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Early Heuristic Programs

5.1 The Logic Theorist and Heuristic Search

Just prior to the Dartmouth workshop, Newell, Shaw, and Simon had programmed
a version of LT on a computer at the RAND Corporation called the JOHNNIAC
(named in honor of John von Neumann). Later papers1 described how it proved
some of the theorems in symbolic logic that were proved by Russell and Whitehead
in Volume I of their classic work, Principia Mathematica.2 LT worked by perform-
ing transformations on Russell and Whitehead’s five axioms of propositional logic,
represented for the computer by “symbol structures,” until a structure was pro-
duced that corresponded to the theorem to be proved. Because there are so many
different transformations that could be performed, finding the appropriate ones for
proving the given theorem involves what computer science people call a “search
process.”

To describe how LT and other symbolic AI programs work, I need to explain first
what is meant by a “symbol structure” and what is meant by “transforming” them.
In a computer, symbols can be combined in lists, such as (A, 7, Q ). Symbols and lists
of symbols are the simplest kinds of symbol structures. More complex structures
are composed of lists of lists of symbols, such as ((B, 3), (A, 7, Q )), and lists of lists
of lists of symbols, and so on. Because such lists of lists can be quite complex, they
are called “structures.” Computer programs can be written that transform symbol
structures into other symbol structures. For example, with a suitable program the
structure “(the sum of seven and five)” could be transformed into the structure
“(7 + 5),” which could further be transformed into the symbol “12.”

Transforming structures of symbols and searching for an appropriate problem-
solving sequence of transformations lies at the heart of Newell and Simon’s ideas
about mechanizing intelligence. In a later paper (the one they gave on the occasion
of their receiving the prestigious Turing Award), they summarized the process as
follows:3

The solutions to problems are represented as symbol structures. A physical symbol system
exercises its intelligence in problem solving by search – that is, by generating and progressively
modifying symbol structures until it produces a solution structure.
. . .

To state a problem is to designate (1) a test for a class of symbol structures (solutions of the
problem), and (2) a generator of symbol structures (potential solutions). To solve a problem
is to generate a structure, using (2), that satisfies the test of (1).
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82 The Quest for Artificial Intelligence

Figure 5.1. Start (left) and goal (right) configurations of a fifteen-puzzle problem.

Understanding in detail how LT itself used symbol structures and their transforma-
tions to prove theorems would require some mathematical and logical background.
The process is easier to explain by using one of AI’s favorite “toy problems” –
the “fifteen-puzzle.” (See Fig. 5.1.) The fifteen-puzzle is one of several types of
sliding-block puzzles. The problem is to transform an array of tiles from an initial
configuration into a “goal” configuration by a succession of moves of a tile into an
adjacent empty cell.

I’ll use a simpler version of the puzzle – one that uses a 3 × 3 array of eight sliding
tiles instead of the 4 × 4 array. (AI researchers have experimented with programs
for solving larger versions of the puzzle also, such as 5 × 5 and 6 × 6.)

Suppose we wanted to move the tiles from their configuration on the left to the
one on the right as illustrated in Fig. 5.2.

Following the Newell and Simon approach, we must first represent tile positions
for the computer by symbol structures that the computer can deal with. I will
represent the starting position by the following structure, which is a list of three
sublists:

((2, 8, 3), (1, 6, 4), (7, B, 5)).

The first sublist, namely, (2, 8, 3), names the occupants of the first row of the puzzle
array, and so on. B stands for the empty cell in the middle of the third row.

In the same fashion, the goal configuration is represented by the following struc-
ture:

((1, 2, 3), (8, B, 4), (7, 6, 5)).

Next, we have to show how a computer can transform structures of the kind we
have set up in a way that corresponds to the allowed moves of the puzzle. Note that
when a tile is moved, it swaps places with the blank cell; that is, the blank cell moves
too. The blank cell can either move within its row or can change rows.

Corresponding to these moves of the blank cell, when a tile moves within its row,
B swaps places with the number either to its left in its list (if there is one) or to its

Figure 5.2. The eight-puzzle.
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right (if there is one). A computer can easily make either of these transformations.
When the blank cell moves up or down, B swaps places with the number in the
corresponding position in the list to the left (if there is one) or in the list to the right
(if there is one). These transformations can also be made quite easily by a computer
program.

