many realistic settings
the adaptive defender performs significantly better. That is, in an abstract setting reactive
security at worst approaches the performance of proactive security, or at best dominates
it. Our algorithm and analysis draw heavily on existing results in online learning theory.
Within the context of our present secure learning taxonomy, the adversary essentially
aims to achieve Causative Integrity attacks on the defender, although the learner is not
strictly performing binary classification.

Blocki, Christin, Datta, & Sinha (2011) have also applied online learning theory to
security research. Their work proposes a learning-theoretic foundation for audit mech-
anisms, where the notion of regret in online learning theory is applied to define a
desirable property of an adaptive audit mechanism: its cost (consisting of the num-
bers and types of transaction inspections performed and the cost of brand degrada-
tion due to missing violations that are detected by external agencies) should approach
that of a hypothetical auditor employing an optimal fixed strategy. The authors develop
an adaptive audit mechanism that provably asymptotically minimizes regret, with fast
convergence.

Seeding online learning approaches with the results of computing equilibrium
strategies—rather than starting with poor-performing uniformly random policies—is
an idea proposed and explored in Klima, Lisy, & Kiekintveld (2015). Potentially such
hybrid approaches could enjoy the benefits of both communities.

Repeated learning games clearly possess the potential for suggesting useful adaptive
algorithms for security-sensitive settings, where regret minimizing algorithms are suited
to playing against powerful adversaries by design. Existing research is a step in the
right direction, where defenses are designed to stand up against truly active adversaries.
However, more work is needed to apply these ideas to other domains within security,
and empirical research is needed to assess these methods in less idealized real-world
settings.

3.7 Privacy-Preserving Learning

The aim of privacy-preserving learning is to release aggregate statistics, or the results
of machine learning, on a dataset without disclosing local information about individual
data elements. In the language of our taxonomy, privacy-preserving learning should be
robust to Exploratory or Causative attacks which aim to violate Privacy. An attacker
with access to a released statistic, model, or classifier may probe it in an attempt to
reveal information about the training data (an Exploratory Privacy attack); moreover an
attacker with influence over some proportion of the training examples may attempt to
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manipulate the mechanism into revealing information about unknown training exam-
ples (a Causative Privacy attack). In this way the Privacy goal represents an important
extension of the security goals for machine learning systems considered by the taxon-
omy originally proposed by Barreno et al. (2006).

This section outlines the current state of the art in defending against Privacy attacks:
most publicized privacy breaches are not strictly violations of a Privacy goal of an adap-
tive system, but are often linkage attacks or releases of sensitive data following the vio-
lation of a system’s integrity (Narayanan & Shmatikov 2008; Sweeney 2002; Barbaro &
Zeller 2006; Homer, Szelinger, Redman, Duggan, Tembe, Muehling, Pearson, Stephan,
Nelson, & Craig 2008). As intimated earlier, we treat the Privacy goal separately here
from the earlier discussion of misclassification attacks (Integrity or Availability) based
around INFLUENCE and SPECIFICITY. While these axes apply equally well to categorizing
Privacy attacks, the leading formalization for preserving privacy (i.e., defenses) pro-
vides for very strong theoretical guarantees spanning all levels of these axes.

Next we outline the leading measure of privacy preservation known as differential
privacy, discuss how the definition provides for certain quantifiable protections against
both Exploratory and Causative attacks, and describe existing research into the inherent
tradeoffs between a learner’s statistical utility and the level of training data privacy it
provides.

