
3

Multiple string matching

3.1 Basic concepts

The single string matching problem may be extended in a natural way to
search simultaneously for a set of strings P = {p1,^2, • • -pr}, where each p* is
a stringpl = p\p\ .. .pl

m. over a finite character set S. Denote by |P | the sum
of the lengths of the strings in P, more formally |P| = YH=i \P*\ = Y?i=i mi-
Let brain be the minimum length of a pattern in P and bmax the maximum.
As before, the search is done in a text T = t\t2 ... tn.

Strings in P may be factors, prefixes, suffixes, or even the same as others.
For example, if we search for the set {ATATA, TATA} in a DNA sequence, each
time we find an occurrence of ATATA we also find an occurrence of the second
string. Hence, the total number of occurrences can be r x n. To make the
multistring matching problem precise, we consider that we are interested in
reporting all pairs (i,j) such that tj-\pi +1 • • • tj is equal to p%.

The simplest solution to this problem is to repeat r searches with one of
the algorithms of Chapter 2. This leads to a total worst-case complexity of
O(|P|) for the preprocessing and O(r x n) for the search.

The worst-case search complexity can be reduced to O(n + nocc), where
nocc is the total number of occurrences, by using some kind of extension of
the search algorithms for a single pattern. The average complexity can also
be improved, although it is difficult to think in terms of "average" complex-
ity, since many parameters play a role in the running time of the algorithms.
The most important parameters are the size of the alphabet, the number
of patterns, the distribution of the lengths of the patterns (particularly the
minimum size), and the memory available.

We again denote by 9 an object that is not denned. For instance, when
we write While q ^ 9 Do, it means we iterate while q is denned.

Troughout this chapter, we will consider the example in Figure 3.1. We

41

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

42 Multiple string matching

will simultaneously search for the three strings "announce", "annual", and
"annually".

Text

C p M a n n u a 1 , , c o n f e r e n c e , , a n n o u n c e

Set of patterns

a

a

a

n

n

n

n

n

n

0

u

u

u

a

a

n

1

1

c e

1 y

Fig. 3.1. Simultaneously searching three strings in our example text.

As with a single string, sets of natural language strings usually con-
tain fewer repetitions than sets of DNA sequences. To show the tricky
cases that could occur, we also show the behavior of our algorithms when
searching for the set of strings ATATATA,TATAT,ACGATAT in the sequence
AGATACGATATATAC.

The three approaches for searching a single string (Chapter 2) lead to
several extensions for searching a set of strings. For each approach, there are
usually many possible extensions, according to the way the set of pat terns
is managed and the way the shifts are obtained. The notion of a search

window is not relevant for multiple string matching, which will become clear
soon. We present in this chapter the empirically most efficient extensions,
which are usually also the simplest.

Prefix searching (Figure 3.2) The search is done forward, reading the
characters of the text one after another with an automaton built on the set
P. For each position of the text, we compute through this automaton the
longest suffix of the text read that is also a prefix of one of the strings of
P. The most famous algorithm that uses this approach is Aho-Coras ick
[AC75].

Suffix searching (Figure 3.3) A position pos is slid along the text, from
which we search backward for a suffix of any of the strings. As with a single
pattern, we shift pos according to the next occurrence of the suffix read in
P. This approach may avoid reading all the characters of the text.

Factor searching (Figure 3.4) A position pos is also slid along the text,
from which we read backwards a factor of some prefix of size £min of the
strings in P . It also may avoid reading all the characters of the text.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.1 Basic concepts 43

Text Forward search

11111111°

Set of patterns

II II

| | | | | | | | | | a

Fig. 3.2. First approach: We compute the longest prefix of a pattern in the set that
is also a suffix of the text read. It requires reading all the characters of the text at
least once.

Text Suffix search
pos

"llilliliiii
Illlill Set of patterns

Fig. 3.3. Second approach: We search backwards for a suffix of one of the strings.
It avoids, on average, reading all characters of the text.

Before describing these three approaches in depth, we introduce a basic
data structure on a set of strings, called a trie. This structure is used by
most of the classical niultistring matching algorithms. The trie of the set
P = {p 1 ,^ 2 , . . .pr} is a rooted directed tree that represents the set P; that
is, every path starting from the root is labeled by one of the strings pl,
and, conversely, every string p% e P labels a path from the root. Below,
unless specified, paths start at the root. Every state q corresponding to an
entire string is marked as terminal, and a function F(q) points to a list of

pos

Text 1actor search

ailii

Set of patterns

P mil

« i l l!

Fig. 3.4. Third approach: We search for a factor of any of the patterns in the
current window.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

44 Multiple string matching

all the numbers of the strings in P that correspond to q. We give the trie
for P = {announce,annual,annually} in Figure 3.5.

(V) V)

Fig. 3.5. Trie for P = {announce, annual, annually}. The function F of each
terminal state is represented with squares. It indicates the identifier of the string
in P.

We usually use the automata notation for describing a trie, since a trie
is also a deterministic acyclic automaton recognizing the corresponding set
of strings. The trie of a set P can be built in O(|P|) time by inserting the
strings pl one by one into the tree, starting at the root, and building the
corresponding transitions. Pseudo-code for the trie construction is given in
Figure 3.6.

Trie(P = {p\p2, . . . ,pr})
1. Create an initial non terminal state 0
2. For i € 1 . . .r Do
3. Current «— initial state 0
4- j <- 1
5. While j < mi AND S(Current,pj-) ^ 6 Do
6. Current <— 6(Current,p'j)
7- j <- j + 1
8. End of while
9. While j < nij Do
10. Create a new non terminal state State
11. 5(Current,p}) <- State
12. Current <— State
13. j <r- j + 1
14. End of while
15. If Current is already terminal Then F(Current) «— F(Current) U {«}
16. Else mark Current as terminal, F(Current) <— {i}
17. End of for

Fig. 3.6. Pseudo-code for the construction of a trie from a set of strings P =
{p1 ,p2,... ,p r}. The strings are taken one by one and inserted into the tree.

The size of the trie depends on the implementation of the transitions.
The simplest implementation is for each state q of the trie to code 6(q, *)
in a table of size |S| . Then the total size of the trie of a set P is worst-
case |S| x \P\. This representation is usually used when the sizes of the set

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.2 Prefix based approach 45

of strings and of the alphabet are not too large. It has the advantage of
passing through a transition in constant time 0(1) by performing an access
to a table.

Since the total number of transitions is at most \P\, it is possible to code
all the transitions in 0(|P|) space, independently of the size of the alphabet.
However, the time to pass through a transition increases. If the transitions
of each state are coded with a linked list, sorted or not, this time grows to
0(|S|) in the worst and average cases. It can be reduced to O(log |S|) by
coding the transitions with balanced trees [CLR90], but this complicates the
code.

We now describe in detail the three general approaches to search for a set
of strings.

3.2 Prefix based approach
The extension of the prefix based approach leads to the Multiple Shift-
And and Aho-Corasick algorithms. As with a single pattern (Section 2.2),
we assume that we have read the text up to position i and that we know the
length of the longest suffix of t\... t{ that is a prefix of a pattern pk 6 P.
The algorithmic problem is to calculate this length after reading the next
character of the text.

In the single pattern case, there were two ways of finding this length.
One was based on managing a bit array with bit-parallelism. For multiple
pattern matching, this technique is only practical for very small patterns,
because the total length \P\ has to be smaller than a few computer words.
Nevertheless, this possibility is widely used for extended string matching
(Chapter 4) and approximate string matching (Chapter 6). We call this
algorithm Multiple Shift-And.

The solution, when the length of the set is too large to fit in computer
words, is to find a mechanism that computes the size of the longest suffix
of the text read that is also a prefix of one of the strings of P, in amortized
constant time per character. This is what the Aho-Corasick algorithm
does, with a linear time 0(|P|) preprocessing phase.