Using the Newell and Simon approach, we start with the symbol structure repre-
senting the starting configuration of the eight-puzzle and apply allowed transforma-
tions until a goal is reached. There are three transformations of the starting symbol
structure. These produce the following structures:

((2, 8, 3), (1, 6, 4), (B, 7, 5)),

((2, 8, 3), (1, 6, 4), (7, 5, B)),

and

((2, 8, 3), (1, B, 4), (7, 6, 5)).

None of these represents the goal configuration, so we continue to apply transfor-
mations to each of these and so on until a structure representing the goal is reached.
We (and the computer) can keep track of the transformations made by arranging them
in a treelike structure such as the one shown in Fig. 5.3. (The arrowheads on both
ends of the lines representing the transformations indicate that each transformation
is reversible.)

This version of the eight-puzzle is relatively simple, so not many transformations
have to be tried before the goal is reached. Typically though (especially in larger
versions of the puzzle), the computer would be swamped by all of the possible trans-
formations – so much so that it would never generate a goal expression. To constrain
what was later called “the combinatorial explosion” of transformations, Newell and
Simon suggested using “heuristics” to generate only those transformations guessed
as likely to be on the path to a solution.

In one of their papers about LT, they wrote “A process that may solve a problem,
but offers no guarantees of doing so, is called a heuristic for that problem.” Rather
than blindly striking out in all directions in a search for a proof, LT used search
guided by heuristics, or “heuristic search.” Usually, as was the case with LT, there is
no guarantee that heuristic search will be successful, but when it is successful (and
that is quite often) it eliminates much otherwise fruitless search effort.

The search for a solution to an eight-puzzle problem involves growing the tree
of symbol structures by applying transformations to the “leaves” of the tree and
thus extending it. To limit the growth of the tree, we should use heuristics to apply
transformations only to those leaves thought to be on the way to a solution. One such
heuristic might be to apply a transformation to that leaf with the smallest number
of tiles out of position compared to the goal configuration. Because sliding tile
problems have been thoroughly studied, there are a number of heuristics that have
proved useful – ones much better than the simple number-of-tiles-out-of-position
one I have just suggested.

Using heuristics keyed to the problem being solved became a major theme in
artificial intelligence, giving rise to what is called “heuristic programming.” Perhaps
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Figure 5.3. A search tree.

the idea of heuristic search was already “in the air” around the time of the Dartmouth
workshop. It was implicit in earlier work by Claude Shannon. In March 1950,
Shannon, an avid chess player, published a paper proposing ideas for programming
a computer to play chess.4 In his paper, Shannon distinguished between what he
called “type A” and “type B” strategies. Type A strategies examine every possible
combination of moves, whereas type B strategies use specialized knowledge of chess
to focus on lines of play thought to be the most productive. The type B strategies
depended on what Newell and Simon later called heuristics. And Minsky is quoted
as saying “. . . I had already considered the idea of heuristic search obvious and
natural, so that the Logic Theorist was not impressive to me.”5

It was recognized quite early in AI that the way a problem is set up, its “representa-
tion,” is critical to its solution. One example of how a representation affects problem
solving is due to John McCarthy and is called the “mutilated checkerboard” prob-
lem.6 Here’s the problem: “Two diagonally opposite corner squares are removed
from a checkerboard. Is it possible to cover the remaining squares with dominoes?”
(A domino is a rectangular tile that covers two adjacent squares.) A naive way of
searching for a solution would be to try to place dominoes in all possible ways over
the checkerboard. But, if one uses the information that a checkerboard consists of
32 squares of one color and 32 of another color, and that the opposite corner squares
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are of the same color, then one realizes that the mutilated board consists of 30 squares
of one color and 32 of another. Because a domino covers two squares of opposite
colors, there is no way that a set of them can cover the remaining colors. McCarthy
was interested in whether or not people could come up with “creative” ways to
formulate the puzzle so that it could be solved by computers using methods based
on logical deduction.

