
CHAPTER 3

Symbolic Natural
Language Processing

3.0. Introduction

Fundamental notions of combinatorics on words underlie natural language
processing. This is not surprising, since combinatorics on words can be seen
as the formal study of sets of strings, and sets of strings are fundamental
objects in language processing.

Indeed, language processing is obviously a matter of strings. A text
or a discourse is a sequence1 of sentences; a sentence is a sequence of
words; a word is a sequence of letters. The most universal levels are those
of sentence, word, and letter (or phoneme), but intermediate levels exist,
and can be crucial in some languages, between word and letter: a level
of morphological elements (e.g. suffixes), and the level of syllables. The
discovery of this piling up of levels, and in particular of word level and
phoneme level, delighted structuralist linguists in the twentieth century.
They termed this inherent, universal feature of human language “double
articulation”.

It is a little more intricate to see how sets of strings are involved.
There are two main reasons. First, at a point in a linguistic flow of data
being processed, you must be able to predict the set of possible continu-
ations after what is already known, or at least to expect any continuation
among some set of strings that depends on the language. Second, natu-
ral languages are ambiguous, that is a written or spoken portion of text
can often be understood or analysed in several ways, and the analyses are

1 In this chapter, we will not use the term “word” to denote a sequence of symbols, in order to
avoid ambiguity with the linguistic meaning.
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3.1. From letters to words 165

handled as a set of strings as long as they cannot be reduced to a sin-
gle analysis. The notion of set of strings covers the two dimensions that
linguists call the syntagmatic axis, that is that of the chronological se-
quence of elements in a given utterance, and the paradigmatic axis, that
is the “or” relation between linguistic forms that can substitute for one
another.

The connection between language processing and combinatorics on
words is natural. Historically, linguists actually played a part in the be-
ginning of the construction of theoretical combinatorics on words. Some
of the terms in current use originate from linguistics: word, prefix, suffix,
grammar, syntactic monoid . . . However, interpenetration between the for-
mal world of computer theory and the intuitive world of linguistics is still
a love story with ups and downs. We will encounter in this chapter, for ex-
ample, terms that specialists of language processing use without bothering
about what they mean in mathematics or in linguistics.

This chapter is organized around the main levels of any language mod-
elling: first, how words are made from letters; second, how sentences are
made from words. We will survey the basic operations of interest for lan-
guage processing, and for each type of operation we will examine the formal
notions and tools involved.

3.1. From letters to words

All the operations in the world between letters and words can be collectively
denoted by the term “lexical analysis”. Such operations mainly involve finite
automata and transducers. Specialists in language processing usually refer
to these formal tools with the term “finite-state” tools, because they have a
finite number of states.

3.1.1. Normalization of encoding

The computer encoding of the 26 letters of the Latin alphabet is fairly
standardized. However, almost all languages need additional characters for
their writing. European languages use letters with diacritics: accents (é,
è), cedilla (ç), tilde (ñ), umlaut (ü) . . . There are a few ligatures, the use
of some of them being standard in some conditions: æ, œ, ß, others are
optional variants: ff, fl. The encoding of these extensions of 7-bit ASCII is
by no means normalized: constructors of computers and software editors
have always tended to propose divergent encodings in order to hold users
captive and so faithful. Thus, é is encoded as 82 and 8E in two common
extended ASCII codes, as 00E9 in UCS-2 Unicode, as C3A9 in UTF-8
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166 3. Symbolic Natural Language Processing

Unicode, and named “&eacute;” by ISO 8879: 1986 standard. The situation
of other alphabets (Greek, Cyrillic, Korean, Japanese . . .) is similar. The
encoding systems for the Korean national writing system are based on
different levels: in KSC 5601-1992, each symbol represents a syllable; in
“n-byte” encodings, each symbol represents a segment of a syllable, often a
phoneme.

Thus, generally speaking, when an encoding is transliterated into an-
other, a symbol may be mapped to a sequence of several symbols, or the
reverse. Transliteration implies (i) cutting up input text into a concatenation
of segments, and (ii) translating each segment. Both aspects depend on
input and output encodings.

Transliteration is simple whenever it is unambiguous, that is when
source encoding and target encoding convey exactly the same informa-
tion in two different forms. The underlying formal objects are very simple.
The set of possible segments in input text is a finite code (the input code).
It is often even a prefix code, that is no segment is a prefix of another.
Here is an example of an input code that is not prefix: consider transliter-
ating a phoneme-based Korean encoding into a syllable-based encoding. A
5-symbol input sequence kilto must be segmented as kil/to in order to be
translated into a 2-symbol output sequence, but kilo must be segmented as
ki/lo.

In any case, encodings are designed so that transliteration can be
performed by a sequential transducer.

For the reader’s convenience, we will recall a few of the definitions of
Section 1.5. A finite transducer over the alphabets A, B is a finite automaton
in which all edges have an input label u ∈ A∗ and an output label v ∈ B∗.
The input alphabet A can be different from the output alphabet B, but
they frequently have a nonempty common subset. The notation we will
use is convenient when a transducer is considered as an automaton over
a finite alphabet of the form X ⊂ A∗ × B∗, as in Section 3.1.5, and when
we define a formal notion of alignment, as in Section 3.1.7. Elements of

X will be denoted (u : v) or

(
u

v

)
as in Figure 3.1; edges will be denoted

(p, u : v, q). The label of a successful path of a transducer consists of
a pair of sequences (w : x) ∈ A∗ × B∗. Corresponding input and output
sequences may be of different lengths in the number of symbols, and some
of the edges may have input and output labels of different lengths. A
transducer over A and B is input-wise literal if and only if all input labels
are in A|ε, and input-wise synchronous if and only if they are in A. The
set of labels of successful paths of a transducer is the transduction realized
by the transducer. A transduction over A and B is a relation between
A∗ and B∗. A transduction over A and B can be specified by a regular
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Figure 3.1. A sequential transducer that substitutes “82” for “&eacute;”
and “8A” for “&egrave;”.

expression in the monoid A∗ × B∗ if and only if it is realized by a finite
transducer.

A sequential transducer is a finite transducer with additional output
labels attached to the initial and terminal states, and with the following
properties:

• it has at most one initial state,
• it is input-wise synchronous,
• for each state p and input label a ⊂ A, there is at most one edge

(p, a : u, q) ∈ E.
The output string for a given input string is obtained by concatenating the
initial output label, the output label of the path defined by the input string,
and the terminal output label attached to the terminal state that ends the path.
With a sequential transducer, input sequences can be mapped into output
sequences through input-wise deterministic traversal. All transductions re-
alized by sequential transducers are word functions. Sequential transducers
can be minimized (cf. Section 1.5.2).

In practice, the output labels attached to terminal states are necessary
for transliteration when input code is not prefix. The second and third
properties above are obtained by adapting the alignment between input
labels and output labels, that is by making them shorter or longer and
by shifting parts of labels between adjacent edges. Figure 3.1 shows a
sequential transducer that transliterates é and è from their ISO 8879 names,
“&eacute;” and “&egrave;”, to their codes in an extended ASCII encoding,
82 and 8A.

The number of edges of transducers for normalization of character
encoding is of the same order of magnitude as the sum of the lengths of the
elements of the input code, say 30 if only letters are involved and 3000 if
syllables are involved.
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168 3. Symbolic Natural Language Processing

Transliteration from one encoding to another is ambiguous when the
target system is more informative than the source system. For example,
7-bit ASCII encoding, frequently used in informal communication, does
not make any difference between e and é, or between oe and the ligature
œ. In a more elaborate encoding, these forms are not equivalent: œ is not a
free variant for oe; it can be used in cœur but not in coexiste. Transliteration
from 7-bit ASCII to an extended ASCII encoding involves recognizing
more complex linguistic elements, like words. It cannot be performed by
small sequential transducers.

The situation is even more complex in Korean and Japanese. In these
languages, text can be entirely written in national writing systems, but
Chinese characters are traditionally substituted for part of it, according to
specific rules. In Japan, the use of Chinese characters in written text is
standard in formal communication; in Korea, this traditional substitution is
not encouraged by the authorities and is on the wane. Let us consider text
with and without Chinese characters as two encodings. The version with
Chinese characters is usually more informative than the one without: when
a word element is ambiguous, it may have several transcriptions in Chinese
characters, according to its respective meanings. However, the reverse
also happens. For instance, an ambiguous Chinese character that evokes
“music”, “pleasure”, or “love” in Korean words is pronounced differently,
and transcribed ak, lak, nak, or yo in the national writing system, depending
on the words in which it occurs.

3.1.2. Tokenization

The first step in the processing of written text is helped by the fact that words
are delimited by spaces. During Antiquity, this feature was exclusive to un-
vowelled script of Semitic languages; it developed in Europe progressively
during the early Middle Ages and is now shared by numerous languages in
the world.

Due to word delimitation, a simple computer program can segment
written text into a sequence of words without recognizing them, for exam-
ple, without a dictionary. This process is called tokenization. Once it has
been performed, words become directly available for further operations:
statistics, full text indexation, dictionary lookup . . .

