3

Tensor Decompositions
Algorithms

In this chapter, we will study tensors and various structural and computational
problems we can ask about them. Generally, many problems that are easy over
matrices become ill-posed or NP-hard when working over tensors instead.
Contrary to popular belief, this isn’t a reason to pack up your bags and go
home. Actually, there are things we can get out of tensors that we can’t get
out of matrices. We just have to be careful about what types of problems we
try to solve. More precisely, in this chapter we will give an algorithm with
provable guarantees for low-rank tensor decomposition — that works in natural
but restricted settings — as well as some preliminary applications of it to factor
analysis.

3.1 The Rotation Problem

Before we study the algorithmic problems surrounding tensors, let’s first
understand why they’re useful. To do this, we’ll need to introduce the concept
of factor analysis, where working with tensors instead of matrices will help us
circumvent one of the major stumbling blocks. So, what is factor analysis?
It’s a basic tool in statistics where the goal is to take many variables and
explain them away using a much smaller number of hidden variables, called
factors. But it’s best to understand it through an example. And why not start
with a historical example? It was first used in the pioneering work of Charles
Spearman, who had a theory about the nature of intelligence — he believed that
there are fundamentally two types of intelligence: mathematical and verbal.
I don’t agree, but let’s continue anyway.

He devised the following experiment to test out his theory: He measured
the performance of one thousand students, each on ten different tests, and

29

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

30 3 Tensor Decompositions

arranged his data into a 1000 x 10 matrix M. He believed that how a student
performed on a given test was determined by some hidden variables that had
to do with the student and the test. Imagine that each student is described by
a two-dimensional vector where the two coordinates give numerical scores
quantifying his or her mathematical and verbal intelligence, respectively.
Similarly, imagine that each test is also described by a two-dimensional vector,
but the coordinates represent the extent to which it tests mathematical and
verbal reasoning. Spearman set out to find this set of two-dimensional vectors,
one for each student and one for each test, so that how a student performs on a
test is given by the inner product between their two respective vectors.

Let’s translate the problem into a more convenient language. What we are
looking for is a particular factorization

M = ABT

where A is size 1000 x 2 and B is size 10 x 2 that validates Spearman’s theory.
The trouble is, even if there is a factorization M = ABT where the columns of
A and the rows of B can be given some meaningful interpretation (that would
corroborate Spearman’s theory) how can we find it? There can be many other
factorizations of M that have the same inner dimension but are not the factors
we are looking for. To make this concrete, suppose that O is a 2 x 2 orthogonal
matrix. Then we can write

M = AB" = (A0)(0"BT)

and we can just as easily find the factorization M = ABT where A = AO and
B = BO instead. So even if there is a meaningful factorization that would
explain our data, there is no guarantee that we find it, and in general what we
find might be an arbitrary inner rotation of it that itself is difficult to interpret.
This is called the rotation problem. This is the stumbling block that we alluded
to earlier, which we encounter if we use matrix techniques to perform factor
analysis.

What went wrong here is that low-rank matrix decompositions are not
unique. Let’s elaborate on what exactly we mean by unique in this context.
Suppose we are given a matrix M and are promised that it has some meaningful
low-rank decomposition

.
M= "a" b7
i=1
Our goal is to recover the factors a” and 5. The trouble is that we could

compute the singular value decomposition M = UX V7 and find another low-
rank decomposition

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.2 A Primer on Tensors 31

,
M= oud o).

i=1

These are potentially two very different sets of factors that just happen to
recreate the same matrix. In fact, the vectors u'? are necessarily orthonormal,
because they came from the singular value decomposition, even though there
is a priori no reason to think that the true factors a” that we are looking for are
orthonormal too. So now we can qualitatively answer the question we posed at
the outset. Why are we interested in tensors? It’s because they solve the rotation
problem and their decomposition is unique under much weaker conditions than
their matrix decomposition counterparts.

3.2 A Primer on Tensors

A tensor might sound mysterious, but it’s just a collection of numbers. Let’s
start with the case we’ll spend most of our time on. A third-order tensor 7 has
three dimensions, sometimes called rows, columns, and tubes. If the size of T
isny x np X n3, then the standard notation is that 7; j; refers to the number in
row i, column j, and tube k in 7. Now, a matrix is just a second-order tensor,
because it’s a collection of numbers indexed by two indices. And of course you
can consider tensors of any order you’d like.

We can think about tensors many different ways, and all of these viewpoints
will be useful at different points in this chapter. Perhaps the simplest way to
think of an order-three tensor 7 is as nothing more than a collection of n3
matrices, each of size n; X ny, that are stacked on top of each other. Before we
go any further, we should define the notion of the rank of a tensor. This will
allow us to explore when a tensor is not just a collection of matrices, as well as
when and how these matrices are interrelated.

