Semantic Representations

T HE COMPUTER PROGRAMS I HAVE DESCRIBED SO FAR PERFORMED TRANSFORMA-
tions on relatively simple symbol structures, which were all that were required
for the mathematical problems, puzzles, and games that these programs dealt with.
The main effort was in coming up with and using problem-specific heuristics (such
as features to be used in computing the value of a checkers position, for example)
to limit the number of transformations of these structures in searches for solu-
tions. As Minsky put it, “The most central idea of the pre-1962 period was that
of finding heuristic devices to control the breadth of a trial-and-error search.”' In
the early 1960s, several Ph.D. research projects, some performed under Minsky’s
direction at MIT, began to employ more complex symbol structures in programs
for performing various intellectual tasks. Because of their rich, articulated content of
information about their problem topic, these structures were called semantic represen-
tations.> As Minsky wrote, “Within the small domain in which each program oper-
ates, the performance [of these programs] is not too bad compared with some human
activities. . . . But much more important than what these particular experiments
achieve are the methods they use to achieve what they do, for cach is a first trial of
previously untested ideas.”® Tl describe some examples of these sorts of projects and
the new methods that they employed.

6.1 Solving Geometric Analogy Problems

Thomas G. Evans (1934— ) programmed a system that was able to perform well on
some standard geometric analogy tests. It was apparently the largest program written
up to that time in John McCarthy’s new programming language, LISP (which I'll
describe later). I quote from an article based on Evans’s 1963 dissertation, which
presented this work:*

We shall be considering the solution by machine of so-called “geometric-analogy” intelligence-
test questions. Each member of this class of problems consists of a set of labeled line drawings.
The task to be performed can be described by the question: “Figure A is to Figure B as
Figure Cis to which of the following figures?” For example [in Fig. 6.1] it seems safe to say that
most people would agree with the program we are about to describe, in choosing [number 4]
as the desired answer.

He further noted that “problems of this type are widely regarded as requiring a
high degree of intelligence for their solution and in fact are used as a touchstone of
intelligence in some general intelligence tests used for college admission and other
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Figure 6.1. An analogy problem.

purposes.” So, again, Al research concentrated on mechanizing tasks requiring
human intelligence.

Evans’s program first transformed the diagrams presented to it so that they
revealed how they were composed out of parts. He called these “articular” rep-
resentations. Of the possibly several decompositions possible, the one chosen by the
program depended on its “context.” (‘"This choice is one example of a heuristic used
by the program.) For example, the diagram

¥l

could either be decomposed into

and

or into

and ﬂ

But if the analogy problem contained another diagram (part of the context):

then the first decomposition would be chosen.
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Evans represented diagrams and their parts as complex symbol structures con-
sisting of rather elaborate combinations of lists and lists of lists whose elements
indicated which parts were inside or outside (or above or below) which other parts,
and so on. Those details need not concern us here, but they did allow Evans to
specify “rules” for his program that could be used to show how one diagram could
be transformed into another. The program was able to infer which combinations
of these rules transformed Figure A of a given problem into Figure B. Then it
could apply this transformation to Figure C. If one of the multiple-choice answers
resulted, it would give that one as its answer. Otherwise, the program “weakened”
the transformation just enough so that one of the answers was produced, and that
would be the program’s answer.

Evans summarized his results as follows:

Allowing ourselves only [the parts of the program actually implemented], our estimate would
be that of the 30 geometric-analogy problems on a typical edition of the ACE tests, [the
program] can successfully solve at least 15 and possibly as many as 2() problems.

He notes that this level of performance compares favorably with the average high
school student.

6.2 Storing Information and Answering Questions

Another of Minsky’s Ph.D. students during the early 1960s, Bertram Raphael
(1936— ), focused on the problem of “machine understanding.” In his disserta-
tion,” Raphael explained that

a computer should be considered able to “understand” if it can converse intelligently, i.e., if it
can remember what it is told, answer questions, and make responses which a human observer
considers reasonable.

Raphael wanted to be able to tell things to a computer and then ask it questions
whose answers could be deduced from the things it had been told. (The telling and
asking were to be accomplished by typing sentences and queries.) Here are some
examples of the kinds of things he wanted to tell it:

Every boy is a person.

A finger is part of a hand.

There are two hands on each person.
John is a boy.