The formal basis of delimiter-based tokenization is the unambiguous
use of certain characters as delimiters.

The alphabet of letters, A, and the alphabet of delimiters, D, are
disjoint. A text is a sequence of letters and delimiters. After tokeniza-
tion, it is a sequence of tokens. Word tokens are maximal occurrences of
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Figure 3.2. An automaton for written text tokenization.

elements of A∗ in the text. Delimiter tokens can be defined either as single
delimiters:

Why/?/ /1/. / /Because/ /of/ /temperature/.

or as sequences of delimiters:

Why/? 1. /Because/ /of/ /temperature/.

Some symbols, like dash (-) and apostrophe (’) in English, can be
considered either as letters or as delimiters. In the first case, trade-off and
seven-dollar are tokens; otherwise they are sequences of tokens. In any
case, tokenization can be performed by simulating the two-state automaton
of Figure 3.2, and by registering a new word token whenever control shifts
from state 1 to state 0.

In this section, we used the term “word” in its everyday sense; I would
even say in its visual sense: a word in written text is something visibly
separated by spaces. However, this naive notion of word does not always
give the best results if we base further processing on it, because visual
words do not always behave as units conveying a meaning. For example
white does in white trousers, but not in white wine. We will return to this
matter in Section 3.1.4.

Delimiter-based tokenization is not applicable to languages written
without delimitation between words, like Arabic, Chinese, or Japanese.
In these languages, written text cannot be segmented into words without
recognizing the words. The problem is exactly the same with spoken text:
words are not audibly delimited.

However, in some cases, another type of tokenization identifies all the
positions in the text where words are liable to begin. These positions cut up
text into tokens. After that, words can be recognized as certain sequences
of tokens. For instance, in the Thai language, words can only begin and
end at syllable boundaries, and syllable boundaries cannot be preceded or
followed by any patterns of phonemes. These patterns can be recognized
by a transducer.
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170 3. Symbolic Natural Language Processing

3.1.3. Zipf’s law

During the tokenization of a text or of a collection of texts, it is easy to build
the list of all the different tokens in the text, to count the occurrences of
each different token, and to rank them by decreasing number of occurrences.
What is the relation between rank r and number of occurrences nr? Zipf
observed that the following law is approximately true:

nr = n1/ra (3.1.1)

with a ≈ 1. As a matter of fact, there are few frequent tokens, and many
infrequent tokens. In experiments on French text, 1 token out of 2 was found
to belong to the most frequent 139 tokens. In fact, for 20 ≤ r ≤ 2000, nr

is a little higher than predicted by (3.1.1).
Several equations can be derived from Zipf’s law. The number rn of

different tokens that occur at least n times is such that n = n1/ra
n , so:

rn =
(n1

n

)1/a

.

The number of different tokens that occur between n and n + 1 times is:(n1

n

)1/a

−
(

n1

n + 1

)1/a

. (3.1.2)

For large values of n and a = 1, this is approximately n1/n2, which is
confirmed experimentally.

According to (3.1.2), the number of tokens that occur once (hapaxes) is
proportional to n

1/a

1 . It is easy to observe that the number of occurrences of
a very frequent token is approximately proportional to the size of the text,
that is n1/N depends on the language but not on the text. This means that
all texts have roughly the same proportion of hapaxes.

Can Zipf’s law be used to predict the relation between the size of a text
and the size of its vocabulary? The size of the text is the total number of
occurrences of tokens,

N = n1 + n2 + · · · + nR

where R is the size of the vocabulary, that is the number of different tokens.
With a = 1, we have:

N = n1

R∑
r=1

1/r ≈ n1 ln R.

However, the relation between N and n1 in this equation is not confirmed
experimentally. First, n1 is proportional to N . Second, the growth of R with
respect to N tends to slow down, because of the tokens that occur again,
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whereas this equation implies that it would speed up. Third, if this law
were accurate, R would grow unbounded with N , which means that the
vocabulary of a language would be infinite. What is surprising and counter-
intuitive is that a steady growth of R with respect to N is maintained for
texts up to several million different tokens.

In other words, Zipf’s law correctly predicts that a collection of texts
needs to be very large and diverse to encompass the complete vocabulary
of a language, because new texts will contain new words for a very long
time. Experience shows, for example, that the proportion of vocabulary
which is shared by one year’s production of a newspaper and another year’s
production is smaller than simple intuition would suggest.

3.1.4. Dictionary compression and lookup

Most operations on text require information about words: their translation
into another language, for example. Since such information cannot in gen-
eral be computed from the form of words, it is stored in large databases,
in association with the words. Information about words must be formal,
precise, systematic, and explicit, so that it can be exploited for language
processing. Such information is encoded into word tags or lexical tags.
Examples of word tags are given in Figure 3.3. The tags in this figure

fit fit A
fit fit N:s
fit fit V:W:P1s:P2s:P1p:P2p:P3p
fitter fit A:C
fitting fit V:G
hop hop N:s
hop hop V:W:P1s:P2s:P1p:P2p:P3p
hope hope N:s
hope hope V:W:P1s:P2s:P1p:P2p:P3p
hoping hope V:G
hopping hop V:G
hot hot A
hot air hot air N:s
hotter hot A:C
open open A
open open N:S
open open V:W:P1s:P2s:P1p:P2p:P3p
open air open air N:S

Figure 3.3. The word tags for a few English words.
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172 3. Symbolic Natural Language Processing

record only essential information:
• the lemma, which is the corresponding form with default inflectional

features, for example, the infinitive, in the case of verbs,
• the part of speech: A, N, V, . . . ,
• the inflectional features.

Lemmas are necessary for nearly all applications, because they are indexes
to properties of words. If all the vocabulary is taken into account, the tag
set used in Figure 3.3 has many thousands of elements, due to lemmas. The
size of tag sets is a measure of the informative content of tags.

The operation of assigning tags to words in a text is called lexical
tagging. It is one of the main objectives of lexical analysis. The reverse
operation is useful in text generation: words are first generated in the form
of lexical tags, then they have to be spelled. In many languages, it is
feasible to construct a list of roughly all words that can occur in texts. Such
a list, with unambiguous word tags, is called an electronic dictionary,2

or a dictionary. The strange term “full-form dictionary” is also in use.
An electronic dictionary has in the order of a million words. Such a list
is always an approximation, due to the fact that new words continuously
come into use: proper nouns, foreign borrowings, new derivatives of existing
words . . .

In inflectional languages such as English, the construction of an elec-
tronic dictionary involves generating inflected forms, like conjugated verbs
or plurals. This operation is usually carried out with tables of suffixes,
prefixes, or infixes, or with equivalent devices.

What is considered as a word is not always clear, because words some-
times appear as combinations of words, for example, hot air “meaningless
talk”, open air “outdoors space”, white wine, which are called compound
words. The situation is less clear with numerals, for example, sixty-nine:
linguistically, each of them is equivalent to a determiner, which is a word;
technically, if we include them in the dictionary, they are another million
words; syntactically, they are made of elements combined according to
rules, but these rules are entirely specific to numerals and are not found
anywhere in the syntax of the language. The status of such forms and of
other examples such as dates is not easy to assign. If they are considered
as words, then the simplest form of description for them is a finite automa-
ton. We will refer to such automata in Section 3.2.2 by the term “local
grammars”.

2 The term “electronic dictionary” emphasizes the fact that entries are designed for programs,
whereas the content of “conventional dictionaries” is meant for human readers, no matter whether
they are stored on paper or electronically.
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The most repetitive operation on an electronic dictionary is lookup. The
input of this operation is word forms, and the output, word tags. Natural
and efficient data structures for them are tries, with output associated to
leaves, and transducers. In both cases, lookup is done in linear time with
respect to the length of the word, and does not depend on the size of the
dictionary.

Consider representing the dictionary in the form of a transducer. The
dictionary is viewed as a finite set of word form/word tag pairs, that is
a transduction. Alignment between input and output is based on the sim-
ilarity between word forms and the lemmas included in word tags. This
transduction is not a word function, since many word forms in a dictionary
are associated with several word tags, like fit in Figure 3.3:

The shoes are fit for travel.
Max had a fit of fever.
These shoes fit me.

Due to this universal phenomenon, known as lexical ambiguity or homo-
graphy, the transduction cannot be represented by a sequential transducer. A
p-sequential transducer is a generalization of sequential transducers with
at most p terminal output strings at each terminal state. A p-sequential
transducer for the words in Figure 3.3 is shown in Figure 3.4. In this
transducer, the symbol # stands for a space character. The notion of
p-sequential transducer allows for the representation of a transduction that
is not a word function without resorting to an ambiguous transducer. A
transducer is ambiguous if and only if it has distinct paths with the same
input label. In a p-sequential transducer, there are no distinct paths with
the same input label; any difference between output labels of the same path
must occur in terminal output strings.