Definition 3.2.1 A rank-one, third-order tensor T is the tensor product of three
vectors u, v, and w, and its entries are

Tijg = uijvjwe.

Thus if the dimensions of u, v, and w are ny, ny, and n3, respectively, T is of
size n1 X ny X n3. Moreover, we will often use the following shorthand:

T=u®vQew

We can now define the rank of a tensor:

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

32 3 Tensor Decompositions

Definition 3.2.2 The rank of a third-order tensor T is the smallest integer r so
that we can write

T = Xr: u? @ v g wd,
i=1

Recall, the rank of a matrix M is the smallest integer r so that M can be
written as the sum of r rank-one matrices. The beauty of the rank of a matrix
is how many equivalent definitions it admits. What we have above is the
natural generalization of one of the many definitions of the rank of a matrix to
tensors. The decomposition above is often called a CANDECOMP/PARAFAC
decomposition.

Now that we have the definition of rank in hand, let’s understand how a low-
rank tensor is not just an arbitrary collection of low-rank matrices. Let T. .
denote the n; x np matrix corresponding to the kth slice through the tensor.

Claim 3.2.3 Consider a rank-r tensor

,
T = Z u(i) ® V(i) ® W(i)_
i=1
Then for all 1 <k < na,
colspan(T..x) C spcm({u(i)},-)
and moreover,

rowspan(T..) € span({v(i)}i).

We leave the proof as an exercise for the reader. Actually, this claim tells us
why not every stacking of low-rank matrices yields a low-rank tensor. True, if
we take a low-rank tensor and look at its n3 different slices, we get matrices of
dimension n| X np with rank at most . But we know more than that. Each of
their column spaces is contained in the span of the vectors . Similarly, their
row spaces are contained in the span of the vectors v,

Intuitively, the rotation problem comes from the fact that a matrix is just
one view of the vectors {#”}; and {v};. But a tensor gives us multiple
views through each of its slices, which helps us resolve the indeterminacy.
If this doesn’t quite make sense yet, that’s all right. Come back to it once you
understand Jennrich’s algorithm and think about it again.

The Trouble with Tensors

Before we proceed, it will be important to dispel any myths you might have
that working with tensors will be a straightforward generalization of working

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.2 A Primer on Tensors 33

with matrices. So, what is so subtle about working with tensors? For starters,
what makes linear algebra so elegant and appealing is how something like
the rank of a matrix M admits a number of equivalent definitions. When we
defined the rank of a tensor, we were careful to say that what we were doing
was taking one of the definitions of the rank of a matrix and writing down the
natural generalization to tensors. But what if we took a different definition for
the rank of a matrix and generalized it in the natural way? Would we get the
same notion of rank for a tensor? Usually not!

Let’s try it out. Instead of defining the rank of a matrix M as the smallest
number of rank-one matrices we need to add up to get M, we could define the
rank through the dimension of its column/row space. This next claim just says
that we’d get the same notion of rank.

Claim 3.2.4 The rank of a matrix M is equal to the dimension of its
column/row space. More precisely,

rank(M) = dim(colspan(M)) = dim(rowspan(M)).

Does this relation hold for tensors? Not even close! As a simple example,
let’s set n; = k%, ny = k, and n3 = k. Then, if we take the n; columns of T
to be the columns of a k? x k? identity matrix, we know that the nyn3 columns
of T are all linearly independent and have dimension k2. But the n{n3 rows of
T have dimension at most k because they live in a k-dimensional space. So for
tensors, the dimension of the span of the rows is not necessarily equal to the
dimension of the span of the columns/tubes.

Things are only going to get worse from here. There are some nasty
subtleties about the rank of a tensor. First, the field is important. Let’s suppose
T is real-valued. We defined the rank as the smallest value of r so that we can
write 7 as the sum of r rank-one tensors. But should we allow these tensors to
have complex values, or only real values? Actually this can change the rank,
as the following example illustrates.

Consider the following 2 x 2 x 2 tensor:

1 0] [0 —1
r=[o 3]
where the first 2 x 2 matrix is the first slice through the tensor and the second

2 x 2 matrix is the second slice. It is not hard to show that rankr (7") > 3. But it
is easy to check that

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

34 3 Tensor Decompositions

So even though T is real-valued, it can be written as the sum of fewer rank-one
tensors if we are allowed to use complex numbers. This issue never arises for
matrices. If M is real-valued and there is a way to write it as the sum of r rank-
one matrices with (possibly) complex-valued entries, there is always a way to
write it as the sum of at most r rank-one matrices, all of whose entries are real.
This seems like a happy accident, now that we are faced with objects whose
rank is field-dependent.