Every hand has five fingers.

Given this information, Raphael would want his system to be able to deduce the
answer to the question “How many fingers does John have?”

Because Raphael wanted his system to communicate with people, he wanted
its input and output languages to be “reasonably close to natural English.” He
recognized that “the linguistic problem of transforming natural language input into
a usable form will have to be solved before we obtain a general semantic information
retrieval system.” This “linguistic problem” is quite difficult and still not “solved”
even though much progress has been made since the 1960s. Raphael used various
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“devices” (as he called them and which are not germane to our present discussion) to
“bypass [the general problem of dealing with natural language] while still utilizing
understandable English-like input and output.”

The main problem that Raphael attacked was how to organize facts in the com-
puter’s memory so that the relevant deductions could be made. As Raphael put it,
“The most important prerequisite for the ability to ‘understand’ is a suitable internal
representation, or model, for stored information. The model should be structured
so that information relevant for question-answering is easily accessible.”®

Raphael called his system SIR, for Semantic Information Retrieval, (which he
programmed in LISP). He used the word “semantic” because SIR modeled sentences
in a way dependent on their meanings. The sentences that SIR could deal with
involved “entities” (such as John, boy, hand, finger, and so on) and relations among
these entities (such as “set-membership,” “part—whole,” “ownership,” “above,”
“beside,” and other spatial relationships). The model, then, had to have ways for
representing entities and the relationships among them.

Entities such as John and boy were represented by the LISP computer words
JOHN and BOQY, respectively. (Of course, the computer had no way of knowing
that the computer word JOHN had anything to do with the person John. Raphael
could have just as well represented John in the computer by X13F27 so long as
he used that representation consistently for John. Using the computer word JOHN
was a mnemonic convenience for the programmer — not for the computer!) When
representing the fact that John is a boy, SIR would “link” a computer expression
(SUPER-SET JOHN BOY) to the expression JOHN and link a computer expression
(SUB-SET BOY JOHN) to the expression BOY. Thus, if SIR were asked to name a
boy, it could reply “JOHN” by referring to BOY in its model, looking at its SUB-SET
link and retrieving JOHN. (I have simplified the representations somewhat to get the
main ideas across; SIR’s actual representations were a bit more complicated.)

SIR could deal with dozens of different entities and relations among them. Every
time it was told new information, it would add new entities and links as needed. It
also had several mechanisms for making logical deductions and for doing simple
arithmetic. The very structure of the model facilitated many of its deductions
because, as Minsky pointed out in his discussion of Raphael’s thesis, “the direct
predicate-links. . . almost physically chain together the immediate logical conse-
quences of the given information.”’

SIR was also the first Al system to use the “exception principle” in reasoning.
This principle is best explained by quoting directly from Raphael’s thesis:

General information about “all the elements” of a set is considered to apply to particular
elements only in the absence of more specific information about those elements. Thus it is
not necessarily contradictory to learn that “mammals are land animals” and yet “a whale is
a mammal which always lives in water.” In the program, this idea is implemented by always
referring for desired information to the property-list [that is, links] of the individual concerned
before looking at the descriptions of sets to which the individual belongs.

The justification for this departure from the no-exception principles of Aristotelian logic is
that this precedence of specific facts over background knowledge seems to be the way people
operate, and I wish the computer to communicate with people as naturally as possible.
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The present program does not experience the uncomfortable feeling people frequently get
when they must face facts like “a whale is a mammal which lives in water although mammals
as a rule live on land.”

The exception principle was studied by Al researchers in much more detail later
and led to what is called default reasoning and nonmonotonic logics, as we shall see.

6.3 Semantic Networks

It is instructive to think of SIR’s representational scheme in terms of a network. The
entities (such as JOHN and BOY) are the “nodes” of the network, and the relational
links (such as SUB-SET) are the connections between nodes. SIR was an early version
of what would become an important representational idea in artificial intelligence,
namely, semantic networks. It was not the first, however. John Sowa, who has written
extensively about semantic networks, claims that the “oldest known semantic net-
work was drawn in the 3rd century AD by the Greek philosopher Porphyry in his
commentary on Aristotle’s categories.”® In 1961 Margaret Masterman (1910-1986),
Director of the Cambridge Language Research Unit, used a semantic network in a
translation system in which concepts were ordered in a hierarchy.’

