
3 Statistical models in speech and
language processing

This chapter focuses on basic statistical models (Gaussian mixture models (GMM), hid-
den Markov models (HMM), n-gram models and latent topic models), which are widely
used in speech and language processing. These are well-known generative models, and
these probabilistic models can generate speech and language features based on their
likelihood functions. We also provide parameter-learning schemes based on maximum
likelihood (ML) estimation which is derived according to the expectation and maximiza-
tion (EM) algorithm (Dempster et al. 1976). Basically, the following chapters extend
these statistical models from ML schemes to Bayesian schemes. These models are fun-
damental for speech and language processing. We specifically build an automatic speech
recognition (ASR) system based on these models and extend them to deal with different
problems in speaker clustering, speech verification, speech separation and other natural
language processing systems.

In this chapter, Section 3.1 first introduces the probabilistic approach to ASR, which
aims to find the most likely word sequence W corresponding to the input speech feature
vectors O. Bayes decision theory provides a theoretical solution to build up a speech
recognition system based on the posterior distribution of the word sequence p(W|O)
given speech feature vectors O. Then the Bayes theorem decomposes the problem
based on p(W|O) into two problems based on two generative models of speech features
p(O|W) (acoustic model) and language features p(W) (language model), respectively.
Therefore, the Bayes theorem changes the original problem to these two independent
generative model problems.

Next, Section 3.2 introduces the HMM with the corresponding likelihood function
as a generative model of speech features. The section first describes the dis-
crete HMM, which has a multinomial distribution as a state observation distribution,
and Section 3.2.4 introduces the GMM as a state observation distribution of the con-
tinuous density HMM for acoustic modeling. The GMM by itself is also used as a
powerful statistical model for other speech processing approaches in the later chapters.
Section 3.3 provides the basic algorithms of forward–backward and Viterbi algorithms.
In Section 3.4, ML estimation of HMM parameters is derived according to the EM algo-
rithm to deal with latent variables included in the HMM efficiently. Thus, we provide
the conventional ML treatment of basic statistical models for acoustic models based on
the HMM.

From Section 3.6, we go on to describe statistical language models as a genera-
tive model of language features. As a standard language model, we introduce n-gram
models. Similarly to the HMM parameters, the n-gram parameters are also calculated

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

54 Statistical models in speech and language processing

by using the ML estimation. However, ML solutions to n-gram parameters are easily
overestimated due to the intrinsic sparse data problems in natural languages. Therefore,
the section also describes conventional (rather heuristic) smoothing techniques. Some
of the smoothing techniques introduced here are revisited in later chapters to be inter-
preted as the Bayesian approach, where a Bayesian principle provides these smoothing
techniques to regularize these models. In addition, it is well known that the number of
n-gram parameters is exponentially increased with large n, which makes it impossible
to model a whole document structure within the n-gram model.

Section 3.7 provides another generative model of language features, called the latent
topic model, which deals with a statistical treatment of a document model. The section
also discusses a way of combining such document models and n-gram models.

Finally, following the discussions of statistical acoustic and language models,
Section 3.8 provides an example of applying the Bayesian approach to ASR, as a
case study. The section provides an exact Bayesian manner of formulating the stan-
dard statistical model (HMM) in ASR, and introduces the posterior distributions of the
variables used in acoustic models. The section points out the problem arising mainly
due to the posterior distributions, which can be solved in the later chapters.

3.1 Bayes decision for speech recognition

This section describes a statistical speech recognition framework as an example of
speech and language processing based on the Bayes decision theory. Before the Bayes
decision discussion, we first introduce general speech recognition briefly.

Automatic speech recognition aims to extract helpful text information from speech
signals, where both speech and text are represented by sequential patterns. These pat-
terns correspond to the time-series signals which are observed in sequences of random
variables. Speech recognition is processed in a temporal domain. There are some other
technical data, e.g., music signal, video signal, text document, seismic signal, gene
sequence, EEG signal, ECG signal, financial data, which are also collected in a time
domain. The sequential pattern property is unique and different from data analysis
in a spatial domain for general image processing and spectral signal processing. In
general, speech and text data are driven under some specialized stochastic process
and probabilistic model, e.g., HMMs (Rabiner & Juang 1986) are used to represent
speech signals and n-gram models are used to characterize word sequences. In front-end
processing, speech signals are first chunked into different time frames t with frame
length 25 ms and then transformed to a sequence of speech feature vectors by using
mel-frequency cepstral coefficients (MFCCs) (Davis & Mermelstein 1980) or percep-
tual linear prediction (PLP) coefficients (Hermansky 1990). Each feature vector ot is
regarded as a random vector consisting of entries with continuous value. However,
the nth word wn in a word sequence is a discrete value or label among all words
in a dictionary V with vocabulary size |V|. Thus, speech recognition, which involves
acoustic and language models, handles the modeling of continuous data as well as
discrete data.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.1 Bayes decision for speech recognition 55

Now we provide a mathematical notation for a speech recognition problem, which
recognizes a speech utterance and outputs the corresponding word sequence in the
utterance. Let ot ∈ R

D be a D dimensional feature vector at frame t, and O = {ot|t =
1, · · · , T} be a speech feature sequence for T frames of one utterance. The number of
dimensions (D) is usually 39, which consists of 12 dimensional MFCCs + log power,
with delta and delta delta coefficients (Furui 1981). On the other hand, the correspond-
ing word sequence is represented by W = wN

1 = {wn|n = 1, · · · , N}. Here, wn ∈ V is
the nth word in this word sequence with N words. The continuous-valued speech feature
sequence O and the discrete-valued word sequence W are sequential patterns in an auto-
matic speech recognition system. Based on the mathematical notations of the speech
feature and word sequences, the Bayes decision theory is introduced to find a decision
rule or mapping function d(·) which maps an input feature sequence O into an output
word sequence W by

W = d(O). (3.1)

A popular decision rule is designed to find the most likely word sequence Ŵ corres-
ponding to input feature sequence O based on the maximum a-posteriori (MAP)
decision rule,

Ŵ = dMAP(O) � arg max
W

p(W|O), (3.2)

where p(W|O) is the posterior distribution of W given O. The posterior distribution is
often rewritten as

Ŵ = dMAP(O) = arg max
W

p(O|W)p(W)

p(O)

= arg max
W

p(O|W)︸ ︷︷ ︸
acoustic model

× p(W)︸ ︷︷ ︸
language model

. (3.3)

The probabilistic product rule decomposes the posterior distribution into likelihood
function p(O|W) and prior probability p(W) based on acoustic model and language
model, respectively. This is a well-known process, called the noisy channel model,
that can deal with a speech recognition problem based on acoustic and language mod-
els. The same scheme of decomposition of this decision rule is widely used for other
speech and language processing including machine translation (Brown, Cocke, Pietra
et al. 1990, Brants, Popat, Xu et al. 2007), spell correction (Brill & Moore 2000), and
voice conversion (Saito, Watanabe, Nakamura et al. 2012).

However, it is more general to follow a Bayesian perspective for pattern recogni-
tion and fulfil an optimal Bayes decision to estimate the decision rule d̂(O) of an input
sentence O by minimizing the expected loss function or Bayes risk, which is defined by
Lee & Huo (2000) as a functional of the decision rule:

r[d] � E(W,O)[�(W, d(O))]

=
∑
W

∫
�(W, d(O))p(W, O)dO

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

56 Statistical models in speech and language processing

=
∫

p(O)

(∑
W

�(W, d(O))p(W|O)

)
dO

=
∑
W

p(W)
∫

�(W, d(O))p(O|W)dO, (3.4)

where E(W,O)[·] denotes the expectation function over joint distribution p(W, O). For the
later derivations, Eq. (3.4) provides the two equivalent equations in the third and fourth
lines by using the product rule. The loss function satisfies this property:

0 ≤ �(W, d(O) = W) ≤ �(W, d(O) �= W), (3.5)

meaning that the loss due to misclassification d(O) �= W is larger than or equal to the
loss without misclassification d(O) = W. Therefore, the optimal decision rule d̂(O)
can be obtained by minimizing the Bayes risk, which corresponds to minimizing the
expected loss function.

Bayes risk is expanded into two expressions, which are shown in the third and fourth
equations in the right-hand-side of Eq. (3.4). Following the third equation in Eq. (3.4),
we find that Bayes decision rule is equivalent to dealing with a minimization problem:

min
d∈D

r[d] = min
d∈D

∫
p(O)

(∑
W

�(W, d(O))p(W|O)

)
dO. (3.6)

Here D denotes a set of all possible decision functions. This optimization can be solved
by minimizing the expression in the brackets in the above equation, since the deci-
sion rule function does not depend on O in general. This minimization is satisfied by
considering the following optimal decision rule given any O:

d̂(O) = arg min
d(O)∈D

∑
W

�(W, d(O))p(W|O)

= arg min
d(O)∈D

E(W)[�(W, d(O))|O]. (3.7)

That is, finding the optimal decision rule d̂(O) in terms of minimizing the expected loss
(in Eq. (3.4)) is equivalent to finding the optimal decision rule function in terms of the
expected loss function given O.

In Goel & Byrne (2000) and Chien, Huang, Shinoda et al. (2006), a minimum Bayes
risk (MBR) classification was proposed to fulfil an optimal Bayes decision in Eq. (3.7)
for automatic speech recognition by using a predefined loss function. In Goel & Byrne
(2000), the word error rate (WER) loss function �WER(W, O) was calculated using Lev-
enshtein distance between word sequence hypotheses. This function was used to build
an MBR decision rule:

dMBR(·) = arg min
d(·)
∑
W

p(W)

×
∫

�WER(W, d(O))p(O|W)dO, (3.8)

which is derived according to the fourth equation in the right-hand-side of Eq. (3.4).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.1 Bayes decision for speech recognition 57

More popularly, a meaningful loss function for speech recognition is simply specified
by a so-called zero-one loss function which treats misclassification of each observation
sample O equally, namely by using

�01(W, d(O)) =
{

0 if correctly classified or d(O) = W
1 if wrongly classified or d(O) �= W.

(3.9)

Substituting Eq. (3.9) into the fourth line in Eq. (3.4) leads to zero-one Bayes risk:

r01[d] =
∑
W

p(W)
∫

d(O)�=W
�01(W, d(O))p(O|W)dO

+
∑
W

p(W)
∫

d(O)=W
�01(W, d(O))p(O|W)dO

=
∑
W

p(W)
∫

d(O)�=W
p(O|W)dO. (3.10)

In the third line of Eq. (3.10), the expectation operation using zero-one loss function
r01(d(·)) is calculated over all observations which are wrongly classified, i.e., d(O) �= W.
This loss function corresponds to unconditional error probability, which is reasonable to
act as a measure of goodness of the decision rule for speech recognition.

In addition, Eq. (3.10) is further rewritten as

r01[d] =
∑
W

p(W)

(
1−

∫
d(O)=W

p(O|W)dO
)

= 1−
∑
W

∫
d(O)=W

p(W)p(O|W)dO (3.11)

by using the following properties: ∑
W

p(W) = 1, (3.12)

∫
p(O|W)dO = 1. (3.13)

The resulting decision rule d01(·) follows the minimum classification error criterion
which leads to the MAP decision rule as addressed in Eq. (3.2), i.e.,

Ŵ = d01(O) = dMAP(O) = arg max
W

p(W|O). (3.14)

The most likely word sequence Ŵ is found so as to achieve the highest posterior
probability for correctly classified observation sequence d(O) = W.

Using an MAP decision rule, the probability measure p(O|W) calculates how likely
the acoustic observation sequence O is, based on the word sequence hypothesis W. We
also name p(O|W) as the acoustic likelihood function. There are many kinds of acoustic
models which are assumed in calculation of the statistical model p�(O|W) based on
a set of acoustic parameters �. In this chapter, the hidden Markov model (HMM) is
considered for acoustic modeling and the HMM parameters � are plugged into the

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

58 Statistical models in speech and language processing

probability measure estimator p̂�(O|W). On the other hand, the probability measure
p(W) is defined as the prior probability of word sequence W. This measure calculates
the joint probability for a sequence of words based on a set of multinomial parameters or
n-gram parameters �. The plug-in language model p̂�(W) is determined as a language
model estimator. Here, acoustic parameters and linguistic parameters are both included
in model parameters �. For an automatic speech recognition (ASR) system, we will
estimate the acoustic parameters and the linguistic parameters from a set of training
utterances O and their word transcriptions W according to the Maximum Likelihood
(ML) estimation. We assume that these plug-in models {p̂�(O|W), p̂�(W)} given ML
parameters � are true. The prediction of new test utterance O based on the estimated
MAP decision rule d̂MAP(O) is performed by

d̂MAP(O) = arg max
W

p̂(W|O)

= arg max
W

p̂�(O|W)p̂�(W). (3.15)

However, the point estimates of the ML-based acoustic model and language model �
from the given observation space �o using the collected training data may not generalize
well for the unknown test data outside the training space �o. The distributions p(O|W)
and p(W) may not be correctly assumed or may be over-trained or under-trained. From
a Bayesian perspective, these issues could be tackled by treating acoustic parameters
and linguistic parameters � as random variables. Consideration of these uncertainties is
helpful for recognition of new test data. For this consideration, the expected loss function
in Eq. (3.4) is calculated by additionally marginalizing over continuous parameters �:

rBPC(d(·)) = E(W,O,�)[�(W, O,�)]. (3.16)

The Bayesian predictive classification (BPC) rule,

dBPC(·) = arg min
d(·)∈�d

rBPC(d(·)), (3.17)

(Jiang, Hirose & Huo 1999, Huo & Lee 2000, Lee & Huo 2000, Chien & Liao 2001) was
proposed to establish a robust decision rule for unknown test speech. The zero-one loss
function �01(·) was applied in previous studies on the BPC rule. Details of BPC-based
speech recognition will be addressed in Section 6.3.

In addition, Bayes decision theory was developed to estimate the discriminative
acoustic model for speech recognition (Juang & Katagiri 1992). The idea is to minimize
the expected loss function based on the logistic sigmoid function,

�(dk(O,�)) = 1

1+ exp−αdk(O,�)
, (3.18)

which is a function of misclassification measure defined as

dk(O,�) =−gk(O;�)

+ log

⎛⎝ 1

K − 1

∑
j,j �=k

exp(gj(O;�))

⎞⎠ . (3.19)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 59

Figure 3.1 Graphical model of HMM without model parameters.

In Eq. (3.18), α is a tuning parameter and the misclassification measure of
phone class Ck from training data O= {ot} is calculated by measuring the distance
between the discriminant functions gk(O,�) of the target phone ot ∈ Ck and its
competing phones ot /∈ Ck. The discriminant function of competing phones is aver-
aged over all phones except the target phone. The discriminative acoustic model
was trained according to the minimum classification error (MCE) criterion which is
closely related to the minimum Bayes risk for optimal Bayes decision (Juang & Katagiri
1992).

3.2 Hidden Markov model

The previous section describes the Bayes decision theory and introduces acoustic model
p(O|W) and language models p(W). This section describes hidden Markov models
(HMMs) (Rabiner & Juang 1986) (Figure 3.1) as a standard statistical acoustic model
in detail. Before describing the HMM in detail, we first explain what HMM represents
in speech recognition.

3.2.1 Lexical unit for HMM

The acoustic model p(O|W) means that we provide a likelihood function of the obser-
vations O given the word sequence W. However, since the number of all possible word
sequences is an exponential order, we cannot prepare a likelihood function for each word
sequence. Instead, we first introduce a lexical sequence L = {lm ∈ L|m = 1, · · · , M}
that is composed of phonemes (e.g., /a/,/k/), context-dependent phonemes (e.g., /a/-
/k/-/i/,/a/-/k/-/a/), or words (e.g., numbers, commands) as lm. A discussion about the
context-dependent phoneme (allophone) unit can be found in Section 6.5. We usually
use a phoneme unit defined by linguistics, and the automatic discovery of the phoneme
unit from speech data by using Bayesian nonparametrics can be found in Section 8.4.
The definition of the lexical unit depends on application, but the standard acoustic model
for LVCSR uses (context-dependent) phonemes as a lexical unit, and hereinafter in
this chapter, we use phonemes to define a lexical unit. Then, L is a set of all distinct
phonemes.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

60 Statistical models in speech and language processing

By using the lexical sequence L, we can revisit the MAP decision rule in Eq. (3.15)
for ASR as follows:

dMAP(O) = arg max
W

p(W|O)

= arg max
W

p(O|W)p(W)

= arg max
W

∑
L

p(O, L|W)p(W). (3.20)

By using the product rule, and assuming that the likelihood function only depends on
the lexical sequence L, it is rewritten as:

dMAP(O) = arg max
W

∑
L

p(O|L, W)p(L|W)p(W)

≈ arg max
W

∑
L

p(O|L)p(L|W)p(W), (3.21)

where p(L|W) is called a lexical model. Usually, the lexical model is not a probabilistic
model, but is obtained deterministically by using a lexical dictionary, which provides a
phoneme sequence (or multiple phoneme sequences) given a word. We further assume
that the alignment of O for phoneme lm is already given. This means that O is segmented
to Om = {otm−1+1, · · · , otm} where t0 = 0, tM = T , and {tm}M−1

m=1 is given.1

By assuming that Om is independent and identically distributed (iid) for phoneme lm,
the acoustic model is factorized by m as:

p(O|L) =
M∏

m=1

p(Om|lm). (3.22)

This p(Om|lm) is an actual likelihood function that we deal with for ASR, and is rep-
resented by an HMM. Therefore, the acoustic model is composed of |L| HMMs where
|L| denotes the number of distinct phonemes. The following section explains the HMM
for one phoneme, and omits phoneme lm in the explanation. In addition, since the align-
ment is already given, we omit the segmentation information m based on tm, and use
O = {ot ∈ R

D|t = 1, · · · , T} instead of Om to be modeled by an HMM.

3.2.2 Likelihood function of HMM

This section describes a likelihood function of the HMM for a phoneme, where the
HMM is a popular formalism for representation of sequential patterns. The likelihood
function defined here is used to estimate HMM parameters.

In a set of D dimensional continuous-valued speech feature vectors O, each observa-
tion ot is represented under a Markov state st as illustrated in Figure 3.1. We assume

1 In the actual search (arg maxW) process in Eq. (3.21), this alignment information is not fixed, and is
searched at the same time. Many techniques have been developed to efficiently search this huge space
considering the lexicon and word sequences (e.g., Ney, Haeb-Umbach, Tran et al. (1992) and weighted
finite state transducer (WFST) based techniques (Mohri, Pereira & Riley 2002, Hori & Nakamura 2013)).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 61

that each speech frame ot is independent conditionally on its state label st. Starting from
the state at the first time frame with an initial state probability πs1 , which is a model
parameter of HMM,

p(s1) � πs1 , (3.23)

where each state at time t depends on the state at its previous time t − 1. The state
transition probability

p(st|st−1) � ast−1st (3.24)

is also introduced as HMM parameters to drive the change of HMM states or equiva-
lently characterize the transition of acoustic events under a phone unit. The parameters
of initial state probabilities and state transition probabilities should satisfy the following
constraints:

J∑
j=1

πj = 1,
J∑

j=1

aij = 1, ∀i (3.25)

respectively. A sequence of hidden states S = {st ∈ {1, · · · , J}|t = 1, · · · , T} corre-
sponding to a sequence of observations O is marginalized in calculation of likelihood
function. HMMs basically involve a doubly stochastic process. One is for the observed
speech frame sequence O and the other is for the corresponding HMM state sequence
S, which is not observed and is regarded as a latent variable. The model which includes
a latent variable is called the latent model.

Since S is not observed, the likelihood function of O is given by the summation of
the joint distribution of O and S over all possible state sequences conditioned on a set of
HMM parameters �:

p(O|�) =
∑
S∈S

p(O, S|�). (3.26)

S denotes a set of all possible state sequences, which is often omitted when it is trivial.
Note that the summation over all possible state sequences requires the exponential order
of computations, which is not feasible in a practical use. The joint distribution p(O, S|�)
is also called complete data likelihood, where a set of observed data and latent variables
({O, S}) is called complete data. The joint distribution (complete data likelihood) is a
useful representation to provide approximate solutions for the latent model (Dempster
et al. 1976, Huang, Ariki & Jack 1990). Therefore, we focus on the joint likelihood
function of the HMM.

By using the product rule, the joint distribution in Eq. (3.26) is decomposed into
the likelihood function p(O|S,�) given the state sequence S, and the state sequence
probability P(S|�) as follows:

p(O, S|�) = p(O|S,�)p(S|�). (3.27)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

62 Statistical models in speech and language processing

Since ot is independent and identically distributed (iid) given the state sequence S =
{s1, · · · , ST}, the likelihood function p(O|S,�) is represented as follows:

p(O|S,�) =
T∏

t=1

p(ot|�st). (3.28)

Here, �j is a set of state-dependent HMM parameters, where j is the index of the HMM
state. Similarly, the state sequence probability P(S|�) given the state sequence S =
{s1, · · · , ST} can be represented by the initial probability in Eq. (3.23) and transition
probabilities in Eq. (3.24), as follows:

p(S|�) = πs1

T∏
t=2

ast−1st . (3.29)

Thus, by substituting Eqs. (3.28), (3.29), and (3.27) into Eq. (3.26), we can obtain the
following equation:

p(O|�) =
∑

S={st}∈S

(
πs1 p(o1|�s1)

T∏
t=2

ast−1st p(ot|�st)

)
. (3.30)

This is the basic equation of the likelihood function of the HMM with the parameter
� = {{πj}Jj=1, {{aij}Jj=1}Ji=1, {�j}Jj=1}. p(ot|�j) is called the emission probability, and
can be any distribution of ot.

If we use discrete values as observations for ot, the emission probability of the
HMM is represented by a multinomial distribution. This HMM is called a dis-
crete HMM (DHMM). In the DHMM, the HMM parameters are formed as � =
{{πj}Jj=1, {{aij}Jj=1}Ji=1, {{bjk}Kk=1}Jj=1} where the emission probabilities of the discrete
observation values k given state j are represented as the multinomial distribution param-
eter bjk. Assuming that the vector space of observations O = {ot} in state j is partitioned
into K subspaces by clustering or vector quantization, we express the state observation
probability bjk using the probability p(ot ∈ Ck|�j), which is constrained by the property

K∑
k=1

p(ot ∈ Ck|�j) =
K∑

k=1

bjk = 1. (3.31)

Here Ck denotes a set of discrete feature vectors that belongs to a partitioned subspace
k. This partition is undertaken by using Vector Quantization (VQ) techniques.