Another worrisome issue is that there are tensors of rank three that can
be arbitrarily well-approximated by tensors of rank two. This leads us to the
definition of border rank:

Definition 3.2.5 The border rank of a tensor T is the minimum r such that for
any € > 0 there is a rank-r tensor that is entrywise €-close to T.

For matrices, the rank and border rank are the same! If we fix a matrix M
with rank 7, then there is a finite limit (depending on M) to how well we can
approximate it by arank ¥ < r matrix. One can deduce this from the optimality
of the truncated singular value decomposition for low-rank approximation.
But for tensors, the rank and border rank can indeed be different, as our final
example illustrates.

Consider the following 2 x 2 x 2 tensor:

S

It is not hard to show that rankgr (7) > 3. Yet it admits an arbitrarily good
rank-two approximation using the following scheme. Let

1 1
il (1 e R
n n

Both §,, and R,, are rank one, and so S, — R, has rank at most two. But
notice that S, — R, is entrywise 1/n-close to 7, and as we increase n we get
an arbitrarily good approximation to 7. So even though 7 has rank three, its
border rank is at most two. You can see this example takes advantage of larger
and larger cancellations. It also shows that the magnitude of the entries of the
best low-rank approximation cannot be bounded as a function of the magnitude
of the entries in 7.

A useful property of matrices is that the best rank k approximation to M can
be obtained directly from its best rank k 4 1 approximation. More precisely,
suppose that B® and B*+1) are, respectively, the best rank & and rank k + 1
approximations to M in terms of, say, Frobenius norm. Then we can obtain B*)
as the best rank k approximation to B*+D However, for tensors, the best rank

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.3 Jennrich’s Algorithm 35

k and rank k + 1 approximations to 7 need not share any common rank-one
terms at all. The best rank k approximation to a tensor is unwieldy. You have
to worry about its field. You cannot bound the magnitude of its entries in terms
of the input. And it changes in complex ways as you vary k.

To me, the most serious issue at the root of all of this is computational
complexity. Of course the rank of a tensor is not equal to the dimension of its
column space. The former is NP-hard (by a result of Hastad [85]) and the latter
is easy to compute. You have to be careful with tensors. In fact, computational
complexity is such a pervasive issue, with so many problems that are easy to
compute on matrices turning out to be NP-hard on tensors, that the title of a
well-known paper of Hillar and Lim [86] sums it up: “Most Tensor Problems
Are Hard.”

To back this up, Hillar and Lim [86] proved that a laundry list of other
problems, such as finding the best low-rank approximation, computing the
spectral norm, and deciding whether a tensor is nonnegative definite, are NP-
hard too. If this section is a bit pessimistic for you, keep in mind that all I'm
trying to do is set the stage so you’ll be as excited as you should be — that
there actually is something we can do with tensors!

3.3 Jennrich’s Algorithm

In this section, we will introduce an algorithm for computing a minimum rank
decomposition that works in a natural but restricted setting. This algorithm is
called Jennrich’s algorithm. Interestingly, it has been rediscovered numerous
times (for reasons that we will speculate on later), and to the best of our
knowledge the first place that it appeared was in a working paper of Harshman
[84], where the author credits it to Dr. Robert Jennrich.

In what follows, we will assume we are given a tensor 7', which we will
assume has the following form:

,
7= u® v @w?
i=1

We will refer to the factors u'?, v, and w'® as the hidden factors to emphasize
that we do not know them but want to find them. We should be careful here.
What do we mean by find them? There are some ambiguities that we can never
hope to resolve. We can only hope to recover the factors up to an arbitrary
reordering (of the sum) and up to certain rescalings that leave the rank-one
tensors themselves unchanged. This motivates the following definition, which
takes into account these issues:

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

36 3 Tensor Decompositions

Definition 3.3.1 We say that two sets of factors
[(u(i),v(i),w(i))}r and{(ﬁ(i)"’;(i)’w(i))}r
i=1 i=1
are equivalent if there is a permutation : [r] — [r] such that for all i
1D @ v @ W = D) g HE@) g HEWD).

The important point is that two sets of factors that are equivalent produce two
decompositions

r r
T = Z I/t(i) ® V(i) ® W(l) — Z ,’/‘t(l) ® "}(1) ® ‘,’{}(l)
i=1 i=1
that have the same set of rank-one tensors in their sums.
The main question in this section is: Given T, can we efficiently find a set
of factors that are equivalent to the hidden factors? We will state and prove a

version of Jennrich’s algorithm that is more general, following the approach of
Leurgans, Ross, and Abel [103].