M. Ross Quillian, a student of Herb Simon’s at the Carnegie Institute of Tech-
nology, was interested, along with Newell and Simon, in computational models of
human mental processes, specifically memory organization. He developed a memory
model consisting of a semantic network of nodes representing English words. The
nodes were interconnected by what he called “associative links.” In Quillian’s words,
“In the memory model, ingredients used to build up a concept are represented by
the token nodes naming other concepts, while the configurational meaning of the
concept is represented by the particular structure of interlinkages connecting those
token nodes to each other.”

Quillian goes on to write that “[t]he central question asked in this research has
been: What constitutes a reasonable view of how semantic information is organized
within a person’s memory? In other words: What sort of representational format can
permit the ‘meanings’ of words to be stored, so that humanlike use of these meanings
is possible?”1?

I can illustrate how Quillian’s network format represents meaning by using one
of his examples. Consider the different meanings of the word “plant.” One such
meaning is given by linking the node PLANT to other nodes, such as LIVE, LEAF,
FOOD, AIR, WATER, and EARTH, through connections that represent that a plant
(according to this meaning of the word) is alive, has leaves, and gets its food from
air, water, and earth. Another meaning of “plant” links PLANT to other nodes, such
as PEOPLE, PROCESS, and INDUSTRY, through connections that represent that a
plant (according to this other meaning of the word) is an apparatus that uses people
for engaging in a process used in industry.

According to Quillian, the meaning of a term is represented by its place in the
network and how it is connected to other terms. This same idea is used in dictionaries
where the meaning of a word is given by mentioning the relationship of this word
to other words. The meanings of those other words are, in turn, given by their
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relationships to yet other words. So we can think of a dictionary as being like a large
semantic network of words linked to other words.

By using this view, the fu// meaning of a concept can be quite extensive. As Quillian
puts it,

Suppose that a person were asked to state everything he knows about the concept
“machine.” ... This information will start off with the more “compelling” facts about
machines, such as that they are usually man-made, involve moving parts, and so on, and
will proceed “down” to less and less inclusive facts, such as the fact that typewriters are
machines, and then eventually will get to much more remote information about machines,
such as the fact that a typewriter has a stop which prevents its carriage from flying off each
time it is returned. We are suggesting that this information can all usefully be viewed as part
of the subject’s concept of “machine.”

In what way is Quillian’s network a model of human memory organization?
Quillian explored two capabilities of human memory modeled by his network. One
was comparing and contrasting two different words. Quillian proposed that this
be done by a process that came to be called “spreading activation.” Conceptually,
one starts at the nodes representing the two words and gradually traverses the links
emanating from them, “activating” the nodes along the way. This process continues
until the two “waves” of activation intersect, thus producing a “path” between
the two original nodes. Quillian proposed that the total “distance” along this path
between the two words could be used as a measure of their similarity. The path can
be used to produce an account comparing the two words. (Quillian’s program had
mechanisms for expressing this account in simple English.)

To use one of Quillian’s examples, suppose we wanted to compare the words
“cry” and “comfort.” The spreading activations would intersect at the word “sad,”
and the English account would express something like “to cry is to make a sad sound,
and to comfort is to make something less sad.”

Quillian was also interested in how the network could be used to “disambiguate”
two possible uses of the same word. Consider, for example, the sentence “After the
strike, the president sent him away.” The network can encode different meanings
of the word “strike.” One such might involve a labor dispute, another might involve
baseball, and yet another involve a raid by military aircraft. Which of these meanings
is intended by the sentence? Presumably, activation proceeding outward from the
word “president” would eventually reach concepts having to do with labor disputes
before reaching concepts having to do with baseball or the military. Thus, the “labor
dispute” meaning would be preferred because it is “closer,” given that the word
“president” is in the sentence. In contrast, a different conclusion would be reached
for the sentence “After the strike, the umpire sent him away.”

Quillian’s model differs from some later semantic networks in that it does not
have a predetermined hierarchy of superclasses and subclasses. As Quillian puts it,
“every word is the patriarch of its own separate hierarchy when some search process
starts with it. Similarly, every word lies at various places down within the hierarchies
of (i.e., is an ingredient in) a great many other word concepts, when processing starts
with them.”
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