Historically, DHMM was first used for speech modeling with the VQ techniques
(Matsui & Furui 1994, Jelinek 1997). However, since the speech feature vector is a
continuous value, the Gaussian distribution or the mixture of Gaussian distributions is
often used for an acoustic model. That is, an acoustic model, which dealt with discrete
observation values obtained from VQ codes, was shifted to so-called continuous density
HMM (CDHMM), where the HMM with Gaussian distribution based emission prob-
abilities could model continuous observation values more appropriately. CDHMM is
described in the next section.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 63

3.2.3 Continuous density HMM

For the HMM framework addressed in Section 3.2, the state observation probability
p(ot|�j) is calculated according to the type of observation data. When using discrete
observation symbols, each observation vector ot ∈ Ck is simply represented by a code-
book partition k which is determined through vector quantization over the vector space
of all training samples O. Nonetheless, the representation of a high dimensional fea-
ture vector ot ∈ R

D based on a set of discrete codebook labels is not adequate to
fully reflect the randomness of the observation vector. More generally, we calculate
the probability density function (pdf) of the observation vector ot given an HMM state
st = j to determine the state observation probability p(ot|�j). It is popular to represent
the randomness of continuous-valued ot using the multivariate Gaussian distribution
N (ot|μj, �j) defined in Appendix C.6 as:

p(ot|�j) = N (ot|μj, �j)

� 1

(2π)D/2|�j|1/2
exp

(
−1

2
(ot − μj)

ᵀ�−1
j (ot − μj)

)
, (3.32)

with state-dependent mean vector μj ∈ R
D and covariance matrix �j ∈ R

D×D.
However, a single Gaussian distribution is insufficient to represent the state-dependent

observation space for an HMM state j because there are large amounts of training data
collected from varying speakers with different genders, ages, accents, speaking rates,
channel distortions and background noises, which are used to train the parameters of
individual HMM states. Accordingly, a Gaussian mixture model (GMM) is adopted to
represent the state-dependent observation space. This is based on a set of Gaussian dis-
tributions which reflect the variations of speech feature vectors within an HMM state
due to various acoustic conditions. The state observation probability density function
of a feature vector ot at time t and in state j is expressed by GMM with K mixture
components:

p(ot|st = j,�j) =
K∑

k=1

p(ot, vt = k|st = j,�j)

=
K∑

k=1

p(vt = k|st = j,�j)p(ot|st = j, vt = k,�j)

=
K∑

k=1

ωjkN (ot|μjk, �jk). (3.33)

In Eq. (3.33), each mixture component of state j is expressed by a Gaussian distribution:

p(ot|st = j, vt = k,�j) = N (ot|μjk, �jk)

� 1

(2π)D/2|�jk|1/2
exp

(
−1

2
(ot − μjk)ᵀ�−1

jk (ot − μjk)

)
,

(3.34)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

64 Statistical models in speech and language processing

and the prior probability of a mixture component vt = k is defined as a mixture weight,

p(vt = k|st = j,�j) � ωjk. (3.35)

The state-dependent GMM parameters {ωjk, μjk, �jk}Kk=1 consist of mixture weights ωjk,
mean vectors μjk, and covariance matrices �jk for K Gaussian mixture components. The
resulting realization of HMM using GMM as state observation probability is also called
the continuous density HMM (CDHMM). The CDHMM parameters are formed as

� � {{πj}Jj=1, {{aij}Jj=1}Ji=1, {{ωjk, μjk, �jk}Kk=1}Jj=1}, (3.36)

with an additional constraint on the prior probability of mixture components or the
mixture weights.

Typically, HMM covariance matrices are assumed to be diagonal in practical imple-
mentation, i.e., �jk = diag(�jk1, · · · ,�jkd, · · · ,�jkD). Note that this book uses � to
represent a diagonal component of covariance, or variance when D = 1. Then, the diag-
onal covariance version of Eq. (3.34) is factorized to the univariate Gaussian distribution
(Appendix C.5) by the dimension index d as follows:

p(ot|st = j, vt = k,�j) =
D∏

d=1

N (otd|μjkd,�jkd)

�
D∏

d=1

1

(2π)1/2(�jkd)1/2
exp

(
− 1

2�jkd
(otd − μjkd)2

)
. (3.37)

This diagonal covariance representation can represent the distribution with all scalar
variables, which makes the calculation very simple compared with the vector and matrix
representation in the multivariate Gaussian distribution in Eq. (3.34). In addition, the
number of parameters for the covariance matrix is reduced from D ∗ (D + 1)/2 to D,
which can reduce the computational and memory costs. The full covariance Gaussian in
Eq. (3.34) also requires computation of the inverse and the determinant of the covariance
matrix (�−1

jk and |�jk|), which makes the computation numerically unstable in addi-
tion to incurring the matrix computation cost. However, the speech feature vectors have
correlations over dimensions, and the diagonal covariance assumption is not adequate.
There are more sophisticated models such as the subspace mean and variance meth-
ods, aiming to bridge the gap between full and diagonal covariance modeling, which
have been proposed (Gales 1999, Axelrod, Gopinath & Olsen 2002). In this book, we
keep the vector and matrix representation for the multivariate Gaussian distribution for
generality.

Based on the above likelihood discussion of the CDHMM for single observation vec-
tor ot given HMM state st = j at frame t, we consider the marginal likelihood for a whole
observation sequence O. Under CDHMM, we have an additional latent variable vt = k
from the mixture component of GMM for each speech frame ot at time t, compared with
Eq. (3.30). Thus, the sequence of mixture components

V � {vt ∈ {1, · · · , K}|t = 1, · · · , T}, (3.38)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 65

corresponding to the sequence of observed speech frames O = {ot|t = 1, · · · , T}, is
introduced in estimation of HMM parameters in addition to S = {st ∈ {1, · · · , J}|t =
1, · · · , T}. Considering two sets of latent variables S and V , we consider the likeli-
hood function of the CDHMM by following the formulation in Section 3.2.2. First,
the marginal likelihood function of the CDHMM is represented as the joint distribution
p(O, S, V|�):

p(O|�) =
∑
S,V

p(O, S, V|�), (3.39)

where all possible state sequences S and mixture component sequences V are consid-
ered in calculation of the marginal distribution. The joint distribution p(O, S, V|�) is
also called the complete data likelihood, as we discussed in Eq. (3.26) with additional
latent variable V . This equation is further decomposed by using the product rule as
follows:

p(O, S, V|�) = p(O|S, V ,�)p(V|S,�)p(S|�). (3.40)

We provide an actual distribution for each probabilistic function.
Since the distributions p(S|�) are given in Eq. (3.29), we focus on p(V|S,�) and

p(O|S, V ,�). Since vt only depends on st, given the state sequence S = {s1, · · · , ST},
p(V|S,�), it is represented by the factorized form with frame t as follows:

p(V|S,�) =
T∏

t=1

p(vt|st,�) =
T∏

t=1

ωstvt . (3.41)

Similarly, from Eq. (3.34), p(O|S, V ,�) is also represented by the factorized form with
frame t given S and V as:

p(O|S, V ,�) =
T∏

t=1

p(ot|st, vt,�)

=
T∏

t=1

N (ot|μstvt
, �stvt). (3.42)

Thus, by substituting Eqs. (3.29), (3.41), and (3.42) into Eq. (3.40), the complete data
likelihood function of the CDHMM is represented as

p(O, S, V|�) = πs1ωs1v1N (o1|μs1v1
, �s1v1)

(
T∏

t=2

ast−1stωstvtN (ot|μstvt
, �stvt)

)
.

(3.43)
Thus, the marginal likelihood of the CDHMM is extended from Eq. (3.30) as

p(O|�) =
∑
S,V

πs1ωs1v1N (o1|μs1v1
, �s1v1)

(
T∏

t=2

ast−1stωstvtN (ot|μstvt
, �stvt)

)
. (3.44)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

66 Statistical models in speech and language processing

This is the basic equation of the likelihood function of the CDHMM with the parameter
� = {{πj}, {aij}, {ωjk}, {μjk}, {�jk}}. As we discussed in the previous section, the sum-
mation over all possible state and mixture component sequences requires an exponential
order of computations, which is not tractable in practical use. Section 3.3 describes
how to efficiently compute the marginal likelihood by using the forward and back-
ward algorithms, and most probable state sequence based on the Viterbi algorithm.
Section 3.4 also describes how to estimate the HMM parameters � efficiently based
on these algorithms and the expectation and maximization algorithm.

Before moving to these explanations, as a subset model of the CDHMM, we introduce
a simple GMM without an HMM, which is also widely used in speech and language
processing.

3.2.4 Gaussian mixture model

The GMM is a simplified model of the CDHMM, without considering the state sequence
S in the previous section. However, this simple GMM is still very powerful for modeling
speech features. For example, the GMM is used in speech and noise models in speech
enhancement, and in speaker models in speaker verification and clustering, which are
discussed in Section 4.6. The GMM can also be widely used to model other signals than
speech, e.g., image processing, and biosignals. Therefore, this section only introduces
the marginal likelihood of a GMM to be used in later chapters, similar to that of the
CDHMM in Eq. (3.44):

p(O|�) =
∑

V

p(O, V|�) =
∑

V

p(O|V ,�)p(V|�)

=
∑

V

T∏
t=1

p(ot|vt,�)p(vt|�)

=
T∏

t=1

K∑
vt=1

ωvtN (ot|μvt
, �vt), (3.45)

with the parameter � = {{ωk}, {μk}, {�k}}. Since vt is independent of vt′ �=t in a GMM,
the sequential summation over V is independently applied to each p(ot|vt,�)p(vt|�). So,
we can factorize p(O|�) into the following tth frame distribution given the kth mixture
component :

p(ot|vt = k,�) = N (ot|μk, �k)

p(vt = k|�) = ωk. (3.46)

Thus, unlike the HMM case that needs to consider the HMM state sequence S (compu-
tation based on an exponential order for the frame length), the GMM can compute the
likelihood of all possible V by using the straightforward computation of Eq. (3.45) with
the linear order computation of the frame length. As regards the parameter estimation,
the EM algorithm is widely used, and this is discussed in Section 3.4.

Figure 3.2 illustrates a univariate GMM distribution p(o) = 1
3N (o|μ1 = 2,�1 =

36) + 1
3N (o|μ2 = 30,�2 = 64) + 1

3N (o|μ3 = 45,�3 = 16) which is plotted with

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 67

Figure 3.2 Distributions of three individual Gaussians (dashed line) and the corresponding GMM (solid
line).

a dashed line and is formed as a mixture of three Gaussian distributions with different
means {μ1,μ2,μ3} and variances {�1,�2,�3}, which are shown with a solid line. As
shown in the figure, the GMM is a multi-modal distribution with multiple peaks, which
can model multiple factors in speech features. Therefore, the GMM can accurately
represent speech variations that cannot be represented by a single Gaussian distribution.

3.2.5 Graphical models and generative process of CDHMM

The previous sections explain the marginal likelihood functions of the GMM and
CDHMM based on their joint likelihood distributions. As we discussed in the graph-
ical model representation in Section 2.2, once we obtain the joint likelihood distribution
of a model, we can obtain the corresponding graphical model and generative process
of the model. This section provides the graphical model and generative process of the
GMM and CDHMM, respectively, and these are used in the following chapters to deal
with these models by using the Bayesian approach.

Graphical models and generative process of GMM

Based on the previous explanations, we can provide a generative process and graphical
model of a K-component GMM discussed in Section 3.2.4 as an example. Given fea-
ture vectors O, latent variables V , and model parameters �, the joint distribution of a
complete data set {O, V} is represented from Eq. (3.45) as follows:

p(O, V|�) =
T∏

t=1

p(ot|vt,�)p(vt|�). (3.47)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

68 Statistical models in speech and language processing

Figure 3.3 Graphical model of Gaussian mixture model.

Thus, the joint distribution of the GMM is parameterized as

p(O, V|�) =
T∏

t=1

ωvtN (ot|μvt
, �vt). (3.48)

Thus, we have the following three kinds of variables:

• Observation: O = {o1, · · · , oT};
• Latent: V = {v1, · · · , vT};
• Non-probabilistic: � = {ωk, μk, �k}Kk=1.

The dependencies of the above variables are expressed in Eq. (3.48), and we provide the
generative process of the GMM in Algorithm 2. Given the mixture weight ωvt , latent
variable vt is sampled from the multinomial distribution.

In addition, by using the plate for t and k, as discussed in Section 2.2.2, we can simply
write the graphical model of the GMM, as shown in Figure 3.3.

Algorithm 2 Generative process of Gaussian mixture model

Require: T , {ωk, μk, �k}Kk=1
1: for t = 1, · · · , T do
2: Draw vt from Mult(vt|{ωk}Kk=1)
3: Draw ot from N (ot|μvt

, �vt)
4: end for

Graphical models and generative process of CDHMM

Similar to the GMM case, we can also provide a generative process and graphical
model of a continuous density HMM discussed in Section 3.2 as another example.
Given feature vectors O, latent variables S and V , and model parameters �, the joint
likelihood function of complete data O, V , and S based on a continuous density HMM
is represented as follows:

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.2 Hidden Markov model 69

p(O, S, V|�) =πs1ωs1v1N (o1|μs1v1
, �s1v1)

×
T∏

t=2

ast−1stωstvtN (ot|μstvt
, �stvt). (3.49)

The CDHMM has the following three kinds of variables:

• Observation: O = {o1, · · · , oT};
• Latent: S = {s1, · · · , sT} and V = {v1, · · · , vT};
• Non-probabilistic: � = {{πj}Jj=1, {{aij}Jj=1}Ji=1, {{ωjk, μjk, �jk}Kk=1}Jj=1}.

Algorithm 3 Generative process of continuous density hidden Markov model

Require: T , �
1: Draw s1 from Mult(s1|{πj}Jj=1)

2: Draw v1 from Mult(v1|{ωs1k}Kk=1)
3: Draw o1 from N (o1|μs1v1

, �s1v1)
4: for t = 2, · · · , T do
5: Draw st from Mult(st|{ast−1j}Jj=1)

6: Draw vt from Mult(vt|{ωstk}Kk=1)
7: Draw ot from N (ot|μstvt

, �stvt)
8: end for

Similarly to the GMM, dependencies of the above variables are expressed in
Eq. (3.49), and we provide the generative process of the CDHMM in Algorithm 3.
Figure 3.4 shows the graphical model of the CDHMM that uses the plates for the num-
ber of HMM states J, and the number of GMM components K. The graphical model of
the CDHMM is rather complicated since the state transition makes it difficult to use the
plate representation for t.

Figure 3.4 Graphical model of continuous density hidden Markov model given parameters �.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

70 Statistical models in speech and language processing

Thus, we provide the graphical model and generative process examples of our typi-
cal target model, CDHMM. Note that these are rather simple based on a non-Bayesian
approach since we do not deal with the model parameters as probabilistic variables (do
not use circle representations for them).

3.3 Forward–backward and Viterbi algorithms

This section describes how to compute the likelihood values of HMMs (given a latent
variable) by using the famous forward–backward and Viterbi algorithms, which are used
to solve the statistical speech recognition problem in Eq. (3.3). Although the direct
computation of the likelihood values causes the combinatorial explosion problem, these
algorithms can provide feasible computational costs. These algorithms are also used to
estimate the model parameters, which is described in Section 3.4

3.3.1 Forward–backward algorithm

Basically, the direct computation of marginal likelihood p(O|�) = ∑
S p(O, S|�) in

Eq. (3.30) involves on the order of 2T · JT calculations, since at every t = 1, 2, · · · , T ,
there are J possible states that can be reached (i.e., there are JT possible state sequences),
and for each such state sequence about 2T calculations are required for each term in
the sum of Eq. (3.30). By considering the latent variable of mixture components of
the CDHMM in Eq. (3.44), the direct computation of marginal likelihood p(O|�) =∑

S,V p(O, S, V|�) is further increased to the order of 2T · JTKT . However, this large
computation problem could be tackled by applying the forward–backward algorithm
(Rabiner & Juang 1986). According to this algorithm, the forward variable αt(j) is
defined by

αt(j) � p(o1, · · · , ot, st = j|�). (3.50)

This forward variable is known as the probability of the partial observation sequence
{o1, o2, · · · , ot} until time t and state j at time t given the current HMM parameters �.
We also define an emission probability given HMM state j at frame t as

bj(ot) � p(ot|st = j,�j). (3.51)

In the CDHMM, this is represented by the likelihood function of the GMM, as described
in Eq. (3.33). A forward procedure, which is a dynamic programming method, is
inductively derived to speed up computation of p(O|�) as follows:

Forward algorithm

• Initialization

α1(j) = p(o1, s1 = j|�)

= p(o1|s1 = j,�j)p(s1 = j|�j)

= πjbj(o1), 1 ≤ j ≤ J. (3.52)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.3 Forward–backward and Viterbi algorithms 71

• Induction

αt(j) = p(o1, · · · , ot, st = j|�)

=
J∑

i=1

p(o1, · · · , ot, st−1 = i, st = j|�)

=
J∑

i=1

p(ot|st = j, o1, · · · , ot−1, st−1 = i,�)

× p(st = j|o1, · · · , ot−1, st−1 = i,�)

× p(o1, · · · , ot−1, st−1 = i|�)

= p(ot|st = j,�j)
J∑

i=1

p(st = j|st−1 = i,�)p(o1, · · · , ot−1, st−1 = i|�)

=
(

J∑
i=1

αt−1(i)aij

)
bj(ot),

2 ≤ t ≤ T
1 ≤ j ≤ J.

(3.53)

• Termination

p(O|�) =
J∑

j=1

p(o1, · · · , oT , sT = j|�)

=
J∑

j=1

αT (j). (3.54)

Thus, we can compute the likelihood value p(O|�) recursively by using the forward
variable αt(j). This iterative algorithm for computing the forward variable is called the
forward algorithm. In Eq. (3.52) and Eq. (3.53), we see that the calculation of {αt(j)|1 ≤
t ≤ T , 1 ≤ j ≤ J} requires on the order of J2T calculations which is dramatically
reduced from 2T · JT as required in the direct calculation. Figure 3.5 illustrates the
sequence of operations for computation of the forward variable αt(j).

Figure 3.5 Propagation of forward variable from αt−1 = i to αt = j. All possible states at time t − 1 are
considered. Adapted from Rabiner & Juang (1993).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

72 Statistical models in speech and language processing

Similarly, we consider a backward variable which is defined as

βt(j) � p(ot+1, · · · , oT |st = j,�). (3.55)

This variable represents the probability of the partial observation sequence from t + 1
to the end, given state j at time t and model parameters �. Again, we can inductively
derive the following backward procedure:

Backward algorithm

• Initialization

βT (j) = 1, 1 ≤ j ≤ J. (3.56)

• Induction
By using the sum and product rules, we can rewrite βt(i) as

βt(i) = p(ot+1, · · · , oT |st = i,�)

=
J∑

j=1

p(ot+1, · · · , oT , st+1 = j|st = i,�)

=
J∑

j=1

p(ot+1, · · · , oT |st+1 = j, st = i,�)p(st+1 = j|st = i,�). (3.57)

By using the conditional independence property of the HMM,

βt(i) =
J∑

j=1

p(ot+1, · · · , oT |st+1 = j,�)p(st+1 = j|st = i,�)

=
J∑

j=1

p(ot+2, · · · , oT |st+1 = j,�)p(ot+1|st+1 = j,�j)

× p(st+1 = j|st = i,�)

=
J∑

j=1

aijbj(ot+1)βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ J. (3.58)

• Termination

β0 � p(O|�)

=
J∑

j=1

p(o1, · · · , oT , s1 = j|�)

=
J∑

j=1

p(o1, · · · , oT |s1 = j,�)p(s1 = j|�)

=
J∑

j=1

p(o1|s1 = j,�)p(o2, · · · , ot|s1 = j,�)p(s1 = j|�)

=
J∑

j=1

πjbj(o1)β1(j). (3.59)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.3 Forward–backward and Viterbi algorithms 73

Figure 3.6 Propagation of backward variable from αt+1 = j to αt = i. All possible states at time t + 1 are
considered. Adapted from Rabiner & Juang (1993).

Thus, the backward algorithm can also compute the likelihood value p(O|�) recursively
by using the backward variable βt(j). In the initialization step of the backward procedure,
βT (j) is arbitrarily assigned to be 1. In the induction step, the backward variable βt(i) is
calculated in a backward fashion from t = T−1 to the beginning t = 1. Figure 3.6 shows
the sequence of operations required for computation of the backward variable βt(i).
This iterative algorithm for computing the backward variable is called the backward
algorithm.

The forward variable αt(j) and backward variable βt(j) are used to calculate the poste-
rior probability of a specific case. For example, if we consider the posterior probability
p(st = j|O,�) when the HMM state is j at frame t, we first define

γt(j) � p(st = j|O,�), (3.60)

which is useful in the later explanations. By using the sum and product rules, γt(j) is
represented by the likelihood ratio of

γt(j) � p(st = j, O|�)

p(O|�)

= p(O, st = j|�)∑J
i=1 p(O, st = i|�)

. (3.61)

Now we focus on the joint distribution p(st = j, O|�), which is rewritten by forward
variable αt(j) in Eq. (3.50) and backward variable βt(j) in Eq. (3.55), as follows:

p(st = j, O|�) = p(O|st = j,�)p(st = j|�)

= p(o1, · · · , ot|st = j,�)p(ot+1, · · · , oT |st = j,�)p(st = j|�)

= p(o1, · · · , ot, st = j|�)︸ ︷︷ ︸
αt(j)

p(ot+1, · · · , oT |st = j,�)︸ ︷︷ ︸
βt(j)

. (3.62)

From the first to second lines, we use the conditional independence assumption of the
HMM. Thus, finally the posterior distribution γt(j) is represented as:

γt(j) � p(st = j|O,�) = αt(j)βt(j)∑J
j′=1 αt(j′)βt(j′)

. (3.63)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

74 Statistical models in speech and language processing

This probability will be used to find the optimal state sequence based on the Viterbi
algorithm, as mentioned in Section 3.3.2, as well as to estimate the HMM parameters
based on the maximum likelihood method, as addressed in Section 3.4.

3.3.2 Viterbi algorithm

Finding the optimal state sequence Ŝ = {ŝt|t = 1, · · · , T} of observation sequence O, in
terms of the maximum a-posteriori sense, is seen as a fundamental problem in the HMM
framework. It is formulated as

Ŝ = arg max
S

p(S|O,�), (3.64)

where arg maxS find the most probable Ŝ from all possible state sequences, and this also
involves on the order of JT calculations, similar to the likelihood computation p(O|�)
in Section 3.3.1. In addition, since p(O|�) does not depend on S, we can also rewrite
Eq. (3.64) as

Ŝ = arg max
S

p(S|O,�) = arg max
S

p(S|O,�)p(O|�)

= arg max
S

p(S, O|�). (3.65)

That is, the optimal state sequences obtained in terms of the posterior distribution
p(S|O,�) and the joint distribution p(S, O|�) are equivalent.

The optimal state sequence can be used to determine the segmentation of a speech
sentence into phones or sub-phones, if we assume these as latent variables. In this case,
the speech frames staying in the same state behave similarly, and the transition from one
state to the other is treated as a segmentation boundary.