3.2.1 Multiple Shift-And algorithm
The bit-parallelism approach is only valuable when the set P = {p1,... ,pr}
has a total length \P\ small enough to fit in a few computer words. For
simplicity, we assume below that \P\ is smaller than w. The idea is to
perform with bit-parallelism all the computations required by the Shift-

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

46 Multiple string matching

And algorithm (Section 2.2.2) for the r strings in the same computer word
[BYG89b].

p4 43 32 21

computer word

Fig. 3.7. Multiple Shift-And algorithm. The total size of the patterns has to fit
in w.

We pack the strings together in the computer word, as in Figure 3.7.
Then, for each new character of the text, we perform the computations for
the strings of P like in the Shift-And algorithm. The initialization word
DI is the concatenation of the initialization words for each string, that is,

Similarly, the final test is

DF <- lO"1---1 ..

The main loop is the same as for the Shift-And algorithm. Pseudo-code is
given in Figure 3.8.

The Shift-Or trick (Section 2.2.2) cannot be used here, since the shift
"<<" only introduces a zero to the right, and we need a zero in each position
that begins a new string of P in the computer word.

Example using English We search for the set of strings P = {announce,
annual, annually} in the text "annual_announce".

Table B

a
c
e
1
n
0

u

y
*

0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0
0 0

DI = 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
DF=1000000010000010000000
D = 0

1. Reading a

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
ff [a] 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
D= 0 0 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 0 0 1

2. Reading n

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
B[n] 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0
D= 00 000 0 100 000 10 000 000 10

3. Reading n

B[n]
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0

D= 00 000 10 00 00 100 000 00 100

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.2 Prefix based approach 47

M u l t i p l e S h i f t - A n d (P = { p \ p 2 , . . . , p r } , T = tit2 ...tn)
1. Preprocessing

For c e S Do B[c] <- 0 |p |
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

For k e 1... r Do
For j e 1... mk Do B\p)] <- B\p)]

End of for

Searching

For pos e 1... n Do
DI) & B[tpos]

If D & DF / 0 |p | Then
Check which patterns match
Report the corresponding occurrences ending in pos

End of if
End of for

Fig. 3.8. Multiple Shift-And algorithm. The total length of the patterns |P| has
to be less than w. We let rrik = \pk .

4. Reading u 8. Reading a

0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 B[a

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

D = 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

5. Reading a

0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1
Mai 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

D = 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

9. Reading n

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1
B\n] 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0

D= 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

6. Reading 1

0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1
B[l] 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

D= 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

10. Reading n

B[n]
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0

D= 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

D & DF ^ 0 l p l , we check the patterns
that match, and we mark an occurrence of
annual.

7. Reading _

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1
B[.] 0
D= 0

D= 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

11. Reading o

B[o]
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1
00000 0 0 0 0 0 0 0 0 0 0000 1000

D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12. Reading u

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1
B[u] 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

48 Multiple string matching

13. Reading n 15. Reading e

0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1
B[n] 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 B[c]

0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1
00000 0 0 0 0 0 0 0 0 0 10000000

D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

14. Reading c

B\c]
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

D = 00000 0 0 0 0 0 0 0 0 0 10000000

D Sz DF ^ 0lpl, we check the patterns
that match, and we mark an occurrence of
announce.

Example using D N A We search for the set of strings P = {ATATATA,

TATAT, ACGATAT} in t h e t ex t AGATACGATATATAC.

Table B

A
C
G
T
*

0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DI = 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
DF = 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
D = 00 000 0000 000 0000000

1. Reading A

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
D= 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

2. Reading G

0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1
B[G] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3. Reading A

0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
D = 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

4. Reading T

0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1
B[T] 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0

~ D ^ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

5. Reading A

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1
B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
D= 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

6. Reading C

0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1
B[C] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
D = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7. Reading G

0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1
B[G] 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D= 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8. Reading A

0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
D= 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

9. Reading T

0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1
B[T] 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
D= 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

10. Reading A

0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1
B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1
D= 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1

11. Reading T

1 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1
B[T] 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
D= 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

D & DF ^ 0 l p l , we check the patterns
that match, and we mark an occurrence of
ACGATAT.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.2 Prefix based approach 49

12. Reading A 14. Reading A

0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1

B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 B[k] 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D= 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 D= 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

D & DF ^ 0lpl, we check the patterns
Reading T t j i a t m a t c n j ancj w e m a r k a n occurrence of

0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 ATATATA.
B[l] 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
D = 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 15. Reading C

£ f f/ T t f 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1
TATAT ^ ^ ^ ° C C U r r e n C e ° f B[C] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.2.2 Basic Aho-Corasick algorithm

The algorithm of Aho and Corasick [AC75] is an extension of the Knuth-
Morris-Pratt algorithm (Section 2.2.1) for a set of patterns.

The algorithm uses a special automaton, called the Aho-Corasick automa-
ton, built on P. It is the trie of P augmented with a "supply function" SAC-

Formally, we denote by q a state of the trie of P, and by L(q) the label
of the path from the initial state to q. Then SAC{Q) is denned, except for
the initial state, as the state reached when the automaton reads the longest
suffix of L(q) that is also a prefix of some p% 6 P. This is a kind of extension
of a border (Section 2.2.1) to a set of strings. The supply state of the initial
state is set to 9. A supply link goes from each state q to SAC(Q),

 a n d a
supply path is a chain of supply links.

Fig. 3.9. Aho-Corasick automaton for the set {ATATATA, TATAT, ACGATAT}. The
dashed links represent the state-to-state supply function SAC- Double-circled states
are terminal.

The Aho-Corasick automaton for the set {ATATATA, TATAT, ACGATAT} is
shown in Figure 3.9. On this automaton, for instance, 1/(15) = ACGATA, its
longest suffix that is also a prefix of one of the patterns is ATA, which leads

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

50 Multiple string matching

to state 7, and hence SAC(15) = '<'• The terminal states are those of the
trie that correspond to an entire pattern, and also all states whose supply
paths go down through another terminal state on their way to the root. In
Figure 3.9, for instance, state 16 is terminal because SAC(1$)

 IS terminal.
We assume that a prefix t\t2 • • • U of the text has already been read, and

that the longest suffix of £ i . . . £j that is also a prefix of one of the pat-
terns leads to a state Current in the Aho-Corasick automaton. We denote
this longest suffix v = L(Current). We want to read tj+i and compute for
t\... tjij+i the new longest suffix u. There are two cases.

1. If there exists an outgoing transition from Current to another state
/ in the trie labeled by ij+i, then the new Current state becomes / ,
and u = L(f) = uti+\ is the new longest prefix of one of the patterns
that is a suffix of t\ ... £j+i-

2. If not (i.e., , we fail reading ti+\ in the tree), we go down the supply
path of q until either

(a) we find a state on the path followed by ij+i. In this case, the
current state becomes the arrival state / by the transition £j+i,
and u = L(f).

(b) we reach 9, which means that the longest suffix u we search for is
the empty string e, and we move to the initial state.

Pseudo-code for the search algorithm is given in Figure 3.10. The com-
plexity of the search phase is simple to evaluate, if we observe that we cannot
go down more supply links than text characters we read. The number of
supply links crossed through is then bounded by n, and the number of transi-
tions used (real transitions plus supply links) is bounded by In. The number
of character comparisons depends on how the transitions of the automaton
are implemented. The complexity is O(n + nocc) if they are coded with a
table, and O(nlog |S| + nocc) with balanced trees.

To construct the Aho-Corasick automaton we begin by building the trie
of the set of strings P with the algorithm in Figure 3.6. The states of
the Aho-Corasick automaton are those of the trie. The initial state is the
same and the terminal states of the trie are also terminal. We build the
supply function SAC ° n this trie in transversal order, which is the order we
numbered the states in Figure 3.9.