Theorem 3.3.2 [84], [103] Suppose we are given a tensor of the form

.
7= u? @ @

i=1
where the following conditions are met:

(1) the vectors {u®}; are linearly independent,
(2) the vectors {(vD}; are linearly independent, and
(3) every pair of vectors in {w}; is linearly independent.

Then there is an efficient algorithm to find a decomposition

,
T — Z 19 25D g

i=1
and moreover; the factors u® ,v® w®) and (@@, 7D WD) are equivalent.

The original result of Jennrich [84] was stated as a uniqueness theorem, that
under the conditions on the factors u®, v(?, and w¥ above, any decomposition
of T into at most r rank-one tensors must use an equivalent set of factors. It just
so happened that the way that Jennrich proved this uniqueness theorem was
by giving an algorithm that finds the decomposition, although in the paper it
was never stated that way. Intriguingly, this seems to be a major contributor
to why the result was forgotten. Much of the subsequent literature cited a

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.3 Jennrich’s Algorithm 37

stronger uniqueness theorem of Kruskal, whose proof is nonconstructive, and
seemed to forget that the weaker uniqueness theorem of Jennrich comes along
with an algorithm. Let this be a word of warning: If you not only prove some
mathematical fact but your argument readily yields an algorithm, then say so!

Jennrich’s Algorithm [84]

Input: tensor T € R"*"*P gatisfying the conditions in Theorem 3.3.2
Output: factors {u;};, {vi}i, and {w;};

Choose a, b € SP~! uniformly at random; set
P p
T@ = Z a;T..;and T® — Z biT..;
i=1 i=1

Compute the eigendecomposition of 7@ (T®)* and (T@)+T7®)T

Let U and V be the eigenvectors corresponding to nonzero
eigenvalues

Pair up u® and v iff their eigenvalues are reciprocals
Solve for w® in T = Y"I_, u® @ v @ w®
End

Recall that T..; denotes the ith matrix slice through 7. Thus 7@ is just the
weighted sum of matrix slices through T, each weighted by a;.

The first step in the analysis is to express 7 and T in terms of the
hidden factors. Let U and V be size m x r and n x r matrices, respectively,
whose columns are u® and v . Let D and D be r x r diagonal matrices
whose entries are (w”, a) and (w?, b), respectively. Then

Lemma 3.3.3 7@ = UD@VT gna T® = yp®yT

Proof: Since the operation of computing 7¥) from T is linear, we can apply it
to each of the rank-one tensors in the low-rank decomposition of 7. It is easy
to see that if we are given the rank-one tensor u ® v ® w, then the effect of
taking the weighted sum of matrix slices, where the ith slice is weighted by a;,
is that we obtain the matrix (w, a)u ® v.

Thus by linearity we have

r

7@ = 3w, apu® @ v

i=1

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

38 3 Tensor Decompositions

which yields the first part of the lemma. The second part follows analogously
with a replaced by . W

It turns out that we can now recover the columns of U and the columns of V
through a generalized eigendecomposition. Let’s do a thought experiment. If
we are given a matrix M of the form M = UDU~! where the entries along
the diagonal matrix D are distinct and nonzero, the columns of U will be
eigenvectors, except that they are not necessarily unit vectors. Since the entries
of D are distinct, the eigendecomposition of M is unique, and this means we
can recover the columns of U (up to rescaling) as the eigenvectors of M.

Now, if we are instead given two matrices of the form A = UDWVT and
B = UDWVT | then if the entries of D@ (D®)~1 are distinct and nonzero,
we can recover the columns of U and V (again up to rescaling) through an
eigendecomposition of

AB~' = uD@ D)y 'y~ and A7'B)T = vD® (D@)~1y~!

respectively. It turns out that instead of actually forming the matrices above, we
could instead look for all the vectors v that satisfy Av = A, Bv, which is called
a generalized eigendecomposition. In any case, this is the main idea behind the
following lemma, although we need to take some care, since in our setting the
matrices U an V are not necessarily square, let alone invertible matrices.

Lemma 3.3.4 Almost surely, the columns of U and V are the unique eigenvec-
tors corresponding to nonzero eigenvalues of TP (T®)* and (T @)*T1®)T
respectively. Moreover, the eigenvalue corresponding to u'’ is the reciprocal
of the eigenvalue corresponding to vV

Proof: We can use the formula for 7@ and 7 in Lemma 3.3.3 to compute
7@ (T(b))-‘r — UD@W (D(b))-‘r U+

The entries of D@ (D®)* are (w?, a)/(w?, b). Then, because every pair of
vectors in {w®}; is linearly independent, we have that almost surely over the
choice of a and b, the entries along the diagonal of D@ (D®)* will all be
nonzero and distinct.