In addition, the optimal state sequence Ŝ is applied to approximate the calculation of
the marginal likelihood function over S as follows:

p(O|�) =
∑

S

p(S, O|�) ≈ p(Ŝ, O|�). (3.66)

That is, the marginal likelihood function is approximately represented as the joint
likelihood distribution of Ŝ and O, which can be represented with Eq. (3.30) as

p(Ŝ, O|�) =
(
πŝ1 p(o1|�ŝ1)

T∏
t=2

aŝt−1 ŝt p(ot|�ŝt)

)
� p̂. (3.67)

Therefore, the approximation of marginal likelihood using the optimal state sequence
provides the solution to the segmental likelihood function p̂ since likelihood calcu-
lation is based on the speech segmentation using Ŝ. Considering all possible state
sequences, {S} is simplified to applying only the optimal state sequence Ŝ. The number
of calculations is further reduced to 2T as referred to Eq. (3.67).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.3 Forward–backward and Viterbi algorithms 75

We can individually determine the most likely state ŝt for each time frame 1 ≤ t ≤ T
according to the posterior probability as

ŝt = arg max
1≤j≤J

p(st = j|O,�). (3.68)

The posterior probability p(st = j|O,�) is calculated according to the forward-
backward algorithm. As shown in Eq. (3.63), the joint distribution of observation
sequence O and state st = j at time t is calculated as a product of the forward variable,
which accounts for partial observations {o1, · · · , ot} and state j at time t, and the back-
ward variable, which accounts for the remainder of observations {ot+1, · · · , oT} given
state j at time t with the normalization factor. However, Eq. (3.68) may not determine
a valid optimal state sequence since the probability of occurrence of the sequences of
states is not considered.

To cope with this problem, we need to find the single best state sequence by using
Eq. (3.64) or an equivalent form of (3.65), directly. A dynamic programming method,
called the Viterbi algorithm (Viterbi 1967), was proposed to efficiently find the single
best state sequence. To do so, we define the highest probability along a single path, at
time t, which accounts for the first t observations and ends in state j using a new notation:

δt(j) � max
s1,··· ,st−1

p(s1, · · · , st = j, o1, · · · , ot|�). (3.69)

By induction, a recursive formula of δt+1(j) from δt(j) is derived to calculate this proba-
bility. To derive the equation, we first focus on the joint distribution appearing in δt+1(j),
which can be rewritten when st = i and st+1 = j as:

p(s1, · · · , i, j, o1, · · · , ot, ot+1|�)

= p(s1, · · · , i, o1, · · · , ot|�)p(j, ot+1|s1, · · · , i, o1, · · · , ot,�)

= p(s1, · · · , i, o1, · · · , ot|�)p(j|i,�)p(ot+1|j,�)

= p(s1, · · · , i, o1, · · · , ot|�)aijbj(ot+1). (3.70)

Here we use the conditional independence of the HMM from the second to the third
lines. Thus, by using Eq. (3.69), δt+1(j) is computed recursively from δt+1(i) as:

δt+1(j) = max
s1,··· ,i p(s1, · · · , i, o1, · · · , ot|�)aijbj(ot+1)

=
(

max
i

δt(i)aij

)
bj(ot+1). (3.71)

We need to keep track of the state that maximized Eq. (3.71) so as to backtrack to the
single best state sequence in the following Viterbi algorithm:

• Initialization

δ1(i) = πibi(o1), ψ1(i) = 0, 1 ≤ i ≤ J. (3.72)

• Recursion

δt(j) =
(

max
1≤i≤J

δt−1(i)aij

)
· bj(ot+1),

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

76 Statistical models in speech and language processing

ψt(j) =
(

arg max
1≤i≤J

δt−1(i)aij

)
,

2 ≤ t ≤ T
1 ≤ j ≤ J.

(3.73)

• Termination

p̂ = max
1≤j≤J

δT (i),

ŝT = arg max
1≤j≤J

δT (i). (3.74)

• State sequence backtracking

ŝt = ψt+1(ŝt+1), t = T − 1, T − 2, · · · , 1. (3.75)

In the termination step, the segmental likelihood function p̂ is calculated and is equiv-
alent to Eq. (3.67). It is noteworthy that this Viterbi algorithm is similar to the forward
procedure in the forward–backward algorithm. The key difference is the maximization
in Eq. (3.73) over previous states, which is used in place of a summation operation
in Eq. (3.53). The variable δt(j) in the Viterbi algorithm is meaningfully related to the
forward variable αt(j) in the forward–backward algorithm.

Now, we summarize what we can compute from the HMM without taking on the
combinatorial explosion problem. These values are used in the decoding step and the
training step of estimating model parameters �, which is discussed in the next section.

• p(O|�):
The marginalized likelihood function from the forward or backward algorithm.

• γt(j) � p(st = j|O,�):
The posterior probability of st = j from the forward–backward algorithm.

• Ŝ = arg maxS p(S|O,�) = arg maxS p(S, O|�):
The optimal state sequence from the Viterbi algorithm.

• p(Ŝ, O|�):
The segmental joint likelihood function from the Viterbi algorithm.

3.4 Maximum likelihood estimation and EM algorithm

Previous sections discuss the HMM-based speech modeling given model parameters �

to compute the likelihood values and so on, efficiently based on the forward, backward,
and Viterbi algorithms. One of the powerful properties of the HMM is that it also pro-
vides an efficient algorithm to obtain the model parameters based on the ML estimation
from training data. The training algorithm is based on the EM algorithm, which can
tackle the incomplete data problem in ML estimation. In what follows, we address how
the EM algorithm is derived by applying Jensen’s inequality and show the procedure of
EM steps for estimation of HMM parameters, which involves latent variables in prob-
abilistic functions (Nakagawa 1988, Huang et al. 1990, Rabiner & Juang 1993, Bilmes
1998).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 77

3.4.1 Jensen’s inequality

We start the discussion of HMM parameter estimation based on the Maximum Like-
lihood (ML) criterion, so that the optimal model parameters �̂ are computed by the
likelihood function p(O|�):2

�̂ = arg max
�

p(O|�). (3.76)

We assume that speech data O are observed and are generated by some distribution.
However, as we discussed in Section 3.2, the HMM has additional hidden variables S
(HMM state sequence) and V (GMM component sequence), which are not observed.
In this situation where the model includes unobserved variables, O is called incomplete
data (S and V). (� would also be included as unobserved variables in a broad sense, but
this book considers latent variables as unobserved variables.). Conversely, the complete
data Y are composed of the observed data O as well as the hidden variables {S, V}.

In general, the maximum likelihood estimation of the model parameter � for
complete data O is difficult, since we need to consider the following equation:

�̂ = arg max
�

∑
S,V

p(O, S, V|�). (3.77)

As we discussed in Section 3.3, the summation over all possible S and V has to overcome
the combinatorial explosion problem, and the direct optimization of � for this equation
is not feasible. This problem is called the incomplete data problem.

According to the EM algorithm, the incomplete data problem in the ML estimation is
resolved by iteratively and alternatively performing the expectation step (E-step) and the
maximization step (M-step), which results in obtaining the local optimum solution of the
model parameters. In the E-step, we calculate an auxiliary function Q(�′|�), which is
an expectation of the logarithm of the likelihood function using new HMM parameters
�′ given the current parameters �, i.e.

Q(�′|�) = E(S,V)[log p(O, S, V|�′)|O,�]

=
∑

S

∑
V

p(S, V|O,�) log p(O, S, V|�′). (3.78)

In the M-step, we maximize the auxiliary function instead of Eq. (3.77) with respect to
the HMM parameters �′ and estimate new parameters by

�̂′ = arg max
�′

Q(�′|�). (3.79)

The updated HMM parameters �̂′ are then treated as the current parameters for the
next iteration of EM steps. This iterative estimation only obtains local optimum solu-
tions, and not global optimum solutions. However, a careful setting of the initial model
parameters would help the solution to reach appropriate parameter values, and more-
over, the algorithm theoretically guarantees that the likelihood value is always increased
as the number of iterations increases. This property is very useful in the implementation,

2 The optimization with respect to the posterior distribution p(�|O) is more reasonable in the Bayesian
sense, and it will be discussed in the following chapters.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

78 Statistical models in speech and language processing

since we can easily debug training source codes based on the EM algorithm by checking
likelihood values.

Now, we prove how this indirect optimization for the auxiliary function Q(�′|�)
increases a likelihood value. For this proof, we first define the following logarithmic
marginal function L(�′):

L(�′) � log p(O|�′). (3.80)

Note that since the logarithmic function is a monotonically increasing function, we can
check L(�′) instead of p(O|�′) for the proof. We introduce the notation of complete
data:

Y � {O, S, V}. (3.81)

Then, the conditional distribution of Y given incomplete data O and parameters � has
the following relationship from the product rule:

p(Y|O,�′) = p(Y, O|�′)
p(O|�′) = p(Y|�′)

p(O|�′) , (3.82)

where the likelihood function p(Y, O|�′) is rewritten as p(Y|�′), since Y includes O.
Therefore, by taking the logarithmic operation for both sides in Eq. (3.82), we derive
the equation for L(�′) as

L(�′) = log p(Y|�′)− log p(Y|O,�′). (3.83)

Then, by taking the expectation operation with respect to the posterior distribution of
latent variables p(S, V|O,�) for Eq. (3.83), Eq. (3.83) is represented as

L(�′) = E(S,V)[log p(Y|�′)|O,�]− E(S,V)[log p(Y|O,�′)|O,�]

= Q(�′|�)− H(�′|�), (3.84)

where H(�′|�) is defined as follows:

H(�′|�) � E(Y)[log p(Y|O,�′)|O,�]. (3.85)

Q(�′|�) is defined in Eq. (3.78). Then, we obtain this relation from Eq. (3.85):

Q(�′|�) = L(�′)+ H(�′|�). (3.86)

Here, Jensen’s inequality is introduced to prove the inequality (Dempster et al. 1976),

H(�′|�) ≤ H(�|�). (3.87)

• Jensen’s inequality
If x is a random variable with mean value E(x)[x] = μ and f (x) is a convex function,
then

E(x)[f (x)] ≥ f [E(x)(x)], (3.88)

with equality if and only if x is a degenerate distribution at μ.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 79

The inequality in Eq. (3.87) is derived by

H(�|�)− H(�′|�) = E(Y)

[
log

p(Y|O, �)

p(Y|O, �′)

∣∣∣∣O, �

]
=
∫

p(Y|O,�)

(
− log

p(Y|O,�′)
p(Y|O,�)

)
dY

= KL(p(Y|O,�)‖p(Y|O,�′))

≥ − log

(∫
p(Y|O,�)

p(Y|O,�′)
p(Y|O,�)

dY
)
= 0, (3.89)

where a convex function based on the negative logarithm f (x) = − log(x) is adopted.
As shown in Eq. (3.89), the difference H(�|�) − H(�′|�) is obtained as the relative
entropy or Kullback–Leibler (KL) divergence (Kullback & Leibler 1951) between the
distributions p(Y|O,�) and p(Y|O,�′), that is

KL(p(Y|O,�)‖p(Y|O,�′)) �
∫

p(Y|O,�)

(
− log

p(Y|O,�′)
p(Y|O,�)

)
dY. (3.90)

Given Eqs. (3.87) and (3.86), it is straightforward to see that if �′ satisfies

Q(�′|�) ≥ Q(�|�), (3.91)

then we can prove that

L(�′) = Q(�′|�)− H(�′|�) ≥ Q(�|�)− H(�|�) = L(�). (3.92)

Since L(�) = log p(O|�) and the logarithmic function is a monotonic function,

Q(�′|�) ≥ Q(�|�) ⇒ p(O|�′) ≥ p(O|�). (3.93)

Since �̂′ = arg max�′ Q(�′|�) always satisfies the inequality Eq. (3.91), we prove
that the parameter estimated by the EM procedure, �̂′, always increases the likelihood
value as:

�̂′ = arg max
�′

Q(�′|�) ⇒ p(O|�′) ≥ p(O|�). (3.94)

Such an EM procedure is bound to monotonically increase the auxiliary function
Q(�′|�) as well as the original likelihood function p(O|�′). Note that since it is not a
direct optimization of the original likelihood function, the optimization of the auxiliary
function leads to a local optimum solution to the ML parameter estimation.

3.4.2 Expectation step

To find ML estimates of HMM parameters, we expand the auxiliary function in
Eq. (3.78) and rewrite it by substituting the joint distribution of complete data likelihood
(Eq. (3.49)) into Eq. (3.78) as

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

80 Statistical models in speech and language processing

Q(�′|�) = E(S,V)[log p(O, S, V|�′)|O,�]

=
∑
S,V

p(S, V|O,�)

(
logπ ′s1

+
(

T∑
t=2

log a′st−1st

)

+
(

T∑
t=1

logω′stvt
+ logN (ot|μ′stvt

, �′stvt
)

))
. (3.95)

Note that four terms depend on the initial weight πj, state transition probability aij,
mixture weight wjk, and Gaussian parameters {μjk, �jk}, respectively. We provide the
solution for each term:

• Q(π ′|π)
We first focus on the first term depending on the initial weight πj, and define the
following auxiliary function for πj:

Q(π ′|π) �
∑
S,V

p(S, V|O,�) logπ ′s1
. (3.96)

Since π ′s1
only depends on s1, we obtain the following equation that marginalizes

p(S, V|O,�) over S\s1 = {s2, · · · , sT} and V as:∑
S\s1 ,V

p(S, V|O,�) = p(s1|O,�). (3.97)

Therefore, Q(π ′|π) can be rewritten as

Q(π ′|π) =
∑

s1

p(s1|O,�) logπ ′s1

=
J∑

j=1

p(s1 = j|O,�) logπ ′j

=
J∑

j=1

γ1(j) logπ ′j , (3.98)

where γ1(j) is an occupation probability defined in Eq. (3.60) as:

γ1(j) � p(s1 = j|O,�). (3.99)

This is computed from the forward–backward algorithm.
• Q(A′|A)

Next, we focus on the second term in Eq. (3.95), which depends on the state transition
probability aij, and define the following auxiliary function for aij:

Q(A′|A) �
∑
S,V

p(S, V|O,�)
T−1∑
t=1

log a′stst+1
. (3.100)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 81

Here we replace the summation from
∑T

t=2 log a′st−1st
to
∑T−1

t=1 log a′stst+1
for nota-

tional convention. Similar to Q(π ′|π), we obtain∑
S\st ,st+1 ,V

p(S, V|O,�) = p(st, st+1|O,�). (3.101)

Therefore, by replacing the summation over t with the summation over S, V , we obtain

Q(A′|A) =
T−1∑
t=1

∑
S,V

p(S, V|O,�) log a′stst+1

=
T−1∑
t=1

∑
st ,st+1

p(st, st+1|O,�) log a′stst+1

=
T−1∑
t=1

J∑
i=1

J∑
j=1

p(st = i, st+1 = j|O,�) log a′ij

=
T−1∑
t=1

J∑
i=1

J∑
j=1

ξt(i, j) log a′ij, (3.102)

where ξt(i, j) is an expected transition probability from st = i to st+1 = j, and is
defined as:

ξt(i, j) � p(st = i, st+1 = j|O,�). (3.103)

Note that by using this technique, the summation over all possible sequences (that
leads to a combinatorial explosion) can be replaced with a summation over the num-
ber of HMM states and the number of frames. Thus, this auxiliary function can be
computed feasibly. For this computation, we need to obtain ξt(i, j), which is discussed
later as a variant of the forward–backward algorithm.

• Q(ω′|ω)
The third term in Eq. (3.95) depends on the mixture weight ωjk, and so we define the
following auxiliary function for ωjk:

Q(ω′|ω) �
∑
S,V

p(S, V|O,�)
T∑

t=1

logω′stvt
. (3.104)

Similarly to the case of aij, we first obtain the following equation:∑
S\st ,V\vt

p(S, V|O,�) = p(st, vt|O,�). (3.105)

Therefore,

Q(ω′|ω) =
T∑

t=1

∑
S,V

p(S, V|O,�) logω′stvt

=
T∑

t=1

∑
st ,vt

p(st, vt|O,�) logω′stvt

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

82 Statistical models in speech and language processing

=
T∑

t=1

J∑
j=1

K∑
k=1

p(st = j, vt = k|O,�) logω′jk

=
T∑

t=1

J∑
j=1

K∑
k=1

γt(j, k) logω′jk, (3.106)

where γt(j, k) is an expected occupation probability at st = j and vt = k, and is
defined as:

γt(j, k) � p(st = j, vt = k|O,�). (3.107)

The computation of γt(j, k) is also discussed later as a variant of the forward–
backward algorithm.

• Q(μ′, �′|μ, �)
Finally, the fourth term in Eq. (3.95) depends on the Gaussian parameters μjk and
�jk, and defines the following auxiliary function for μjk and �jk:

Q(μ′, �′|μ, �) �
∑
S,V

p(S, V|O,�)
T∑

t=1

logN (ot|μ′stvt
, �′stvt

). (3.108)

Similarly to Q(ω′|ω), by using Eq. (3.105), Q(μ′, �′|μ, �) can be rewritten with
γt(j, k) as

Q(μ′, �′|μ, �) =
T∑

t=1

J∑
j=1

K∑
k=1

γt(j, k) logN (ot|μ′jk, �′jk). (3.109)

By using the definition of the multivariate Gaussian distribution in Appendix C.6:

N (x|μ, �) � (2π)−
D
2 |�|− 1

2 exp

(
−1

2
(x− μ)ᵀ�−1(x− μ)

)
. (3.110)

Equation (3.109) can be rewritten as

Q(μ′, �′|μ, �)

=
T∑

t=1

J∑
j=1

K∑
k=1

γt(j, k) log
(

(2π)−
D
2 |�′jk|−

1
2

× exp

(
−1

2
(ot − μ′jk)ᵀ(�′jk)−1(ot − μ′jk)

))
∝

T∑
t=1

J∑
j=1

K∑
k=1

−γt(j, k)

2

(
log
(
|�′jk|

)
+ (ot − μ′jk)ᵀ(�′jk)−1(ot − μ′jk)

)
, (3.111)

where ∝ denotes the proportional relationship in the logarithmic domain. That is, the
normalization factor in the linear domain is changed for the normalization constant
in the logarithmic domain, and we shall continue to use ∝ in this book. Therefore,
the normalization constant term that does not depend on μ, � is omitted from this
expression.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 83

Thus, we summarize the auxiliary function Q(�′|�):

Q(�′|�) = Q(π ′|π)+ Q(A′|A)+ Q(ω′|ω)+ Q(μ′, �′|μ, �), (3.112)

where each term is defined as follows:

Q(π ′|π) =
J∑

j=1

γ1(j) logπ ′j , (3.113)

Q(A′|A) =
T−1∑
t=1

J∑
i=1

J∑
j=1

ξt(i, j) log a′ij, (3.114)

Q(ω′|ω) =
T∑

t=1

J∑
j=1

K∑
k=1

γt(j, k) logω′jk, (3.115)

Q(μ′, �′|μ, �) ∝
T∑

t=1

J∑
j=1

K∑
k=1

−γt(j, k)

2

(
log |�′jk|

+(ot − μ′jk)ᵀ(�′jk)−1(ot − μ′jk)
)

. (3.116)

As an equivalent form of Eq. (3.116), we also write the following auxiliary func-
tion Q(μ′, R′|μ, R), which replaces the covariance matrix � with the precision matrix
R = �−1 as:

Q(μ′, R′|μ, R) ∝
T∑

t=1

J∑
j=1

K∑
k=1

−γt(j, k)

2

×
(
− log |R′jk| + (ot − μ′jk)ᵀR′jk(ot − μ′jk)

)
. (3.117)

This equivalent representation is used to make the computation simple in the follow-
ing sections. Note that Eqs. (3.113)–(3.117) are represented by the following posterior
distributions:

ξt(i, j) = p(st = i, st+1 = j|O,�), (3.118)

γt(j, k) = p(st = j, vt = k|O,�). (3.119)

Similarly to γt(j) = p(st = j|O,�), as discussed in Section 3.3.1, these values are also
computed efficiently by using the forward–backward algorithm.

First, γt(j) has the following relationships with γt(j, k) and ξt(i, j):

γt(j) � p(st = j|O,�) =
K∑

k=1

γt(j, k)

=
J∑

i=1

ξt(i, j). (3.120)

The posterior probability γt(j) can be calculated by using Eq. (3.63) based on the forward
variables and backward variables {αt(j),βt(j)}, but this can also be computed from ξt(i, j)
or γt(j, k).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

84 Statistical models in speech and language processing

The posterior probability γt(j, k) of occupying state j and Gaussian component k in
Eq. (3.119) can be computed by the forward–backward algorithm. By using the sum
and product rules, γt(j, k) is represented by the posterior distribution p(st = j|O,�) and
joint likelihood function of p(O, vt = k|st = j,�) as:

γt(j, k) = p(st = j|O,�)p(vt = k|st = j, O,�)

= p(st = j|O,�)
p(O, vt = k|st = j,�)∑K

k′=1 p(O, vt = k′|st = j,�)
. (3.121)

By using Eq. (3.33) for p(O, vt = k|st = j,�) and Eq. (3.63) for p(st = j|O,�),
Eq. (3.121) is represented as follows:

γt(j, k) = αt(j)βt(j)∑J
j′=1 αt(j′)βt(j′)

· ωjkN (ot|μjk, �jk)∑K
k′=1 ωjk′N (ot|μjk′ , �jk′)

. (3.122)

In a similar manner, we express the posterior probability ξt(i, j) in Eq. (3.118) by

ξt(i, j) = p(st = i, st+1 = j, O|�)∑J
i′=1

∑J
j′=1 p(st = i′, st+1 = j′, O|�)

. (3.123)

Now we focus on the joint likelihood function p(st = i, st+1 = j, O|�), which is
factorized by

p(st = i, st+1 = j, O|�)

= p(O|st = i, st+1 = j,�)p(st = i, st+1 = j|�)

= p(O|st = i, st+1 = j,�)p(st+1 = j|st = i,�)p(st = i|�). (3.124)

By using the conditional independence assumption of the HMM, we can rewrite the
equation as:

p(st = i, st+1 = j, O|�)

= p(o1, · · · , ot|st = i,�)p(ot+1, · · · , oT |st = i, st+1 = j,�)

× p(st+1 = j|st = i,�)p(st = i|�)

= p(o1, · · · , ot|st = i,�)p(ot+1|st+1 = j,�)p(ot+2, · · · , oT |st+1 = j,�)

× p(st+1 = j|st = i,�)p(st = i|�)

= p(o1, · · · , ot, st = i,�)︸ ︷︷ ︸
=αt(i)

p(ot+1|st+1 = j,�)︸ ︷︷ ︸
=bj(ot+1)

p(ot+2, · · · , oT |st+1 = j,�)︸ ︷︷ ︸
=βt+1(j)

× p(st+1 = j|st = i,�)︸ ︷︷ ︸
=aij

. (3.125)

Thus, by using the forward variable αt(i) in Eq. (3.50) and the backward variable βt+1(j)
in Eq. (3.55), Eq. (3.123) is finally written as

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 85

Figure 3.7 Calculation of posterior probability ξt(i, j) based on forward variable αt(i) and backward variable
βt+1(j). Adapted from Rabiner & Juang (1993).