Another classic puzzle that has been used to study the effects of different rep-
resentations is the “missionary and cannibals” problem: Three cannibals and three
missionaries must cross a river. Their boat can only hold two people. If the cannibals
outnumber the missionaries, on either side of the river, the missionaries on that
side perish. Each missionary and each cannibal can row the boat. How can all six
get across the river safely? Most people have no trouble formulating this puzzle
as a search problem, and the solution is relatively easy. But it does require mak-
ing one rather nonintuitive step. The computer scientist and AI researcher Saul
Amarel (1928–2002) wrote a much-referenced paper analyzing this puzzle and var-
ious extended versions of it in which there can be various numbers of missionaries
and cannibals.7 (The extended versions don’t appear to be so easy.) After moving
from one representation to another, Amarel finally developed a representation for a
generalized version of the problem whose solution required virtually no search. AI
researchers are still studying how best to represent problems and, most importantly,
how to get AI systems to come up with their own representations.

5.2 Proving Theorems in Geometry

Nathan Rochester returned to IBM after the Dartmouth workshop excited about
discussions he had had with Marvin Minsky about Minsky’s ideas for a possible
computer program for proving theorems in geometry. He described these ideas to
a new IBM employee, Herb Gelernter (1929– ). Gelernter soon began a research
project to develop a geometry-theorem-proving machine. He presented a paper on
the first version of his program at a conference in Paris in June 1959,8 acknowledging
that

[t]he research project itself is a consequence of the Dartmouth Summer Research Project on
Artificial Intelligence held in 1956, during which M. L. Minsky pointed out the potential
utility of the diagram to a geometry theorem-proving machine.

Gelernter’s program exploited two important ideas. One was the explicit use of
subgoals (sometimes called “reasoning backward” or “divide and conquer”), and the
other was the use of a diagram to close off futile search paths.

The strategy taught in high school for proving a theorem in geometry involves
finding some subsidiary geometric facts from which, if true, the theorem would
follow immediately. For example, to prove that two angles are equal, it suffices to
show that they are corresponding angles of two “congruent” triangles. (A triangle
is congruent to another if it can be translated and rotated, possibly even flipped
over, in such a way that it matches the other exactly.) So now, the original problem
is transformed into the problem of showing that two triangles are congruent. One
way (among others) to show that two triangles are congruent is to show that two
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Figure 5.4. A triangle with two equal sides (left) and its flipped-over version (right).

corresponding sides and the enclosed angle of the two triangles all have the same
sizes. This backward reasoning process ends when what remains to be shown is
among the premises of the theorem.

Readers familiar with geometry will be able to follow the illustrative example
shown in Fig. 5.4. There, on the left-hand side, we are given triangle ABC with side
AB equal to side AC and must prove that angle ABC is equal to angle ACB. The
triangle on the right side is a flipped-over version of triangle ABC.

Here is how the proof goes: If we could prove that triangle ABC is congruent to
triangle BCA , then the theorem would follow because the two angles are correspond-
ing angles of the two triangles. These two triangles can be proved congruent if we
could establish that side AB (of triangle ABC) is equal to side A C(of triangle BCA )
and that side AC (of triangle ABC) is equal to side BA (of triangle BCA ) and that
angle A (of triangle ABC) is equal to angle A (of triangle BCA ). But the premises state
that side AB is equal to side AC, and these lengths don’t change in the flipped-over
triangle. Similarly, angle A is equal to its flipped-over version – so we have our proof.

Before continuing my description of Gelernter’s program, a short historical digres-
sion is in order. The geometry theorem just proved is famous – being the fifth
proposition in Book I of Euclid’s Elements. Because Euclid’s proof of the proposition
was a difficult problem for beginners it became known as the pons asinorum or “fools
bridge.” The proof given here is simpler than Euclid’s – a version of it was given by
Pappus of Alexandria (circa 290–350 ).