3.71 Differential Privacy

Historically, formal measures for quantifying the level of privacy preserved by a data
analysis or data release have been elusive. Numerous definitions have been proposed
and put aside due to the propositions being of a syntactic rather than semantic nature,
most notably k-anonymity and its variants (Sweeney 2002; Machanavajjhala, Kifer,
Gehrke, & Venkitasubramaniam 2007). However, the concept of differential privacy due
to Dwork et al. (2006) has emerged as a strong guarantee of privacy, with formal roots
influenced by cryptography. This definition has enjoyed a significant amount of interest
in the theory community (Dinur & Nissim 2003; Blum, Dwork, McSherry, & Nissim
2005; Dwork et al. 2006; Dwork 2006; Barak, Chaudhuri, Dwork, Kale, McSherry, &
Talwar 2007; Blum, Ligett, & Roth 2008; Dwork, Naor, Reingold, Rothblum, & Vadhan
2009; Dwork, McSherry, & Talwar 2007; McSherry & Talwar 2007; Kasiviswanathan,
Lee, Nissim, Raskhodnikova, & Smith 2008; Dwork & Yekhanin 2008; Dwork & Lei
2009; Beimel, Kasiviswanathan, & Nissim 2010; Hardt & Talwar 2010; Smith 2011;
Hardt, Ligett, & Mcsherry 2012; Duchi, Jordan, & Wainwright 2013; Bassily, Smith, &
Thakurta 2014) where the general consensus is that the formal definition is meaningful
and appropriately strong, while allowing for statistical learning methods that preserve
the notion of privacy to be of practical use (Rubinstein, Bartlett, Huang, & Taft 2009;
McSherry & Mironov 2009; Barak et al. 2007; Kasiviswanathan et al. 2008; Dinur &
Nissim 2003; Dwork & Yekhanin 2008, Machanavajjhala, Kifer, Abowd, Gehrke, & Vil-
huber 2008; Beimel et al. 2010; Hardt & Talwar 2010; Chaudhuri, Monteleoni, & Sar-
wate 2011; Hardt et al. 2012; Cormode, Procopiuc, Srivastava, Shen, & Yu 2012; Zhang,
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Zhang, Xiao, Yang, & Winslett 2012; Li, Hay, Miklau, & Wang 2014; He, Cormode,
Machanavajjhala, Procopiuc, & Srivastava 2015; Wang, Fienberg, & Smola 2015) .We
now recall the definition of differential privacy before discussing its prevailing features
in the current context of adversarial machine learning. We follow the terminology that
is most common in works on differential privacy and is influenced by roots in statistical
databases research; the parallels to the existing notation and terminology introduced in
Chapter 2 will be clear. A comprehensive treatment of differential privacy is provided
by Dwork & Roth (2014).

A database D is a sequence of rows xV), ..., x™") that are typically binary or real
vectors but could belong to any domain X'. Given access to D, a mechanism M is tasked
with releasing aggregate information about D while maintaining the privacy of individ-
ual rows. In particular we assume that the response M (D) € 7T, is the only information
released by the mechanism. This response could be a scalar statistic on D, such as a
mean, median, or variance, or a model such as the parameters to an estimated joint den-
sity or the weight vector to a learned classifier. We say that a pair of databases D(), D)
are neighbors if they differ on one row. With these definitions in hand we can describe
the following formal measure of privacy due to Dwork et al. (2006).

DEFINITION 3.1 For any € > 0, a randomized mechanism M achieves e-differential
privacy if, for all pairs of neighboring databases D(), D and all measurable subsets
of responses T C 7Ty the mechanism satisfies*

Pr (M (]D(l)) S T) < exp(e)Pr (M (]D(z)) S T) .

To understand this definition, consider a differentially private mechanism M that
preserves data privacy by adding noise to the response of some desired nonprivate
deterministic statistic S(ID), say the average N~' 3" | x® of a sequence of N scalars
xD, ..., x™) The definition compares the distributions of M’s noisy mean responses,
when one scalar x') (a database row) is changed. If the definition holds for privacy
level € < 1, then the likelihood of M responding with noisy mean ¢ on database D is
exceedingly close to the likelihood of responding with the same ¢ on database D with
perturbed x: the mechanism’s response distributions on the two neighboring databases
are pointwise close.

EXAMPLE 3.5 (Private Support Vector Machine Learning)

As a more practical example we have previously studied differentially private mech-
anisms for support vector machine (SVM) learning with collaborators from Berkeley
and Intel (Rubinstein, Bartlett, Huang, & Taft 2009). There the setting is again a private
database on which we wish to perform inference. However, the database is now com-
posed of rows of feature vectors and binary labels, making up a training set of super-
vised binary classification. The desired inference is now the more sophisticated task of

4 The probabilities in the definition are over the randomization of mechanism M, not over the databases,
which are fixed.
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SVM learning (Cristianini & Shawe-Taylor 2000): in the linear case we find a hyper-
plane normal vector that maximizes margin on the training set, and in the nonlinear case
we perform this margin maximization in a high-dimensional feature space induced by
a user-defined kernel function. The mechanism here responds with the weight vector
representing the learned classifier itself; the response is the parameterization of a func-
tion. Our mechanism for linear SVM simply adds Laplace noise to the weight vector,
which we prove achieves differential privacy. For the nonlinear case we first solve lin-
ear SVM in a random feature space with an inner product approximating the desired
kernel before adding noise to the corresponding solution; this first step allows us to
achieve differential privacy even for kernels such as the radial basis function (RBF)
that corresponds to learning in an infinite-dimensional feature space. Another approach
to differentially private SVM learning is due to Chaudhuri et al. (2011), who instead
of adding noise to the solution of SVM learning, randomly perturb the optimization
used for SVM learning itself. We discuss privacy-preserving SVM learning in detail in
Chapter 7.