We assume that we have computed the supply function of all the states
before state Current in transversal order. We consider the parent Parent of
Current in the trie, leading to Current by a, that is, Current = 8 AC (Parent,
a). The supply state SAC (Parent) has already been computed. We search

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.2 Prefix based approach 51

Aho-Corasick(P = {p\p2,... ,pr}, T = ht2 ...tn)
1. Preprocessing
2. , 4 C ^ Build_AC(P)
3. Searching
4. Current —̂ Initial state of the automaton AC
5. For pos G 1 . .. n Do
6. Whi le 5AC(Current,tPos) = 0 AND SAc(Current) / 6> Do
7. Current —̂ SAC (Current)
8. End of while
9. If £AC (Current, tpos) / 0 Then
10. Current —̂ #AC(Current, tpos)
11. Else Current «— initial state of ̂ 4(7
12. End of if
13. If Current is terminal Then
14. Mark all the occurrences (F(Current),pos)
15. End of if
16. End of for

Fig. 3.10. Aho-Corasick algorithm to search for a set P = {p1,/?2,... ,pr} of
strings. It uses the Aho-Corasick automaton to compute at each text character tpos

the longest prefix of any pattern pk that is also a suffix of the text read t\ . . . tpos.

for the state where u ends, u being the longest suffix of v = L(Current) that
labels a path in the trie. The string v has the form v'a. If there exists such
a nonempty string u, since it is a suffix of v, it must be of the form u = u'a.
In that case, v! is a suffix of v' that is the label of a path in the trie.

If SAC (Parent) has an outgoing transition by a to a state /i, then w =
L(SAC(Parent)) is the longest suffix of v' that is the label of a path, and wa
is also a label of a path in the trie. Consequently, it is the longest suffix u
of v = v'a that we are searching for, and SAc(Current) has to be set to h.

If SAC (Parent) does not have an outgoing transition by a, we consider
SAC (SAC (Parent)) and so on. We repeat the operation, until either we find
a state on the supply path that has an outgoing transition by a, or we find
#, which means that u is the empty string e and SAC (Current) has to be set
to the initial state.

The mechanism is similar to the Aho-Corasick search algorithm itself.
Its pseudo-code is given in Figure 3.11. Complexity is evaluated with the
observation we made for the whole algorithm: We do not go down more
supply links than the total number of real transitions, which is bounded by
O(|P|). So the number of total transitions used (real transitions plus supply
links) is bounded by 2 x \P\. Like for the search phase, the complexity in
terms of comparisons of characters depends on how the transitions of the

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

52 Multiple string matching

automaton are implemented. It is O(|P|) if they are coded with a table, and
0(|P| log |S|) with balanced trees.

1. ACJrie <- Trie(P)
SAC is its transition function

2. Initialstate <— root of AC-trie
3. SAC(InitiaLstate) «— 9
4. For Current in transversal order Do
5. Parent «— parent of Current in AC-trie
6. cr <— label of the transition from Parent to Current
7. Down <— SAC (Parent)
8. While Down ^ 0 AND 6Ac(Down,a) = 9 Do
9. Down <— SAC (Down)
10. End of while
11. If Doion ^ 9 Then
12. SAC (Current) <— 6 AC {Down, a)
13. If SAc(Current) is terminal Then
14. Mark Current as terminal
15. F(Current) <- F(Current) U F(SAC(Current))
16. End of if
17. Else SAC (Current) <— Initial-state
18. End of if
19. End of for

Fig. 3.11. Construction of the Aho-Corasick automaton. The state Current goes in
transversal order through the trie AC-trie built on P. The state Down goes down
the supply links from the parent of Current, looking for an outgoing transition
labeled with the same character as between Current and its parent. F(Current) is
initialized as empty when Current is first marked as terminal.

Example using English We search for the set of strings P = {announce,
annual, annually} in the text "annual_announce". The Aho-Corasick
automaton built on P is shown in Figure 3.12.

Fig. 3.12. Aho-Corasick automaton of our example set P = {announce, annual,
annually}. Double-circled states are terminal.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.2 Prefix based approach 53

Current <— 0.

1. Reading a
Current «- 1 = 5(0, a)

3. Reading a
Current <— 1 = 8(0, a)

2. Reading n
Current 4— 2 = 5(1, n)

9. Reading n
Current <— 2 = 5(1, n)

3. Reading n
Current <- 3 = 5(2, n)

10. Reading n
Current <- 3 = 5(2, n)

4. Reading u
Current <— 5 = 5(3, «)

11. Reading o
Current <— 4 = 5(3, o)

5. Reading a
Current «— 7 = 5(5, a)

6. Reading 1
Current «— 9 = 5(7, a).

The state 9 is terminal; we mark an
occurrence of F(9) —> annual.

12. Reading u
Current <— 6 = 5(4, u)

13. Reading n
Current <— 8 = 5(6, n)

14. Reading c
Current <- 10 = 5(8, c)

7. Reading _ 15. Reading e
5(9, _) = 9. We jump to 0 = SAC(9). Current <- 12 = 5(10, e).
5(0, _) = 6, we jump to 6 = SUc(0). The state 12 is terminal; we mark an
We continue the search from the initial
state 0, Current 4— 0.

occurrence of -F(12) —>• announce.

Example using D N A We search for the set of strings P = {ATATATA,
TATAT, ACGATAT} in the text AGATACGATATATAC. We again use the Aho-
Corasick automaton built on P already shown in Figure 3.9.

Current 4— 0.

1. Reading A
Current <- 1 = 5(0, A)

5. Reading A
Current <— 7 = 5(4, A)

2. Reading G 6. Reading C
5(1, G) = 6. We jump to 0 = SUc(l). 5(7, C) = 6. We jump to 5 = SAC(7).
5(0, G) = 6; we jump to 6 = SAC(0). 8(5, C) = 6; we jump to 1 = SAC(7).
We continue the search from the initial 8(1, C) = 3, Current <— 3.
state 0, Current <- 0.

3. Reading A
Current <- 1 = 5(0, A)

7. Reading G
Current ^

4. Reading T
Current i- 4 = 5(1, T)

3. Reading A
Current <- 9 = 5(6, A)

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

54 Multiple string matching

9. Reading T
Current <- 12 = 5(9,T)

10. Reading A
Current <- 15 = 5(12, A)

11. Reading T
Current <- 17 = 5(12, T). The state 17
is terminal; we mark an occurrence of
F(17) ->• ACGATAT.

12. Reading A
5(17, A) = 6. We jump to 10 =
SAC (17). 5(10, A) = 13, Currents 13.

13. Reading T
Current <- 16 = 5(13, T). The state 16
is terminal; we mark an occurrence of
F(16) ->• TATAT.

14. Reading A
Current <- 18 = 5(16, A). The state 18
is terminal; we mark an occurrence of
F(18) ->• ATATATA.

15. Reading C
5(18, C) = 9. We jump to 13 =
SAC (18). 5(13, C) = 6; we jump to
11 = SAG (13). 5(11, C) = 9; we jump
to 7 = SAG(H)- 5(7, C) = 0; we jump
to 1 = SAC(7)- 5(1, C) = 3, Current
•f-3.

3.2.3 Advanced Aho-Corasick algorithm

The above algorithm permits a powerful variant. The idea is to precom-
pute all the transitions simulated by the supply function. We then obtain
a complete automaton (all the states have an outgoing transition by every
character of the alphabet) that we name the extended Aho-Corasick automa-
ton.

This completion can be computed using the supply function. We first com-
plete the outgoing transitions of the initial state with a loop, which means
(5(0, a) <— 0 for each new letter a. Now, let Current be a state of the automa-
ton taken in transversal order. We compute the missing outgoing transitions
of Current by using the formula S(Current, a) = S(SAC(Current), a) for each
new letter a.

The drawback to this automaton is the large amount of memory space
it requires. It is O(|P| x |S|) independently of the way the transitions
are implemented. This construction is useful for relatively small sets and
alphabets. A trade-off that is often used is to compute the new transitions
on the fly if there is memory left. This was done in the first version of the
well-known Unix application Grep.