Minsky’s “hand simulation” of a program for proving theorems in geometry,
discussed at Dartmouth, came up with this very proof (omitting what I think is the
helpful step of flipping the triangle over). Minsky wrote9

In 1956 I wrote two memos about a hand-simulated program for proving theorems in geometry.
In the first memo, the procedure found the simple proof that if a triangle has two equal sides
then the corresponding angles are equal. It did this by noticing that triangle ABC was
congruent to triangle CBA because of “side-angle-side.” What was interesting is that this was
found after a very short search – because, after all, there weren’t many things to do. You might
say the program was too stupid to do what a person might do, that is, think, “Oh, those are
both the same triangle. Surely no good could come from giving it two different names.” (The
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program has a collection of heuristic methods for proving Euclid-Like theorems, and one
was that “if you want to prove two angles are equal, show that they’re corresponding parts of
congruent triangles.” Then it also had several ways to demonstrate congruence. There wasn’t
much more in that first simulation.) But I can’t find that memo anywhere.

As Minsky said, this is a very easy problem for a computer. Gelernter’s program
proved much more difficult theorems, and for these his use of a diagram was essential.
The program did not literally draw and look at a diagram. Instead, as Gelernter wrote,

[The program is] supplied with the diagram in the form of a list of possible coordinates for
the points named in the theorem. This point list is accompanied by another list specifying the
points joined by segments. Coordinates are chosen to reflect the greatest possible generality
in the figures.

So, for example, the points named in the problem about proving two angles equal
are the vertices of the triangle ABC, namely, points A and B and C. Coordinates for
each of these points are chosen, and care is taken to make sure that these coordinates
do not happen to satisfy any special unnamed properties.

Gelernter’s program worked by setting up subgoals and subsubgoals such as those
I used in the example just given. It then searched for a chain of these ending in
subgoals that could be established directly from the premises. Before any subgoal
was selected by the program to be worked on however, it was first tested to see
whether it held in the diagram. If it did hold, it might possibly be provable and could
therefore be considered as a possible route to a proof. But, if it did not hold in the
diagram, it could not possibly be true. Thus, it could be eliminated from further
consideration, thereby “pruning” the search tree and saving what would certainly be
fruitless effort. Later work in AI would also exploit “semantic” information of this
sort.

We can see similarities between the strategies used in the geometry program
and those used by humans when we solve problems. It is common for us to work
backward – transforming a hard problem into subproblems and those into subsub-
problems and so on until finally the problems are trivial. When a subproblem has
many parts, we know that we must solve all of them. We also recognize when a pro-
posed subproblem is patently impossible and thus can reject it. The next program
I describe was based explicitly on what its authors thought were human problem-
solving strategies.

5.3 The General Problem Solver

At the same 1959 Paris conference where Gelernter presented his program, Allen
Newell, J. C. Shaw, and Herb Simon gave a paper describing their recent work
on mechanizing problem solving.10 Their program, which they called the “General
Problem Solver (GPS),” was an embodiment of their ideas about how humans solve
problems. Indeed, they claimed that the program itself was a theory of human
problem-solving behavior. Newell and Simon were among those who were just as
interested (perhaps even more interested) in explaining the intelligent behavior of
humans as they were in building intelligent machines. They wrote “It is often argued
that a careful line must be drawn between the attempt to accomplish with machines
the same tasks that humans perform, and the attempt to simulate the processes
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humans actually use to accomplish these tasks. . . . GPS maximally confuses the two
approaches – with mutual benefit.”11

GPS was an outgrowth of their earlier work on the Logic Theorist in that it was
based on manipulating symbol structures (which they believed humans did also).
But GPS had an important additional mechanism among its symbol-manipulating
strategies. Like Gelernter’s geometry program, GPS transformed problems into
subproblems, and so on. GPS’s innovation was to compute a “difference” between a
problem to be solved (represented as a symbol structure) and what was already known
or given (also represented as a symbol structure). The program then attempted to
reduce this difference by applying some symbol-manipulating “operator” (known
to be relevant to this difference) to the initial symbol structure. Newell and Simon
called this strategy “means–ends analysis.” (Note the similarity to feedback control
systems, which continuously attempt to reduce the difference between a current
setting and a desired setting.) To do so, it would have to show that the operator’s
applicability condition was satisfied – a subproblem. The program then started up
another version of itself to work on this subproblem, looking for a difference and
so on.