Numerous other practical algorithms have been made differentially private, including
regularized logistic regression (Chaudhuri & Monteleoni 2009), several collaborative
filtering algorithms (McSherry & Mironov 2009), point estimation (Smith 2011), near-
est neighbor, histograms, perceptron (Blum et al. 2005), range queries over databases
with data structures such as KD trees (Li et al. 2014; He et al. 2015; Cormode et al.
2012), Bayesian probabilistic inference (Dimitrakakis, Nelson, Mitrokotsa, & Rubin-
stein 2014; Zhang, Rubinstein, & Dimitrakakis 2016; Wang et al. 2015), function
release (Zhang et al. 2012; Alda & Rubinstein 2017), and more.

3.7.2 Exploratory and Causative Privacy Attacks

An important observation on differential privacy is that the definition provides for very
strong, semantic guarantees of privacy. Even with knowledge of M up to randomness
and with knowledge of the first N — 1 rows of D, an adversary cannot learn any addi-
tional information on the N row from a sublinear (in N) sample of M (D). The adver-
sary may even attempt a brute-force Exploratory attack with such auxiliary information
and unbounded computational resources:

1 For each possible X consider I = x1, ..., xV =D ™) neighboring database .
« Offline: Calculate the response distribution ppy of M (D) by simulation.

2 Estimate the distribution of M (D) as pp by querying the mechanism repeatedly (a
sublinear number of times).

3 Identify x™) = ™) by the pp most closely resembling pp.

However, for high levels of privacy (sufficiently small €), the sampling error in pp

will be greater than the differences between alternate ppy, and so even this powerful
brute-force exploratory attack will fail with high probability. The same robustness holds
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even in the setting of the analogous Causative attack, where the adversary can arbitrary
manipulate the first N — 1 rows.

3.7.3 Utility despite Randomness

The more a target nonprivate estimator is randomized, the more privacy is preserved, but
at a cost to utility. Several researchers have considered this inherent tradeoff between
privacy and utility.

In our work on differentially private SVM learning (see Chapter 7), we define the util-
ity of our private mechanism to be the pointwise difference between released privacy-
preserving classifiers and nonprivate SVM classifiers. A private classifier (trained on D)
that, with high probability yields very similar classifications to an SVM (trained on D),
for all test points, is judged to be of high utility since it well approximates the desired
nonprivate SVM classifier. Similar notions of utility are considered by Barak et al.
(2007) when releasing contingency tables whose marginals are close to true marginals;
Blum et al. (2008) whose mechanism releases anonymized data on which a class of
analyses yield similar results to the original data; and Kasiviswanathan et al. (2008)
and Beimel et al. (2010) who consider utility as corresponding to PAC learning where
response and target concepts learned on sensitive data are averaged over the underlying
measure. Others such as Chaudhuri & Monteleoni (2009) and Chaudhuri et al. (2011)
measure the utility of a differential private mechanism not by its approximation of a
target nonprivate algorithm, but rather by the absolute error it achieves. In all of these
works, the differentially private mechanism is analyzed with the chosen utility in mind
to produce an upper bound on the utility achieved by that particular mechanism.

Fundamental limits on the tradeoff between differential privacy and utility have also
been of great interest in past work, through negative results (lower bounds) that essen-
tially state that mechanisms cannot achieve both high levels of privacy preservation and
utility simultaneously. In our work on differentially private SVM learning we establish
lower bounds for approximating both linear and RBF SVM learning with any differen-
tially private mechanism, quantifying levels of differential privacy and utility that cannot
be achieved together. Dinur & Nissim (2003) show that if the noise of rate only o (\/ﬁ )
is added to subset sum queries on a database ID of bits, then an adversary can reconstruct
a 1 —o(1) fraction of D: if accuracy is too great, then privacy cannot be guaranteed at
all. Hardt & Talwar (2010) and Beimel et al. (2010) conducted further studies establish-
ing upper and lower bounds for the tradeoff between utility and privacy in respective
settings where the mechanism responds with linear transformations of data and in the
setting of private PAC learning. Generic approaches to establish lower bounds in differ-
ential privacy (for example, using volumetric packing arguments) are summarized by
De (2012).

Moreover it is noteworthy that lower bounds, such as the above in theoretical differen-
tial privacy research, constitute powerful Privacy attacks that achieve guaranteed results
on any privacy-preserving learner.
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While significant progress has been made in achieving differential privacy and util-
ity, understanding connections between differential privacy and learnability Beimel
et al. (2010), algorithmic stability (Rubinstein, Bartlett, Huang, & Taft 2009; Wang,
Lei, & Fienberg 2016), robust statistics (Dwork & Lei 2009), and even mechanism
design (McSherry & Talwar 2007), many open problems remain in finding more com-
plete understandings of these connections, making practical learning algorithms differ-
entially private, and understanding the tradeoff between privacy and utility.

https://doi.org/10.1017/9781107338548.003 Published online by Cambridge University Press


https://doi.org/10.1017/9781107338548.003