3.3 Suffix based approach

The experimental results of Chapter 2 show that the suffix based approach
is usually faster than the prefix based one. So it is natural to try to extend

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.3 Suffix based approach 55

the suffix based approach to sets of patterns. The first attempt was that of
Commentz-Walter in 1979 [CW79]. It is a direct extension of the Boyer-
Moore algorithm. The Horspool algorithm has also been extended, but it
is much less powerful for multiple string matching than for single patterns. A
stronger extension is the Wu-Manber algorithm, which is practical, simple,
and efficient.

3.3.1 Commentz-Walter idea

The Commentz-Walter [CW79] algorithm is a "natural" extension of the
Boyer-Moore algorithm (Section 2.3.1). This algorithm is never faster in
practice than Aho-Corasick or other algorithms presented below. How-
ever, it is historically important because it was the first expected sublinear
multistring matching algorithm, and it was implemented in the second ver-
sion of the Unix application Grep. Currently, this algorithm does not have
a real case of application, and we just present the idea it is based on.

The Commentz-Walter algorithm represents P = {p1,... ,pr} using a
trie of the reverse patterns Prv = {(p1)rv',..., (pr)rv} inside which the text
is read. A position pos is slid along the text, beginning at position brain so
as not to skip a possible occurrence. For each such new position, we read
backwards the longest suffix u oit\... tpos that is also a suffix of one of the
patterns. If we find an occurrence, we mark it. Then, we shift the position
of the search to the right, using the three functions di,d,2, d% of the Boyer-
Moore algorithm extended to a set of strings. The first two functions are
computed for each state of the trie, and to shift we consider them at the
last state q we crossed when reading the longest suffix u.

• d\(q) is the minimal shift such that u = L(q) matches a factor of some
pi £ P.

• d2(q) is the minimal shift such that a suffix of u = L(q) matches a prefix
of some P ^ G P .

The last function d^[a, k] is computed for each character a of the alphabet
for positions 0 < k < £max. It is the minimal shift such that a read at
position pos — k matches another character of some p7 G P.

For a visual idea of what these three functions do, the reader may refer
to Figures 2.8, 2.9, and 2.10 of Chapter 2, where the three corresponding
functions of the Boyer-Moore algorithm are shown.

We combine these three functions to compute a shift. Suppose that we
read backwards k characters of the text from a position pos and this led to

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

56 Multiple string matching

state q. The shift s[q,pos,k] is then computed with the following formula:

s[q,pos, k] = min

The formula is the direct extension of the computation of the window
shifts in the Boyer-Moore algorithm. As d% < imin, the longest shift
is bounded by imin, which is a necessary condition to avoid skipping an
occurrence when shifting the position pos.

The Commentz-Walter algorithm is worst-case time O(n x imax) but
sublinear on average if the number of patterns is not too large. The com-
putation of the three functions d\, d2, and d% can be done in O(|.P|) time.

3.3.2 Set Horspool algorithm

The Horspool algorithm, similarly to Boyer-Moore, is directly extensible
to a set of patterns. The new algorithm, which we call Set Horspool, can
also be considered as a simplification of Commentz-Walter.

Text

Reverse trie of the patterns

a Illll l l l l l l l l
Suffix search New search position

P]

Safe shift

no β in this part

Fig. 3.13. Horspool algorithm for a set of patterns. The set is shifted according
to the last character of the search window.

The general scheme is shown in Figure 3.13. We start reading the text
backwards from a position pos initialized to Imin to avoid skipping any
occurrence. We read these characters in the trie built on the reverse patterns.
If we reach a terminal state, we mark an occurrence. When we fail reading
the text, we shift the position pos using the first character read (/3 in the
figure). We shift until (5 is aligned with another (5 in the trie. If such a (5
does not exist, we simply shift by £min characters.

The Set Horspool algorithm is O(n x (.max) time in the worst case. In

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.3 Suffix based approach 57

Set
1.
2.

3.
4.

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Horspool (P = {p\p2, . . . ,pr}, T = ht2...tn)
Preprocessing

HO <r- Trie(Prv = {(p1)™,. . . , (pr)rv})
6HO is its transition function

For c G E Do d[c] «— £min
For j ' e 1 . . . r Do

For k G 1 . . . m3• - 1 Do d\p3
k] <r- min(d[pJ

A,], rrij - k)
End of for

Searching
pos <— £min

While pos < n Do
j <— 0, Current <— initial s ta te of HO
While pos — j > 0 AND SHo{tpOs-j, Current) ^ 9 Do

If Current is terminal Then
Mark all the occurrences (F(Current),pos)

End of if
Current <— Siio(tpos-j, Current)

End of while
pos <— pos + d[tpos]

End of while

Fig. 3.14. Horspool algorithm for a set of patterns. The shift is obtained with the
first character tpos read.

general, it is only efficient for a very small number of patterns on a relatively
large alphabet.

Example using English We search for the set P = {announce, annual,
annually} in the text "CPM_annual_conf erence_announce". The trie of the
reverse patterns is shown in Figure 3.15

(T) -^^C£) -^^Cl) -^^@ -^^@^^® ~s^© ^H©)
*/ ffl

#>(o) -^—(T) -*—(7) - ^ - (T) - ^ - (T T) - s - (u) - H ^)

y 3

Fig. 3.15. Trie for the reverse set of P = {announce, annual, annually}, Prv =
{ecnuonna, launna, yllaunna}. Double-circled states are terminal.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

58 Multiple string matching

train = 6,

a
1

c
1

e
6

1
1

n
2

0

4
u
2

y
6

*
6

1. CPM_a [IT] nual_conference_announce

n £ { e , l , y } , d[n] = 2

2. CPM_ann | u | al_conference_announce

u £ {e,l,y}, d[u] = 2

3. CPM_annua | j j _conference_announce

We read in the trie 1, a, u, n, n, a. We
reach the terminal state 17 and mark
an occurrence of F(17) —• annual.

We re-use the first character read,
d[±] = 1.

4. CPM_annual conference_announce

5. CPM_annual_confe [F] ence_announce

r 0 { e , l , y } , d[r] = 6

6. CPM_annual_conference_ [IT] nnounce

a 0 { e , l , y } , d[a] = 1

7. CPM_annual_conference_a | n | nounce

n 0 { e , l , y } , d[n] = 2

8. CPM_annual_conference_ann QT] unce

o 0 { e , l , y } , d [o]=4

9. CPM_annual_conference_announc | e |

We read in the trie e, c, n, u, o, n,
n, a. We reach the terminal state 21
and mark an occurrence of F(21) —>•
announce.

Example using D N A We search for the set of strings P = {ATATATA,
TATAT, ACGATAT} in the text AGATACGATATATAC. The trie of the reverse
patterns is shown in Figure 3.16

~)^-CD-±-

c /rr\ A 15

T /—\ A f~~-
-L— (6) »(8

{2}

Fig. 3.16. Trie for the reverse set of P = {ATATATA, TATAT, ACGATAT}, Prv

{ATATATA, TATAT, TATAGCA}. Double-circled states are terminal.

train = 5,

6 =

1. AGAT

2. AGATA GATATATAC

A
1

C
5

G
4

T
1

*
5

CGATATATAC

We read in the trie A, T, A, and we fail
on the next G. We re-use the last char-
acter of the window, d[k] = 1.

C 0 { A , T } , d[C] = 5.

3. AGATACGATA | T | ATAC

We read in the trie T, A, T, A, G, C, A. We
reach the terminal state 15 and mark
an occurrence of F(15) ->• ACGATAT.