For example, suppose the goal is to have Sammy at school when Sammy is known
to be at home.12 GPS computes a “difference,” namely, Sammy is in the wrong place,
and it finds an operator relevant to reducing this difference, namely, driving Sammy
to school. To drive Sammy to school requires that the car be in working order. To
make the problem interesting, we’ll suppose that the car’s battery is dead, so GPS

can’t apply the drive-car operator because that operator requires a working battery.
Getting a working battery is a subproblem to which GPS can apply a version of itself.
This “lower” version of GPS computes a difference, namely, the need for a working
battery, and it finds an operator, namely, calling a mechanic to come and install a
new battery. To call a mechanic requires having a phone number (and let us suppose
we have it), so GPS applies the call-mechanic operator, resulting in the mechanic
coming to install a new battery. The lower version of GPS has successfully solved
its problem, so the superordinate GPS can now resume – noting that the condition
for drive-car, namely, having a working battery, is satisfied. So GPS applies this
operator, Sammy gets to school, and the original problem is solved. (This example
illustrates the general workings of GPS. A real one using actual symbol structures,
differences, and operators with their conditions and so on would be cumbersome
but not more revealing.)

When GPS works on subproblems by starting up a new version of itself, it uses
a very important idea in computer science (and in mathematics) called “recursion.”
You might be familiar with the idea that computer programmers organize complex
programs hierarchically. That is, main programs fire up subprograms, which might
fire-up subsubprograms, and so on. When a main program “calls” a subprogram, the
main program suspends itself until the subprogram completes what it is supposed
to do (possibly handing back data to the main program), and then the main program
resumes work. In AI (and in other applications also), it is common to have a main
program call a version of itself – taking care that the new version works on a simpler
problem so as to avoid endless repetition and “looping.” Having a program call itself
is called “recursion.”
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Do people use subprograms and recursion in their own thinking? Quite possibly,
but their ability to recall how to resume what some higher level thought process was
doing when that process starts up a chain of lower level processes is certainly limited.
I don’t believe that GPS attempted to mimic this limitation of human thinking.

Newell and Simon believed that the methods used by GPS could be used to solve
a wide variety of different problems, thus giving rise to the term “general.” To apply
it to a specific problem, a “table of differences” for that problem would have to
be supplied. The table would list all the possible differences that might arise and
match them to operators, which, for that problem, would reduce the correspond-
ing differences. GPS was, in fact, applied to a number of different logical problems
and puzzles13 and inspired later work in both artificial intelligence and in cogni-
tive science. Its longevity as a problem-solving program itself and as a theory of
human problem solving was short, however, and lives on only through its various
descendants (about which more will be discussed later).

Heuristic search procedures were used in a number of AI programs developed in
the early 1960s. For example, another one of Minsky’s Ph.D. students, James Slagle,
programmed a system called SAINT that could solve calculus problems, suitably
represented as symbol structures. It solved 52 of 54 problems taken from MIT
freshman calculus final examinations.14 Much use of heuristics was used in programs
that could play board games, a subject to which I now turn.

5.4 Game-Playing Programs

I have already mentioned some of the early work of Shannon and of Newell, Shaw,
and Simon on programs for playing chess. Playing excellent chess requires intelli-
gence. In fact, Newell, Shaw, and Simon wrote that if “one could devise a successful
chess machine, one would seem to have penetrated to the core of human intellectual
endeavor.”15

Thinking about programs to play chess goes back at least to Babbage. According
to Murray Campbell, an IBM researcher who helped design a world-champion
chess-playing program (which I’ll mention later), Babbage’s 1845 book, The Life of
a Philosopher, contains the first documented discussion of programming a computer
to play chess.16 Konrad Zuse, the German designer and builder of the Z1 and Z3
computers, used his programming language called Plankalkül to design a chess-
playing program in the early 1940s.

In 1946 Turing mentioned the idea of a computer showing “intelligence,” with
chess-playing as a paradigm.17 In 1948, Turing and his former undergraduate col-
league, D. G. Champernowne, began writing a chess program. In 1952, lacking
a computer powerful enough to execute the program, Turing played a game in
which he simulated the computer, taking about half an hour per move. (The game
was recorded. You can see it at http://www.chessgames.com/perl/chessgame?
gid=1356927.) The program lost to a colleague of Turing, Alick Glennie; how-
ever, it is said that the program won a game against Champernowne’s wife.18

After these early programs, work on computer chess programs continued,
with off-again–on-again effort, throughout the next several decades. According to
John McCarthy, Alexander Kronrod, a Russian AI researcher, said “Chess is the
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Figure 5.5. Arthur Samuel. (Photograph
courtesy of Donna Hussain, Samuel’s
daughter.)