In order to make the transducer p-sequential, lexically ambiguous word
forms must be processed in a specific way: any difference between the
several word tags for such a word form must be postponed to terminal
output strings, by shifting parts of labels to adjacent edges. This opera-
tion may change the natural alignment between input and output, and in-
crease the number of states and edges of the transducer, but the increase in
size remains within reasonable proportions because inflectional suffixes are
usually short. After this operation, a variant of algorithm ToSequential-
Transducer (Section 1.5) can be applied.

A dictionary represented as a transducer can be used to produce a
dictionary for generation, by swapping input and output. The resulting
transducer can be processed so that it also becomes p-sequential, provided
that the dictionary is finite.
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Figure 3.4. A p-sequential transducer for the words and tags in Figure 3.3.

Figure 3.5 shows an approximation of the preceding transducer by an
acyclic automaton or DAWG. Most of the letters in the word form are
identical to letters in the lemma and are not explicitly repeated in the
output. The end of the output is shifted to the right and attached to terminal
states, with an integer indicating how many letters at the end of the word
form are not part of the lemma. When several output strings are possible for
the same word, they are concatenated and the result is attached to a terminal
state. During minimization of the DAWG, terminal states can be merged
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Figure 3.5. The DAWG for the words and tags in Figure 3.3.

only if the output strings attached to them are identical. For the tag set used
in Figure 3.3, and for all the vocabulary, there are only about 2000 different
output strings. The practical advantage of this solution is that output strings
are stored in a table that need not be compressed and is easy to search for
word tags.

In the previous figures, we have presented the same dictionary in dif-
ferent forms. The form containing most redundancy is the list (Figure 3.3):
parts of words are repeated, not only in lemmas and inflected forms, but
also across different entries. The DAWG (Figure 3.5) is virtually free of
this redundancy, but it is unreadable and cannot be updated directly. In fact,
linguistic maintenance must be carried out on yet another form, the dictio-
nary of lemmas used to generate the list of Figure 3.3. The dictionary of
lemmas is readable and presents little redundancy, two fundamental features
for linguistic maintenance. But the only way to exploit it computationally
is to generate the list – a form with huge redundancy – and then the DAWG.
The flexibility of finite automata is essential to this practical organization.
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The main difficulties with dictionary-based lexical tagging are lexical
lacunae, errors, and ambiguity.

Lexical lacunae, that is words not found in a dictionary, are practically
impossible to avoid due to the continuous creation and borrowing of new
words. Simple stopgaps are applicable by taking into account the form
of words: for example, in English, a capitalized token not found in the
dictionary is often a proper noun.

Lexical errors are errors producing forms which do not belong to the
vocabulary of the language, for example coronre for coroner.3 Lexical
errors are impossible to distinguish from lexical lacunae. A few frequent
errors can be inserted in dictionaries, but text writers are so creative that
this solution cannot be implemented systematically. In order to deal with
errors (find suggestions for corrections, retrieve lexical information about
correct forms), an electronic dictionary can be used. By looking up in an
error-tolerant way, we find correct forms that are close to the erroneous
form.

Lexical ambiguity refers to the fact that many words should be
assigned distinct tags in relation to context, like fit. About half the forms in
a text are lexically ambiguous. Lexical ambiguity resolution is dealt with
in Section 3.2.4.

In some languages, sequences of words are written without a delim-
iter in certain conditions, even if the sequence is not frozen. In German,
ausschwimmen “to swim out” is the concatenation of aus “out” and schwim-
men “swim”. Obviously, dictionary lookup has to take a special form in
cases where a token has several words.

Performing the lexical analysis of a text with a set of dictionaries requires
adapted software, like the open-source system Unitex. Figure 3.6 shows the
result of the lexical analysis of an English text by Unitex. This system can
also be used for the management of the dictionaries in their different forms,
and for the operations on words that we will present in Section 3.2.

3.1.5. Morphological analysis

Given a word in a written text, represented by a sequence of letters, how do
you analyse it into a sequence of underlying morphological elements? This
problem is conveniently solved by the dictionary methods of the preceding
section, except when the number of morphological elements that make up
words is too large. This happens with agglutinative languages. English and
other Indo-European languages are categorized as inflected languages. A
few agglutinative languages are spoken in Europe: Turkish, Hungarian,

3 Errors can also produce words which belong to the vocabulary, like corner.
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Figure 3.6. Lexical analysis of an English text by Unitex.

Finnish, Basque . . . and many others are from all other continents. In such
languages, a word is a concatenation of morphological elements, usually
written without delimiters.4 For example, the following Korean sequence,

4 When morphological elements are delimited by spaces, such as in Sepedi, an African agglutina-
tive language, the problem of recognizing their combinations is quite different.
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transliterated into the Latin alphabet: manasiôs’takojocha “even that (he)
met”, has six elements:

• mana “meet”
• si (honorification of grammatical subject)
• ôs’ (past)
• ta (declarative)
• ko “that”
• jocha “even”

and can be used in a sentence meaning “(The Professor) even (thought)
that (he) met (her yesterday)”. The form of each element can depend on
its neighbours, so each element has a canonical form or lemma and mor-
phological variants. There are two types of morphological elements: stems,
which are lexical entries, like “meet” in the Korean example, and gram-
matical affixes, like tense, mood, or case markers. Morphological analysis
consists of segmenting the word and finding the lemma and grammati-
cal tag of each underlying morphological element. The converse problem,
morphological generation, is relevant to machine translation in case of an
agglutinative target language: words are constructed as sequences of mor-
phological elements, but you have to apply rules to spell the resulting word
correctly.

Finite transducers are usually convenient for representing the linguis-
tic data required to carry out morphological analysis and generation. For
example, Figure 3.7 represents a part of English morphology as if it were
agglutinative. This transducer analyses removably as the combination of
three morphological elements, remove.V, able.A and ly.ADV, and inserts
plus signs in order to delimit them. The transducer roughly respects a
natural alignment between written forms and underlying analyses. It spec-
ifies two types of information: how written forms differ from underlying
forms, and which combinations of morphological elements are possible.
Grammatical codes are assigned to morphological elements: verb, adjec-
tive, tense/mood suffix, adverb. Some other examples of words analysed
by this transducer are remove, removable, removed, removing, accept, ac-
ceptable, acceptably, accepted, accepting, emphatic, emphatically, famous,
and famously. The four initial states should be connected to parts of the
dictionary representing the stems that accept the suffixes represented in the
transducer.

In this toy example, it would have been simpler to make a list of all
suffixed forms with their tags. However, combinations of morphological
elements are more numerous and more regular in agglutinative languages
than in English, and they justify the use of a transducer.

Transducers of this kind obviously have to be manually constructed by
linguists, which implies the use of a convenient, readable graphic form,
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Figure 3.7. Morphological analysis in English.

so that errors are easily detected and maintenance is possible. A widely
used set of conventions attaches labels to states and not to edges. States are
not explicitly numbered. This graphic form is sometimes called a “graph”.
For example, Figure 3.8 shows the same transducer as Figure 3.7 but with
this presentation. The expressive power is the same. When the transducer
is used in an operation on text or with another transducer, it is compiled
into the more traditional form. During this compilation, states are assigned
arbitrary numbers.

The main challenge with algorithmic tools for morphological process-
ing is the need to observe two constraints: manually constructed data must
be presented in a readable form, whereas data directly used to process text
must be coded in adapted data structures. When no format is simultane-
ously readable and adapted to efficient processing, the data in the readable
form must be automatically compiled into the operation-oriented form.
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Figure 3.8. Morphological analysis in English.

This organization should not be given up once operation-oriented data are
available: linguistic maintenance, that is correction of errors, inclusion of
new words, selection of vocabulary for applications, etc., can only be done
in the readable form.

Transducers for morphological analysis are usually ambiguous. This
happens when a written word has several morphological analyses, like
flatter, analysable as flatter.V in Advertisements flatter consumers; and as
flat.A+er.C in The ground is flatter here. The fact that transducers are am-
biguous is not a problem for linguistic description, since ambiguous trans-
ducers are as readable as unambiguous ones. However, it can raise algo-
rithmic problems: in general, an ambiguous transducer cannot be traversed
in an input-wise deterministic way. In inflected languages, this problem is
avoided by substituting p-sequential transducers to ambiguous transducers,
but this solution is no longer valid for most agglutinative languages. When
ambiguity affects the first element in a long sequence of morphological
elements, shifting output labels to terminal output strings would change
the natural alignment between input and output to such an extent that the
number of states and edges of the transducer would explode.

Therefore, algorithm ToSequentialTransducer is not applicable:
ambiguous transducers have to be actually used. There are several ways
of automatically reducing the degree of input-wise nondeterminism of an
ambiguous transducer. We will see two methods which can be applied
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Figure 3.9. An ambiguous transducer determinized as an automaton.

after the alignment of the transducer has been tuned so as to be input-wise
synchronous (see Section 3.1.1). Both methods will be exemplified on the
transducer of Figure 3.8, which has 4 initial states. These distinct initial
states encode dependencies between stems and suffixes, as we will see in
the last page of this section. For simplicity’s sake, the stems are not included
in this figure: thus, we will consider it as a collection of 4 transducers, and
artificially maintain the 4 initial states.