Now, returning to the formula above for T@(T®)* we see that it is an
eigendecomposition and, moreover, that the nonzero eigenvalues are distinct.
Thus the columns of U are the unique eigenvectors of 7 (T®)* with nonzero
eigenvalue, and the eigenvalue corresponding to u” is (w®,a)/(w?,b). An
identical argument shows that the columns of V are the unique eigenvectors of

((T(ll))-i- T(b))T — yp® (D(a) yFvt

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.3 Jennrich’s Algorithm 39

with nonzero eigenvalue. And by inspection, we have that the eigenvalue
corresponding to v\ is (W, b)/(w?, a), which completes the proof of the
lemma. W

Now, to complete the proof of the theorem, notice that we have only
recovered the columns of U and the columns of V up to rescaling — i.e., for
each column, we recovered the corresponding unit vector. We will push this
rescaling factor in with the missing factors w(®. Thus the linear system in the
last step of the algorithm clearly has a solution, and what remains is to prove
that this is its only solution.

Lemma 3.3.5 The matrices Hu(i) (v("))T}f are linearly independent.

=
Proof: Suppose (for the sake of contradiction) that there is a collection of
coefficients that are not all zero where

,
Z aiu® (T = 0.
i=1

Suppose (without loss of generality) that oy # 0. Because by assumption the
vectors {v(?}; are linearly independent, we have that there is a vector a that
satisfies that (v, a) = 0 but is orthogonal to all other v\s. Now, if we right
multiply the above identity by a, we get

a1 (v, ayu” =0
which is a contradiction, because the left-hand side is nonzero. W

This immediately implies that the linear system over the w(®’s has a unique
solution. We can write the linear system as an mn X r matrix, each of whose
columns represents a matrix u® (VT but in vector form, times an unknown
r x p matrix whose columns represent the vectors w®. The product of these
two matrices is constrained to be equal to an mn X p matrix whose columns
represent each of the p matrix slices through the tensor 7', but again in vector
form. This completes the proof of Theorem 3.3.2.

If you want a nice open question, note that the conditions in Jennrich’s
algorithm can only ever hold if » < min(ny,n), because we need that
the vectors {u®}; and {v(}; are linearly independent. This is called the
undercomplete case, because the rank is bounded by the largest dimension
of the tensor. When r is larger than either nj,ny, or n3, we know that
the decomposition of T is generically unique. But are there algorithms for
decomposing generic overcomplete third-order tensors? This question is open
even when r = 1.1 max(ny, na, n3).

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

40 3 Tensor Decompositions

3.4 Perturbation Bounds

This section is good medicine. What we have so far is an algorithm (Jennrich’s
algorithm) that decomposes a third-order tensor 7 under some natural condi-
tions on the factors, but under the assumption that we know 7 exactly. In our
applications, this just won’t be enough. We’ll need to handle noise. The aim of
this section is to answer the question: If we are given T =T + E instead (you
can think of E as representing sampling noise), how well can we approximate
the hidden factors?

Our algorithm won’t change. We will still use Jennrich’s algorithm. Rather,
what we want to do in this section is track how the errors propagate. We want
to give quantitative bounds on how well we approximate the hidden factors,
and the bounds we give will depend on E and properties of 7. The main
step in Jennrich’s algorithm is to compute an eigendecomposition. Naturally,
this is where we will spend most of our time — in understanding when
eigendecompositions are stable. From this, we will easily be able to see when
and why Jennrich’s algorithm works in the presence of noise.

Prerequisites for Perturbation Bounds

Now let’s be more precise. The main question we’re interested in is the
following:

Question 5 If M = UDU™! is diagonalizable and we are given M=M+E,
how well can we estimate U?

The natural thing to do is to compute a matrix that diagonalizes M-ie., U,
where M = UDU~" — and quantify how good U is as an estimate for U. But
before we dive right in, it’s good to do a thought experiment.

There are some cases where it just is not possible to say that U and U are
close. For example, if there are two eigenvalues of M that are very close to each
other, then the perturbation E could in principle collapse two eigenvectors into
a single two-dimensional eigenspace, and we would never be able to estimate
the columns of U. What this means is that our perturbation bounds will
have to depend on the minimum separation between any pair of eigenvalues
of M.

Just like this, there is one more thought experiment we can do, which tells
us another property of M that must make its way into our perturbation bounds.
But before we get there, let’s understand the issue in a simpler setup. This takes
us to an important notion from numerical linear algebra.