We re-use the last character of the win-
dow, d[T] = 1.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.3 Suffix based approach 59

4. AGATACGATAT \k\ TAC 6. AGATACGATATAT \k\ C

We read in the trie A, T, A, T, A, and we We read in the trie A, T, A, T, A, T, A. We
fail on the next G. reach the terminal state 14 and mark

an occurrence of F(14) ->• ATATATA.
We re-use the first character read,
d[k] = 1. We re-use the first character read,

d[k] = 1.
5. AGATACGATATA | T | AC

We read in the trie T, A, T, A, T. We 7- AGATACGATATATA [c]
reach the terminal state 11 and mark c 0 {A,T}, d[C] = 5. Then pos > n and
an occurrence of F (l l) ->• TATAT. w e stop the search.

We re-use the first character read,
d[T] = 1.

3.3.3 Wu-Manber algorithm

The poor performance of the extension of Horspool to search a set of
patterns is a direct consequence of the fact that the lengths of the shifts are
usually decreasing, due to the high probability of finding each character of
the alphabet in one of the strings.

The algorithm of Wu and Manber [WM94] bypasses this obstacle by read-
ing blocks of characters, which reduces the probability that each block ap-
pears in one of the patterns. We consider blocks of length B. The difficulty
is that there could be |E|B different blocks, requiring too much memory if
B becomes large.

Wu and Manber overcome this problem by hashing all the possible blocks
using a function h\ into a limited size table SHIFT. Two blocks B\ and B2
can be associated with the same position in SHIFT. If we consider that for
each new position we are reading a block Bl instead of the last character of
the Horspool algorithm, then the shift given by Bl, SHIFT(hi(Bl)), must
be safe. To guarantee this, we save in SHIFT(j) the minimum of the shifts
of the blocks Bl such that j = hi(Bl). More precisely, the table SHIFT is
built in the following way:

• If a block Bl does not appear in any string of P, we can safely shift
£min — B + 1 characters to the right. Hence we initialize the table by
placing £min — B + 1 everywhere.

• If Bl appears in one of the strings of P, we find its rightmost occurrence
ending in j in a string p%, and set the value of SHIFT{h\(Bl)) to rrii — j .
To compute all the values of the table SHIFT, we consider separately each
p% = p\ .. .p%

mr For each block B = plj_B+1• • -p\, we find its correspond-
ing cell hi{B) in SHIFT, and we place in SHIFT{hi{B)) the minimum
between the previous value and rrii — j .

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

60 Multiple string matching

Wu-Manber(P = {p\p2,
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Preprocessing
Computation of
Construction of

Searching
pos —̂ imin
While pos < n

i <- hi(tpos

If SHIFT[i
list <r~
Verify
pos Jr-

Else pos <f-
End of if

End of while

. . . , p r } , T = tit2...tn)

: B
the hash tables SHIFT and HASH

Do
-B + l • • • tpos)
] = 0 Then
HASH[hzitpos-B+i • • -tpos)]
all the patterns in list one by one against the text
pos+1
- pos + SHIFT\i]

Fig. 3.17. Wu-Manber algorithm for searching a set of strings.

The size B varies with Imin, with the number of patterns, and with the
size of the alphabet. Wu and Manber show that the value B = logisi(2 x
imin x r) yields the best experimental results. The size of the table SHIFT
can also vary with the memory space available.

We can shift the search position along the text as long as the value of
the shift is strictly positive. When the shift is zero, the text to the left of
the search position may be one of the pattern strings. In this case Wu and
Manber use a new hash table HASH. Each position HASH(j) contains a list
of all the strings whose last block is hashed to j by a second hash function
/i2- This table permits us to select from P a subset of strings whose last
block maps the block Bl read in the text.

For the search, similarly to the Set Horspool algorithm, we slide a
position pos along the text, reading backwards a block Bl of B charac-
ters. The position pos is initialized to imin. If j = SHIFT(h\(Bl)) > 0,
then we shift the window to pos + j and continue the search. Otherwise,
SHIFT(h\(Bl)) = 0 and we select a set of strings using HASH that we
compare to the text. Pseudo-code is given in Figure 3.17.

The original description of the algorithm [WM94] is quite fuzzy. Nothing
is given in the article that permits you to calculate the best size of the
tables SHIFT and HASH. Likewise, the hash functions are not specified.
All these parameters affect the complexity. In practice, well parametrized,
this algorithm is very fast. It is implemented in Agrep (Section 7.1.2).

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.3 Suffix based approach 61

We now present our two running examples. The Wu-Manber algorithm
uses many hash functions and tables that are difficult to represent. We have
chosen some that do not correspond to a real example, but permit us to
show the interesting cases. We let B = 2 in the following tables.

Example using English We search for the set P = {announce, annual,
annually} in the text "CPM_annual_conf erence_announce".

string
shift

11
1

no ou
3

an
4

un nc
1

ua al
0

i y
0

nn nu
2

ce

0
*
5

HASH[Bl] =
string
string number in P

ce ly
3,1

ua al
2

*

0

6. CPM_annual_conferenc | e_ | announce
SHIFT[e.] = 5.

7. CPM_annual_conf erence_ann | ou | nee
SHIFT[ou] = 3.

8. CPM_annual_conference_announ | ce |
SHIFT[ce] = 0. L = HASH[ce] =
{3,1}.

We compare p1 and ps against the text.
The test succeeds for the string p1.
Hence, we mark its occurrence.

1. CPM_ |an | nual_conference_announce
SHIFT\an] = 4.

2. CPM_annu | a l | _conference_announce
SHIFTS] = 0. L = iL4S#[al] = {2}.

We compare p2 against the text and
mark its occurrence. We then shift the
search position by 1.

3. CPM_annua | 1_ | conference_announce
SHIFT[1.] = 5.

4. CPM_annual_con | f e | rence_announce
SHIFT[fe] = 5.

5. CPM_annual_conf eren | ce | .announce
SHIFT[ce] = 0. L = HASH[ce] =
{3,1}.

We compare p1 and ps against the text.
No string matches. We shift the search
position by 1.

E x a m p l e using D N A We search the set of strings P = {ATATATA, TATAT,

ACGATAT} in the text AGATACGATATATAC.

HASH[Bl] =

string
shift

GA TA
0

AT
0

string
string number inYP

CG GA
3

TA
1

AT
2,

AC
4

3
*

0

*
4

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

62 Multiple string matching

1. AGA IjTAj CGATATATAC
SHIFT[Tk] = 0. L = HASH[Tk] = {1}.

We compare p1 against the text. The
test fails. We shift the search position
by 1.

2. AGAT [AC] GATATATAC
SHIFT[kC] = 4.

3. AGATACGA [rA~] TATAC

SHIFT[Tk] = 0. L = HASH[Tk] = {1}.

We compare p1 against the text. The
test fails. We shift the search position
by 1.

4. AGATACGAT [AT] ATAC
SHIFT[k7] = 0. L = HASH[kT] =
{2,3}.

We compare p2 and p 3 against the text.
The string p3 matches. We mark its oc-
currence. We shift the search position
by 1.

5. AGATACGATA [TA] TAC
SHIFT[Tk] = 0. L = HASH[1k] = {1}.

We compare p1 against the text. The
test fails. We shift the search position
by 1.

6. AGATACGATAT _kTJ AC
SHIF1\kT] = 0. L = HASH[kT] =
{2,3}.

We compare p2 and p 3 against the text.
The string p2 matches. We mark its oc-
currence. We shift the search position
by 1.

7. AGATACGATATA [TA] C
SHIFT[Tk] = 0. L = HASH[Tk] = {1}.

We compare p1 against the tex t . The
str ing p1 matches . We mark its occur-
rence. We shift t he search position by
1.

8. AGATACGATATAT [~Ac]

SHIFT[kC] = 4.

3.4 Factor based approach

The general factor based approach can be extended directly to a set of
strings. We search backwards for the longest suffix u of the text that is also
a factor of one of the strings in P. If we fail on a letter a, then au is not a
factor in any of the strings; thus no string of P can overlap au.

There are, however, two technical difficulties to overcome. The first prob-
lem is to shift the set of patterns safely to avoid skipping an occurrence; the
second difficulty is to recognize the factors of a set of strings.