The first method determinizes (algorithm NFAtoDFA, Section 1.3.3)
and minimizes (Section 1.3.4) the ambiguous transducer, considering it as
an automaton over a finite alphabet X ⊂ A∗ × B∗. In general, the resulting
transducer is still ambiguous: distinct edges can have the same origin, the
same input label, and distinct ends, (p, a : u, q) and (p, a : v, r), but only
if their output labels u and v are distinct. The transducer of Figure 3.9 is the
result of the application of this method to the transducer of Figure 3.8.
Applying the resulting transducer to a word involves a variant of the
nondeterministic search of Section 1.3.2 (algorithm IsAccepted), but
the search is quicker than with the original transducer, because algorithm
NFAtoDFA reduces the nondeterminism of the transducer.

In order to introduce the second method, we define a new generaliza-
tion of p-sequential transducers. We will allow differences between output
labels of the same path to occur at any place as long as they remain strictly
local. Formally, a generalized sequential transducer is a finite transducer
with a finite set of output labels I (i) for the initial state i, a finite set of output
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labels T (q) for each terminal state q, and with the following properties:
• it has at most one initial state,
• it is input-wise synchronous,
• for each pair of edges (p, a : u, q), (p, a : v, r) with the same origin

and the same input label, q = r .
A transduction is realized by a generalized sequential transducer if and only
if it is the composition of a sequential transduction with a finite substitution.
Thus, such a transduction is not necessarily a word function: two edges can
have the same origin, the same input label, the same end and distinct output
labels, (p, a :u, q) and (p, a :v, q). However, given the input label of a
path, a generalized sequential transducer can be traversed in an input-wise
deterministic way, even if it is ambiguous.

The second method constructs a generalized sequential transducer
equivalent to the ambiguous transducer. When two edges with the same
origin and the same input label have different output labels and different
ends, output labels are shifted to adjacent edges to the right, but not neces-
sarily until a terminal state is reached. The condition for ceasing the shift of
a set of output strings to the right is the following. Consider the set Ep,a of
all edges with origin p and input label a. Each edge e ∈ Ep,a has an output
label ue ∈ B∗ and an end qe ∈ Q. Consider the finite language Lp,a ⊂ B∗Q
over the alphabet B ∪ Q defined by Lp,a = {ueqe|e ∈ Ep,a}. If we can write
Lp,a = MN for some M ⊂ B∗ and N ⊂ B∗Q, then

• create a new state r; let r be terminal if and only if at least one of the
states qe is terminal;

• substitute a new set of edges for Ep,a: the edges (p, a : v, r) for all
v ∈ M;

• shift the rest of the output labels further to the right by replacing each
edge (qe, b : w, s) with the edges (r, b : xw, s) for all x ∈ N ; for each
terminal state among the states qe, substitute NT(qe) for T (qe).

There can be several ways of writing Lp,a = MN: in such a case, the longer
the elements of M , the better.

If the transduction realized by the ambiguous transducer is finite, this
algorithm terminates; otherwise it is not certain to terminate. If it does,
we obtain an equivalent generalized sequential transducer like that of
Figure 3.10.

Transducers for morphological analysis like those of Figures 3.7–3.10
can be used to produce transducers for morphological generation, by swap-
ping input and output. The resulting transducer can be processed with the
same methods as those above in order to reduce nondeterminism.

When observable forms and underlying lemmas are very different, the
description of morphology becomes complex. At the same time, it must
still be hand-crafted by linguists, which requires that it is made of simple,
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Figure 3.10. A generalized sequential transducer.

readable parts, which are combined through some sort of compilation. For
example, if both morphological variations and combinatorial constraints are
complex, they are better described separately. Combinatorial constraints
between morphological elements are described in an automaton at the
underlying level, that is of lemmas and grammatical codes, as in Figure 3.11.

Morphological changes are described in a transducer, with input at the
level of written text and output at the underlying level. This is done in
Figure 3.12, which is more complex than Figure 3.8, but also more general:
it allows for more combinations of suffixes, that is -ingly, which was not
included in Figure 3.8 because it is not acceptable combined with remove.

How can we use these two graphs for morphological analysis? There are
two solutions. The simpler solution applies the two graphs separately. When
we apply the transducer of Figure 3.12 to a word, we obtain, in general, an
automaton. The automaton has several paths if several analyses are possible,
as with flatter. Then when we compute the intersection of this automaton
with that of Figure 3.11, this operation selects those analyses that obey the
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Figure 3.11. Combinatorial constraints between morphological elements.

combinatorial constraints. The algorithm of intersection of finite automata
is based on the principle that the set of states of the resulting automaton is
the Cartesian product of the sets of states of the input automata.

A more elaborate solution performs part of the computation in advance.
The automaton of Figure 3.11 and the transducer of Figure 3.12 do not
depend on input text; they can be combined into the transducer of Figure 3.8.
If the automaton recognizes a set L and the transducer realizes a relation
R, the operation computes a transducer that realizes the relation R with its
output restricted to L. This can be implemented, for instance, by applying
algorithm ComposeTransducers (Section 1.5) to the transducer of R

and a transducer realizing the identity of L. Note that this algorithm is a
variant of the algorithm of intersection of finite automata.

Morphological analysis and generation are not independent of the dic-
tionary of stems: combinations of stems with affixes obey compatibility
constraints, for example the verb fit does not combine with the suffix -able;
stems undergo morphological variations, like remove in removable. Due
to such dependencies, morphological analysis, in general, cannot be per-
formed without vocabulary recognition. A dictionary of stems is manually
created in the form of a list of many thousands of items and then compiled,
so the interface with a transducer for morphological analysis requires prac-
tical organization. Combinatorial constraints between stems and affixes are
represented by assigning marks to stems to indicate to which initial states
of the automaton each stem must be connected. During compilation, the
dictionary of stems and the automaton of combinatorial constraints are
combined into an automaton. Morphological variations of stems are taken
into account in the transducer; if analogous stems behave differently in
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Figure 3.12. Morphological changes.

an unpredictable way, like fit/fitted and profit/profited, marks are assigned
to stems and the transducer refers to these marks in its output. If these
provisions are taken, the operation on the automaton of constraints and
the transducer of variations can be performed as described and produces a
satisfactory result.

In this case, the description is distributed over two data sets: an automa-
ton and a transducer, and the principle of the combination between them is
that the automaton is interpreted as a restriction on the output part of the
transducer.

It is often convenient to structure manual description in the form of
more than two separate data sets: for example, one for the final e of verbs
like remove, another for the final e of -able, another for variations between
the forms -ly, -ly, -y of the adverbial suffix, etc. This strategy can be im-
plemented in three ways, depending on the formal principle adopted to
combine the different elements of description: composition of transduc-
tions, intersection of transducers, and commutative product of bimachines.
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Figure 3.13. A cascade: first transducer.

3.1.6. Composition of transductions

The simplest of these three techniques involves the composition of trans-
ductions. Specialists in language processing usually refer to this operation
by the bucolic term “cascade”. The principle is simple. The data for morpho-
logical analysis or generation consists of a specification of a transduction
between input strings and output strings. This transduction can be specified
with several transducers. The first transducer is applied to input strings, the
next transducer to the output of the first, and so on. The global transduc-
tion is defined as the composition of all the transductions realized by the
respective transducers.

For example, Figure 3.8 is equivalent to the composition of the trans-
ductions specified by Figures 3.13–3.16. Figure 3.13 delimits and tags
morphological elements, but does not substitute canonical forms for vari-
ants. Figure 3.14 inserts the final e of the canonical form of remove. In
Figure 3.14, the input label @ stands for a default input symbol: it matches
the next input symbol if, at this point of the transducer, no other symbol
matches. The output label @ means an output symbol identical to the cor-
responding input symbol. Figure 3.15 inserts the final e of the canonical
form of -able. Figure 3.16 assigns the canonical form to the variants of the
adverbial suffix -ly.

During the application of a transducer, the input string is segmented
according to the input labels of the transducer, and the output string is a
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Figure 3.14. A cascade: second transducer.

Figure 3.15. A cascade: third transducer.

Figure 3.16. A cascade: fourth transducer.

concatenation of output labels. When transducers are applied as a cascade,
the segmentation of the output string of a transducer is not necessarily
identical to the segmentation induced by the application of the next. The
global transduction is not changed if we modify the alignment of one of the
transducers, provided that it realizes the same transduction.

As an alternative to applying several transducers in sequence, one
can precompute an equivalent transducer by algorithm ComposeTrans-
ducers, but the application of the resulting transducer is not necessar-
ily quicker, depending on the number, size, and features of the original
transducers.
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The principle of composition of rules was implemented for the first
time in the fifth century BC, in Panini’s Sanskrit grammar, in order to
define Sanskrit spelling, given that the form of each element depends on its
neighbours.

Composition of relations is not a commutative operation. In our ex-
ample of a cascade, the transductions of Figures 3.14–3.16 can be per-
muted without changing the result of the composition, but they must be
applied after Figure 3.13, because they use the boundaries of morpho-
logical elements in their input, and these boundaries are inserted by the
transduction of Figure 3.13. In general, simple transductions read and write
only in a few regions of a string, but interactions between different trans-
ductions are observed when they happen to read or write in the same
region.