ξt(i, j) = αt(i)aijbj(ot+1)βt+1(j)∑J
i′=1

∑J
j′=1 αt(i′)ai′j′bj′ (ot+1)βt+1(j′)

=
αt(i)aij

(∑K
k=1 ωjkN (ot+1|μjk, �jk)

)
βt+1(j)∑J

i′=1
∑J

j′=1 αt(i′)ai′j′
(∑K

k=1 ωj′kN (ot+1|μj′k, �j′k)
)
βt+1(j′)

. (3.126)

Figure 3.7 illustrates how the posterior probability ξt(i, j) of visiting states i and j in
consecutive time frames is calculated by applying the forward–backward algorithm.

In Eq. (3.63), Eq. (3.122) and Eq. (3.123), the posterior probabilities γt(j), γt(j, k), and
ξt(i, j) are calculated, respectively, through a kind of soft computation, i.e., the assign-
ment information is represented by the probabilistic values for the elements i, j, and
k. Instead of this soft computation, a simple and efficient approximation is to find the
segmental ML estimates based on a hard computation where only the single best state
sequence Ŝ = {ŝt} and mixture component sequence V̂ = {v̂t} are considered with 0 (not
assigned) or 1 (assigned) values for the elements i, j, and k. This computation complexity
is significantly reduced. For this consideration, the calculation of posterior probabilities
is simplified as

γt(j) = δ(ŝt, j), (3.127)

γt(j, k) = δ(ŝt, j)δ(v̂t, k), (3.128)

ξt(i, j) = δ(ŝt, i)δ(ŝt+1, j), (3.129)

where δ(a, a′) denotes a Kronecker delta function that returns 1 when a = a′ and 0
otherwise. These probabilities are 1 for the cases of the best states i, j, and Gaussians
k, and 0 for all of the other cases. Note that ŝt is computed by using the Viterbi algo-
rithm that maximizes the following segmental joint likelihood function as discussed in
Section 3.3.2:

Ŝ = {ŝ1, · · · , ŝT} = arg max
S

p(S, O|�). (3.130)

The value of v̂t, given HMM state j, is computed by

v̂t = arg max
k

ωjkN (ot|μjk, �jk). (3.131)

The E-step in the EM algorithm is completed by calculating these posterior probabilities.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

86 Statistical models in speech and language processing

3.4.3 Maximization step

In the maximization step, we aim to maximize Q(π ′|π), Q(A′|A), Q(ω′|ω), and
Q(μ′, �′|μ, �) with respect to π ′, A′, ω′, and {μ′, �′} so as to estimate ML parameters
π ′, A′, ω′, and {μ′, �′}, respectively. However, the constraints of probability parameters

J∑
j=1

π ′j = 1,
J∑

j=1

a′ij = 1,∀i,
K∑

k=1

ω′jk = 1,∀j, (3.132)

have to be imposed in the constrained optimization problem. For example, when con-
sidering the estimation of initial state probabilities π ′ = {π ′j }, we construct a Lagrange
function (or Lagrangian):

Q̃(π ′|π) =
J∑

j=1

γ1(j) logπ ′j + η

⎛⎝ J∑
j=1

π ′j − 1

⎞⎠ , (3.133)

by combining the original auxiliary function in Eq. (3.113) and the constraint in
Eq. (3.132) with an additional Lagrange multiplier η as a scaling factor. Then we differ-
entiate this Lagrangian with respect to individual probability parameter π ′j and set it to
zero to obtain

∂Q̃(π ′|π)

∂π ′j
= γ1(j)

1

π ′j
+ η = 0

⇒ π̂ ′j = −
1

η
γ1(j). (3.134)

By substituting Eq. (3.134) into the constrains in Eq. (3.132), we obtain

J∑
j=1

π ′j =
J∑

j=1

(
−1

η

)
γ1(j) = 1

⇒ η = −
J∑

j=1

γ1(j). (3.135)

The ML estimate of new initial state probability is derived by substituting Eq. (3.135)
into Eq. (3.134):

π̂ ′j =
γ1(j)∑J

j′=1 γ1(j′)
= γ1(j). (3.136)

In the same manner, we derive the ML estimates of new state transition probability and
new mixture component probability, which are provided by

â′ij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1

∑J
i′=1 ξt(i′, j)

=
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(j)

, (3.137)

ω̂′jk =
∑T

t=1 γt(j, k)∑T
t=1
∑K

k′=1 γt(j, k′)
=
∑T

t=1 γt(j, k)∑T
t=1 γt(j)

. (3.138)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 87

These results show that the initial state probability, state transition probability, and
mixture weight can be computed using the ratio of the occupation statistics.

On the other hand, when estimating new HMM mean vectors μ′ = {μ′jk}, we individ-
ually differentiate Q(μ′, �′|μ, �) in Eq. (3.117) with respect to μ′jk for each Gaussian
component k in state j and set it to zero:

∂Q(μ′, �′|μ, �)

∂μ′jk

= ∂

∂μ′jk

T∑
t=1

J∑
j′=1

K∑
k′=1

−γt(j′, k′)
2

(
log
(
|�′j′k′ |

)
+ (ot − μ′j′k′)

ᵀ(�′j′k′)
−1(ot − μ′j′k′)

)

= ∂

∂μ′jk

T∑
t=1

−γt(j, k)

2
(ot − μ′jk)ᵀ(�′jk)−1(ot − μ′jk)

= (�′jk)−1
T∑

t=1

γt(j, k)(ot − μ′jk) = 0, (3.139)

where we use the following vector derivative rule in Eq. (B.9):

∂aᵀb
∂a

= ∂bᵀa
∂a

= b. (3.140)

Therefore, the ML estimate of the HMM mean vector is derived as shown by

T∑
t=1

γt(j, k)(ot − μ′jk) = 0

⇒ μ̂
′
jk =

∑T
t=1 γt(j, k)ot∑T

t=1 γt(j, k)
. (3.141)

Note that the mean vector is represented as the first-order expected value of ot by using
the occupation probability of γt(j, k).

At the same time, the new HMM covariance matrices �′ = {�′jk} or their inverse

matrices (�′)−1 = {(�′jk)−1 � R′jk} (also called the precision matrices) are estimated
by differentiation of Q(μ′, R′|μ, R) in Eq. (3.117) with respect to R′jk for each Gaussian
k at each state j and setting it to zero:

∂Q(μ′, R′|μ, R)

∂R′jk

= ∂

∂R′jk

T∑
t=1

−γt(j, k)

2

(
− log

(
|R′jk|

)
+ (ot − μ′jk)ᵀR′jk(ot − μ′jk)

)

= 1

2

T∑
t=1

γt(j, k)(R′jk)−1 − 1

2

T∑
t=1

γt(j, k)(ot − μ′jk)(ot − μ′jk)ᵀ = 0, (3.142)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

88 Statistical models in speech and language processing

where we use the following matrix derivative rule in Eqs. (B.8) and (B.10):

∂ log |A|
∂A

= A−1, (3.143)

∂aᵀCb
∂C

= abᵀ. (3.144)

Thus, the new estimates of the HMM precision and covariance matrices are derived by
using the ML estimate μ̂

′
jk for μ′jk in Eq. (3.142) as

R̂′jk =
(∑T

t=1 γt(j, k)(ot − μ̂
′
jk)(ot − μ̂

′
jk)ᵀ∑T

t=1 γt(j, k)

)−1

,

�̂
′
jk =

∑T
t=1 γt(j, k)(ot − μ̂

′
jk)(ot − μ̂

′
jk)ᵀ∑T

t=1 γt(j, k)
. (3.145)

Interestingly, the calculation of the derived covariance matrices �={�jk} in Eq. (3.145)
is interpreted as the weighted ensemble expectation and covariance matrices, as well
as the calculation of the ML mean vectors μ = {μjk} in Eq. (3.141). The occupation
probability γt(j, k) of state j and mixture component k at time t is treated as the weighting
factor in calculation of the weighted expectation function. Note that Eq. (3.145) is

�̂
′
jk =

∑T
t=1 γt(j, k)oto

ᵀ
t∑T

t=1 γt(j, k)
− 2

∑T
t=1 γt(j, k)ot(μ̂

′
jk)ᵀ∑T

t=1 γt(j, k)
+ μ̂

′
jk(μ̂′jk)ᵀ

=
∑T

t=1 γt(j, k)oto
ᵀ
t∑T

t=1 γt(j, k)
− 2μ̂

′
jk(μ̂′jk)ᵀ + μ̂

′
jk(μ̂′jk)ᵀ

=
∑T

t=1 γt(j, k)oto
ᵀ
t∑T

t=1 γt(j, k)
− μ̂

′
jk(μ̂′jk)ᵀ. (3.146)

Thus, the ML estimate of the covariance matrix is computed from the second-order
statistic and the ML estimate of the mean vector.

Now, we summarize the ML estimates of the CDHMM as follows:

π̂ ′j = γ1(j), (3.147)

â′ij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1

∑J
j′=1 ξt(i, j′)

, (3.148)

ω̂′jk =
∑T

t=1 γt(j, k)∑T
t=1
∑K

k′=1 γt(j, k′)
, (3.149)

μ̂
′
jk =

∑T
t=1 γt(j, k)ot∑T

t=1 γt(j, k)
, (3.150)

�̂
′
jk =

∑T
t=1 γt(j, k)oto

ᵀ
t∑T

t=1 γt(j, k)
− μ̂

′
jk(μ̂′jk)ᵀ. (3.151)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.4 Maximum likelihood estimation and EM algorithm 89

If we consider the diagonal covariance matrix, the dth diagonal element of Eq. (3.151)
is modified as follows:

�̂′jkd =
∑T

t=1 γt(j, k)o2
td∑T

t=1 γt(j, k)
− (μ̂′jkd)2. (3.152)

To compute these estimated values, we need to compute the following values:

ξ (i, j) �
T−1∑
t=1

ξt(i, j)

γ (j, k) �
T∑

t=1

γt(j, k)

γ jk �
T∑

t=1

γt(j, k)ot

�jk �
T∑

t=1

γt(j, k)oto
ᵀ
t . (3.153)

These statistics are sufficient to compute the parameters, and are called sufficient statis-
tics of the CDHMM. In particular, γ (j, k), γ jk, and �jk are called the 0th, 1st, and
2nd order sufficient statistics of the Gaussian at HMM state j and mixture compo-
nent k, respectively. The sufficient statistic is first mentioned in Section 2.1.3, where
the estimation problems are rather simple, and they do not include latent variables. In
the latent models, the probabilistic assignment information of the occupation probabil-
ities γ1(j), γt(j, k), ξt(i, j) is important to obtain the sufficient statistics. These statistics,
composed of the occupation probabilities γ1(j), γt(j, k), ξt(i, j), are computed from the
forward–backward algorithm, as discussed in the expectation step (Section 3.4.2).

Based on these sufficient statistics, we can rewrite the auxiliary function as follows:

Q(π ′|π) =
J∑

j=1

γ1(j) logπ ′j , (3.154)

Q(A′|A) =
J∑

i=1

J∑
j=1

ξ (i, j) log a′ij, (3.155)

Q(ω′|ω) =
J∑

j=1

K∑
k=1

γ (j, k) logω′jk, (3.156)

Q(μ′, �′|μ, �) =
J∑

j=1

K∑
k=1

−γ (j, k)

2

(
D log(2π)+ log |�′jk| + μ′jk

ᵀ(�′jk)−1μ′jk)
)

+ μ′jk
ᵀ(�′jk)−1γ jk −

1

2
tr
[
(�′jk)−1�jk

]
. (3.157)

These forms are used in the analytical discussions in later chapters.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

90 Statistical models in speech and language processing

This total EM algorithm for iteratively estimating the HMM parameters is called the
Baum–Welch algorithm (Baum, Petrie, Soules et al. 1970), and is based on the forward-
backward algorithm, the accumulation of the sufficient statistics, and the update of
the HMM parameters, as shown in Algorithm 4. The Baum–Welch algorithm can be
extended based on the Bayesian approach (see Section 4.3 and Section 7.3).

Algorithm 4 Baum–Welch algorithm

Require: �← �init

1: repeat
2: Compute the forward variable αt(j) from the forward algorithm
3: Compute the backward variable βt(j) from the backward algorithm
4: Compute the occupation probabilities γ1(j), γt(j, k), and ξt(i, j)
5: Accumulate the sufficient statistics ξ (i, j), γ (j, k), γ jk, and �jk

6: Estimate the new HMM parameters �̂′
7: Update the HMM parameters �← �̂′
8: until Convergence

In the implementation of Viterbi or segmental ML estimation, we apply the current
HMM parameter estimates � = {πj, aij,ωjk, μjk, �jk} and the Viterbi algorithm to per-

form Viterbi decoding to find the state alignment. Given the best state sequence Ŝ and
mixture component sequence V̂ , new ML estimates �′ = {μ′jk, �′jk} are computed as the

ensemble mean vector and covariance matrix, where
∑T

t=1 γt(j, k) is seen as the count
Njk of training samples O = {ot} which are aligned in state j and Gaussian compo-
nent k (Juang & Rabiner 1990). This method of using the Viterbi training instead of the
forward–backward algorithm to obtain (a part of) occupation probabilities in the training
step is called segmental K-means training or Viterbi training.

We should note that to make the Baum–Welch algorithm work in real speech data, we
need to consider some heuristics in the ML EM algorithm. For example, how to provide
initial values is always an important question, and it is usually resolved by using a simple
algorithm (e.g., K-means clustering or random initialization). The other important issue
comes from the data sparseness, e.g., some mixture components or hidden states can-
not have sufficient data assigned in the Viterbi or forward–backward algorithm, which
makes the parameter estimation (especially covariance parameter estimation) unstable.
This can be heuristically avoided by setting a threshold to update these parameters, or
setting minimum threshold values for covariance parameters. These problems can be
solved by the Bayesian approaches.

Despite the above problems, the Baum–Welch algorithm based on the EM algorithm
is widely used in current CDHMM training. This Baum–Welch algorithm has several
advantages. For example, the algorithm is unique in that the computational cost of the E
step is much more than that of the M-step, since the E step computational cost depends
on the training data size. However, the E-step can be parallelized with many computers
by distributing a chunk of data to a computer and computing a sufficient statistic of
the chunk independently of the other computers. Therefore, the Baum–Welch algorithm

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.5 Maximum likelihood linear regression for hidden Markov model 91

has a very nice data scalability, which enables it to use a large amount of training data.
In addition, within the algorithm, the likelihood always increases by the EM theory.
Therefore, by monitoring the likelihood values, we can easily detect errors and bugs
during a training procedure.

3.5 Maximum likelihood linear regression for hidden Markov model

As we discussed in the previous section, CDHMM parameters can be estimated by sta-
tistical ML methods, the effectiveness of which depends on the quality and quantity of
available data that should distribute according to the statistical features of the intended
signal space or conditions. As there is no sure way of collecting sufficient data to cover
all conditions, adaptive training of HMM parameters from a set of previously obtained
parameters to a new set that befits a specific environment with a small amount of new
data is an important research issue.

In speech recognition, one approach is to view the adaptation of model parameters to
new data (e.g., speaker adaptation) as a transformation problem; that is, the new set of
model parameters is a transformed version of the old set: �n+1 = f (�n, {o}n), where
{o}n denotes the new set of data available at moment n for the existing model parameters
�n to adapt to. Most frequently and practically, the function f is chosen to be of an affine
transformation type (Digalakis, Ritischev & Neumeyer 1995, Leggetter & Woodland
1995):

θn+1 = Aθn + b, (3.158)

where various parts of the model parameters, e.g., the mean vectors or the variances, are
envisaged in a vector space. The adaptation algorithm therefore involves deriving the
affine map components, A and b, from the adaptation data {o}n. A number of algorithms
have been proposed for this purpose (see Lee & Huo (2000), and Shinoda (2010) for
details).

The linear regression method for HMM parameters estimates the affine transforma-
tion parameters from a set of adaptation data, usually limited in size. The transformation
with the estimated parameters is then applied to the previously trained HMMs, resulting
in the set of “adapted models.” Note that for automatic speech recognition, the number
of the Gaussian distributions or simply Gaussians, which are used as component distri-
butions in forming state-dependent mixture distributions, is typically in the thousands
or more. If each mean vector in the set of Gaussians is to be modified by a unique trans-
formation matrix, the number of “adaptation parameters” can be quite large. The main
problem of this method is thus how to improve “generalization capability” by avoiding
the over-training problem when the amount of adaptation data is small. To solve the
problem, we introduce a model selection approach.

The model selection approach was originally proposed within the estimation of lin-
ear transformation parameters by using the maximum likelihood EM algorithm, as
discussed in Section 3.4. The technique is called maximum likelihood linear regression
(MLLR). MLLR proposes to share one linear transformation in a cluster of many
Gaussians in the HMM set, thereby effectively reducing the number of free parameters
that can then be trained with a small amount of adaptation data. The Gaussian clusters

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

92 Statistical models in speech and language processing

Figure 3.8 Gaussian tree representation of linear regression parameters.

are usually constructed as a tree structure, as shown in Figure 3.8, which is pre-
determined and fixed throughout adaptation. This tree (called a regression tree) is
constructed based on a centroid splitting algorithm, described in Young, Evermann,
Gales et al. (2006). This algorithm first makes two centroid vectors from a random
perturbation of the global mean vector computed from Gaussians assigned to a target
leaf node. Then it splits a set of these Gaussians according to the Euclidean distance
between Gaussian mean vectors and two centroid vectors. The two sets of Gaussians
obtained are assigned to child nodes, and this procedure is continued to finally build a
tree.

The utility of the tree structure is commensurate with the amount of adaptation data;
namely, if we have a small amount of data, it uses only coarse clusters (e.g., the root
node of a tree in the top layer of Figure 3.8) where the number of free parameters in the
linear transformation matrices is small. On the other hand, if we have a sufficiently large
amount of data, it can use fine clusters where the number of free parameters in the linear
transformation matrices is large, potentially improving the precision of the estimated
parameters. This framework needs to select appropriate Gaussian clusters according to
the amount of data, i.e., it needs an appropriate model selection function. Usually, model
selection is performed by setting a threshold value manually (e.g., the total number of
speech frames assigned to a set of Gaussians in a node).

3.5.1 Linear regression for hidden Markov models

This section briefly explains a solution for the linear regression parameters for HMMs
within a maximum likelihood EM algorithm framework. It uses a solution based on a

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.5 Maximum likelihood linear regression for hidden Markov model 93

variance normalized representation of Gaussian mean vectors to simplify the solution.3

In this section, we only focus on the transformation of Gaussian mean vectors in
CDHMMs.

First, we review the basic EM algorithm of the conventional HMM parameter estima-
tion, as discussed in Section 3.4, to set the notational convention and to align with the
subsequent development of the MLLR approach. Let O � {ot ∈ R

D|t = 1, · · · , T} be a
sequence of D dimensional feature vectors for T speech frames. The latent variables in
a continuous density HMM are composed of HMM states and mixture components of
GMMs. A sequence of HMM states is represented by S � {st|t = 1, · · · , T}, where the
value of st denotes an HMM state index at frame t. Similarly, a sequence of mixture com-
ponents is represented by V � {vt|t = 1, · · · , T}, where the value of vt denotes a mixture
component index at frame t. As introduced in Eq. (3.78), the EM algorithm deals with
the following auxiliary function as an optimization function instead of directly using the
model likelihood:

Q(�′|�) = E(S,V)[log p(O, S, V|�′)|O,�]

=
∑

S

∑
V

p(S, V|O,�) log p(O, S, V|�′), (3.159)

where � is a set of HMM parameters and p(O, S, V|�) is a complete data likelihood
given �. p(S, V|O,�) is the posterior distribution of the latent variables given the pre-
viously estimated HMM parameters �. Equation (3.78) is an expected value, and is
efficiently computed by using the forward–backward algorithm as the E-step of the EM
algorithm, as we discussed in Section 3.3.

The M-step of the EM algorithm estimates HMM parameters, as follows:

�ML = arg max
�′

Q(�′|�). (3.160)

The E-step and the M-step are performed iteratively until convergence, and finally we
obtain the HMM parameters as a close approximation of the stationary point solution.

Now we focus on the linear transformation parameters within the EM algorithm. We
prepare a transformation parameter matrix Wj ∈ R

D×(D+1) for each leaf node j in a
Gaussian tree. Here, we assume that the Gaussian tree is pruned by a model selection
approach as a model structure M, and the set of leaf nodes in the pruned tree is repre-
sented by JM . Hereinafter, we use Z to denote a joint event of S and V (i.e., Z � {S, V}).
This will much simplify the following development pertaining to the adaptation of the
mean and the covariance parameters. Similarly to Eq. (3.159), the auxiliary function
with respect to a set of transformation parameters
JM = {Wj|j = 1, · · · , |JM|} can be
represented as follows:

Q(
′JM
|
JM) = E(Z)

[
log p(O, Z|
′JM

,�)
]

=
K∑

k=1

T∑
t=1

γt(k) logN (ot|μad
k
′
, �k). (3.161)

3 This is first described in Gales & Woodland (1996) as normalized domain MLLR. The structural Bayes
approach Shinoda & Lee (2001) for bias vector estimation in HMM adaptation also uses this normalized
representation.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

94 Statistical models in speech and language processing

Here k denotes a unique mixture component index of all Gaussians in the target HMMs
(for all phoneme HMMs in a speech recognition case), and K is the total number of
Gaussians. γt(k) � p(vt = k|O;�,
JM) is the posterior probability of mixture com-
ponent k at t, derived from the previously estimated transformation parameters
JM .4

Expression μad
k is a transformed mean vector with
JM , and the concrete form of this

vector is discussed in the next paragraph. In the Q function, we disregard the parameters
of the state transition probabilities and the mixture weights, since they do not depend
on the optimization with respect to
JM . Expression N (·|μ, �) denotes a Gaussian dis-
tribution with mean parameter μ and covariance matrix parameter �, and is defined in
Appendix C.6 as follows:

N (ot|μad
k , �k) � CN (�k) exp

(
−1

2
tr
[
(�k)−1(ot − μad

k)(ot − μad
k)ᵀ

])
. (3.162)

We use the trace based representation. Factor CN (�k) is a normalization factor, and is
defined as follows:

CN (�k) � (2π)−
D
2 |�k|− 1

2 . (3.163)

In the following paragraphs, we derive Eq. (3.161) as a function of
JM to optimize

JM .

We consider the concrete form of the transformed mean vector μad
k based on the

variance normalized representation. We first define the Cholesky decomposition matrix
Ck as follows:

�k � Ck(Ck)ᵀ, (3.164)

where Ck is a D×D triangular matrix. If the Gaussian k is included in a set of Gaussians
Kj in leaf node j (i.e., k ∈ Kj), the affine transformation of a Gaussian mean vector in a
covariance normalized space (Ck)−1μad

k is represented as follows:

(Ck)−1μad
k = Wj

(
1

(Ck)−1μini
k

)
⇒ μad

k = CkWj

(
1

(Ck)−1μini
k

)
� CkWjξ k, (3.165)

where ξ k is an augmented normalized vector of an initial (non-adapted) Gaussian mean
vector μini

k and j is a leaf node index that holds a set of Gaussians. Thus, transformation
parameter Wj is shared among a set of Gaussians Kj. The clustered structure of the
Gaussians is usually represented as a binary tree where a set of Gaussians belongs to
each node.