Drosophila of AI” – meaning that it serves, better than more open-ended intellectual
tasks do, as a useful laboratory specimen for research. As Minsky said, “It is not
that the games and mathematical problems are chosen because they are clear and
simple; rather it is that they give us, for the smallest initial structures, the greatest
complexity, so that one can engage some really formidable situations after a relatively
minimal diversion into programming.”19 Chess presents very difficult problems for
AI, and it was not until the mid-1960s that the first competent chess programs
appeared. I’ll return to discuss these in a subsequent chapter.

More dramatic early success, however, was achieved on the simpler game of
checkers (or draughts as the game is known in British English). Arthur Samuel
(Fig. 5.5) began thinking about programming a computer to play checkers in the late
1940s at the University of Illinois where he was a Professor of Electrical Engineering.
In 1949, he joined IBM’s Poughkeepsie Laboratory and completed his first operating
checkers program in 1952 on IBM’s 701 computer. The program was recoded for
the IBM 704 in 1954. According to John McCarthy,20 “Thomas J. Watson Sr.,
the founder and President of IBM, remarked that the demonstration [of Samuel’s
program] would raise the price of IBM stock 15 points. It did.”

[Apparently, Samuel was not the first to write a checkers-playing program.
According to the Encyclopedia Brittanica, Online, “The earliest successful AI pro-
gram was written in 1951 by Christopher Strachey, later director of the Programming
Research Group at the University of Oxford. Strachey’s checkers (draughts) pro-
gram ran on the Ferranti Mark I computer at the University of Manchester, England.
By the summer of 1952 this program could play a complete game of checkers at a
reasonable speed.”]21

Samuel’s main interest in programming a computer to play checkers was to
explore how to get a computer to learn. Recognizing the “time consuming and costly
procedure[s]” involved in programming, Samuel wrote “Programming computers to
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learn from experience should eventually eliminate the need for much of this detailed
programming effort.”22 Samuel’s efforts were among the first in what was to become
a very important part of artificial intelligence, namely, “machine learning.” His first
program that incorporated learning was completed in 1955 and demonstrated on
television on February 24, 1956.

Before describing his learning methods, I’ll describe in general how Samuel’s
program chose moves. The technique is quite similar to how moves were chosen in
the eight-puzzle I described earlier. Except now, provision must be made for the
fact that the opponent chooses moves also. Again, a tree of symbolic expressions,
representing board positions, is constructed. Starting with the initial configuration,
all possible moves by the program (under the assumption that the program moves
first) are considered. The result is all the possible resulting board configurations
branching out from the starting configuration. Then, from each of these, all possible
moves of the opponent are considered – resulting in more branches, and so on.

If such a tree could be constructed for an entire game, a winning move could be
computed by examination of the tree. Unfortunately, it has been estimated that there
are about 5 × 1020 possible checkers positions. A leading expert in programming
computers to play games, Jonathan Schaeffer, was able to “solve” checkers (showing
that optimal play by both players results in a draw) by time-consuming analysis
of around 1014 positions. He wrote me that “This was the result of numerous
enhancements aimed at focussing the search at the parts of the search space where we
were most likely to find what we needed.”23 I’ll describe his work in more detail later.

Samuel’s program then could necessarily construct only a part of the tree – that
is, it could look only a few moves ahead. How far ahead it looked, along various of
its branches, depended on a number of factors that need not concern us here. (They
involved such matters as whether or not an immediate capture was possible.) Looking
ahead about three moves was typical, although some branches might be explored
(sparsely) to a depth of as many as ten moves. A diagram from Samuel’s paper,
shown in Fig. 5.6, gives the general idea. Samuel said that the “actual branchings
are much more numerous.”