The first two factor based algorithms were the Dawg-Match [CCG+93,
CCG+99] and the MultiBDM [CR94, Raf97]. They were developed with
the aim of obtaining fast algorithms on average with good worst-case com-
plexity. Indeed, they are all worst-case linear in the size of the text. But
they are inherently complicated, and in practice their performance is poor.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 63

As we aim to present the simplest and most efficient algorithms, we will not
describe these two.

The two algorithms left that use the factor based approach are Set Back-
ward Dawg Matching (SBDM) and Set Backward Oracle Matching
(SBOM) [AR99]. They extend BDM and BOM, respectively (Chapter 2).
We present the SBDM idea, on which SBOM is based.

Bit-parallelism is only valuable for a small set of strings. However, sim-
ilarly to the Multiple Shift-And (Section 3.2.1), it permits efficient ex-
tended string matching (Chapter 4) and also approximate matching (Chap-
ter 6). We present it first.

3.4-1 Multiple BNDM algorithm
The use of bit-parallelism to search a set of strings P = {p1 , . . . ,p r} is
efficient for sets such that r x imin fits in a few computer words [NROO].
For simplicity we assume below that r x imin < w.

To perform longer shifts, we keep only the prefixes of size imin of the
patterns. If we match a prefix, we directly verify the entire string against
the text.

preflmin (p4) Prefim (p^) Pre^lmin'-P2-' preflmin (p1)

computer word *

Fig. 3.18. Multiple BNDM algorithm. The total r x imin has to fit in w. The
notation prefemin(p

l) denotes the prefix of size imin of pl.

The prefixes arc packed together as in Figure 3.18 and the search is similar
to B N D M (Section 2.4.2), with the search performed for all the prefixes
at the same time. The only difference is that we need to clear some bits
after a shift. The mask CL in Figure 3.19 does that. It prevents the bits
used to search for pl from interfering with those used for pl+l. The variable
last is still used, but in this case it represents the position where a prefix of
one of the strings begins. Pseudo-code of the whole algorithm is shown in
Figure 3.19.

Example using English We search the text "CPM_annual_conf erence_an-
nounce" for the set of strings P = {announce, annual, annually}.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

64 Multiple string matching

Multiple BNDM (p = Plp2 .. .p
1. Preprocessing

2. For c e S Do B[c]
3. £<-0
4. For A; G 1 . . . r D o
5 /̂ J. V I v nm i in

6. F o r j el...
7. End of for

= tit2...tn)

• 0 | p |

Do <-

9.
10.
11.
12.
13.
14.

15.
16.
17.

18.
19.
20.
21.

22.
23.
24.
25.
26.
27.
28.
29.

Searching
pos —̂ 0
While pos < n — m Do

j <r- £min, last —̂ £min

While > / 0 |p | Do
• D & B[tpos+j]

If D & DF / 0 |p | Then
If j > 0 Then /ast ^- j
Else /* at least one prefix matches */

Check which prefixes of length £min match
p1 needs to be checked if

Verify the corresponding string(s) against the text
Report the occurrence(s) at pos + 1

End of if
End of if
D 4r- (D « 1) & CL /* Shifting and cleaning */

End of while
pos —̂ pos + last

End of while

Fig. 3.19. Bit-parallel code for the Multiple BNDM algorithm.

B- \

a
1
n
0

u
*

100010100010100000
00000100000 1000000
011000011000011001
000000000000000 100
000 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DF = 100000100000100000
CL = 111110 111110 111110

111111111111111111
B[n] 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1
D = 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1

110000110000 110010
ff [a] 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
D= 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

D & DF / 0 | p | and j > 0, then
last«— 4

|CPM_an | nual_conference_announce

last <- 6.
D <- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£[_] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£>= 0 00 00 000 00 00 0 0 0 0 0 0

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 65

2. CPM_ | annual | _conference_announce
last<- 6.
D 4r- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4. CPM_annual_conf e| renceT]announce
/as* «- 6.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ff [l] 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
£> = 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
B[a\ 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0
D = 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
B[u] 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0
D= 00 0 100000 100 0000 00

00 1000001000000000
B[n] 011000011000011001
D= 00 1000001000000000

0 100000 10000000000
B[n] 011000011000011001
D= 010000010000000000

100000100000000000
ff [a] 100010100010100000
D= 10 00 00 100000 0000 00

D & DF / 0 | p | and j = 0, so we check
the patterns "annual" and "annually"
against the text and mark the occur-
rence of "annual".

3. CPM_annual _confe rence_announce
last <- 6.
D <- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

111111111111111111
ff [e] 000000000000000000
£>= 000000000000000000

111111111111111111
B[.] 000000000000000000
D= 0 00 00 000 00 00 00000 0

5. CPM_annual_conference_ | announ] ce

last <- 6.

111111111111111111
B[n] 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1

~ D ^ 011000011000011001

110000110000110010
B[u] 000100000100000010
D= 000000000000000010

000000000000000100
B[o] 000000000000000100
D= 000000000000000 100

000000000000001000
B[n] 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 1

~ D ^ 00000000000000 1000

000000000000010000
B[n] 011000011000011001
D= 000000000000010000

000000000000 100000
B[*] 100010100010100000
D= 0 00 00 000 00 00 10000 0

D & DF / 0 | p | and j = 0, so we check
the string "announce" against the text
and mark its occurrence.

The next shift of the search window
gives pos > n — Imin and the search
stops.

Example using D N A We search for the set of strings P = {ATATATA,
TATAT, ACGATAT} in the text AGATACGATATATAC.

B =

A
C
G
T

101010101010010
00000000000 1000
000000000000 100
010101010100001
000000000000000

DF = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
CL = 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

66 Multiple string matching

1. |AGATA | CGATATATAC

last <r- 5.

3 . AGAT | ACGAT | ATATAC
last<- 5.

111111111111111
B[k] 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

~~D^ 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

D & DF / 0 | p | and j > 0, then
last <- 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B[T] 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1

~~D^ 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1

D & DF / 0 | p | and j > 0, then
last<- 4

010101010000 100
B[T] 010101010100001
D= 010101010000000

D & DF / 0 | p | and j > 0, then
/as*«— 3

10 1000100000000
ff [A] 101010101010010

~ D ^ 10 1000100000000

D & DF
/as* <- 2

0 | p | and j > 0, then

010001000000000
000000000000100

D= 000000000000000

10100010 1000010
B[k] 101010101010010
D= 101000101000010

D & DF / 0 | p | and j > 0, then
last <- 3

01000 1010000 100
B[G] 000000000000100
D= 000000000000 100

000000000001000
B[C] 000000000001000
D= 000000000001000

0000000000 10000
B[k] 101010101010010
D= 0000000000 10000

D & DF / 0 | p | and j = 0, so we check
the pattern ACGATAT against the text
and mark its occurrence.

2. AG | ATACG | ATATATAC

last ̂ — 5.

111111111111111
B[G] 000000000000100
D= 000000000000 100

000000000001000
B[C] 000000000001000
D= 00000000000 1000

0000000000 10000
B[k] 101010101010010
D= 0000000000 10000

D & DF / 0 | p | and j > 0, then
last <- 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B[T] 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
D= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4. AGATACG | ATATA | TAC

last —̂ 5.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B[k] 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

~ D ^ 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

D & DF / 0 | p | and j > 0, then
last«— 4

010101010000 100
B[T] 010101010100001
D= 010101010000000

D & DF / 0 | p | and j > 0, then
last <- 3

101000100000000
B[k] 101010101010010

~ D ^ 101000100000000

D & DF / 0 | p | and j > 0, then

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 67

last <- 2

010001000000000
B[T] 010101010100001
D= 010001000000000

D & DF / 0 | p | and j > 0, then
last <- 1

100000000000000
ff [A] 101010101010010

~~D^ 100000000000000

D kDF / 0 | p | and j = 0, so we check
the string ATATATA against the text and
mark its occurrence.