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.4 Perturbation Bounds 41

Definition 3.4.1 The condition number of a matrix U is defined as

max U

where omax(U) and omin(U) are the maximum and minimum singular values
of U, respectively.

The condition number captures how errors amplify when solving systems
of linear equations. Let’s be more precise: Consider the problem of solving for
x in Mx = b. Suppose we are given M exactly, but we only know an estimate
b = b+ e of b. How well can we approximate x?

Question 6 If we obtain a solution X that satisfies M X = b, how close is X
to x?

Wehave ¥ = M~'b=x+M~le = x+M~'(b — b). So

~ 1 ~
lx =% < ————b— 0.
Omin (M)

Since Mx = b, we also have ||b|| < omax(M)]|x]|. It follows that

lx =% _ omax) 16—l _ Ib -]

=ckM)———.
Xl omin(M) b K0 121l

The term ||b—3|| /11b|| is often called the relative error and is a popular distance
to measure closeness in numerical linear algebra. What the discussion above
tells us is that the condition number controls the relative error when solving a
linear system.

Now let’s tie this back in to our earlier discussion. It turns out that our
perturbation bounds for eigendecompositions will also have to depend on the
condition number of U. Intuitively, this is because, given U and U~!, finding
the eigenvalues of M is like solving a linear system that depends on U and
U~'. This can be made more precise, but we won’t do so here.

Gershgorin’s Disk Theorem and Distinct Eigenvalues

Now that we understand what sorts of properties of M should make their way
into our perturbation bounds, we can move on to actually proving them. The
first question we need to answer is: Is M diagonalizable? Our approach will be
to show that if M has distinct eigenvalues and E is small enough, then M also
has distinct eigenvalues. The main tool in our proof will be a useful fact from
numerical linear algebra called Gershgorin’s disk theorem:

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

42 3 Tensor Decompositions

Theorem 3.4.2 The eigenvalues of an n x n matrix M are all contained in the
following union of disks in the complex plane:

n
UD(MibRi)
i=1

where D(a,b) == {x | |x —a| <b} C CandR; = Zj# [M;l.

It is useful to think about this theorem in a special case. If M = I + E where
I is the identity matrix and E is a perturbation that has only small entries,
Gershgorin’s disk theorem is what tells us the intuitively obvious fact that the
eigenvalues of M are all close to one. The radii in the theorem give quantitative
bounds on how close to one they are. Now for the proof:

Proof: Let (x,A) be an eigenvector-eigenvalue pair (note that this is valid
even when M is not diagonalizable). Let i denote the coordinate of x with
the maximum absolute value. Then Mx = Ax gives } ;Mjx; = Ax;. So
Zj# Mjxj = Ax; — M;;x;. We conclude:

-
A —M;;| = ZMU;J < Z IMjj| = R;.
J#i o

Thus A € D(M[i,Ri). [|

Now we can return to the task of showing that Mis diagonalizable. The idea
is straightforward and comes from digesting a single expression. Consider

U'MU=U'M+EU=D+U'EU.

What does this expression tell us? The right-hand side is a perturbation of
a diagonal matrix, so we can use Gershgorin’s disk theorem to say that its
eigenvalues are close to those of D. Now, because left multiplying by U~! and
right multiplying by U is a similarity transformation, this in turn tells us about
M’s eigenvalues.

Let’s put this plan into action and apply Gershgorin’s disk theorem to
understand the eigenvalues of D =D + U~'EU. First, we can bound the
magnitude of the entries of E = U 'EU as follows. Let [|A]lco denote the
matrix max norm, which is the largest absolute value of any entry in A.

Lemma 3.4.3 ||E|s < k(U)|E|

Proof: For any i and j, we can regard E; ;j as the quadratic form of the ith row
of U~! and the jth column of U on E. Now, the jth column of U has Euclidean

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.4 Perturbation Bounds 43

norm at most o,,,,(U), and similarly the ith row of U ~! has Euclidean norm at
most O (U1 = 1 /omin(U). Together, this yields the desired bound. W

Now let’s prove that, under the appropriate conditions, the eigenvalues of
M are distinct. Let R = max; Zj |E;;| and let 6 = min;x; |D;; — Dj;| be the
minimum separation of the eigenvalues of D.

Lemma 3.4.4 IfR < §/2, then the eigenvalues of M are distinct.

Proof: First we use Gershgorin’s disk theorem to conclude that the eigenvalues
of D are contained in disjoint disks, one for each row. There’s a minor
technicality, that Gershgorin’s disk theorem works with a radius that is the sum
of the absolute values of the entries in a row, except for the diagonal entry. But
we leave it as an exercise to check that the calculation still goes through.