4 k denotes a combination of all possible HMM states and mixture components. In the common HMM
representation (e.g., in this chapter), k can be represented by these two indexes in Eq. (3.109).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.5 Maximum likelihood linear regression for hidden Markov model 95

Now we focus on how to obtain the Q function of
JM . By following the equations in
Example 2.3 with considering the occupation probability γt(k) in Eq. (2.39), Eq. (3.161)
is represented as follows:

Q(
′JM
|
JM)

=
∑

j∈JM

∑
k∈Kj

T∑
t=1

γt(k) logN (ot|μad
k
′
, �k)

=
∑

j∈JM

∑
k∈Kj

(
(μad

k
′
)ᵀ(�k)−1

T∑
t=1

γt(k)ot − 1

2
tr

[
(�k)−1

T∑
t=1

γt(k)oto
ᵀ
t

]

+
T∑

t=1

γt(k)

(
log CN (�k)− 1

2
(μad

k
′
)ᵀ(�k)−1μad

k
′
))

=
∑

j∈JM

∑
k∈Kj

(
(μad

k
′
)ᵀ(�k)−1γ k −

1

2
tr
[
(�k)−1�k

]
+ γk

(
log CN (�k)− 1

2
(μad

k
′
)ᵀ(�k)−1μad

k
′
))

, (3.166)

where γk, γ k, and �k are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk =
T∑

t=1

γt(k)

γ k =
T∑

t=1

γt(k)ot

�k =
T∑

t=1

γt(k)oto
ᵀ
t .

(3.167)

As introduced in Eq. (3.153), these are the 0th, 1st, and 2nd order sufficient statistics
of Gaussians in HMMs, respectively. Then, the Q function of
JM is represented by
substituting Eq. (3.165) into Eq. (3.166) as follows:

Q(
′JM
|
JM)

=
∑

j∈JM

∑
k∈Kj

(
(CkW′

jξ k)ᵀ(�k)−1γ k −
1

2
tr
[
(�k)−1�k

]
+ γk

(
log CN (�k)− 1

2
(CkW′

jξ k)ᵀ(�k)−1CkW′
jξ k

))
=
∑

j∈JM

∑
k∈Kj

(
tr
[
W′

j
ᵀ(Ck)−1γ kξ

ᵀ
k

]
− 1

2
tr
[
(�k)−1�k

]
+ γk

(
log CN (�k)− 1

2
tr
[
W′

j
ᵀW′

jξ kξ
ᵀ
k γk

]))

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

96 Statistical models in speech and language processing

=
∑

j∈JM

(∑
k∈Kj

γk log CN (�k)− 1

2
tr

[
W′

j
ᵀW′

j�j − 2W′
j
ᵀZj +

∑
k∈Kj

(�k)−1�k

])
,

(3.168)

where �j and Zj are 0th and 1st order sufficient statistics of linear regression parameters
defined as: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

�j �
∑
k∈Kj

ξ kξ
ᵀ
k γk

Zj �
∑
k∈Kj

(Ck)−1γ kξ
ᵀ
k .

(3.169)

Here Zj is a D × (D + 1) matrix and �j is a (D + 1) × (D + 1) symmetric matrix.
To derive Eq. (3.168), we use the fact that the trace of the scalar value is equal to the
original scalar value, the cyclic property, and the distributive property of the trace as in
Appendix B:

a = tr[a], (3.170)

tr[ABC] = tr[BCA], (3.171)

tr[A(B+ C)] = tr[AB+ AC]. (3.172)

We also use the definition of the Cholesky decomposition in Eq. (3.164).
Since Eq. (3.168) is represented as a quadratic form with respect to Wj, we can obtain

the optimal WML
j in the sense of ML, similar to the discussion in Section 3.4.3. By

differentiating the Q function with respect to Wj, we can derive the following equation:

∂

∂W′
j
Q(
′JM

|
JM) = 0. ⇒ Zj −WML
j �j = 0. (3.173)

Here, we use the following matrix formulas for the derivation in Appendix B.3:

∂

∂X
tr[X′A] = A

∂

∂X
tr[X′XA] = 2XA. (A is a symmetric matrix) (3.174)

Thus, we can obtain the following analytical solution:

WML
j = Zj�

−1
j . (3.175)

Therefore, the optimized mean vector parameter is represented as:

μad
k

ML = CkZj�
−1
j ξ k. (3.176)

Therefore, μad
k is analytically obtained by using the statistics (Zj and �j in Eq. (3.169))

and initial HMM parameters (Ck and ξ k). This solution corresponds to the M-step of
the EM algorithm, and the E-step is performed by the forward–backward algorithm,
similar to that of HMMs, to compute these statistics. The training procedure is shown in
Algorithm 5.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 97

Algorithm 5 Maximum likelihood linear regression

Require: � and
JM ←
init
JM

1: repeat
2: Compute the occupation probability γt(k).
3: Accumulate the sufficient statistics γk, γ k, �k, Zj, and �j

4: Estimate the transformation parameters
ML
JM

5: Update the HMM parameters �
6: until Convergence

MLLR is one of the most popular techniques for acoustic modeling, and there are
many variants of transformation types for HMMs, e.g., Sankar & Lee (1996), Chien, Lee
& Wang (1997), Chen, Liau, Wang et al. (2000), Mak, Kwok & Ho (2005) and Delcroix
et al. (2009). In addition to speech recognition, there are many other applications which
are based on the adaptive training of HMMs (e.g., speech synthesis (Tamura, Masuko,
Tokuda et al. 2001), speaker verification (Stolcke, Ferrer, Kajarekar et al. 2005), face
recognition (Sanderson, Bengio & Gao 2006) and activity recognition (Maekawa &
Watanabe 2011)).

3.6 n-gram with smoothing techniques

As we discussed in Section 3.1, a language model (LM) is known as crucial prior infor-
mation for large vocabulary continuous speech recognition (LVCSR), according to the
Bayes decision rule:

Ŵ = dMAP(O) = arg max
W

p(O|W)︸ ︷︷ ︸
acoustic model

× p(W)︸ ︷︷ ︸
language model

.
(3.177)

Many other applications include document classification, information retrieval, optical
character recognition, machine translation, writing correction, and bio-informatics. An
overview of language modeling in LVCSR systems has been given in Chen & Goodman
(1999), Kita (1999), Rosenfeld (2000), Bellegarda (2004), and Saon & Chien (2012b).

A language model is a probability distribution p(W) over a sequence of word strings
W = {w1, · · · , wi, · · · , wJ} � wJ

1 that describes how likely it is that the word sequence
W occurs as a sentence in some domain of interest.5 Recall that word w is represented
by a string, and it is an element of a set of distinct words V , which is also called a
vocabulary or dictionary. Here, wi is a word at position i. The word string wi ∈ V and
the continuous speech vector ot ∈ R

D are both sequential patterns but in different data
types and different time scales.

5 Some languages do not have word boundaries explicitly marked by white-space in a text (e.g., Japanese
and Chinese). Therefore, to process a text for language molding, these languages need an additional word
segmentation step (Sproat, Gale, Shih & Chang 1996, Matsumoto, Kitauchi, Yamashita et al. 1999, Kudo
2005).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

98 Statistical models in speech and language processing

To get used to this notation, we provide several examples to represent the following
word sequence:

my wife used my car.

This sentence has five words and one period at the end of the sentence. By regarding
the period as one word,6 this sentence is totally composed of a six-word sequence (i.e.,
J = 6), and can be represented by

w6
1 = {w1 = “my”, w2 = “wife”, w3 = “used”, w4 = “my”, w5 = “car”, w6 = “.”}.

(3.178)
Note that the vocabulary for this sentence is composed of distinct unique words
represented as:

V = {“my”, “wife”, “used”, “car”, “.”} (3.179)

and the vocabulary size in this example is

|V| = 5. (3.180)

We can also introduce the following summation over vocabulary V , which is important
in this section: ∑

wi∈V
f (wi). (3.181)

This summation is performed over each vocabulary in Eq. (3.179), and not over a
position i in Eq. (3.178).

Basically, the prior word probability is employed to characterize the regularities in
natural language. The probability of a word sequence {w1, · · · , wJ} is represented based
on the product rule as:

p�(w1, · · · , wJ) = p(wJ |w1, · · · , wJ−1)p(w1, · · · , wJ−1)

= p(wJ |w1, · · · , wJ−1)p(wJ−1|w1, · · · , wJ−2)p(w1, · · · , wJ−2)

...

=
J∏

i=1

p(wi|wi−1
1), (3.182)

where � denotes the n-gram parameters, namely the n-gram probabilities, which is
explained later. Here, to describe the word sequence from ith word to nth word, we
use the following notation:

{wi, · · · , wn} � wn
i . (3.183)

We also define the following special cases:

wi
i = wi

wn
i = ∅, when i > n (3.184)

6 In the implementation, we additionally define the start of a sentence with an auxiliary symbol for practical
use, which makes the number of words seven in this example.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 99

where ∅ denotes an empty set. For example, the word sequences {w1, · · · , wi−1} are
represented as

wi−1
1 � {w1, · · · , wi−1} (3.185)

and so on. When i = 1 in Eq. (3.182), the conditional distribution is written as:

p(w1|w0
1) � p(w1), where w0

1 = ∅. (3.186)

However, it makes the model larger, as the number of words in a sequence is larger, and
we need to model it with the fixed model size. Thus, Eq. (3.182) is approximated with
the (n − 1)th order Markov assumption by multiplying the probabilities of a predicted
word wi conditional on its preceding n− 1 words {wi−n+1, · · · , wi−1}:

p�(wJ
1) ≈

J∏
i=1

p(wi|wi−1
i−n+1). (3.187)

This model is called an n-gram model. Usually n is taken to be from 2 to 5, which
depends on the size of the training data and applications. When n = 1 in Eq. (3.187),
the conditional distribution is written as:

p(wi|wi−1
i) � p(wi), wi−1

i � ∅, (3.188)

which is called a unigram model that does not depend on any history of words.
The n-gram parameter is defined as the weight given to a conditional word sequence.

The probabilistic distribution of p(wi|wi−1
i−n+1) is parameterized as with a multinomial

distribution as:

p(wi|wi−1
i−n+1) � θwi|wi−1

i−n+1
, (3.189)

where ∑
wi∈V

θwi|wi−1
i−n+1

= 1

θwi|wi−1
i−n+1

≥ 0 ∀wi ∈ V . (3.190)

Note that the number of distinct n-gram parameters for θwi|wi−1
i−n+1

would be the index

to the power of the vocabulary size |V|, i.e., |V|n. In this section, we use the following
notation to present a set of n-gram parameters:

�n � {θwi|wi−1
i−n+1

|∀wi ∈ V , · · · , wi−n+1 ∈ V}
� {p(wi|wi−1

i−n+1)}. (3.191)

The number of parameters is a very large since the vocabulary size of LVCSR would
be more than 50 000, and the main problem of language modeling is how to compactly
represent these parameters.

The straightforward way to estimate the multinomial distribution of an n-gram
θwi|wi−1

i−n+1
= p(wi|wi−1

i−n+1) from a text corpus D is to compute the ML estimate by

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

100 Statistical models in speech and language processing

θML
wi|wi−1

i−n+1
= pML(wi|wi−1

i−n+1)

= arg max
θ

wi|wi−1
i−n+1

p(D|θwi|wi−1
i−n+1

), (3.192)

where the multinomial likelihood function is obtained from the definition in
Appendix C.2 by

p(D|{θwi|wi−1
i−n+1

|wi ∈ V}) =
∏

wi∈V
(θwi|wi−1

i−n+1
)c(wi

i−n+1), (3.193)

where c(wi−1
i−n+1) denotes the number of occurrences of word sequence wi−1

i−n+1 in train-
ing corpus D. To estimate the parameter, similarly to the state transitions and mixture
weights in the HMM in Section 3.4.3, we introduce a Lagrange multiplier η and solve
the constrained optimization problem by maximizing

∑
wi∈V

c(wi
i−n+1) log θwi|wi−1

i−n+1
+ η

⎛⎝∑
wi∈V

θwi|wi−1
i−n+1

− 1

⎞⎠ . (3.194)

Setting the derivative of Eq. (3.194) with respect to θwi|wi−1
i−n+1

to zero, we obtain

θwi|wi−1
i−n+1

= −1

η
c(wi

i−n+1). (3.195)

By substituting this result into constraint Eq. (3.190), we find the value of the Lagrange
multiplier ∑

wi∈V
θwi|wi−1

i−n+1
= −1

η

∑
wi∈V

c(wi
i−n+1) = 1

⇒ η = −
∑
wi∈V

c(wi
i−n+1), (3.196)

and the ML solution in the form of

θML
wi|wi−1

i−n+1
= c(wi

i−n+1)∑
wi

c(wi
i−n+1)

= c(wi
i−n+1)

c(wi−1
i−n+1)

. (3.197)

Without loss of generality, we neglect the notation � in the following expressions. The
goal of the most popularly used language models, trigram models, is to determine the
probability of a word given the previous two words p(wi|wi−2, wi−1), which is estimated
as the number of times the word sequence {wi−2, wi−1, wi} occurs in some corpus of
training data divided by the number of times the word sequence {wi−2, wi−1} occurs.

However, again the number of n-gram parameters depends on the number of word
combinations in a word sequence {wi−n+1, · · · , wi−1, wi}, which is counted as the num-
ber of different words wn ∈ V at different temporal positions from i − n + 1 to i. This
number is exponentially increased by involving large n. Although n-gram is effective

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 101

at exploiting local lexical regularities, it suffers from the inadequacies of training data
and long-distance information due to too many word combinations and too narrow an
n-gram window size, respectively. These limitations substantially weaken the regulariza-
tion of the trained n-gram models and the prediction for unseen words. The limitation
of n-gram window size could be resolved by exploiting large-span latent semantic infor-
mation (Hofmann 1999b, Bellegarda 2000), which is addressed in Section 3.7. In what
follows, we address different smoothing solutions to the problem of insufficient training
data in the n-gram model.

3.6.1 Class-based model smoothing

A simple and meaningful approach to tackle the data sparseness problem is to consider
the transition probabilities between classes rather than words, namely to adopt the class-
based n-gram language model (Brown, Desouza, Mercer et al. 1992, Chen 2009):

p(wi|wi−1
i−n+1) ≈ p(wi|ci)p(ci|ci−1

i−n+1), (3.198)

where ci ∈ C is the class assignment of word wi, p(wi|ci) is the probability of word wi,
generated from class ci, and p(ci|ci−1

i−n+1) is the class n-gram. The class assignments of
different words are determined beforehand according to the word clustering using the
metric of mutual information. An existing linguistic class (e.g., part of speech) is also
used to provide the class assignments.

The word probability given a class p(wi|ci) is usually estimated by using the ML
estimation, similarly to Eq. (3.197), as:

pML(wi|ci) = θML
wi|ci

= c(wi, ci)∑
wi∈V c(wi, ci)

, (3.199)

where c(wi, ci) is the number of word counts labeled by both {wi, ci} in the corpus D. The
class n-gram probability p(ci|ci−1

i−n+1) is estimated by using the ML estimation (replacing
the word counts in Eq. (3.197) with class counts), or a smoothing technique, explained
in the following sections.

The model parameters are composed of

� = {{p(wi|ci)}, {p(ci|ci−1
i−n+1)}}. (3.200)

Both are represented by the multinomial distributions. Since the number of distinct
classes |C| is much smaller than the vocabulary size |V|, the model size is signifi-
cantly reduced. Model parameters could be reliably estimated. For example, the number
of parameters of {{p(wi|ci)} is |V‖C|, and the number of parameters of {p(ci|ci−1

i−n+1)}
is |C|n. Since |V| � |C|, the total number of parameters of a class n-gram model
|V‖C| + |C|n is much smaller than an n-gram model |V|n. The class-based n-gram is
also seen as a smoothed language model.

3.6.2 Jelinek–Mercer smoothing

As reported in Chen & Goodman (1999), it is usual to deal with the issue of data sparse-
ness in an n-gram model by using a linear interpolation method where the nth order

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

102 Statistical models in speech and language processing

language model pinterp(wi|wi−1
i−n+1) is estimated by interpolating with the (n− 1)th order

language model in a form of

pinterp(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi|wi−1

i−n+1)

+ (1− λwi−1
i−n+1

)pinterp(wi|wi−1
i−n+2), (3.201)

where λwi−1
i−n+1

denotes the interpolation weight which is estimated for each wi−1
i−n+1 in

accordance with the ML method. The reason the interpolation weight λwi−1
i−n+1

does not

depend on wi comes from the constraint of the sum-to-one property of an n-gram model.
The nth order smoothed model is calculated recursively as a linear interpolation between
the nth order ML model and the (n− 1)th order smoothed model, that is

pinterp(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi|wi−1

i−n+1)+ (1− λwi−1
i−n+1

)

×
(
λwi−1

i−n+2
pML(wi|wi−1

i−n+2)+ (1− λwi−1
i−n+2

)pinterp(wi|wi−1
i−n+3)

)
= · · · . (3.202)

To carry through this recursive process to the end, we can take the smoothed unigram or
first-order model to be the ML distribution in Eq. (3.192), i.e., when n = 1,

pinterp(wi|wi−1
i) = pinterp(wi)

= pML(wi) = θML
wi

, (3.203)

where θML
wi

is obtained from Eq. (3.197) as:

θML
wi
= c(wi)∑

wi
c(wi)

. (3.204)

Or we can take the smoothed zeroth-order model to be the discrete uniform distribution
(Appendix C.1),

pinterp(wi) = λpML(wi)+ (1− λ)Unif(wi), (3.205)

where the uniform distribution is defined with the vocabulary size |V| as:

Unif(wi) � 1

|V| . (3.206)

Now, let us consider the original interpolation equation Eq. (3.201). The parameter
λwi−1

i−n+1
is estimated individually for the wi−1

i−n+1 that maximizes the probability of some

of the data. Practically, the selection could be done for buckets of parameters. In general,
this class of interpolated models is also known as the n-gram model with Jelinek–Mercer
smoothing (Jelinek & Mercer 1980), which is a standard form of interpolation smooth-
ing. The smoothing techniques in the following sections (Witten–Bell (WB) smoothing
in Section 3.6.3, absolute discount in Section 3.6.4, Kneser–Ney (KN) smoothing in
Eq. (3.232), and PLSA smoothing in Eq. (3.319)) provide specific interpolation weights
in this standard form, as shown in Table 3.1.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 103

An important constraint of the n-gram model is that the summation over wi goes to 1,
as shown in Eq. (3.190). The Jelinek–Mercer smoothing (and the following smoothing
techniques) satisfies this condition, i.e.,∑

wi∈V
pinterp(wi|wi−1

i−n+1) = 1. (3.207)

We can prove this condition recursively from the unigram case to the n-gram case. First,
it is obvious that for the unigram models for the Eqs. (3.203) and (3.205) cases:∑

wi∈V
pinterp(wi) = 1. (3.208)

Next, the bi-gram case is also proved by:∑
wi∈V

pinterp(wi|wi−1) =
∑
wi∈V

(
λwi−1 pML(wi|wi−1)+ (1− λwi−1)pinterp(wi)

)

= λwi−1

⎛⎝∑
wi∈V

pML(wi|wi−1)

⎞⎠+ (1− λwi−1)

⎛⎝∑
wi∈V

pinterp(wi)

⎞⎠
= λwi−1 + (1− λwi−1) = 1, (3.209)

where we use Eq. (3.208) and
∑

wi
pML(wi|·) = 1. That is proven in the n-gram case,

trivially. The important property of this proof of the sum-to-one condition is that the
summation over wi does not depend on the interpolation weight λwi−1

i−n+1
.

3.6.3 Witten–Bell smoothing

Witten–Bell smoothing (Witten & Bell 1991) is considered to be an instance of inter-
polation smoothing as addressed in Section 3.6.2 by setting a specific value for the
interpolation parameter λwi−1

i−n+1
. The Witten–Bell smoothing first defines the following

number based on the number of unique words that follow the history wi−1
i−n+1:

N1+(wi−1
i−n+1, •) � |{wi|c(wi−1

i−n+1, wi) > 0}|. (3.210)

The notation N1+ represents the number of distinct words that have one or more
counts, and the • represents any possible words at i with this condition. By using
N1+(wi−1

i−n+1, •), the Witten–Bell smoothing assigns the factor 1 − λwi−1
i−n+1

for the

lower-order model (the second term in Eq. (3.201)) where

1− λwi−1
i−n+1

�
N1+(wi−1

i−n+1, •)∑
wi

c(wi
i−n+1)+ N1+(wi−1

i−n+1, •)

= N1+(wi−1
i−n+1, •)

c(wi−1
i−n+1)+ N1+(wi−1

i−n+1, •) . (3.211)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

104 Statistical models in speech and language processing

This factor is interpreted as the frequency with which we should use the lower-order
model to predict the next word. It is meaningful that more unique words appearing after
history words wi−1

i−n+1, i.e., larger N1+(wi−1
i−n+1, •), implies that more reliable values of

the (n − 1)-grams are estimated, and the higher weight factor 1 − λwi−1
i−n+1

should be

assigned for (n − 1)-grams. Similarly, the rest of the weight λwi−1
i−n+1

(the first term in

Eq. (3.201)) is represented from Eq. (3.211) as

λwi−1
i−n+1

= 1− N1+(wi−1
i−n+1, •)∑

wi
c(wi

i−n+1)+ N1+(wi−1
i−n+1, •)

=
∑

wi
c(wi

i−n+1)∑
wi

c(wi
i−n+1)+ N1+(wi−1

i−n+1, •) . (3.212)

This is the modified ML estimate with the unique word count N1+(wi−1
i−n+1, •).

According to the interpolation smoothing in Eq. (3.201) and Eqs. (3.211) and (3.212),
the Witten–Bell smoothing is expressed by

pWB(wi|wi−1
i−n+1)

= c(wi
i−n+1)pML(wi|wi−1

i−n+1)+ N1+(wi−1
i−n+1, •)pWB(wi|wi−1

i−n+2)∑
wi

c(wi
i−n+1)+ N1+(wi−1

i−n+1, •) . (3.213)

Note that the factor used in the Witten–Bell smoothing in Eq. (3.211) only depends
on wi−1

i−n+1, and has the same dependency as λwi−1
i−n+1

. Therefore, it is trivial that the

Witten–Bell smoothing satisfies the sum-to-one condition, as it is a special solution of
the interpolation smoothing (Eq. (3.201)) that satisfies the sum-to-one condition.