5. AGATACGA |TATAT | AC

last<- 5.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B[T] 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1
D = 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1

D & DF / 0 | p | and j > 0, then
last <- 4

10 1000101000010
B[k] 101010101010010
D= 101000101000010

D & DF / 0 | p | and j > 0, then
last ^- 3

010001010000100
B[T] 010101010100001
D= 010001010000000

D & DF / 0 | p | and j > 0, then
last <- 2

100000100000000
B[k] 101010101010010
D= 100000100000000

D & DF / 0 | p | and j > 0, then
last <- 1

00000 1000000000
B[T] 010101010100001
L>= 000001000000000

D kDF / 0 | p | and jf = 0, so we check
the string TATAT against the text and
mark its occurrence.

6. AGATACGAT |ATATA | C
last <- 5.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
B[k] 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0
D= 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0

D & DF / 0 | p | and j > 0, then
last —̂ 4

010101010000 100
B[T] 010101010100001
D= 010101010000000

/ 0 | p | and j > 0, thenD ,
last

DF
-3

101000100000000
B[k] 101010101010010
D= 101000100000000

D &
last*

DF
-2

/ 0 | p | and j > 0, then

010001000000000
B[T] 010101010100001
D = 010001000000000

D & DF / 0 | p | and j > 0, then
last <- 1

100000000000000
B[k] 101010101010010

~~D^ 100000000000000

D & DF / 0 | p | and j = 0, so we check
the string ATATATA against the text,
but we fail to recognize an occurrence.

7. AGATACGATA |TATAC |
last <- 5.

111111111111111
B[C] 000000000001000
D= 000000000001000

0000000000 10000
B[k] 101010101010010
D= 0000000000 10000

D &
last*

DF
-3

/ 0 | p | and j > 0, then

000000000000000
B[T] 010101010100001
D= 000000000000000

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

68 Multiple string matching

3.4-2 Set Backward Dawg Matching idea
The SBDM algorithm uses a suffix automaton to recognize backwards the
factors in a window of size train that is shifted along the text.

3.4-2.1 Suffix automaton for a set of strings

The suffix automaton for a set of strings [BBE+87] is an automaton that
recognizes the suffixes of the set of strings P it is built on. Let 7 be the
number of states of the trie built on P (7 < \P\ + 1). Then the number of
states of the suffix automaton is at least 7 and at most 27. It is also 0(7)
in its number of transitions.

The construction algorithm is an extension of the construction for a single
string (Section 2.4.1), but this time the resulting automaton is not neces-
sarily minimal. The construction is linear in the size of P, but it is complex
and slow.

3.4-2.2 Search algorithm

The suffix automaton is built in O(r x Irnin) time on P[^in, the set of
reverse prefixes of length imin of the strings in P [BBE+87]. The search is
done through a window of size imin, which we slide along the text. In this
window, we read backwards the longest suffix that is also a factor of one of
the prefixes of length irnin of the strings in P. Two cases may occur.

(i) We fail to recognize a factor, that is, we reach a letter a that does not
correspond to a transition in the suffix automaton of P\^n- No other
prefix of a string can overlap the part of the window read. We there-
fore shift the window so that its new starting position corresponds to
the position next to a.

(ii) We reach the beginning of the window in a state q of the suffix au-
tomaton. This means that we recognized a prefix L(q) of a string in
F(q) (Section 3.1). We then verify a possible occurrence by compar-
ing each string in F(q) against the text. We finally move the search
window by 1 and start the search again.

The worst-case complexity of SBDM is O(n x \P\), which is very high.
However, for reasonable numbers of strings on a not too small alphabet, this
algorithm is sublinear on average. The practical limit of this algorithm is
the construction of the suffix automaton. For large sets of strings, it is too
slow to be amortized by the time saved on the search phase. Moreover, the
memory the suffix automaton requires quickly becomes too large as the set
increases. We do not describe this algorithm in depth, nor give a pseudo-
code, because SBOM uses the same approach but overcomes the bottleneck

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 69

of the suffix automaton with a lighter and simpler data structure. SBOM
is faster than SBDM in all cases.

Note that the algorithm can be improved using the variable last, as was
done for B D M (Section 2.4.1).

3.4-3 Set Backward Oracle Matching algorithm

The Set Backward Oracle Matching algorithm (SBOM) [AR99] uses
a factor oracle of the set of strings. The factor oracle of P recognizes at
least all the factors of the strings in P. The search algorithm is similar to
SDBM. We slide a window of size train along the text, reading backward
a suffix of the window in the factor oracle. If we fail on a letter u, we can
safely shift the window past a. If not, we reach the beginning of the window
and verify a subset of P against the text.

3.4-3.1 Factor oracle of a set of strings

The factor oracle construction on a set of strings resembles the Aho-Corasick
automaton construction. The only difference appears when going down the
supply path looking for an outgoing transition labeled by a. In the Aho-
Corasick automaton construction, if this transition does not exist, we just
jump to the next state on the supply path (Section 3.2.2). In the factor
oracle construction, we create in addition a transition labeled by a from
each state on the supply path to the state where the original transition
leads.

More precisely, we begin by building the trie of the set of strings P with
the algorithm given in Figure 3.6. The states of the factor oracle are those
of the trie as well as the initial state I and the terminal states. Hence, the
factor oracle has at most |P| + 1 states, including the initial one.

To build the "external transitions," which are at most \P\, we associate
to each state q a "supply state," computed simultaneously with the new
transitions in transversal order. The supply state of the initial state is set
to 9.

To explain the construction, we assume that we have already computed
the supply function of all the states before state Current in transversal order.
We consider the parent Parent of Current in the trie, leading to Current by
a, that is, Current = 8oR{Parent}a). The supply state Soii{Parent) has
already been computed, and we go down the supply function from state
Son{Parent). We use a variable Down initialized to Son(Parent) and we
repeat the following steps.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

70 Multiple string matching

If Down = 0, then SOR(Current) <- / .

ST2 If Down ^ 6 and there does not exist a transition from Down labeled by

a, then build a transition from state Down to state Current by a and

return to step ST\ with Down <— SoR(Down).

ST3 If Down ^ 6 and there exists a transition from Down labeled by a leading

to a state Tra, then set SoR(Current) «— Im and stop processing state

Current.

The resulting factor automaton recognizes at least all factors of P [AR99].
The construction algorithm is worst-case time O(|P |) . Its pseudo-code is
given in Figure 3.20.

Build_Oracle_Multiple(P = {p\p2 , . . . ,pr})
1. ORJrie <- Trie(P)

5OR is its transition function
2. Mark the states that correspond to an entire string pl as terminal
3. I <- root of OR-trie
4. SOR(I) <r- 0
5. For Current in transversal order Do
6. Parent —̂ parent in OR-trie of Current
7. a <r- label of the transition from Parent to Current
8. Down —̂ SoR(Pdrent)
9. While Down / 6 AND 80R{Down, a) = 6 Do
10. 5oR(Down,a) —̂ Current
11. £ W n «— SoR(Down)
12. End of while
13. If £>own / (9 Then
14. SoR(Current) «— 5oR(Down,a)
15. Else SoR(Current) <- I
16. End of if
17. End of for

Fig. 3.20. Construction of the factor oracle for a set P = {p1,/?2,... ,pr}. The
state Current goes through the trie OR-trie built on P in transversal order. The
state Down goes down the supply links from the parent of Current looking for an
outgoing transition labeled with the same character as between Current and its
parent, creating it if it does not exist.

3.4-3.2 Search with the factor oracle

The factor oracle is built in O(r x Imin) time on the reverse prefixes of
length Imin of the strings in P. The search is done through a window of
size Imin, which we slide along the text. In this window, we read backwards
the longest suffix that labels a path from the initial state. Two cases may
occur.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 71

(i) We fail to recognize a factor, that is, we reach a letter a that does
not correspond to a transition in the factor oracle of P^in' N° other
prefix of a string can overlap the part of the window read. We there-
fore shift the window so that its new starting position corresponds to
the position next to a.