The principle of defining a few levels in a determined order between
the global input level and the global output level is often natural and con-
venient. The alphabet of each intermediate level is a subset of A ∪ B. In
morphological generation, the level of underlying morphological elements
may have something to do with a previous state of the language, the se-
quence of levels being connected to successive periods of time in the history
of language changes.

However, in a language with complex morphological variations repre-
sented by dozens of rules, the exclusive use of composition involves dozens
of ordered levels. This complicates the task of the linguist, because he or
she has to form a mental image of each level and of their ordering.

Intuitively, when two morphological rules are sufficiently simple and
unrelated, one feels that it should be possible to implement them indepen-
dently, without even determining in which order they apply: hence the term
“simultaneous combination”. In spite of this intuition, rules cannot be for-
malized without specifying how they are interpreted in case of an overlap
between the application sites of several rules (or even of the same rule):
if rules apply to two sites uv and vw, the value of v taken into account
for uvw can involve the input or the output level, or both. Various formal
ways of combining formal rules have been investigated. Two main forms
of simultaneous combination are presently in use.

3.1.7. Intersection of transducers

The intersection of finite transducers can be used to specify and implement
morphological analysis and generation. The alignment between input and
output strings is an essential element of this model. This alignment must be
literal, that is each individual input or output symbol must be aligned either
with a single symbol or with ε. Several alignments are usually acceptable,
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but one must be chosen arbitrarily.

Formally, an alignment over A and B is a subset of the free monoid X∗,
where X is a finite subset of A∗ × B∗. An alignment is literal if it is a subset
of ((A | ε) × (B | ε))∗.

The alignment is determined in order to specify explicitly the set of all
pairs (u : v) ∈ (A | ε) × (B | ε) that will be allowed in aligned input/output
pairs for all words of the language. Since all elements in the alignment will
be concatenations of elements in this set, we can call it X. In the English
example above, this set can comprise letters copied to output:(
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The set of aligned input/output pairs for all words of the language is viewed
as a language over the alphabet X. This language is specified as the inter-
section of several regular languages. Each of these languages expresses a
constraint that all input/output pairs must obey, and the intersection of the
languages is the set of pairs that obey simultaneously all the constraints.
Since these regular languages share the same alphabet X ⊂ A∗ × B∗, they
can be specified by transducers over A and B. For example, the transduc-
ers in Figures 3.17–3.20 specify necessary conditions of occurrence for
some of the elements of X. In Figure 3.17, the label @ denotes a default
symbol. It matches the next member of X if and only if no other label
explicitly present at this point of the graph does. One of the states has
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Figure 3.17. Conditions of occurrence of (ε : #).

Figure 3.18. Conditions of occurrence of (ε : e).

no outgoing edge and is not terminal: it is a sink state which is used to
rule out the occurrence of (ε : #) when it is not preceded by (ε : .A) or
(ε : .V ).

In order to be complete, we should add transducers to specify the
conditions of occurrence of (ε : .V ), (ε : .TM), (ε : .A), and (ε : .ADV).
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Figure 3.19. Conditions of occurrence of (ε : l).

Figure 3.20. Conditions of occurrence of (a : #) and (l : ε).

The intersection of transducers is computed with the algorithm of inter-
section of automata, considering transducers as automata over X. The re-
sulting transducer checks all the constraints simultaneously. This operation
of intersection of transducers is equivalent to the intersection of languages
in the free monoid X∗, but not to the intersection of relations in A∗ × B∗,
because the intersection of relations does not take into account alignment.
(In addition, an intersection of regular relations is not necessarily regular.)

As opposed to the framework of composition of transductions, all the
transducers describe correspondences between the same input level and the
same output level. This is why this model is called “two-level morphology”.
Composition of transductions and intersection of transducers are orthogonal
formalisms, and they can be combined: several batches of two-level rules
are composed in a definite order.

Two-level constraints expressed as transducers are hardly readable, and
expressing them as regular expressions over X would be even more difficult
and error-prone. In order to solve this problem of readability, specialists
in two-level morphology have designed an additional level of compila-
tion. Rules are expressed in a special formalism and compiled into trans-
ducers. These transducers are then intersected together. The formalism of
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expression of two-level rules involves logical operations and regular expres-
sions over X. For example, the following rule is equivalent to Figure 3.17:(
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This type of rule is more readable than a transducer, because it is structured
in three separate parts: the symbol involved in the rule, here (ε : #), the left
context (before ), and the right context.

In this model, input and output are completely symmetrical: the same
description is adapted for morphological analysis and generation.

3.1.8. Commutative product of bimachines

A bimachine is structured in three parts:
• a description of the left context required for the rule to apply,
• a similar description of the right context, and
• a mapping table that specifies a context-dependent mapping of input

symbols to output symbols.
As opposed to two-level rules, left and right context are described only at
input level. Figure 3.21 is a representation of a bimachine that generates
the variant -ally of the adverbial suffix -ly in emphatically.

In Figure 3.21, the automaton on the left represents the left context and
recognizes occurrences of the sequence ic.A. Whenever this sequence oc-
curs, the automaton enters state 3. In the automaton, the label @ represents

0 1 2 3 4 5 6 7

@ i @.ADV

i c

@ i

@

.A

@

i

.ADVy

@.ADV

@

l

@

.ADV

states: 4 5, 6, 7
0, 1, 2 @:@ @:@

3
#:al

@:@
@:@

Figure 3.21. Bimachine generating the variant -ally of the adverbial
suffix -ly.
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a default symbol: it matches the next input symbol if no other label at this
point of the automaton does. The automaton on the right similarly recog-
nizes occurrences of ly.ADV, but from right to left. Whenever this sequence
occurs, the automaton enters state 4. The table specifies the mapping of
input symbols to output symbols. The alphabets A and B have a nonempty
common subset. In the table, @ : @ represents a default mapping: any in-
put symbol not explicitly specified in the table is mapped onto itself. The
symbol # is mapped to al when its left and right context is such that the
respective automata are in states 3 and 4, that is when it is preceded by ic.A
and followed by ly.ADV. Other symbols in such a context, and all symbols in
other contexts, are copied to output. Thus, the bimachine maps occurrences
of ic.A#ly.ADV to ic.Aally.ADV and leaves everything else unchanged. The
input/output alignment that underlies the bimachine is always input-wise
synchronous.

Formally, a bimachine over alphabets A and B is defined by
• two deterministic automata over A; let

→
Q and

←
Q be the sets of states

of the two automata; the distinction between terminal vs nonterminal
states is not significant;

• a function γ :
→
Q × A × ←

Q −→ B∗, which is equivalent to the
mapping table in Figure 3.21.

The transduction realized by a bimachine is defined as follows. One
performs a search in the left automaton controlled by the input word
u = u1u2 · · · un. If this search is possible right until the end of the word, a
sequence

→
q0

→
q1 · · · →

qn of states of the left automaton is encountered, where→
q0 is the initial state. A similar search in the right automaton is controlled
by un · · · u2u1. If the search can also be completed, states

←
qn · · · ←

q1
←
q0 of the

right automaton are encountered, where
←
qn is the initial state.

The output string for the symbol ui of u is γ (
→
qi−1, ui,

←
qi) and the output

for u is the concatenation of these output strings. If one of the searches
could not be completed, or if one of the output strings for the letters is
undefined, then the output for u is undefined.

A transduction is realized by a bimachine if and only if it is regular and
a function.

The use of bimachines for specifying and implementing morphological
analysis or generation requires that they can be combined to form complete
descriptions. In the mapping table of Figure 3.21, the default pair @ : @
occurs in all four cases; the bimachine specifies an output string for some
occurrences of #, and copies all other occurrences of input symbols. We
will say that the bimachine “applies” to these occurrences of #, and “does
not apply” to other occurrences of input symbols. In morphology, separate
rules belonging to the same description are complementary in so far as they
do not “apply” to the same occurrences of input symbols. This idea can
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be used to define a notion of combination of bimachines over the same
alphabets A and B.

Formally, we say that a bimachine “applies” to an input symbol a in a
given context, represented by two states

→
q and

←
q , if and only if γ (

→
q , a,

←
q )

either is undefined or is not equal to a. It “does not apply” if and only
if γ (

→
q , a,

←
q ) = a. If two bimachines never apply to the same symbol in

the same input sequence, a new bimachine over the same input and out-
put alphabets A and B can be defined so that the output for a given input
symbol is specified by the bimachine that applies. The output is a copy
of the input symbol if none of them applies. (Each automaton of the new
bimachine is constructed from the corresponding automata of the two bi-
machines, with the algorithm of intersection of automata.) This operation
on bimachines is commutative and associative; its neutral element is a bi-
machine that realizes the identity of A. We call this operation “commutative
product”.

The commutative product of a finite number of bimachines is defined if
and only if it is defined for any two of them.

With this operation, linguists can manually construct separate bima-
chines, or rules, and combine them. These manually constructed rules
must also be readable. This can be achieved by ensuring that the rules are
presented according to the following conventions and have the following
properties.