Actually, we are not done yet.! Even if Gershgorin’s disk theorem implies
that there are disjoint disks (one for each row) that contain the eigenvalues of
l~), how do we know that no disk contains more than one eigenvalue and that
no disk contains no eigenvalues? It turns out that the eigenvalues of a matrix
are a continuous function of the entries, so as we trace out a path

y(®) = (1 — D +1(D)

from D to D as goes from zero to one, the disks in Gershgorin’s disk theorem
are always disjoint and no eigenvalue can jump from one disk to another. Thus,
at D we know that there really is exactly one eigenvalue in each disk, and since
the disks are disjoint, we have that the eigenvalues of D are distinct as desired.
Of course the eigenvalues of D and M are the same, because they are related
by a similarity transformation. W

Comparing the Eigendecompositions

We now know that M has distinct eigenvalues, so we are finally allowed to
write M = UDU™!, because M is diagonalizable. Let’s turn to our final step.
There is a natural correspondence between eigenvalues of M and eigenvalues
of M, because what the proof in the previous subsection told us was that there
is a collection of disjoint disks that contains exactly one eigenvalue of M and
exactly one eigenvalue of M. So let’s permute the eigenvectors of M to make
our life notationally easier. In fact, why not make it easier still. Let’s assume
(without loss of generality) that all the eigenvectors are unit vectors.

" Thanks to Santosh Vempala for pointing out this gap in an earlier version of this book.
See also [79].

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

44 3 Tensor Decompositions

Now suppose we are given (ﬁi,’)ti) and (u;, A;), which are corresponding
eigenvector-eigenvalue pairs for M and M, respectively. Let Zj cjuj = ;.
We know that there is a choice of ¢;’s that makes this expression hold, because
the u;’s are a basis. What we want to show is that in this expression, ¢; for all
J # i is small. This would imply that u; and u; are close.

Lemma 3.4.5 For any j # i, we have
IEI
ol <
min(U) (8 — R)

Proof: We'll get this by manipulating the expression) ;cju; = u;. First,
multiplying both sides of the equation by M and using the fact that {i;}; are
eigenvectors of M and {u;}; are eigenvectors of M, we get

Z cihju;j + Eu; = ’X,"I:Zi

j
which, rearranging terms, yields the expression), ¢j(A; — Xi)uj = —Eu,.

Now what we want to do is pick out just one of the coefficients on the left-
hand side and use the right-hand side to bound it. To do this, let ij be the ji
row of U~!, and left multiplying both sides of the expression above by this
vector, we obtain

cj(Aj — Xl) = —WfETt,’.

Now let’s bound the terms in this expression. First, for any i # j, we have
[Aj — X,-| > |Aj — Ail = R > § — R using Gershgorin’s disk theorem. Second,
u; is a unit vector by assumption and [|wj|| < 1/0y,in(U). Using these bounds
and rearranging terms now proves the lemma. W

The three lemmas we have proven can be combined to give quantitative
bounds on how close U is to U, which was our goal at the outset.

Theorem 3.4.6 Let M be an n X n matrix with eigendecomposition M =
UDU~!. Let M = M + E. Finally, let

8 = min |Dj; — Dj,|
i#j
i.e., the minimum separation of eigenvalues of M.

(1) Ifk(U)||Elln < $, then M is diagonalizable.
(2) Moreover, if M = UDU™", then there is a permutation w : [n] — [n]
such that for all i
2||E||n
Omin(U) (6 — (U) | El[n)

where {u;}; are the columns of U and {u;}; are the columns of U.

lui — triyll <

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.4 Perturbation Bounds 45

Proof: The first part of the theorem follows by combining Lemma 3.4.3 and
Lemma 3.4.4. For the second part of the theorem, let’s fix i and let P be
the projection onto the orthogonal complement of ;. Then, using elementary
geometry and the fact that the eigenvectors are all unit vectors, we have

i — tr iyl < 211Pitz il

Moreover, we can bound the right-hand side as

1Pyl = | 3P| < D lejl-
J# JF#
Lemma 3.4.5 supplies the bounds on the coefficients ¢;, which completes the
proof of the theorem. W

You were warned early on that the bound would be messy! It is also by
no means optimized. But what you should instead take away is the qualitative
corollary that we were after: If ||E|| < poly(1/n, 61min(U), 1/0max(U),d) (i.e., if
the sampling noise is small enough compared to the dimensions of the matrix,
the condition number of U, and the minimum separation), then U and U are
close.