(ii) We reach the beginning of the window in a state q of the factor oracle.
When using a suffix automaton in SBDM, we can be sure at this step
that we recognized a prefix of one of the strings. However, the factor
oracle accepts paths of size Imin ending in terminal states that do
not correspond to any prefix. Hence, we have to verify first that we
read the prefix L(q)rv and only if this is the case we verify a possible
occurrence by comparing each string in F(q) against the text. We
finally move the search window by 1 and start the search again.

S B O M (P = {p\p\ . . . , p r } , T = t!t2 ...tn)
1. Preprocessing
2. imin —̂ minimal length of strings in p1 G P
3. Or <

5or is its transition function
4. For q state of Or Do F(q) <- 0
5. For i G 1 . . . r Do
6. F(q) —̂ F(q) U {z}, where q is the state reached by prefirnin(p

l)rv

7. End of for
8. Searching
9. pos «— 0
10. While pos < n — imin Do
11. Current «— initial state of Or
12. j <r- imin
13. While j > 1 AND Current / 6 Do
14. Current ^ 5<jr(Current, tpos+j)
15. j ^ j - l
16. End of while
17. If Current / 9 AND j = 0 AND Tpos+i...pos+irnin = L(Current)rv Then
18. Verify all the patterns in F(Current) one by one against the text
19. j <- 1
20. End of if
21. pos —̂ pos -\-j
22. End of while

Fig. 3.21. Pseudo-code for the SBOM algorithm. The notation prefimin(p
l) de-

notes the prefix of size Imin of the string pl.

Pseudo-code for SBOM is given Figure 3.21. Its worst-case complexity
is O(n x |P|), the same as SBDM. However, this algorithm is sublinear

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

72 Multiple string matching

on average. The construction of the factor oracle is fast and requires little
memory, which permits using this algorithm to search large sets of strings
on relatively small texts.

Fig. 3.22. Factor oracle for the reverse set of
circled states are terminal.

in = {announ, annual}. Double-

Example using English We search the text "CPM_annual_conf erence_an-
nounce" for the set of strings P = {announce, annual, annually}. The
factor oracle of the reverse set of Ptmin = {announ, annual} is shown in
Figure 3.22.

nual_conference_announce

We read n, a in the factor oracle. We
fail on the next _. We then shift the
window after "_".

5. CPM_annual_confer

We read a in the oracle, but we fail
on the next letter "_".
window after "_".

We shift the

2. CPM_ annual _conference_announce

We read 1, a, u, n, n, a in the fac-
tor oracle. We reach the beginning of
the window in state 11. We compare
the strings -F(ll) —> annual, annually.
We mark an occurrence of "annual".
We then shift the window by 1.

6. CPM_annual_conference_

We read n, u, o, n, n, a in the factor
oracle. We reach the beginning of the
window in state 12. We compare the
strings -F(12) —> announce. We mark
an occurrence of "announce". We then
shift the window by 1.

3. CPM_a conference_announce

We fail reading "_" in the oracle. We
shift the window after "_".

ence_announce4. CPM_annual_

We fail reading r in the oracle. We shift
the window after r.

7. CPM_annual_conferencea_

We fail reading c in the oracle. We
shift the window after c. Then pos
> n — Imin and the search stops.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.4 Factor based approach 73

E x a m p l e using D N A We search for the set of strings P = {ATATATA,

TATAT, ACGATAT} in the text AGATACGATATATAC. The factor oracle for the

reverse set of P£min = {ATATA, TATAT, ACGAT} is shown in Figure 3.23.

Fig. 3.23. Factor oracle for the reverse set of Pemin = {ATATA, TATAT, ACGAT}.
Double-circled states are terminal.

CGATATATAC 5. AGATACG TAC

We read A, T, A in the factor oracle, and
we fail on the next G. We then shift t he
window after G.

We read A, T, A, T, A in t he factor or-
acle. We reach t he beginning of t he
window in s ta te 11. We compare t he
string F (l l) ->• ATATATA. We mark an
occurrence and shift the window by 1.

ATATATAC 6. AGATACGA

We read G, C, A in the factor oracle, and
we fail on the next T. We then shift t he
window after T.

We read T, A, T, A, T in t he factor or-
acle. We reach t he beginning of t he
window in s ta te 13. We compare t he
string F(13) ->• TATAT. We mark an
occurrence and shift the window by 1.

3. AGAT ACGAT ATATAC 7. AGATACGAT

We read T, A, G, C, A in t he factor or-
acle. We reach the beginning of t he
window in s ta te 12. We compare t he
strings F(12) —> ACGATAT. We mark an
occurrence and shift the window by 1.

We read A, T, A, T, A in t he factor or-
acle. We reach t he beginning of t he
window in state 11. We compare the
string F (l l) ->• ATATATA and fail. We
shift the window by 1.

4. AGATA TATAC AGATACGATA

We read A, T, A in the factor oracle, and
we fail on the next G. We then shift the
window after G.

We read C, A in the factor oracle and fail
on the next T. We shift the window and
the search stops since pos > n — £min.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

74 Multiple string matching

3.5 Experimental maps
We present in this section some maps of efficiency for the different multiple
string matching algorithms, showing for all of them the zone in which they
are most efficient in practice. The text of 10 megabytes is randomly built,
as are the patterns. The experiments were performed on a w = 32 bits
Ultra Sparc 1 running SunOs 5.6. The sets contain 5, 10, 100, and 1000
strings of the same length, varying from 5 to 100 in steps of 5. We tested
all the algorithms presented. The Wu-Manber algorithm used in these
experiments is the implementation found in Agrep. Its performance may
vary, depending on the hash functions and the sizes of the tables used.

English 16

I I I I I I
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 lmin

Fig. 3.24. Map of the most efficient algorithms when searching for 5 strings.

The maps are shown in Figures 3.24 to 3.27. The most efficient algo-
rithms are just Wu-Manber, the advanced Aho-Corasick, and SBOM.
As the set grows in size, SBOM becomes more and more attractive. The
advanced Aho-Corasick also improves in comparison with the others for
short strings, since it reads the text only once.

3.6 Other algorithms and references
Dynamic multiple string matching The algorithms presented in this
chapter preprocess a fixed set of strings (a dictionary) in order to perform
the search. However, if we need to modify the dictionary by adding or
removing a string, we need to preprocess the new dictionary from scratch.
The problem of searching for a set of strings in a text and allowing efficient
modifications of the set is called dynamic string matching. It has been solved

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

3.6 Other algorithms and references 75

English 16

I I I
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 lmin

Fig. 3.25. Map of the most efficient algorithms when searching for 10 strings.

English 16

I I I I I I
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 bran

Fig. 3.26. Map of the most efficient algorithms when searching for 100 strings.

recently [SV96] with optimal worst-case complexities: (i) preprocessing of
the set of strings in O(|P|) time; (ii) adding or removing a string p in O(|p|)
time; and (iii) finding all occurrences of P in the text in O(n + nocc) time,
where nocc is the number of occurrences of P in the text.

An application of dynamic string matching is in the matching of a set of
strings with variable length "don't cares" [KR95].

On the Commentz-Walter algorithm Several variations of the Com-
mentz-Walter algorithm have been designed to limit its worst-case com-

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

76 Multiple string matching

English 16

I I I
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 lmin

Fig. 3.27. Map of the most efficient algorithms when searching for 1000 strings.

plexity [Sri86] by using additional memory. These algorithms are, however,
not efficient in practice.

On matching a set of strings on unbounded alphabets The prob-
lem of matching a set of strings of the same length m on an unbounded
alphabet has been investigated [Bre95]. The resulting algorithm runs in
0((log(|P|)/m + 1) x n) comparisons after an O(|P| x m x log \A\) prepro-
cessing time, where A is the alphabet on which the set P is built.

https://doi.org/10.1017/CBO9781316135228.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781316135228.003