• Final states are specified in the two automata. The content of the
mapping table does not depend on the particular states reached when
exploring the context, but only on whether these states are terminal
or not. For example, in Figure 3.21, states 3 and 4 would be specified
as terminal.

• In the mapping table, whenever at least one of the two states repre-
senting the context is nonterminal, input symbols are automatically
copied to output, as in Figure 3.21. When both states are terminal,
only the input/output pairs for which the output string is different
from the input symbol are specified. Let I be the set of input symbols
that occur in the input part of these pairs: if both states are terminal
and the input symbol is in I , the rule applies; otherwise, it does not
apply and input is copied to output.

• The languages recognized by the two automata are of the form A∗L
and A∗R, as in Figure 3.21. Therefore, it suffices to specify L and
R; automata for A∗L and A∗R can be automatically computed. In
addition, the mirror image of R is specified instead of R itself, for the
sake of readability.

The bimachine of Figure 3.21 has these properties and is represented
with these conventions in Figure 3.22.
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Figure 3.22. The bimachine of Figure 3.21 with the conventions for
manually constructed rules.

This figure represents L, R, and the input/output pairs for which the
rule applies. These three parts are separated by the states labelled ∧.

The commutative product of two rules is defined if and only if
A∗L1 ∩ A∗L2, A∗R1 ∩ A∗R2, and I1 ∩ I2 are not simultaneously nonempty.
This condition is tested automatically on all pairs in a set of rules written
to be combined by commutative product. If the three intersections are
simultaneously nonempty for a pair of rules, the linguist is provided with
the set of left contexts, right contexts, and input symbols for which the two
rules conflict, and he/she can modify them in order to resolve the conflict.
(A hierarchy or priorities between rules would theoretically be possible but
would probably make the system more complex and its maintenance more
difficult.)

The advantages of bimachines for specifying and implementing mor-
phological analysis and generation are their readability and the fact that
only differences between input and output need to be specified.

Bimachines are equivalent to regular word functions and, in principle,
cannot represent ambiguous transductions. They have to be adapted in order
to allow for limited variations in output. Take, for example, the generation
of the preterite of dream: for a unique underlying form, dream.V#ed.TM,
where #ed.TM is an underlying tense/mood suffix, there are two written
variants: dreamed and dreamt. Such variations are limited; in agglutina-
tive languages, they can occur at any point of a word, not necessarily
just at the end. This problem is easily solved in the same way as we did
when minimizing ambiguous transducers in Section 3.1.5: by composition
with finite substitutions. Bimachines realize transductions; several of these
transductions can be composed in a definite order together or with finite
substitutions.

In the example of dream.V#ed.TM, the two variants can be generated
by introducing three new symbols 1, 2 and 3, and

• a bimachine that produces dream.V#1ed.TM,
• a finite substitution producing dream.V#2ed.TM and dream.

V#3ed.TM, and
• a second bimachine that outputs dreamed for dream.V#2ed.TM and

the variant dreamt for dream.V#3ed.TM.
However, a bimachine is an essentially deterministic formalism. It is

adequate for the direct description of morphological generation, because
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the underlying level is more informative and less ambiguous than the level of
written text: thus, for an input string at the level of underlying morphological
elements, there will often be a unique output string or limited variations in
output. For instance, flatter has two representations at the underlying level,
but one spelling.

It is possible to do morphological analysis with bimachines, but one
has to carry out linguistic description for morphological generation, and
automatically derive morphological analysis from it. The method compiles
each bimachine (or commutative product of bimachines) into a transducer,
and swaps input and output in the transducer. During the compilation of a
bimachine into a transducer, the set of states of the transducer is constructed
as the Cartesian product of the sets of states of the two automata.

3.1.9. Phonetic variations

Morphological analysis and generation of written text have an equivalent
for speech: analysis and generation of phonetic forms. Phonetic forms are
represented by strings of phonetic symbols. They describe how words are
pronounced, taking into account contextual variants and free variants. An
example of contextual phonetic variation in British English is the pronun-
ciation of more, with r in more ice and without in more tea. Free variation
is exemplified by can which can be either stressed or reduced in He can
see. The input of analysis is thus a phonetic representation of speech. The
output is some underlying representation of pronunciation, which is either
conventional spelling, or a specific representation if additional information
is needed, such as grammatical information.

The analysis of phonetic forms is useful for speech recognition. Their
generation is useful for speech synthesis. A combination of both is a method
for spelling correction: generate the pronunciation(s) of a misspelled word,
then analyse the phonetic forms obtained.

A difference between phonetic processing and morphological process-
ing is that a text can usually be pronounced in many ways, whereas spelling
is much more standardized. In other aspects, the analysis and genera-
tion of phonetic forms is similar to morphological analysis and gener-
ation. The computational notions and tools involved are essentially the
same.

The complexity of the task depends on the writing systems of languages.
When all information needed to deduce phonetic strings, including infor-
mation about phonetic variants, is encoded in spelling, then phonetic forms
can be derived from written text without any recognition of the vocabulary.
This is approximately the case of Spanish. Most Spanish words can be
converted to phonetic strings by transducers, two-level rules, or bimachines
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θ

Figure 3.23. A phonetic conversion rule in Spanish.

that do not comprise lexical information. Figure 3.23 converts the letter c
into the phonetic symbol θ before the vowels e and i.

In most other languages, spelling is ambiguous: the pronunciation of
a sequence of letters depends on the word in which it occurs in an unpre-
dictable way. For example, ea between consonants is pronounced differently
in bead, head, beatific, creation, react; in read, the pronunciation depends
on the grammatical tense of the verb; in lead, it depends on the part of speech
of the word: noun or verb. Due to such dependencies, which are most fre-
quent in English and in French, phonetic forms cannot be generated from
written texts accurately without vocabulary recognition. In other words,
phonetic conversion requires a dictionary, which can be implemented in
the form of a transducer and adapted for quick lookup into a generalized
sequential transducer like that of Figure 3.10.

However, even in languages with a disorderly writing system like
English or French, the construction of such a dictionary can be partially
automated. Transducers, two-level rules or bimachines can be used to pro-
duce tentative phonetic forms which have to be reviewed and validated or
corrected by linguists.

A transducer that recognizes the vocabulary of a language is larger than
a transducer that does not. They also differ in the way they delete word
boundaries. In many languages, words are delimited in written text; they
are not in phonetic strings, because speech is continuous and there is no
audible evidence that a word ends and the next begins. In a transducer that
recognizes the vocabulary, edges that delete word boundaries, for example,
edges labelled (# : ε), can be associated with ends of words. When the
transducer is reversed by swapping input and output, the resulting transducer
not only converts phonetics into spelling but also delimits words. The
same cannot be done in a transducer that does not recognize vocabulary:
since certain edge(s) erase word boundaries independently of context, the
reversed transducer will generate optional word boundaries everywhere.

Phonetic strings are usually very ambiguous, and the result of their
analysis consists of several hypotheses with different word delimitation, as
in Figure 3.24.
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Figure 3.24. Acyclic automaton of the analyses of a phonetic form.

The result of the analysis of ambiguous input is naturally represented in
an acyclic automaton like that of Figure 3.24. We will call it an automaton
of analyses, because it represents a set of mutually exclusive analyses. In
language engineering, most specialists call such an automaton a “lattice”.5

The output of a purely acoustic-to-phonetic phase of speech recognition
is also an automaton of analyses: a segment of speech signal, that is the
equivalent of a vowel or a consonant in acoustic signal, cannot always be
definitely identified as a single phone (phonetic segment).

3.1.10. Weighted automata

The notions of automata and transducers exemplified in the preceding sec-
tions can be extended to weighted automata and transducers. In a weighted
automaton, each transition has a weight which is an element of a semiring
K; the set of terminal states is replaced with a terminal weight function
from the set of states to K . The weight of a path is the product of the
weights of its transitions. A Markov chain is a particular case of a weighted
automaton.

In such models, weights approximate probabilities of occurrence of
symbols in certain contexts, and the semiring is often R+. For example, in
an automaton of analyses which contains phones recognized in a speech
signal, weights can be assigned to each transition in order to represent the
plausibility of the phone given the acoustic signal. The weighted automaton
is exploited by selecting the path that maximizes the product of the weights.

Another example can be derived from Figure 3.11: the plausibility of a
morphological element occurring after a given left context could be added

5 This term has a precise mathematical meaning: an ordered set where each pair has a greatest
lower bound and a least upper bound. As a matter of fact, in an acyclic graph, edges induce an
ordering among the set of states. But the ordered set of states of an acyclic graph is not necessarily
a lattice in the mathematical sense. In the acyclic automaton of Figure 3.24, for instance, cut has
no greatest lower bound and new has no least upper bound. Consequently we will avoid using
the term “lattice” to denote automata of analyses.
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to this figure by assigning weights to boxes. The only known method of
setting the value of these weights is based on statistics about occurrences
of symbols or sequences in a sample of texts, a learning corpus.