3.6.4 Absolute discounting

Absolute discounting is also considered to be an instance of interpolation smoothing
as addressed in Section 3.6.2. However, the equation form is not represented as the
Jelinek–Mercer form, which we set down again as follows for comparison:

pinterp(wi|wi−1
i−n+1) = λwi−1

i−n+1
pML(wi|wi−1

i−n+1)+ (1− λwi−1
i−n+1

)pinterp(wi|wi−1
i−n+2). (3.214)

Recall that Eq. (3.214) has the weight λ depending on the previous word sequence
wi−1

i−n+1, and is composed of the ML probability pML(wi|wi−1
i−n+1) and lower-order prob-

ability pinterp(wi|wi−1
i−n+2). However, in absolute discounting, instead of multiplying the

higher-order ML model by a factor λwi−1
i−n+1

, the higher-order distribution is created by

subtracting a fixed discount d for the case of non-zero count. The absolute discounting
is defined by

pABS(wi|wi−1
i−n+1) �

max{c(wi
i−n+1)− d, 0}∑

wi
c(wi

i−n+1)
+ (1− λwi−1

i−n+1
)pABS(wi|wi−1

i−n+2), (3.215)

where 0 ≤ d ≤ 1 denotes a discounting parameter.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 105

The interpolation weight (1 − λwi−1
i−n+1

) is formed with the unique word count

N1+(wi−1
i−n+1, •) defined in Eq. (3.210) as:

1− λwi−1
i−n+1

= dN1+(wi−1
i−n+1, •)∑

wi
c(wi

i−n+1)
. (3.216)

Note that the weight does not depend on wi, but wi−1
i−n+1, similarly to the Jelinek–Mercer

form in Eq. (3.214). The way to find weight parameter 1− λwi−1
i−n+1

is again based on the

sum-to-one condition. Consider the condition∑
wi

pABS(wi|·) = 1. (3.217)

Then, by taking the summation over wi for both sides in Eq. (3.215), Eq. (3.215) can be
rewritten as:

1 =
∑
wi

pABS(wi|wi−1
i−n+1)

=
∑
wi

max{c(wi
i−n+1)− d, 0}∑

wi
c(wi

i−n+1)
+ (1− λwi−1

i−n+1
)
∑
wi

pABS(wi|wi−1
i−n+2)

=
∑

wi
max{c(wi

i−n+1)− d, 0}∑
wi

c(wi
i−n+1)

+ (1− λwi−1
i−n+1

). (3.218)

Therefore,

1− λwi−1
i−n+1

= 1−
∑

wi
max{c(wi

i−n+1)− d, 0}∑
wi

c(wi
i−n+1)

=
∑

wi
c(wi

i−n+1)−∑wi
max{c(wi

i−n+1)− d, 0}∑
wi

c(wi
i−n+1)

=
∑

wi

(
c(wi

i−n+1)−max{c(wi
i−n+1)− d, 0})∑

wi
c(wi

i−n+1)
. (3.219)

Now we focus on the numerator in Eq. (3.219) that represents the total discount value
from d. By considering the cases when c(wi

i−n+1) > 0 and c(wi
i−n+1) = 0, we can derive

the following equation:

c(wi
i−n+1)−max{c(wi

i−n+1)− d, 0} =
{

d if c(wi
i−n+1) > 0

0 if c(wi
i−n+1) = 0.

(3.220)

Therefore, by substituting Eq. (3.220) into Eq. (3.219), and by using the unique word
count N1+(wi−1

i−n+1, •), Eq. (3.219) is finally represented as:

1− λwi−1
i−n+1

=
∑

wi|c(wi
i−n+1)>0 d∑

wi
c(wi

i−n+1)

= dN1+(wi−1
i−n+1, •)∑

wi
c(wi

i−n+1)
, (3.221)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

106 Statistical models in speech and language processing

where
∑

wi|c(wi
i−n+1)>0 means that the summation is undertaken for a subset of dis-

tinct words in the vocabulary V that satisfies the condition c(wi
i−n+1) > 0. Since d

does not depend on wi, the numerator can be represented with d times the number
of distinct words wi that satisfies the condition c(wi

i−n+1) > 0, which corresponds to

N1+(wi−1
i−n+1, •). Thus, we prove Eq. (3.216).

This weight means that the discount d in an observed n-gram event c(wi−1
i−n+1wi) > 0

at current word wi is distributed to compensate for those unseen events c(wi−1
i−n+1wi) = 0

where a lower-order model pABS(wi|wi−1
i−n+2) is adopted. The discount d is shared for all

n-grams and could be measured by using the total number of n-grams with exactly one
and two counts, i.e., c(wi−1

i−n+1) = 1 and c(wi−1
i−n+1) = 2 in the training data, respectively

(Ney, Essen & Kneser 1994).
In summary, the absolute discounting is represented by

pABS(wi|wi−1
i−n+1) �

max{c(wi
i−n+1)− d, 0}∑

wi
c(wi

i−n+1)
+ dN1+(wi−1

i−n+1, •)∑
wi

c(wi
i−n+1)

pABS(wi|wi−1
i−n+2).

(3.222)

Note that the absolute discounting does not include the exact ML probabilities (although
they can be included by re-arranging the first term). The weight parameter for the lower-
order model is proportional to the value N1+(wi−1

i−n+1, •), which has a similarity to that
in Witten–Bell smoothed n-grams, as seen in Eq. (3.211).

Thus, we have explained Witten–Bell smoothing in Section 3.6.3 and absolute
discount in Section 3.6.4 as instances of the interpolation (Jelinek–Mercer) smooth-
ing techniques. The next section introduces another type of well-known smoothing
technique called backoff smoothing, with Katz smoothing as an example.

3.6.5 Katz smoothing

Katz smoothing (Katz 1987) was developed by intuitively combining higher-order mod-
els with lower-order models through scaling of the ML distribution. Taking a bi-gram
as an example, the Katz smoothing is performed by calculating the probability by con-
sidering the cases where the co-occurrence count c(wi−1, wi) of wi−1 and wi is zero or
positive as follows:

pKZ(wi|wi−1) �
{

dc(wi−1,wi)p
ML(wi|wi−1) if c(wi−1, wi) > 0

α(wi−1)pKZ(wi) if c(wi−1, wi) = 0,
(3.223)

where dr < 1 is a discount ratio that reduces the probability estimated from the ML.
The discount ratio is usually is obtained by the Good–Turing estimate (Good 1953), and
this book does not describe it in detail. The expression α(wi−1) is a scaling factor that
only depends on the previous word wi−1, while pKZ(wi) is a unigram probability, and we
usually use the ML unigram probability for the bi-gram case, i.e.,

pKZ(wi) = pML(wi). (3.224)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 107

Now we focus on the scaling factor α(wi−1), which is obtained by the sum-to-one
condition of pKZ(wi|·) and pML(wi|·) that must be satisfied for any probabilistic distribu-
tions. By summing over wi in both sides of Eq. (3.223), the equation can be rewritten as∑

wi

pKZ(wi|wi−1) =
{∑

wi
dc(wi−1,wi)p

ML(wi|wi−1) if c(wi−1, wi) > 0∑
wi
α(wi−1)pML(wi) if c(wi−1, wi) = 0.

(3.225)

This leads to the following equation:

1 =
∑

wi|c(wi−1,wi)>0

dc(wi−1,wi)p
ML(wi|wi−1)+ α(wi−1)

∑
wi|c(wi−1,wi)=0

pML(wi), (3.226)

where
∑

wi|c(wi−1,wi)>0 or
∑

wi|c(wi−1,wi)=0 means that the summation is undertaken for a
subset of distinct words in the vocabulary V that satisfies the condition c(wi−1, wi) > 0
or c(wi−1, wi) = 0. Thus, we obtain that

α(wi−1) = 1−∑wi|c(wi−1,wi)>0 dc(wi−1,wi)p
ML(wi|wi−1)∑

wi|c(wi−1,wi)=0 pML(wi)

= 1−∑wi|c(wi−1,wi)>0 dc(wi−1,wi)p
ML(wi|wi−1)

1−∑wi|c(wi−1,wi)>0 pML(wi)
. (3.227)

This smoothing technique can be generalized to the n-gram probability as

pKZ(wi|wi−1
i−n+1) �

{
dwi

i−n+1
pML(wi|wi−1

i−n+1) if c(wi
i−n+1) > 0

α(wi−1
i−n+1)pKZ(wi|wi−1

i−n+2) if c(wi
i−n+1) = 0,

(3.228)

where

α(wi−1
i−n+1) =

1−∑wi|c(wi
i−n+1)>0 dc(wi

i−n+1)p
ML(wi|wi−1

i−n+1)

1−∑wi|c(wi
i−n+1)>0 pKZ(wi|wi−1

i−n+2)
. (3.229)

This smoothing scheme is known as a realization of backoff smoothing. This smooth-
ing is obtained by the weighted multiplication of the ML probability and is different
from interpolation (Jelinek–Mercer) smoothing, as discussed in Section 3.6.2, which
is obtained by the weighted summation of the ML probability. Note that both smooth-
ing techniques include some free parameters (weight λ in interpolation smoothing and
the discount factor d in backoff smoothing), but the other parameters are obtained by
using the sum-to-one constraint of the probability distribution. Similarly to the meaning
of λ, backoff smoothing relies more on the lower-order n-gram probability when d is
small (close to 0), while backoff smoothing relies more on the ML n-gram probability
when d is large (close to 1). The next section describes a famous (modified) Kneser–
Ney smoothing, which can be realized with both interpolation and backoff smoothing
methods.

3.6.6 Kneser–Ney smoothing

Kneser–Ney (KN) smoothing (Kneser & Ney 1995) can be interpreted as an extension
of the absolute discount approach, as discussed in Section 3.6.4. When the highest-order

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

108 Statistical models in speech and language processing

probability case is considered, it is same as the absolute discount. However, the unique
property of KN smoothing is that it provides a special lower-order probability based on
the numbers of distinct words.

For example, in the highest-order probability case, the original Kneser–Ney method
was developed as the following backoff smoothed model:

pKN(wi|wi−1
i−n+1) =

⎧⎨⎩
max{c(wi

i−n+1)−d,0}∑
wi

c(wi
i−n+1)

if c(wi
i−n+1) > 0

γ (wi−1
i−n+1)pKN(wi|wi−1

i−n+2) if c(wi
i−n+1) = 0,

(3.230)

where γ (wi−1
i−n+1) is chosen to make the distribution sum to 1 and has the form

γ (wi−1
i−n+1) = dN1+(wi−1

i−n+1, •)∑
wi

c(wi
i−n+1)

. (3.231)

Alternatively, the Kneser–Ney model could be estimated according to the interpolation
smoothing scheme in the highest-order probability case based on

pKN(wi|wi−1
i−n+1) = max{c(wi

i−n+1)− d, 0}∑
wi

c(wi
i−n+1)

+ dN1+(wi−1
i−n+1, •)∑

wi
c(wi

i−n+1)
pKN(wi|wi−1

i−n+2).

(3.232)

Note that the first term of Eq. (3.232) is calculated from a modification of the ML prob-
ability, and Eq. (3.232) is exactly the same as the absolute discounting in Eq. (3.222),
except for the lower-order probability pKN(wi|wi−1

i−n+2). However, in the lower-order
probability, instead of using Eq. (3.232) recursively by changing n to n− 1, the Kneser–
Ney smoothing provides more intuitive probability than the ML probability for the first
term by considering the continuation of words.

For a simple explanation, we consider the bi-gram case (the highest-order probability
is a bi-gram probability), i.e., Eq. (3.232) is represented as:

pKN(wi|wi−1) = max{c(wi−1, wi)− d, 0}∑
wi

c(wi−1, wi)
+ dN1+(wi−1, •)∑

wi
c(wi−1, wi)

pKN(wi). (3.233)

The question here is whether we really use the unigram probability for pKN(wi). This is
often illustrated with an example of the bi-gram “San Francisco” (Chen & Goodman
1999, Jurafsky 2014). In the training data of the Wall Street Journal (WSJ0) corpus
(Paul & Baker 1992), the bi-gram “San Francisco” appears 3222 times, while the word
“Francisco” appeared 3329 times. The other word “glasses” appears 185 times. That is

c(wi−1 = “San”, wi = “Francisco”) = 3222

c(wi = “Francisco”) = 3329

c(wi = “glasses”) = 185. (3.234)

From these statistics, we can say that:

• The word “Francisco” almost always (96.8%) follows “San,” and does not follow the
other words in most cases.

• However, the word “Francisco” is more common (18 times more) than “glasses.”

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 109

Then, let us consider the following sentences:

1. I can’t see without my reading “glasses.”
2. I can’t see without my reading “Francisco.”

We consider the case when there are no “reading glasses” and “reading Francisco” in
a training corpus, and the lower-order probability pKN(wi) (the second term in (3.233))
is used to compute these sentence probabilities. Intuitively, we want to make the prob-
ability of the first sentence with “glasses” higher than the other. However, if we use
the count-oriented (ML-like) probability for pKN(wi), the sentence with “Francisco” is
assigned higher probability because the simple word count of “Francisco” is much larger
than that of “glasses.” This problem can be avoided by considering the continuity of
word sequences rather than word counts in the lower-order probability.7

The KN smoothing provides the following unigram probability that does not use the
word count (ML-like) information:

pKN(wi) � N1+(•, wi)

N1+(•, •) . (3.235)

Here, from the definition of the unique count N1+ in Eq. (3.210), N1+(•, wi) and
N1+(•, •) are represented as follows:

N1+(•, wi) = |{wi−1|c(wi−1, wi) > 0}|, (3.236)

N1+(•, •) = |{{wi, wi−1}|c(wi−1, wi) > 0}| =
∑
wi

N1+(•, wi). (3.237)

In the previous example,

N1+(•, wi = “Francisco”) = 58

N1+(•, wi = “glasses”) = 88. (3.238)

The unique count of N1+(•, wi = “glasses”) is larger than that of N1+(•, wi =
“Francisco”). Thus, the probability of the sentence with “glasses” becomes larger when
we use the number of unique words in (3.235), which is a more intuitive result in this
example.

The probability based on the unique counts can be generalized from the unigram case
in Eq. (3.235) to higher-order n-gram probabilities, except for the highest-order n-gram
that uses the absolute discounting from Eq. (3.232). For example, pKN(wi|wi−1

i−n+2), which
is the second term in Eq. (3.232), is represented as follows:

pKN(wi|wi−1
i−n+2) = max{N1+(•, wi−1

i−n+2)− d, 0}
N1+(•, wi−1

i−n+2, •)

+ dN1+(wi−1
i−n+2, •)

N1+(•, wi−1
i−n+2, •)pKN(wi|wi−1

i−n+3), (3.239)

7 Actually “reading glasses” has appeared twice in the WSJ0 corpus, and the lower-order probability cannot
be used so much in the WSJ0 language model when we set d very small. This is another solution to resolve
this discontinuity problem by correcting a very large size of corpus.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

110 Statistical models in speech and language processing

where

N1+(•, wi−1
i−n+2) � |{wi−n+1|c(wi−1

i−n+1) > 0}|
N1+(•, wi−1

i−n+2, •) � |{wi−n+1, wi|c(wi
i−n+1) > 0}| =

∑
wi

N1+(•, wi−1
i−n+2). (3.240)

Thus, we can obtain the interpolation version of the Kneser–Ney smoothing for all cases,
which is summarized as follows:

• The highest-order n-gram probability

pKN(wi|wi−1
i−n+1) = max{c(wi

i−n+1)− d, 0}∑
wi

c(wi
i−n+1)

+ dN1+(wi−1
i−n+1, •)∑

wi
c(wi

i−n+1)
pKN(wi|wi−1

i−n+2); (3.241)

• Lower-order n-gram probability

pKN(wi|wi−1
i−n+2) = max{N1+(•, wi−1

i−n+2)− d, 0}
N1+(•, wi−1

i−n+2, •)

+ dN1+(wi−1
i−n+2, •)

N1+(•, wi−1
i−n+2, •)pKN(wi|wi−1

i−n+3); (3.242)

• Unigram probability

pKN(wi) = N1+(•, wi)

N1+(•, •) . (3.243)

In general, the interpolated n-gram model yields better performance than the backoff
n-gram model (Chen & Goodman 1999).

Modified Kneser–Ney smoothing

In Kneser–Ney smoothing and discounting smoothing, a discount parameter d in
Eq. (3.241) plays an important role in striking a balance between the target-order n-gram
probability and the lower-order one. Then, it is a simple question whether the single dis-
count parameter d is precise enough to handle the balance. Basically, the distribution of
distinct words follows the power-law property where only a few frequent words form a
high proportion of the total, but a lot of rare words occur only one or two times, i.e.,

|{wi|c(wi) = 1}| � |{wi|c(wi) = 2}| � |{wi|c(wi) > 2}|. (3.244)

This power-law property comes from the “rich-get-richer behavior” in natural language,
and this property also applies to n-grams, as well as words. Thus, Kneser–Ney smooth-
ing is modified by separately using three discount parameters d1, d2, and d3+ for those

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.6 n-gram with smoothing techniques 111

n-grams with one, two, and three or more counts, respectively, instead of using a single
discount d for all non-zero counts, as follows:

d(c) �

⎧⎪⎪⎨⎪⎪⎩
0 if c = 0
d1 if c = 1
d2 if c = 2
d3+ if c ≥ 3.

(3.245)

These parameters are empirically determined as (Chen & Goodman 1999):

dbase = m1

m1 + 2m2
, (3.246)

d1 = 1− 2dbase
m2

m1
, (3.247)

d2 = 2− 3dbase
m3

m2
, (3.248)

d3+ = 3− 4dbase
m4

m3
, (3.249)

where mj is the total number of n-grams appearing j times in a training corpus, i.e.,

mj �
∑

wi
i−n:c(wi

i−n)=j

c(wi
i−n). (3.250)

Based on the new discounting parameter d(c) in Eq. (3.245), a modified Kneser–Ney
(MKN) smoothing is conducted to estimate the smoothed n-grams using

pMKN(wi|wi−1
i−n+1) = c(wi

i−n+1)− d(c(wi−1
i−n+1))∑

wi
c(wi

i−n+1)

+ γ (wi−1
i−n+1)pMKN(wi|wi−1

i−n+2), (3.251)

where γ (wi−1
i−n+1) is derived by considering the sum-to-one condition. By taking the

summation over wi in both sides of Eq. (3.251), Eq. (3.251) is represented as follows:∑
wi

pMKN(wi|wi−1
i−n+1) = 1

=
∑
wi

c(wi
i−n+1)− d(c(wi−1

i−n+1))∑
wi

c(wi
i−n+1)

+ γ (wi−1
i−n+1)

∑
wi

pMKN(wi|wi−1
i−n+2)

=
∑
wi

c(wi
i−n+1)− d(c(wi−1

i−n+1))∑
wi

c(wi
i−n+1)

+ γ (wi−1
i−n+1). (3.252)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

112 Statistical models in speech and language processing

Now we focus on the first term of the 4th line in Eq. (3.252). By using Eq. (3.245), this
term can be represented as:

∑
wi

c(wi
i−n+1)− d(c(wi−1

i−n+1))

=
∑
wi

c(wi
i−n+1)− d1

∑
wi|c(wi−1

i−n+1)=1

1− d2

∑
wi|c(wi−1

i−n+1)=2

1− d3+
∑

wi|c(wi−1
i−n+1)≥3

1

=
∑
wi

c(wi
i−n+1)− d1N1(wi−1

i−n+1, •)− d2N2(wi−1
i−n+1, •)− d3+N3+(wi−1

i−n+1, •).

(3.253)

Thus, by substituting Eq. (3.253) into Eq. (3.252), we obtain

γ (wi−1
i−n+1) = d1N1(wi−1

i−n+1, •)+ d2N2(wi−1
i−n+1, •)+ d3+N3+(wi−1

i−n+1, •)∑
wi

c(wi
i−n+1)

. (3.254)

The MKN smoothed n-grams were shown to perform better than the previously
described smoothed n-grams in terms of perplexity and word error rates for LVCSR
tasks (Chen & Goodman 1999).

Table 3.1 summarizes different language model smoothing methods and their corre-
sponding smoothing techniques including interpolation smoothing and backoff smooth-
ing. (Modified) Kneser–Ney smoothing, addressed in Section 3.6.6, can be implemented
in both interpolation smoothing and backoff smoothing. Bayesian approaches extend
these standard n-gram language models to MAP estimation of an n-gram language
model in Section 4.7, a hierarchical Dirichlet language model in Section 5.3, and a
hierarchical Pitman–Yor language model in Section 8.5. Since n-gram language models
always have to address the sparse data problem, Bayesian approaches provide an elegant
solution to deal with the problem theoretically.

The next section considers another generative model of a text that can deal with
document information rather than a simple word sequence modeled by an n-gram model.

Table 3.1 Summary of different language model smoothing methods in terms of interpolation smoothing
and backoff smoothing.

Interpolation smoothing Backoff smoothing

Jelinek–Mercer smoothing Section 3.6.2
Witten–Bell smoothing Section 3.6.3
Absolute discount Section 3.6.4
Katz smoothing Section 3.6.5
Kneser–Ney smoothing Eq. (3.232) Eq. (3.230)
PLSA smoothing Eq. (3.319)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 113

3.7 Latent semantic information

One of the main limitations of the standard n-gram model is the inadequacy of
long-distance information caused by n-gram window size. How to extract semanti-
cally meaningful information outside an n-gram window becomes crucial to achieve
large-span language modeling. Traditionally, the cache-based language model (Kuhn &
De Mori 1990) was proposed to exploit long-distance information where the short-term
pattern in history words is continuously captured for word prediction. On the other hand,
we may characterize long-distance information by finding long-term semantic depen-
dencies which are seen as global constraints. The short-term statistics within an n-gram
window serve as local constraints. Combining local and global constraints provides
complete and structural information for word sequence probabilities.

In the literature, latent semantic analysis (LSA) (Berry, Dumais & O’Brien 1995) has
been popular for many years (Manning & Schütze 1999) to construct latent topic space
in information retrieval areas to evaluate the similarity between a query and a docu-
ment in that space. LSA was extended to probabilistic latent semantic analysis (PLSA)
(Hofmann 1999b, Hofmann 2001) by dealing with latent semantics as latent variables,
an approach which is based on the maximum likelihood theory with the EM algorithm.
Thus, PLSA provides an additional generative model to an n-gram for a text that con-
siders long-term semantic information in the text. LSA and PLSA have been applied
to develop large-span language models or topic-based language models in Bellegarda
(2000) and in Gildea & Hofmann (1999), respectively, by combining these with n-gram
language models, and these are addressed below.

3.7.1 Latent semantic analysis

Latent semantic analysis (LSA) introduces an additional longer-term index document
d to word w. The document usually holds several to thousands of sentences, and the
definition (e.g., a paragraph, article, journal paper, etc.) depends on target applications.
Suppose there are M documents in a corpus D, which include words with vocabulary
size |V|. LSA focuses on the |V| ×M word-document matrix W:

W =
⎡⎢⎣ ω1,1 · · · ω1,M

...
...