Back to Tensor Decompositions

Now let’s return to Jennrich’s algorithm. We’ve stated enough messy bounds
for my taste. So let’s cheat from here on out and hide messy bounds using the
following notation: Let
E—0
A=SB

signify that as E goes to zero, A converges to B at an inverse polynomial rate.
We’re going to use this notation as a placeholder. Every time you see it, you
should think that you could do the algebra to figure out how close A is to B in
terms of E and various other factors we’ll collect along the way.

With this notation in hand, what we want to do is qualitatively track how the

error propagates in Jennrich’s algorithm. If we let T=T+E, thenT E=D T

~c o E—0 ~ ~ . .
and T@ =25 T@ where T@ = ¥, a;T...;. We leave it as an exercise for the
reader to check that there are natural conditions where

TN 20 (r)+

As a hint, this convergence depends on the smallest singular value of 7.
Or, to put it another way, if E is not small compared to the smallest singular
value of T, then in general we cannot say that (T®)* and (T®)* are close.

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

46 3 Tensor Decompositions

In any case, combining these facts, we have that
F@ F®y+ E2) 7@ b))+,

Now we are in good shape. The eigenvectors of the right-hand side are the
columns of U. Let the columns of U be the eigenvectors of the left-hand side.
Since the left-hand side is converging to the right-hand side at an inverse poly-
nomial rate, we can invoke our perturbation bounds on eigendecompositions
(Theorem 3.4.6) to conclude that their eigenvectors are also converging at

. . . ~ E—0
an inverse polynomial rate. In particular, U =2 U where we have abused
notation, because the convergence above is only after we have applied the

appropriate permutation to the columns of U. Similarly, we have 1% e V.
Finally, we compute W by solving a linear system in U and V. 1t can be

shown that W e W using the fact that U and V are close to well-conditioned
matrices U and V, which means that the linear system we get from taking
the tensor product of the ith column in U with the ith column in V is also
well-conditioned.

These are the full, gory details of how you can prove that Jennrich’s
algorithm behaves well in the presence of noise. If we make our life easy and in
what follows analyze our learning algorithms in the no-noise case (E = 0), we
can always appeal to various perturbation bounds for eigendecompositions and
track through how all the errors propagate to bound how close the factors we
find are to the true hidden factors. This is what I meant by good medicine. You
don’t need to think about these perturbation bounds every time you use tensor
decompositions, but you should know that they exist, because they really are
what justifies using tensor decompositions for learning problems where there
is always sampling noise.

3.5 Exercises
Problem 3-1:

(a) Suppose we want to solve the linear system Ax = b (where A € R"*" is
square and invertible) but we are only given access to a noisy vector b
satisfying

Ib—bll _
— <e
ol
and a noisy matrix A satisfying [|A — All <8 (in operator norm). Let x be
the solution to AX = b. Show that

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

3.5 Exercises 47

Figure 3.1: Three shifted copies of the true signal x are shown in gray. Noisy
samples y; are shown in red. (Figure credit: [23].)

llx _55” - € Omax(A) + 6
Xl — Omin(A) — 6

provided § < omin(A).

(b) Now suppose we know A exactly, but A may be badly conditioned or even
singular. We want to show that it may still be possible to recover a
specific coordinate x; of x. Let X be any solution to Ax = b and let g;
denote column i of A. Show that

o5 < 1= b||

j A= G

where C; is the norm of the projection of @; onto the orthogonal

complement of span ({a;};/).

Problem 3-2: In the multireference alignment problem, we observe many
noisy copies of the same unknown signal x € RY, but each copy has been
circularly shifted by a random offset (Figure 3.1).

Formally, fori = 1,2,...,n we observe
yi=Ryx + &
where the ¢; are drawn uniformly and independently from {0, 1,...,d — 1}; R,

is the operator that circularly shifts a vector by £ indices; & ~ N (0, O’zldxd)
with {&;}; is independent; and o > 0 is a known constant. Think of d, x, and o
as fixed while n — oo. The goal is to recover x (or a circular shift of x).

(a) Consider the tensor 7'(x) = 5 Zf;é (Ryx) ® (Ryx) ® (Ryx). Show how to
use the samples y; to estimate 7" (with error tending to zero as n — 00).
Take extra care with the entries that have repeated indices (e.g.,

Taabs Taaa)-

(b) Given T'(x), prove that Jennrich’s algorithm can be used to recover x (up
to circular shift). Assume that x is generic in the following sense: Let
¥’ € R? be arbitrary and let x be obtained from x’ by adding a small
perturbation § ~ N(0, €) to the first entry. Hint: Form a matrix with rows
{Rex}o<e<a, arranged so that the diagonal entries are all x;.

https://doi.org/10.1017/9781316882177.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.004