Weighted automata are also used to compensate for the lack of accurate
linguistic data. Weights are assigned to transitions according to observable
hints as regards the occurrence of specific linguistic elements. During the
analysis of a text, the weights are used to recognize those elements. For
example, an initial uppercase letter is a hint of a proper name; the word
ending -ly is a hint of an adverb like shyly. Weights are derived from statistics
computed in a learning corpus. Results are inferior to those obtained with
word lists of sufficient lexical coverage, for example, lists of proper names
or of adverbs: for instance, bodily ends in -ly but is usually an adjective.
Word lists tend to be more and more used, but the two approaches are
complementary, and the weighted-automaton method can make systems
more robust when sufficiently extensive word lists are not available.

3.2. From words to sentences

3.2.1. Engineering approaches

The simplest model of the meaning of a text is the “word bag” model. Each
word in the text represents an element of meaning, and the meaning of the
text is represented by the set of the words that occur at least once in the text.
The number of occurrences is usually attached to each word. The “word
bag” model is used to perform tasks such as content-based classification
and indexation.

In order to implement the same tasks in a more elaborate way, or to
implement other tasks, the sequential order of words must be taken into
account. Translation is an example of an operation for which word order
is obviously relevant: in many target languages, The fly flies and The flies
fly should be translated differently. A model of text for which not only the
value of words, but also their order, is relevant can be called a syntactic
model. The formal and algorithmic tools involved in such a model depend
entirely on the form of the linguistic data required. The most rational
approach constructs and uses data similar to those mentioned in
Sections 3.1.4 to 3.1.9, but specifying ordered combinations of words.
These data take the form of manually constructed lists or automata; some
of them are automatically compiled into forms more adapted to computa-
tional operations. This approach is a long-term one. The stage of manual
construction of linguistic data implies even more skill and effort than in the
examples of Section 3.1 “From letters to words”, basically because there
are many more words than letters. In addition, engineers feel uneasy with
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such data, that are largely outside their domain of competence; linguists
feel uneasy with the necessary formal encoding; and little of the task can be
automated. A consequence of this situation is a lack of linguistic resources
that has been widely recognized, since 1990, as a major bottleneck in the
development of language processing.

In order to avoid such work, alternative engineering techniques have
been implemented and have had a dramatic development in recent years.
The commonest of these techniques rely on weighted automata. (They
are the most popular techniques based on weighted automata in language
processing.) Weighted automata can be used to approximate various aspects
of the grammar and syntax of languages: they can, for instance, guess at the
part of speech of a word if the parts of speech of neighbouring words are
known. Weights are automatically derived from statistics about occurrences
of symbols or sequences in a sample of texts, the learning corpus. The
idea is similar to that with adverbs in -ly in Section 3.1.10, but works
even less well, for the same reason: there are more words than letters;
there is a higher degree of complexity. As a matter of fact, in complex
applications like translation and continuous speech recognition, results are
still disappointing. Algorithms are well known, but weights must be learnt
for all words, and the only way of obtaining weights producing satisfactory
results implies

• numerous occurrences of each word; therefore very large learning
corpora (cf. Section 3.1.1 about Zipf’s law),

• statistics about sufficiently large contexts,
• sufficiently fine-grained tag sets.

The first constraint correctly predicts that if the learning corpus is too
small, results are inadequate. When the size of the learning corpus in-
creases, performances usually reach a maximum which is the best possible
approximation in this framework. The last two constraints would lead to an
explosion of the size of weighted automata and computational complexity.
In practice, implementations of this method require considerable simplifi-
cation of fundamental objects of the model: there is no serious attempt at
processing compound words or ambiguity; the size of contexts is limited to
two words to the left, and the size of tag sets to a few dozen tags, which is
less than the tag set of Figure 3.3. Finally, taking into consideration the third
constraint would increase the cost of the manual tagging of the learning
corpus, or require a resorting to automatic tagging, with a corresponding
output of inferior quality.

Resorting to such statistical approximations of grammar, syntax, and
the lexicon of languages is natural in so far as sufficiently accurate and
comprehensive data seem to be out of reach. However, this is a short-
term approach: it does not contribute to the enhancement of knowledge
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in these areas, and the technologies required for gathering exploitable and
maintainable linguistic data have little in common with example-based
learning. We can draw a parallel with meteorology: future weather depends
on future physical data, or on physical data all around the world, including
in marine areas where they are not measured with sufficient accuracy and
frequency. Thus, weather is forecast on the basis of statistics about examples
of past observations. However, designing weather forecast programs does
not contribute to the advance of thermodynamics.

We will now turn to the linguistic approach. In order to relate formal
notions with applications, we will refer primarily to translation, which is
not yet a successfully automated operation, but which involves many of the
basic operations in language processing.

3.2.2. Pattern definition and matching

Defining and matching patterns are two of these basic operations. In order
to be able to translate a technical term like microwave oven, we must
have a description of it, a method to locate occurrences in texts, and a
link to a translation. The methods of description and location of such
linguistic forms must take into account the existence of variants like the
plural, microwave ovens, and possibly abbreviations like MWO if they
are in use in relevant source texts. Thus, many linguistic forms are in
fact sets of variants, and the actual form of all variants cannot always be
computed from a canonical form. For example, the abbreviation MWO
cannot be predicted from microwave oven by capitalizing initials, which
would yield MO; the equivalence between MWO and the full form cannot
be automatically inferred, even if the acronym occurs in a sample of source
texts, because an explicit link between them, like microwave oven (MWO),
may be absent and, if present, would be ambiguous, etc. Thus the set of
equivalent variants must often be manually constructed by linguists who
are familiar with the field – a category of population which is often hard to
find.

We can associate in a natural way microwave oven and its variants in
the finite automaton of Figure 3.25. When several lines are included in the
same state, like oven and ovens here, they label parallel paths.

This type of automaton is more usual when there are more variants
than with microwave oven. It is also used when the forms described are
not equivalent, but constitute a small system which follows specific rules
instead of general grammar rules of the language (Figure 3.26). Such a
system is called a local grammar.

In very restricted domains, the vocabulary and the syntactic construc-
tions used in actual texts can be so stereotyped that all variability can be
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Figure 3.25. Definition of a simple linguistic pattern.

Figure 3.26. A local grammar.

described in this form. This is the case of short stock exchange reports,
weather forecast reports, sport scores, etc. Local grammars can be used
for translation, but this implies linking two monolingual local grammars
together, one for the source language and another for the target language.
Individual phrases of a grammar must be specifically linked with phrases
of the other, because all variants are not exactly equivalent.

Finite automata defining linguistic patterns can be used to locate
occurrences of the patterns in texts. When automata are as small as in the
preceding instances, simple algorithms are sufficient: automata are com-
piled into the more traditional format with labelled edges and numbered
states; they are determinized; they are matched against each point of the
text.

A local grammar can be a representation of a subject of interest for a
user in a text, for example one or several particular types of microwave
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ovens. In such a case, the local grammar can be used for text filtering,
indexing, and classification. Weights can be assigned to transitions in order
to indicate the relevancy of paths with respect to the user’s interest.

Comprehensive descriptions accounting for general language can reach
impressive sizes. A complete grammar of dates, including informal dates,
for example, before Christmas, recognizes thousands of sequences. To be
readable, such a description is necessarily organized into several automata.
From the formal point of view, the principle of such an organization is
simple: a general finite automaton invokes subautomata by special labels.
Subautomata, in turn, can equally invoke other subautomata. Recursiveness
may be allowed or not. In Figure 3.27, the general automaton for numbers

Figure 3.27. An automaton invokes another.
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from 1 to 999 written in letters invokes the automaton for numbers from 1 to
99. The label for the second automaton is shown in grey. The use of labels
for automata facilitates linguistic description for another reason: the same
automaton can be invoked from several points and thus shared. Invoking an
automaton via a label is thus equivalent to substituting it for the label. With
patterns like terms, dates, or numbers, invocations usually do not make
up cycles: actual substitution is theoretically possible; it makes the set of
automata equivalent to one finite automaton. However, with large grammars,
actual substitution can lead to an explosion in size. For example, M. Gross’s
grammar of dates in French, which is organized into about 100 automata,
becomes a 50-Mb automaton if subautomata are systematically substituted.
In the case of large grammars, the algorithms for locating occurrences in
texts efficiently are therefore different: subautomata are kept distinct and
the matching algorithm is nondeterministic.

If cycles of invocations are allowed, the language recognized by the
set of automata can be defined by reference to an equivalent context-free
grammar (cf. Section 1.6). The labels invoking subautomata are the coun-
terparts of variables, including the label of the general automaton which
corresponds to the axiom of the grammar. Each of the automata is translated
into a finite number of productions of the grammar. Such a set of automata
is called a “recursive transition network” (RTN).

3.2.3. Parsing

If we consider more and more complex local grammars, we reach a point
where the identification of a linguistic form depends on the identification of
free constituents. Free constituents are syntactic constructs, like sentences
or noun phrases, which involve open categories, like verbs or nouns, in their
content. For example, recognizing the phrase take into account may imply
identifying:

• its subject, which cannot be any noun, for example, not air, and
• its free complement, which can occur before or after into account.