...
ω|V |,1 · · · ω|V |,M

⎤⎥⎦ = [ω1 · · · ωM
]

. (3.255)

The element of a word-document matrix ωv,m is often represented based on a co-
occurrence based count c(w(v), dm), which is the number of occurrences of word w(v) in
document dm. The word w(v) ∈ V is a word in vocabulary V pointed by an ordered index
v ∈ {1, · · · , |V|}, and (v) in the subscript does not denote a position in a word sequence.
The co-occurrence element is often weighted by considering the importance of words
in documents. As we discuss later, tf–idf (term frequency–inverse document frequency)
or information-theoretic measure is used as an instance of the co-occurrence element.
Note that in this word-document matrix representation, we only consider the count infor-
mation (or related information) for each distinct word w(v) and do not consider the

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

114 Statistical models in speech and language processing

sequential information of words (e.g., wi) in a document. This feature representation
of words is also called bag of words (Lewis 1998, Joachims 2002, Blei et al. 2003). The
column vector ωm ∈ R

|V | can represent information about document m with a vector.
This representation is called a vector space model of a text.

Document similarity

The problem of dealing with this matrix is that the column vector ωm is a sparse rep-
resentation from natural language, and it is difficult to obtain the semantic information
from this representation. For example, if we consider the similarity between documents
dm and dm′ , from the word-document matrix W with well-known cosine similarity, the
cosine similarity is defined as

cos(a, b) � aᵀb
‖a‖‖b‖ . (3.256)

The cosine similarity has the following property, and it is often used to measure the
similarity in natural language processing:

− 1 ≤ cos(a, b) ≤ 1, cos(a, a) = 1. (3.257)

The similarity between documents dm and dm′ based on the |V| dimensional space can
be calculated as follows:

Sim|V |(dm, dm′) = cos(ωm, ωm′) =
∑|V |

v=1 ωvmωvm′

‖ωm‖‖ωm′ ‖ . (3.258)

Since ωvm and ωvm′ are very sparse, most of the products are zero, and the cosine simi-
larity cannot obtain meaningful similarity scores. In addition, the number of dimensions
(vocabulary size |V|, the number of documents M, or both) is too large to use. Therefore,
LSA conducts a singular value decomposition (SVD) over the |V| ×M word-document
matrix W and obtains

W ≈ USVᵀ, (3.259)

as shown in Figure 3.9. In Eq. (3.259), S is a K × K diagonal matrix with reduced
dimension, K < min(|V|, M), U is a |V| × K matrix whose columns are the first K
eigenvectors derived from word-by-word correlation matrix WWᵀ, and V is an M ×
K matrix whose columns are the first K eigenvectors derived from the document-by-
document correlation matrix WᵀW.

Document similarity in LSA

After the projection, instead of focusing on the original |V| ×M word-document matrix
W, LSA focuses on the factored K ×M matrix Vᵀ. Each column of SVᵀ characterizes
the location of a particular document in the reduced K-dimensional semantic space.
Therefore, we define the following document vector vm ∈ R

K as an mth column vector
of Vᵀ, which is a lower dimensional vector than ωm:

Vᵀ �
[
v1 · · · vm · · · vM

]
. (3.260)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 115

Figure 3.9 Singular value decomposition for latent semantic analysis.

This can be weighted by the diagonal matrix S. Therefore, the similarity between
documents dm and dm′ based on this lower K-dimensional representation is calculated as

SimK(dm, dm′) = cos(Svm, Svm′) = vᵀ
mS2vm′

‖Svm‖‖Svm′ ‖ . (3.261)

Compared with Eq. (3.258), Svm is a denser feature, and can provide more (semanti-
cally) meaningful information (Manning & Schütze 1999).

Now, we consider the application based on information retrieval. We have a query q,
which is composed of several words and can be regarded as an instance of a document.
Then the problem of information retrieval is to search similar documents to query q,
and computing the similarity between q and existing document dm is very important. To
evaluate the cosine similarity between the existing document dm and this query q in the
K-dimensional space, we first transform the corresponding occurrence vector ωq to the
K-dimensional vector vq as follows:

vq = S−1Uᵀωq. (3.262)

Thus, the cosine similarity between q and dm can be computed based on Eq. (3.261) as
follows:

SimK(dm, q) = cos(Svm, Svq) ∝ vᵀ
mSSS−1Uᵀωq = (Svm)ᵀUᵀωq

⇒ SimK(dm, q) = (Svm)ᵀUᵀωq

‖Svm‖‖Uᵀωq‖ . (3.263)

Thus, we can also obtain the similarity between the query q and document dm with more
(semantically) meaningful space, which can be used for information retrieval.

Word-document matrix

The discussion so far does not explicitly introduce a suitable value for the co-occurrence
element (v, m) of the word-document matrix W. Actually it is empirically determined,
and the straightforward representation is based on the co-occurrence based count
c(w(v), dm):

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

116 Statistical models in speech and language processing

[W](v,m) = ωv,m = c(w(v), dm). (3.264)

This is the most simple representation of W, and this representation is actually extended
as a probabilistic version of LSA (PLSA) in the next section. Another popular repre-
sentation is based on tf–idf (Salton & Buckley 1988, Manning & Schütze 1999), which
represents the element as follows:

[W](v,m) = ωv,m = tf(w(v), dm)idf(w(v))

= c(w(v), dm)∑|V |
j=1 c(w(j), dm)

log
M

|{dm|c(w(v), dm) > 0}| , (3.265)

where tf(w(v), dm) is called term frequency, defined as

tf(w(v), dm) � c(w(v), dm)∑|V |
j=1 c(w(j), dm)

. (3.266)

This is computed from the co-occurrence based count c(w(v), dm) in Eq. (3.264) with
a normalization factor. The quantity idf(w(v)) is called the inverse document frequency,
and it is computed from the number of documents |{dm|c(w(v), dm) > 0}| that include
word w(v):

idf(w(v)) � log
M

|{dm|c(w(v), dm) > 0}| . (3.267)

idf(w(v)) would score a lower weight for the co-occurrence element when the word w(v)

has appeared in many documents, since such a word would be less important.
Bellegarda (2000) also proposes another weight based on an information-theoretic

measure as follows:

[W](v,m) = ωv,m = (1− εw(v))
c(w(v), dm)∑|V |
j=1 c(w(v), dm)

. (3.268)

Compared with Eq. (3.265), the inverse document frequency in Eq. (3.265) is replaced
with (1 − εw(v)), where εv denotes the normalized entropy of word w(v) in a corpus,
defined as

εw(v) � − 1

log M

M∑
m=1

c(w(v), dm)∑M
j=1 c(w(v), dj)

log
c(w(v), dm)∑M
j=1 c(w(v), dj)

. (3.269)

The entropy of w(v) would be increased when w(v) is distributed among many docu-
ments, which decreases the weight (1 − εw(v)). Therefore, similarly to tf–idf, the word
distributed in many documents would be less important, and have lower weight for the
co-occurrence element.

3.7.2 LSA language model

The LSA language model was proposed to capture long-range word dependencies
through discovery of latent topics from a text corpus. When incorporating LSA into an
n-gram model, the prediction of word wi making use of n-gram probability p(wi|wi−1

i−n+1)
is calculated from two information sources in history:

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 117

1. The n-gram history words

h(n)
i−1 � wi−1

i−n+1. (3.270)

2. The long-term topic information of all history words wi−1
1 , which is represented

by co-occurrence count (Eq. (3.264)), tf–idf (Eq. (3.265)), or information-theoretic
measure (Eq. (3.268)), as discussed in the previous section:

h(l)
i−1 � ωi−1. (3.271)

The K-dimensional projected vector ṽi−1 ∈ R
D, from the history vector in the

original space ωi−1 ∈ R
|V | onto the LSA space, is obtained based on Eq. (3.262)

as:

ṽi−1 � Svi−1 = Uᵀωi−1. (3.272)

By using these two types of history information, the LSA language model is represented
by using the product and sum rules as:

pLSA(wi|wi−1
i−n+1) � p(wi|h(n)

i−1, h(l)
i−1)

= p(wi|h(n)
i−1)p(h(l)

i−1|wi, h(n)
i−1)

p(h(l)
i−1|h(n)

i−1)

= p(wi|h(n)
i−1)p(h(l)

i−1|wi, h(n)
i−1)∑

wj∈V p(wj|h(n)
i−1)p(h(l)

i−1|wj, h(n)
i−1)

. (3.273)

From the definition of h(n)
i−1 in Eq. (3.270), p(wi|h(n)

i−1) is represented as the following
n-gram probability:

p(wi|h(n)
i−1) = p(wi|wi−1

i−n+1). (3.274)

This can be calculated based on Section 3.6. Next, we focus on the distribution of the
long-term topic information p(h(l)

i−1|wi, h(n)
i−1) in Eq. (3.273). By using the definitions of

h(l)
i−1 and h(n)

i−1 in Eqs. (3.270) and (3.271), the distribution can be rewritten as:

p(h(l)
i−1|wi, h(n)

i−1) = p(ωi−1|wi
i−n+1) ≈ p(ωi−1|wi). (3.275)

The above approximation assumes that the document vector ωi−1 only depends on wi

and does not depend on the word history wi−1
i−n+1, in accordance with the discussion in

Bellegarda (2000). This approximation would be effective when wi is a content word. In
addition, by using the Bayes theorem, p(ωi−1|wi) can be further rewritten as follows:

p(ωi−1|wi) ∝ p(wi|ωi−1)

p(wi)
, (3.276)

where p(wi) is easily calculated from a unigram probability. The p(wi|ωi−1) is a uni-
gram probability given the document vector. Thus, the LSA language model is finally
represented as follows:

pLSA(wi|wi−1
i−n+1) = p(wi|wi−1

i−n+1) p(wi|ωi−1)
p(wi)∑

wj
p(wj|wi−1

i−n+1) p(wj|ωi−1)
p(wj)

. (3.277)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

118 Statistical models in speech and language processing

Here, how to compute p(wi|ωi−1) is an important problem. This is performed in the
projected LSA space, rather than the original high dimensional space.

The p(wi|ωi−1) is determined by the cosine measure between word wi and pseudo
document wi−1

1 in the LSA space, as we discussed in Eq. (3.261). First, wi is converted
with the corresponding co-occurrence vector in the |V| dimensional space as

ωwi = [0, · · · , 0,

v
∨
1, 0, · · · , 0]ᵀ. (3.278)

Vector ωwi is a one shot vector in the |V| dimensional space, where the element is 1
when wi = w(v) and 0 otherwise. The document vector in the LSA space for ωwi is
obtained from Eq. (3.262) as

ṽwi = Svwi = Uᵀωwi . (3.279)

Therefore, based on this equation and Eq. (3.272), the cosine similarity in the LSA
K-dimensional space is obtained as:

SimK(wi, h(l)
i−1) = cos

(
ṽwi , ṽi−1

)
. (3.280)

However, since a cosine value goes to negative, it cannot be used as a probability of
p(wi|ωi−1) that must satisfy the non-negativity. Coccaro & Jurafsky (1998) propose the
following value as a probabilistic distribution:

p(wi|ωi−1) =
(

cos
(
ṽwi , ṽi−1

)−minw′i∈V cos
(

ṽw′i , ṽi−1

))γ
Z

, (3.281)

where Z is a normalization constant. The minimum cosine similarity prevents a negative
value, and it is also scaled by a tuning parameter γ .

In Eq. (3.280), the pseudo document vector ωi−1 is recursively updated from wi−1 to
wi by using

ωi = ni − 1

ni
ωi−1 + 1− εwi

ni
ωwi , (3.282)

where ni denotes the number of words appearing in word sequence wi
1:

ni �
|V |∑
v=1

c(w(v), wi
1), (3.283)

and εwi is a normalized entropy, as we defined in Eq. (3.269). Eq. (3.282) is obtained as
a pseudo document vector in matrix W, which is defined according to the entry value of
matrix W as given in Eq. (3.268). This updating is equivalent to computing

ṽi = Svi = 1

ni
[(ni − 1)ṽi−1 + (1− εwi)ṽwi]. (3.284)

This equation is obtained in accordance with Eqs. (3.272) and (3.279). Having the updat-
ing formula for ωi−1 or ṽi−1 for pseudo document vector or history words wi−1

1 and the
projection vector ṽwi of current word wi in common topic space, we calculate the n-gram

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 119

based on topic information in Eq. (3.280) and substitute it into an LSA language model
according to Eq. (3.273).

Thus, we can consider a long-term effect in a language model by using LSA. How-
ever, to integrate it with a language model, we need to provide a probabilistic treatment
for LSA, e.g., Eq. (3.281), which is a rather heuristic approach. The next section intro-
duces a fully probabilistic formulation of LSA, PLSA with an elegant inference and
statistical learning methods based on the EM algorithm.

3.7.3 Probabilistic latent semantic analysis

LSA was extended to the probabilistic latent semantic analysis (PLSA) and applied for
document representation in Hofmann (1999b) and Hofmann (2001). We first introduce
a Jm-length word sequence, given a document dm, as

wJm
1 = {w1, · · · , wi, · · · , wJm} = {wi ∈ V|i = 1, · · · , Jm} for m = 1, · · · , M. (3.285)

We also introduce a set of M documents as

dM
1 = {d1, · · · , dM} = {dm|m = 1, · · · , M}. (3.286)

The first step of the ML procedure within the statistical model framework is to provide
a joint likelihood function of D of the word sequence and document, which can be
represented as:

p(D) = p({wJm
1 }Mm=1, dM

1), (3.287)

where D is a set of the word sequences and documents in a corpus, which is defined as:

D � {{wJm
1 }Mm=1, dM

1 }. (3.288)

Equation (3.287) can be factorized by using the product rule and the conditional
independence assumption of a word generative model given document dm as:

p(D) = p({wJm
1 }Mm=1|dM

1)p(dM
1)

=
M∏

m=1

p(wJm
1 |dm)p(dm). (3.289)

This can be modeled by the word-document representation (e.g., word-document matrix
W in Eq. (3.255)), as we discussed in Section 3.7.1. However, similarly to the LSA
case, this representation has too many sparse variables, and it is difficult to deal with
this representation directly. Instead, we introduce a latent topic variable k ∈ {1, · · · , K},
where K is the number of topics and each topic corresponds to a higher concept of words
(e.g., politics and sports, if we deal with news articles). This model is called a latent
topic model. Then we also introduce a latent topic sequence zJm

1 for a corresponding

word sequence wJm
1 for a document dm as

zJm
1 = {zi ∈ {1, · · · , K}|i = 1, · · · , Jm}
Z = {zJm

1 }Mm=1. (3.290)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

120 Statistical models in speech and language processing

Then, we model that the words wJm
1 are conditionally independent given the correspond-

ing topic zJm
1 , and the probability of wi given dm is represented by the following mixture

model:

p(wi|dm) =
K∑

k=1

p(wi|zi = k)p(zi = k|dm). (3.291)

This model factorizes the word probability into the topic-dependent unigram probabil-
ity p(wi|zi = k) and the topic proportion probability p(zi = k|dm). This factorization
corresponds to representing the huge size of a |V| ×M word-document matrix with the
reduced subspace K used in an LSA, as discussed in Section 3.7.1.

Thus, we can construct a likelihood function of D as

p(D|�) =
M∏

m=1

Jm∏
i=1

K∑
k=1

p(wi|zi = k)p(zi = k|dm)p(dm). (3.292)

This model for representing a generative process of the word sequences and docu-
ments is called probabilistic latent semantic analysis (PLSA). Here, the PLSA model
parameters � = {p(w(v)|k), p(k|dm)} consist of two sets of multinomial parameters. The
complete data likelihood function of D and Z can be represented as:

p(D, Z|�) =
M∏

m=1

Jm∏
i=1

p(wi|zi)p(zi|dm)p(dm). (3.293)

Figure 3.10 provides a graphical model of PLSA and Algorithm 6 provides a generative
process of PLSA.

Algorithm 6 Generative process of probabilistic latent semantic analysis.

Require: M, Jm,ωd
m,ωz

k,ωw
kv

1: for m = 1, · · · , M do
2: Draw dm from Mult(·|{ωd

m}Mm=1)
3: for i = 1, · · · , Jm do
4: Draw zi from Mult(·|{ωz

k}Kk=1)

5: Draw wi from Mult(·|{ωw
kv}|V |v=1)

6: end for
7: end for

Parameter estimation based on EM algorithm

Once we obtain the likelihood function, maximum likelihood (ML) theory is applied to
estimate PLSA parameters by

�ML = arg max
�

p(D|�). (3.294)

Since PLSA has a latent variable z, it can be efficiently solved by using the EM algo-
rithm, as we discussed in Section 3.4. The EM algorithm is introduced to find ML

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 121

Figure 3.10 Graphical model of probabilistic latent semantic analysis.

estimates �ML. In the E-step of the EM algorithm, we calculate an auxiliary function of
new parameters �′ given the current parameters �. The function is obtained by replac-
ing HMM latent variables S and V , and speech feature observation O with PLSA latent
variable Z and document observation D, giving

QML(�′|�) = E(Z)[log p(D, Z|�′)|D,�]

=
∑

Z

p(Z|D,�) log p(D, Z|�′). (3.295)

By substituting Eq. (3.293) into Eq. (3.295), the auxiliary function can be rewritten as

QML(�′|�) =
∑

Z

p(Z|D,�) log

(
M∏

m=1

Jm∏
i=1

p′(wi|zi)p
′(zi|dm)p′(dm)

)

=
∑

Z

p(Z|D,�)
M∑

m=1

Jm∑
i=1

log p′(wi|zi)p
′(zi|dm)p′(dm), (3.296)

where p′(·) means a multinomial distribution with parameter �′. By using a similar trick
to that used in Eq. (3.102), we can change the order of the summations, and by executing
the summation over Z\zi , Eq. (3.296) can be further rewritten as

QML(�′|�) =
M∑

m=1

Jm∑
i=1

∑
Z

p(Z|D,�) log
(
p′(wi|zi)p

′(zi|dm)p′(dm)
)

=
M∑

m=1

Jm∑
i=1

∑
zi

p(zi|D,�) log
(
p′(wi|zi)p

′(zi|dm)p′(dm)
)

=
M∑

m=1

Jm log p′(dm)+
M∑

m=1

Jm∑
i=1

∑
zi

p(zi|D,�) log
(
p′(wi|zi)p

′(zi|dm)
)

.

(3.297)

PLSA assumes that the above probabilistic distributions p′(wi|zi) and p′(zi|dm)
are represented by using the multinomial distribution, which is defined in
Appendix C.2 as:

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

122 Statistical models in speech and language processing

Mult(xj|{ωj}Jj=1) � ωj. (3.298)

Therefore, the topic-dependent unigram distribution p′(wi = w(v)|zi = k) and topic
proportion distribution p′(zi = k|dm) are parameterized as:

p′(wi = w(v)|zi = k) = ω′vk

p′(zi = k|dm) = ω′km. (3.299)

Thus, the parameter � is represented as the following set of these multinomial
distributions:

�′ � {ω′vk,ω′km|v = 1, · · · , |V|, k = 1, · · · , K, m = 1, · · · , M}. (3.300)

Now, we focus on the posterior distribution of latent variable p(zi|D,�). From the
graphical model, zi has the following conditional independence property:

p(zi = k|D,�) = p(zi = k|wi = w(v), dm,�)

= p(k|w(v), dm,�). (3.301)

The second probability means that the probability of topic k is given by the word w(v)

with dm and �, and it is iid for the position i in dm. Then, we can rewrite Eq. (3.297) as
the following equation:

QML(�′|�)

=
M∑

m=1

Jm log p′(dm)+
M∑

m=1

|V |∑
v=1

c(w(v), dm)
K∑

k=1

p(k|w(v), dm,�) log
(
ω′vkω

′
km

)
,

(3.302)

where c(w(v), dm) is a co-occurrence count of word w(v) in document dm. Note that the
summation over words in a document

∑Jm
i=1 is replaced with the summation over distinct

words within a dictionary
∑|V |

v=1. Equation (3.302) is factorized into the topic-dependent
unigram parameter ω′vk and the topic proportion parameter ω′km as follows:

QML(�′|�) =
M∑

m=1

Jm log p′(dm)

+
M∑

m=1

|V |∑
v=1

c(w(v), dm)
K∑

k=1

p(k|w(v), dm,�) log
(
ω′vk

)
︸ ︷︷ ︸

�QML({ω′vk}|{ωvk})

+
M∑

m=1

|V |∑
v=1

c(w(v), dm)
K∑

k=1

p(k|w(v), dm,�) log
(
ω′km

)
︸ ︷︷ ︸

�QML({ω′km}|{ωkm})

�
M∑

m=1

Jm log p′(dm)+ QML({ω′vk}|{ωvk})+ QML({ω′km}|{ωkm}). (3.303)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 123

Two multinomial parameters ωvk and ωkm should meet the constraints for probability
parameters,

|V |∑
v=1

ωvk = 1

K∑
k=1

ωkm = 1. (3.304)

Thus, Eq. (3.302) provides the auxiliary function of a PLSA with the parameter con-
straint Eq. (3.304). Therefore, similarly to Section 3.4, we can iteratively estimate
parameters based on the EM algorithm.

M-step

In the M-step, we maximize the extended auxiliary function with respect to new param-
eters �′ under constraints of Eq. (3.304). Again, as we discussed in Section 3.4.3, this
constrained optimization problem is solved through introducing a Lagrange multiplier
η and establishing the extended auxiliary function of QML({ω′vk}|{ωvk} in Eq. (3.303) as

Q̄({ω′vk}|{ωvk})

=
M∑

m=1

|V |∑
v=1

c(w(v), dm)
K∑

k=1

p(k|w(v), dm,�) log
(
ω′vk

)+ η

⎛⎝ |V |∑
v=1

ω′vk − 1

⎞⎠ . (3.305)

By differentiating Eq. (3.305) with respect to ω′vk and setting it to zero, we obtain

∂Q̄({ω′vk}|{ωvk})
∂ω′vk

=
M∑

m=1

c(w(v), dm)p(k|w(v), dm,�)
1

ω′vk
+ η = 0

⇒ ω′vk = −
1

η

M∑
m=1

c(w(v), dm)p(k|w(v), dm,�). (3.306)

Again, substituting this equation into constraint Eq. (3.304), we obtain the value of
Lagrange multiplier η,

|V |∑
v=1

ω′vk = −
1

η

|V |∑
v=1

M∑
m=1

c(w(v), dm)p(k|w(v), dm,�) = 1

⇒ η = −
|V |∑
v=1

M∑
m=1

c(w(v), dm)p(k|w(v), dm,�). (3.307)

Consequently, we find the following ML estimate of ω′vk (i.e., the topic-dependent
unigram proportion probability) for a PLSA topic model:

pML′(wi = w(v)|zi = k) = ω′vk =
∑M

m=1 c(w(v), dm)p(k|w(v), dm,�)∑|V |
v=1

∑M
m=1 c(w(v), dm)p(k|w(v), dm,�)

. (3.308)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

124 Statistical models in speech and language processing

Similarly, the parameter of topic proportion probability ω′km is estimated based on the
M-step as

pML′(zi = k|dm) = ω′km =
∑|V |

v=1 c(w(v), dm)p(k|w(v), dm,�)∑K
k′=1

∑|V |
v=1 c(w(v), dm)p(k′|w(v), dm,�)

=
∑|V |

v=1 c(w(v), dm)p(k|w(v), dm,�)∑|V |
v=1 c(w(v), dm)

. (3.309)

Thus, we obtain the ML solutions of the PLSA parameters based on the EM algorithm.