So, how is the program to choose a move from such an incomplete tree? This
problem is faced by all game-playing programs, and they all use methods that
involve computing a score for the positions at the tips, or “leaves,” of the tree (that
is, the leaves of the incomplete tree generated by the program) and then “migrating”
this score back up to the positions resulting from moves from the current position.
First, I will describe how to compute the score, then how to migrate it back, and
then how Samuel used learning methods to improve performance.

Samuel’s program first computed the points to be awarded to positions at the
leaves of the tree based on their overall “goodness” from the point of view of the
program. Among the features contributing points were the relative piece advantage
(with kings being worth more than ordinary pieces), the overall “mobility” (freedom
to move) of the program’s pieces, and center control. (The program had access to
38 such features but only used the 16 best of these at any one time.) The points
contributed by each feature were then multiplied by a “weight” (reflecting the
relative importance of its corresponding feature), and the result was summed to give
an overall score for a position.
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Figure 5.6. An illustrative checkers game tree. (From p. 74 of Edward A. Feigenbaum and
Julian Feldman (eds.), Computers and Thought, New York: McGraw Hill, 1963.)

Starting with a position immediately above those at the tip of the tree, if it is a
position for which it is the program’s turn to move, we can assume that the program
would want to move to that position with the highest score, so that highest score is
migrated back to this “immediately above” position. If, however, it is a position from
which it is the opponent’s turn to move, we assume that the opponent would want to
move to that position with the lowest score. In that case, the lowest score is migrated
back to this immediately above position. This alternately “highest–lowest” migration
strategy is continued back all the way up the tree and is called the “minimax”
strategy.
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[A simple modification of this strategy, called the “alpha–beta” procedure, is used
to infer (correctly) from already-migrated scores that certain branches need not be
examined at all – thus allowing other branches to be explored more deeply. Opinions
differ about who first thought of this important modification. McCarthy and Newell
and Simon all claim credit. Samuel told me he used it but that it was too obvious to
write about.]

If one assumes that it is the program’s turn to move from the current position,
and that scores have already been migrated back to the positions just below it, the
program would make its move to that position with the highest score. And then
the game would continue with the opponent making a move, another stage of tree
growth, score computation and migration, and so on until one side wins or loses.

One of the learning methods in Samuel’s program adjusted the values of the
weights used by the scoring system. (Recall that weight adjustments in Pandemonium
and in neural networks were ways in which those systems learned.) The weights were
adjusted so that the score of a board position (as computed by the sum of the weighted
feature scores) moved closer to the value of its migrated score after finishing a search.
For example, if the score of an initial position was computed (using the weights before
adjustment) to be 22, and the migrated score of that position after search was 30,
then the weights used to compute the score of the initial position were adjusted
in a manner so that the new score (using the adjusted value of the weights) was
made closer to 30, say 27. (This technique foreshadowed a very important learning
method later articulated by Richard Sutton called “temporal-difference learning.”)
The idea here was that the migrated score, depending as it did on looking ahead in the
game, was presumed to be a better estimate than the original score. The estimating
procedure was thereby improved so that it produced values more consistent with
the “look-ahead” score.

Samuel also used another method called “rote learning” in which the program
saved various board positions and their migrated scores encountered during actual
play. Then, at the end of a search, if a leaf position encountered was the same as
one of these stored positions, its score was already known (and would not have to
be computed using the weights and features). The known score, based as it was on
a previous search, would presumably be a better indicator of position value than
would be the computed score.

Samuel’s program also benefitted from the use of “book games,” which are re-
cords of the games of master checkers players. In commenting about Samuel’s work,
John McCarthy wrote that “checker players have many volumes of annotated games
with the good moves distinguished from the bad ones. Samuel’s learning program
used Lee’s Guide to Checkers24 to adjust its criteria for choosing moves so that the
program would choose those thought good by checker experts as often as possible.”

Samuel’s program played very good checkers and, in the summer of 1962, beat
Robert Nealey, a blind checkers master from Connecticut. (You can see a game
played between Mr. Nealey and Samuel’s program at http://www.fierz.ch/samuel.
htm.) But, according to Jonathan Schaeffer and Robert Lake, “In 1965, the program
played four games each against Walter Hellman and Derek Oldbury (then playing a
match for the World Championship), and lost all eight games.”25
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