Both are free constituents. The subject is a noun phrase, which has at least
an open category, a noun. The free complement can be a noun phrase
or a sentential clause: Max took into account that Mary was early. The
identification of these free and frozen constituents is required for complex
applications such as translation.

Several features of RTNs make them adequate for the formal description
of such phrases.

• Free constituents can be represented by labels invoking other parts
of the grammar. In the example of take into account, these labels
will represent types of noun phrases, of sentences, and of sentential
clauses. Obviously, the labels are reusable from other points of the
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Figure 3.28. A sample of a grammar of take into account.

grammar, because other phrases or verbs will accept the same types
of subjects or of complements.

• Small lexical variations and alternative constructions are described in
parallel paths of the automata, as in Figure 3.28.

• Recursiveness can be used for embeddings between syntactic con-
structs. In the example of Figure 3.28, the phrase and the free con-
stituents around it make up a sentence; the label S included in the
automaton represents sentences. Thus, the rule is recursive.

A large variety of syntactic constructions in natural languages can be
expressed in that way. A complete description of take into account, for
example, should include passive, interrogative forms, etc., and would be
much larger than this figure. In addition, the number of grammatical con-
structions in a language is in some way multiplied by the size of the
lexicon, since different words do not enter into the same grammatical con-
structions. However, the construction of large grammars for thousands of
phrases and verbs can be partially automated. General grammars are manu-
ally constructed in the form of parameterized RTNs, then they are adapted
to specific lexical items like take into account by setting the values of the
parameters. These values are encoded for each lexical item in tables of syn-
tactic properties. A large proportion of the parameters must be at the level
of specific lexical items, and not of classes of items (e.g., transitive verbs),
because syntactic properties are incredibly dependent on actual lexical
items.

Here are two examples of open problems in the construction of gram-
mars:6 selectional constraints between predicates (i.e. verbs, nouns, and
adjectives) and their arguments (i.e. subject and essential complements):

(Max + *The air) took into account that Mary was early

and selectional constraints between predicates and adverbs:

Max took the delay into account (last time + *by plane)

6 In the next two examples, the star * marks that a sequence is not acceptable as a sentence.
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Present grammars either overgenerate or undergenerate when such con-
straints come into play.

Even so, the construction of grammars of natural languages in the form
of RTNs now appears to be within reach.

This situation provides partial answers for a classical controversy about
the most popular two formal models of syntax: finite automata and context-
free grammars. The issue of the adequacy of these two models dates back
to the time of their actual definition and is still going on. Infrequent con-
structions have been used to argue that both were inadequate, but they can
be conveniently dealt with as exceptions. From 1960 to 1990, the folk-
lore of the domain held that it was reasonable practice to use context-free
grammars, and a heresy to use automata. Since then, investigation results
suggested that the RTN model, which is equivalent to grammars but relies
heavily on the automaton form, is convenient for the manual description
of syntax as well as for automatic parsing. It is an open question as to
whether the nonrecursive counterpart of RTNs, which is equivalent to finite
automata, will be better. Recursiveness can surely be eliminated from RTNs
through an automatic compilation process, by substituting cycles for ter-
minal embeddings and by limiting central embeddings to a fixed maximal
depth. But even without recursiveness, RTN-based parsing is not necessar-
ily more similar to automaton-based parsing than context-free parsing . . . In
any case, the issue now appears less theoretical than computational.

3.2.4. Lexical ambiguity reduction

We mentioned lexical tagging in Section 3.1.4. This operation consists of
assigning tags to words. Word tags record linguistic information. Lexical
tagging is not an application in itself, since word tags contain encoded
information not directly exploitable by users. However, lexical tagging
is required for enhancing the results of nearly all operations on texts:
translation, spelling correction, location of index terms, etc. Section 3.1.4
shows how dictionary lookup contributes to lexical tagging, but many words
should be assigned distinct tags in relation to context, like record, a noun
or a verb. Such forms are said to be lexically ambiguous. Syntactic parsing
often resolves all lexical ambiguity. Sentences like the following are rare:

The newspapers found out some record

This ambiguous sentence has two syntactic analyses: some record is a noun
phrase or a sentential clause, and record is accordingly a noun or a verb.

Syntactic parsing is not a mature technique yet, and there is a need
for procedures that can work without complete syntactic grammars of lan-
guages, even if they resolve less lexical ambiguity than syntactic parsing.
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Figure 3.29. The automaton of analyses of though a good deal soiled.

Figure 3.30. An automaton stating a syntactic constraint.

Figure 3.31. The intersection of the two automata.

Such a procedure can be designed on the following basis. After dictio-
nary lookup, a text can be represented as an acyclic automaton of analyses
like that of Figure 3.29. Syntactic constraints can be represented as an
automaton over the same alphabet. Figure 3.30 states that when the word
good is a noun, it cannot follow the indefinite determiner a. The label @
stands for a default symbol: it matches the next input symbol if, at this
point of the automaton, no other symbol matches. The intersection of the
two automata is shown in Figure 3.31; it represents those analyses of the
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text that obey the constraints. The intersection of two automata is an au-
tomaton that recognizes the intersection of the two languages recognized.
It is constructed by a simple algorithm. Different syntactic constraints can
be represented by different automata: since intersection is associative and
commutative, the automata can be intersected in any order without chang-
ing the result. Thus, various syntactic constraints can be formalized inde-
pendently and accumulated in order to reduce progressively more lexical
ambiguity. However, this approach needs a convenient interface to allow
linguists to express the constraints in the form of automata. Automata
like that of Figure 3.30 can be directly constructed only in very simple
cases.

An alternative approach combines dictionary lookup and ambiguity
resolution in another way. It considers that the relevant data are (i) the
probability for a given word to occur with a given tag, and (ii) the probability
of occurrence of a sequence of words (or tags). Such probabilities are
estimated on the basis of statistics in a tagged corpus. The resulting values
are inserted into a weighted automaton to make up a model of language.
This technique has been applied to small tag sets, and the possibility of
tagging compound words has not been seriously investigated.

Notes

The notion of formal model in linguistics emerged progressively. We will
mention a few milestones on this path. During the first half of the twen-
tieth century, Saussure stated clearly that language is a system and that
form/meaning associations are arbitrary. This was a first step towards the
separation between syntax and semantics. The translation of this idea into
practice owes much to the study of native American languages by Sapir
(1921). During the second half of the century, Harris incorporated the in-
formation aspect into the study of the forms of language. In particular, he
introduced the notion of transformation (Harris 1952, 1970). Gross (1975,
1979) originated the construction of tables of syntactic properties. The
parameterized graphs of Section 3.2.3 are used in Senellart (1998) and
Paumier (2001).

The theory of formal languages developed in parallel (Chomsky and
Schützenberger 1963; Gross and Lentin 1967). Discussions arose during
the same period of time about the adequacy of formal models to represent the
behavior of speakers (Miller and Chomsky 1963) or the syntax of natural
languages. Chomsky (1956, 1957) mathematically “proved” that neither
finite automata nor context-free languages were adequate for syntax, but
he used infrequent constructions that can be conveniently dealt with as
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exceptions (Gross 1995). Gross gave an impulse to the actual production
of extensive descriptions of lexicon and syntax with finite automata.

The observations that led to the statement of Zipf’s law (Zipf 1935)
were not restricted to language. The results exposed in Section 3.1.3 about
Zipf’s law applied to written texts are based on Senellart (1999).

Johnson (1972) investigated various ways of combining formal rules
and established whether the result of combination can be represented as
a finite automaton. The notion of sequential transducer originates from
Schützenberger (1977). Two algorithms of minimization of sequential trans-
ducers are known (Breslauer 1998; Béal and Carton 2001); the second one
is based on successive contributions by Choffrut (1979), Reutenauer (1990),
and Mohri (1994) (see also Chapter 1). The definition of p-sequential trans-
ducers was proposed by Mohri (1994). The algorithm of construction of
generalized sequential transducers is adapted from Roche (1997).

The representation of finite automata as graphs with labels attached
to states was introduced into language processing by Gross (1989) and
Silberztein (1994) (http://acl.ldc.upenn.edu/C/C94/C94-1095.
pdf). The Unitex system (http://www-igm.univ-mlv.fr/~unitex),
implemented by Sébastien Paumier at the University of Marne-la-Vallée,
is an open-source environment for language processing with automata and
dictionaries.

The use of the intersection of finite transducers for specifying and imple-
menting morphological analysis and generation, and for lexical ambiguity
resolution, was first suggested by Koskenniemi (1983). Bimachines were
introduced by Schützenberger (1961). The adaptation of bimachines to
morphology and phonetics comes from Laporte (1997).

Weighted automata and transducers are defined by Paz (1971) and
Eilenberg (1974). The FSM library (Mohri, Pereira, and Riley 2000) offers
consistent tools related to weighted automata.

Algorithms for deriving weights from statistics about occurrences of
symbols or sequences in a learning corpus are available in handbooks, for
example, Jurafsky and Martin (2000).
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