E-step

The E-step needs to consider the following posterior distribution of the latent topic k
with the previously estimated PLSA parameter �:

p(k|w(v), dm,�). (3.310)

By using the sum and product rules and the conditional independence (Eq. (3.291)), the
posterior distribution is rewritten as

p(k|w(v), dm,�) = p(w(v), k|dm,�)∑K
k′=1 p(w(v), k′|dm,�)

= p(w(v)|k,�)p(k|dm,�)∑K
k′=1 p(w(v)|k′,�)p(k′|dm,�)

. (3.311)

By using the multinomial parameters ωvk and ωkm, this can be represented by

p(k|w(v), dm,�) = ωvkωkm∑K
k′=1 ωvk′ωk′m

. (3.312)

Thus, the posterior distribution can be computed by using the previously estimated
PLSA parameter �. We summarize the parameter estimation algorithm of the PLSA
in Algorithm 7. In a practical implementation, storing the above posterior distribu-
tion p(k|w(v), dm,�) explicitly needs a huge size of memory (that corresponds to store
M × |V| × K data), and it is impossible to do that for large-scale text data. Instead,
the PLSA parameter update is performed by using a matrix multiplication based oper-
ation. Actually, this PLSA parameter update corresponds to the multiplicative matrix
update of non-negative matrix factorization (NMF) (Lee & Seung 1999) based on the
KL divergence cost function (Gaussier & Goutte 2005).

PLSA is another well-known generative model in addition to the n-gram model that
generates words with exponential family distributions (multinomial distribution). Since
the generative model is represented with exponential family distributions, PLSA can be
extended by using Bayesian approaches, as we discussed in Section 2.1.3. This exten-
sion is called the latent Dirichlet allocation (Blei et al. 2003), where we use a Dirichlet
distribution as a conjugate prior, which is discussed in Section 7.6. We also show that
PLSA parameters can be estimated efficiently by using the EM algorithm. However,
PLSA does not consider the short-span language property, unlike an n-gram model, and

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 125

the next section discusses how to involve the PLSA and n-gram for the use of a language
model.

Algorithm 7 EM algorithm for PLSA

Require: �← �init, {c(w(v), dm)|v = 1, · · · , |V|, m = 1, · · · , M}
1: repeat
2: for m = 1, · · · , M do
3: for v = 1, · · · , |V| do
4: for k = 1, · · · , K do
5: Compute the posterior probability p(k|w(v), dm,�)
6: end for
7: end for
8: end for
9: for v = 1, · · · , |V| do

10: for k = 1, · · · , K do
11: Compute the topic-dependent unigram probability
12: pML′(wi = w(v)|zi = k) = ω′vk
13: end for
14: end for
15: for m = 1, · · · , M do
16: for k = 1, · · · , K do
17: Compute the topic proportion probability
18: pML′(zi = k|dm) = ω′km
19: end for
20: end for
21: �← �′
22: until Convergence

3.7.4 PLSA language model

In Gildea & Hofmann (1999), Akita & Kawahara (2004) and Mrva & Woodland (2004),
a PLSA framework was applied to estimate the n-gram model, which is seen as a combi-
nation of large-span and short-span language models. That is, we consider the short-span
language model (n-gram)

p(wi|wi−1
i−n+1) (3.313)

and long-span language model

p(wi|D) ≈
K∑

k=1

p(wi|k)p(k|D) (3.314)

to obtain the probability of wi. As an alternative, a long-span language model p(wi|D),
a cache-based language model (Kuhn & De Mori 1990), or a trigger-based language

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

126 Statistical models in speech and language processing

model (Lau, Rosenfeld & Roukos 1993) are used as conventional approaches. As an
example of the document D, we consider the history of all words from the beginning
wi−1

1 . Given word sequence wi−1
1 , latent topic probabilities of the history p(k|wi−1

1) are
inferred by using a PLSA model and incorporated into an n-gram language model.

To obtain the latent topic probabilities p(k|wi−1
1), maximum likelihood PLSA param-

eters � = {p(w(v)|k), p(k|dm)} = {ωvk,ωkm|v = 1, · · · , |V|, k = 1, · · · , K, m =
1, · · · , M} are estimated in advance from a large amount of training documents in
the training step, as we discussed in the previous section. Then, given � as an initial
parameter set of Algorithm 7, we estimate p(k|wi−1

1) in the test step. However, to avoid
over-training as we only use wi−1

i and to avoid a high computational cost in the test step,
we only update pML′(zi = k|dm) = ω′km with fewer iterations than the full estimation
of the PLSA parameter � in the training step. In addition, we use the following online
EM algorithm (Neal & Hinton 1998) to update topic posterior probabilities to make the
estimation in an on-line manner for every word position i:

p(k|wi−1
1) = 1

i+ 1

p(wi−1 = v|k)p(k|wi−2
1)∑K

k′=1 p(wi−1 = v|k′)p(k′|wi−2
1)

+ i

i+ 1
p(k|wi−2

1)

= 1

i+ 1

ωvkp(k|wi−2
1)∑K

k′=1 ωvk′p(k′|wi−2
1)

+ i

i+ 1
p(k|wi−2

1). (3.315)

Here, p(k|wi−2
1) in the first and second terms in the right-hand-side is obtained by the pre-

vious estimation, and the first term is computed on-the-fly based on a pre-computation
of p(wi−1|k), which is obtained from ωvk in Eq. (3.308). The factors 1

i+1 and i
i+1 denote

a linear interpolation ratio, and the contribution of the second term becomes larger when
the length of the word sequence i is larger. These factors are derived as a specific solu-
tion of the on-line EM algorithm, and Mrva & Woodland (2004) suggest modifying
these factors for practical use.

In an initialization stage (i.e., wi=0
1 = ∅ in Eq. (3.184)), the initial topic posterior

probability could be obtained from a prior topic probability in the training stage as
follows:

p(k|wi=0
1) = p(k)

=
M∑

m=1

p(k|dm)p(dm)

=
∑M

m=1
∑|V |

v=1 c(w(v), dm)p(k|dm)∑M
m=1

∑|V |
v=1 c(w(v), dm)

=
∑M

m=1
∑|V |

v=1 c(w(v), dm)ωkm∑M
m=1

∑|V |
v=1 c(w(v), dm)

, (3.316)

where p(dm) is estimated from the maximum likelihood equation based on the word
co-occurrence counts c(dm) =∑|V |

v=1 c(w(v), dm), i.e.,

p(dm) = c(dm)∑M
m=1 c(dm)

. (3.317)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.7 Latent semantic information 127

Once we obtain the topic proportion probability p(k|wi−1
1), the PLSA based n-gram

probability is finally calculated by

pPLSA(wi = v|wi−1
1) =

K∑
k=1

p(wi = v|k)p(k|wi−1
1)

=
K∑

k=1

ωvkp(k|wi−1
1). (3.318)

Instead of hard-clustering computation in class-based n-gram in Eq. (3.198), PLSA
n-gram in Eq. (3.318) performs a so-called soft-clustering computation by marginal-
izing the topic index k in a Bayesian sense. This model is known as a large-span
language model because long-distance topics k = 1, · · · , K and history words wi−1

1
within the n-gram window as well as outside the n-gram window are all taken into
account for word prediction. However, since the computation can be performed by con-
sidering the history words wi−1

1 , it is not pre-computed, unlike n-gram models, which
makes the implementation of the PLSA language model harder than n-gram models in
ASR.

Smoothing with n-grams
PLSA n-grams could be further improved by combining with ML n-grams based on
additional linear interpolation with factor λ:

p̂(wi|wi−1
1) =λpML(wi|wi−1

i−n+1)

+ (1− λ)pPLSA(wi|wi−1
1). (3.319)

The interpolation parameter λ could be found by maximizing likelihood or tuned by
maximizing the ASR performance of some validation data.

We can also use a unigram rescaling technique, which is approximated based on the
conditional independence assumption of wi−1

1 and wi−1
i−n+1:

p̂(wi|wi−1
1) ≈ pML(wi|wi−1

i−n+1)
pPLSA(wi|wi−1

1)

pML(wi)
. (3.320)

Note that this representation does not hold the sum-to-one condition, and it must be
normalized.

A more precise unigram rescaling technique can be performed by using the dynamic
unigram marginal (also known as the minimum discrimination information (MDI) adap-
tation), which can consider backoff probabilities in an n-gram probability (Kneser,
Peters & Klakow 1997, Niesler & Willett 2002, Tam & Schultz 2006). First, we define
the following unigram rescaling factor π for word wi:

π (wi, wi−1
1) �

(
pPLSA(wi|wi−1

1)

pML(wi)

)ρ

. (3.321)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

128 Statistical models in speech and language processing

Then the new n-gram probability with a history of n-gram word sequence wi−1
i−n+1 is

represented as follows:

p(wi|wi−1
i−n+1, wi−1

1) =

⎧⎪⎨⎪⎩
π (wi,w

i−1
1)

C0(wi−1
i−n+1,wi−1

1)
p(wi|wi−1

i−n+1) if c(wi
i−n+1) > 0

1
C1(wi−1

i−n+1,wi−1
1)

p(wi|wi−1
i−n+2, wi−1

1) otherwise,

(3.322)
where p(wi|wi−1

i−n+1) is an n-gram probability obtained in advance, and C0 and C1 are
normalization constants, which can be computed by:

C0(wi−1
i−n+1, wi−1

1) =
∑
{wi|c(wi

i−n+1)>0} π (wi, wi−1
1)p(wi|wi−1

i−n+1)∑
{wi|c(wi

i−n+1)>0} p(wi|wi−1
i−n+1)

, (3.323)

and

C1(wi−1
i−n+1, wi−1

1) =
1−∑{wi|c(wi

i−n+1)>0} p(wi|wi−1
i−n+2, wi−1

1)

1−∑{wi|c(wi
i−n+1)>0} p(wi|wi−1

i−n+1)
. (3.324)

Then, p(wi|wi−1
i−n+2) is also iteratively calculated by π (wi, wi−1

1), n− 1-gram probability

p(wi|wi−1
i−n+2), and p(wi|wi−1

i−n+3). Thus, the unigram rescaled language model is obtained
by modifying the backoff coefficients.

In this chapter, we address several language model methods tackling the issues of
small sample size and long-distance information. Different language model smoothing
methods including interpolation smoothing, backoff smoothing and unigram smoothing
are summarized. The Bayesian language modeling based on MAP estimation and VB
learning is addressed in Section 4.7 and Section 7.7, respectively.

3.8 Revisit of automatic speech recognition with Bayesian manner

In Chapter 2, we introduce the basic mathematical tools in the Bayesian approach,
including the sum and product rules, and the conditional independence, and provide
simple ways to obtain the posterior distributions. In addition, throughout the discus-
sions from Section 3.1 to Section 3.7, we also introduce statistical models of speech
and language, which are mainly used for ASR. Based on these mathematical tools and
statistical models, this section revisits methods to formulate the whole ASR framework
in a Bayesian manner, as consistently as possible, by only using the sum rule, product
rule, and conditional independence, as discussed in Section 2.1. In particular, we focus
on how to train our ASR model based on the Bayesian manner. The aim of this section is
to show the limitation of simply using basic Bayesian tools for ASR, which leads to the
requirement of approximated Bayesian inference techniques in the following chapters.

3.8.1 Training and test (unseen) data for ASR

To deal with the ASR problem within a machine learning framework, we need to con-
sider two sets of data: training data and test data. The training data usually consist of

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.8 Revisit of automatic speech recognition with Bayesian manner 129

a sequence of speech feature vectors (O) and the corresponding label sequence (W) for
all utterances. The test data consist of only a sequence of speech feature vectors (O′)
for all utterances, and there is a candidate label sequence (W ′) among all possible word
sequences. The ASR problem is to correctly estimate the corresponding label sequence
(Ŵ ′). Therefore, we summarize these four variables as:

• O: speech feature sequence for training (observed);
• W: word sequence for training (observed);
• O′: speech feature sequence for test (observed);
• W ′: a candidate of word sequences for test (not observed).

Since we have various possible candidates for W ′, it is natural to consider the following
conditional probabilistic distribution of W ′, given the other observed variables, as:

p(W ′|O′, O, W). (3.325)

Therefore, this section starts with the formulation based on this conditional probability.
Note that if we want to estimate the correct word sequence, it is performed by using

the well-known MAP decision rule, as we discussed in Eq. (3.2):

Ŵ ′ = dMAP(O′) = arg max
W ′ p(W ′|O′, O, W). (3.326)

Therefore, the following section focuses on p(W ′|O′, O, W) in more detail.

3.8.2 Bayesian manner

Recalling the discussion in Section 2.1, the Bayesian manner deals with these variables
as the arguments of probability distributions as follows:

O → p(O)

W → p(W)

O′ → p(O′)
W ′ → p(W ′). (3.327)

We should also recall that these probabilistic variables (x: continuous variable and n:
discrete variable) have the following mathematical properties:

p(n) ≥ 0, (3.328)∑
n

p(n) = 1, (3.329)

p(x) ≥ 0, (3.330)∫
p(x)dx = 1. (3.331)

These properties yield various benefits for probabilistic pattern recognition problems.
Based on this probabilistic variable treatment, we can apply the sum, product rules for
all the variables, and we can also use the Bayes theorem for Eq. (3.325).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

130 Statistical models in speech and language processing

MAP decision rule

By replacing a with word sequence W ′ and b with speech feature vector O′ in Bayes
theorem Eq. (2.7) in Section 2.1.1, we can derive the following noisy channel model of
speech recognition based on the well-known MAP decision rule (Eq. (3.2)):

Ŵ ′ = dMAP(O′) = arg max
W ′ p(W ′|O′), (3.332)

= arg max
W ′

p(O′|W ′)p(W ′)
p(O′)

, (3.333)

= arg max
W ′ p(O′|W ′)p(W ′). (3.334)

Here, the denominator of Eq. (3.333) is disregarded with the arg max operation, since
p(O′) does not depend on W ′.

The product rule (Bayes theorem) based on the MAP decision theory decomposes
the posterior distribution p(W ′|O′) into the two generative models of O′ and W ′, i.e.,
acoustic model p(O′|W ′) and language model p(W ′). Solving Eq. (3.332) by directly
obtaining p(W ′|O′) is called the discriminative approach. The approach tries to infer
what a speaker wants to say in his/her brain from the observation O′, as shown in
Figure 3.11.

On the other hand, the generative approach obtains p(W ′|O′) indirectly via the gen-
erative models p(O′|W ′) and p(W ′) based on Eq. (3.333). Therefore, the approach tries
to imitate the generation process of O′ given W ′ in the acoustic model and W itself in
the language model, as shown in Figure 3.12. Since the generation process comes from
a physical phenomenon or linguistic phenomena, we can involve various knowledge
of the phenomena (e.g., articulatory models in speech production and grammatical or
semantic models in linguistics) in principle. The rest of this section further discusses the
Bayesian formulation along with the generative approach.

Figure 3.11 Probabilistic speech recognition: discriminative approach.

Figure 3.12 Probabilistic speech recognition: generative approach.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.8 Revisit of automatic speech recognition with Bayesian manner 131

3.8.3 Learning generative models

Bayesian formulation reasonably extends the generative models to teach them from
training data, by adding training data (O and W) to conditional variables in the target
distribution, namely,

p(O′|W ′) → p(O′|W ′, O, W)

p(W ′) → p(W ′|O, W). (3.335)

Usually, we also use the reasonable conditional independence assumption for the lan-
guage model expressed by p(W ′|O, W) ≈ p(W ′|W). Now, we focus on the acoustic
model p(O′|W ′, O, W), and make this abstract distribution more concrete.

3.8.4 Sum rule for model

To make the distribution more concrete, we usually provide a model with the distri-
bution. For example, when we have some data to analyze, we first start to consider
what kind of models we use to make the problems concrete by considering HMMs or
GMMs for speech feature sequences, and n-gram for word sequences. However, we
do not know whether the model provided is correct or not, and it should be tested
by different model settings. Thus, the model settings can be regarded as probabilis-
tic variables in the Bayesian formulation. In addition, the variation of setting model
topologies, distribution forms of prior and posterior distributions, and hyperparam-
eters of these distributions can also be treated as probabilistic variables, as shown
in Table 3.2. We call this probabilistic variable to denote the model setting model
variable M.

For example, once we decide to use an HMM for speech feature modeling, we have
many arbitrary properties for the model topology: (i) whether we use a word unit,
context-independent phoneme unit, or context-dependent phoneme unit; (ii) left to right
HMM, including skip transitions, or fully connected ergodic HMM; (iii) how many
shared-triphone HMM states and how many Gaussians in these states. Some of the
model variables dealing with this model structure are called model structure variables,
and so-called structure learning in the machine learning field tries to optimize the model
structure using a more general framework than the Bayesian framework.

Table 3.2 Examples of model variables.

Variation Examples

Model types HMM, GMM, SVM, neural network, etc.
Model topologies # HMM states, # Gaussians, # hidden layers, etc.
Priors/posteriors Gaussian, Laplace, Gamma, Bernoulli, etc.
Hyperparameters parameters of priors/posteriors, kernel parameters, etc.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

132 Statistical models in speech and language processing

The model variable M can be involved in our abstract distribution (Eq. (3.335)) of the
acoustic model by using the sum rule (Eq. (2.3)) as follows:

p(O′|W ′, O, W) =
∑
M

p(O′, M|W ′, O, W). (3.336)

As M would include continuous values (e.g., hyperparameters), the marginalization over
M should involve both summation and integration. However, for simplicity, we use the
summation in this formulation.

3.8.5 Sum rule for model parameters and latent variables

Once we set a model variable to a specific value, we can also provide the correspond-
ing model parameters � and latent variables Z for training data and Z′ for test data.
For example, once we decide a model for the specific setting based on a standard
HMM–GMM with a fixed model topology, these variables can also be involved in the
distribution with M (Eq. (3.336)) by using the sum rule (Eq. (2.3)) as follows:

p(O′|W ′, O, W) =
∫ ∑

M,Z,Z′
p(O′, M,�, Z, Z′|W ′, O, W)d�. (3.337)

However, it is really difficult to deal with this joint distribution, and we need to factorize
the distribution.

3.8.6 Factorization by product rule and conditional independence

First, we factorize Eq. (3.337) by using the product rule (Eq. (2.4)), as follows:

p(O′|W ′, O, W) =
∫ ∑

M,Z,Z′
p(O′, M,�, Z, Z′|W ′, O, W)d�

=
∫ ∑

M,Z,Z′
p(O′, Z′|Z,�, M, W ′, O, W)p(Z|�, M, W ′, O, W)

× p(�|M, W ′, O, W)p(M|W ′, O, W)d�. (3.338)

In this formulation, we keep the joint distribution of O′ and Z′ and do not factorize them.
This is because the distribution corresponds to the complete data likelihood function,
which is useful to handle latent models based on the EM algorithm, as discussed in
Section 3.4.

Since the dependencies of the distributions in Eq. (3.338) are very complicated,
we use the reasonable conditional independence assumptions for these distributions as
follows:

p(O′, Z′|Z,�, M, W ′, O, W) ≈ p(O′, Z′|�, M, W ′), (3.339)

p(Z|�, M, W ′, O, W) ≈ p(Z|�, M, O, W), (3.340)

p(�|M, W ′, O, W) ≈ p(�|M, O, W), (3.341)

p(M|W ′, O, W) ≈ p(M|O, W). (3.342)

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

3.8 Revisit of automatic speech recognition with Bayesian manner 133

Equation (3.339) means that the test data are generated by the � and M and do not
depend on the training data (O and W) and their latent variable Z, explicitly. The other
assumptions just use the conditional independence of W ′. By using the assumptions, we
can approximate the original distribution of p(O′|W ′, O, W) as follows:

Eq. (3.338) ≈
∫ ∑

M,Z,Z′
p(O′, Z′|M,�, W ′)p(Z|�, M, O, W)

× p(�|M, O, W)p(M|O, W)d�

≈
∫ ∑

M,Z′
p(O′, Z′|M,�, W ′)p(�|M, O, W)p(M|O, W)d�, (3.343)

where we use the fact that
∑

Z p(Z|�, M, O, W) = 1 since Z does not depend on
the other distributions. We also introduce lexical category c, and further factorize the
equation as:

Eq. (3.343) ≈
∫ ∑

M,Z′

∏
c′

p(O′, Z′|M,�, c′)
∏

c

p(�|M, O, c)p(M|O, c)d�. (3.344)

Thus, the acoustic model can be represented by the joint distribution of O′ and Z′ (com-
plete data likelihood) and the posterior distributions of model parameters � and model
M. Since p(O′, Z′|M,�, c′) does not depend on training data (O and W), which can be
obtained by setting the model and its parameters, we only focus on the two posterior
distributions in Eq. (3.344).

3.8.7 Posterior distributions

The posterior distributions of models and model parameters can be rewritten by the
following equations by using the sum and product rules (Eqs. (2.3) and (2.4)).

• Model parameter �:

p(�|M, O) = p(O|�, M)p(�|M)

p(O|M)
, (3.345)

∝
∑

Z
p(O, Z|�, M)p(�|M). (3.346)

• Model M:

p(M|O) = p(O|M)p(M)∑
M p(O|M)p(M)

, (3.347)

∝
∑

Z

∫
p(O, Z|�, M)p(�|M)d�p(M). (3.348)

Note that the posterior distributions are represented by the following two types of
distributions:

• Joint distribution of training data O and Z:
p(O, Z|�, M);

• Prior distributions of � and M :
p(�|M) and p(M).

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

134 Statistical models in speech and language processing

Again, the joint distribution can be obtained by setting the model and its parameters.
Once we set the prior distributions p(�|M) and p(M), we can obtain the posterior dis-
tributions p(�|M, O) and p(M|O) by solving (3.346) and (3.348). Then, the acoustic
model likelihood can be computed by using Eq. (3.344).

3.8.8 Difficulties in speech and language applications

Although the Bayesian approach is powerful, it is very difficult to realize. One of the
most critical aspects is that we cannot solve the above equations. The practical Bayesian
approach rests on how to find appropriate approximations:

• Chapter 4: Maximum a-posteriori approximation;
• Chapter 5: Evidence approximation;
• Chapter 6: Asymptotic approximation;
• Chapter 7: Variational Bayes;
• Chapter 8: Markov chain Monte Carlo.

In the machine learning field, other approximations are also studied actively (e.g., loopy
belief propagation (Murphy et al. 1999), expectation propagation (Minka 2001)). This
book introduces the above approximations in speech and language applications.

https://doi.org/10.1017/CBO9781107295360.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.004

