
CHAPTER 2

Binary classification and related tasks

I
N THIS CHAPTER and the next we take a bird’s-eye view of the wide range of different

tasks that can be solved with machine learning techniques. ‘Task’ here refers to what-

ever it is that machine learning is intended to improve performance of (recall the def-

inition of machine learning on p.3), for example, e-mail spam recognition. Since this

is a classification task, we need to learn an appropriate classifier from training data.

Many different types of classifiers exist: linear classifiers, Bayesian classifiers, distance-

based classifiers, to name a few. We will refer to these different types as models; they

are the subject of Chapters 4–9. Classification is just one of a range of possible tasks

for which we can learn a model: other tasks that will pass the review in this chapter

are class probability estimation and ranking. In the next chapter we will discuss re-

gression, clustering and descriptive modelling. For each of these tasks we will discuss

what it is, what variants exist, how performance at the task could be assessed, and how

it relates to other tasks. We will start with some general notation that is used in this

chapter and throughout the book (see Background 2.1 for the relevant mathematical

concepts).

The objects of interest in machine learning are usually referred to as instances. The

set of all possible instances is called the instance space, denoted X in this book. To

illustrate, X could be the set of all possible e-mails that can be written using the Latin
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50 2. Binary classification and related tasks

alphabet.1 We furthermore distinguish between the label space L and the output space

Y . The label space is used in supervised learning to label the examples. In order to

achieve the task under consideration we need a model: a mapping from the instance

space to the output space. For instance, in classification the output space is a set of

classes, while in regression it is the set of real numbers. In order to learn such a model

we require a training set Tr of labelled instances (x, l (x)), also called examples, where

l : X →L is a labelling function.

Based on this terminology and notation, and concentrating on supervised learning

of predictive models for the duration of the chapter, Table 2.1 distinguishes a number

of specific scenarios. The most commonly encountered machine learning scenario is

where the label space coincides with the output space. That is, Y = L and we are

trying to learn an approximation l̂ : X →L to the true labelling function l , which is

only known through the labels it assigned to the training data. This scenario covers

both classification and regression. In cases where the label space and the output space

differ, this usually serves the purpose of learning a model that outputs more than just

a label – for instance, a score for each possible label. In this case we have Y =Rk , with

k = |L | the number of labels.

Matters may be complicated by noise, which can take the form of label noise – in-

stead of l = l (x) we observe some corrupted label l ′ – or instance noise – instead of x

we observe an instance x ′ that is corrupted in some way. One consequence of noisy

data is that it is generally not advisable to try to match the training data exactly, as

this may lead to overfitting the noise. Some of the labelled data is usually set aside

for evaluating or testing a classifier, in which case it is called a test set and denoted

by Te. We use superscripts to restrict training or test set to a particular class: e.g.,

Te⊕ = {(x, l (x))|x ∈ Te, l (x) = ⊕} is the set of positive test examples, and Te� is the set

of negative test examples.

The simplest kind of input space arises when instances are described by a fixed

number of features, also called attributes, predictor variables, explanatory variables or

independent variables. Indicating the set of values or domain of a feature by Fi , we

then have that X =F1×F2× . . .×Fd , and thus every instance is a d-vector of feature

values. In some domains the features to use readily suggest themselves, whereas in

other domains they need to be constructed. For example, in the spam filter example

in the Prologue we constructed a large number of features, one for each word in a vo-

cabulary, counting the number of occurrences of that word in the e-mail. Even when

features are given explicitly we often want to transform them to maximise their useful-

ness for the task at hand. We will discuss this in considerable detail in Chapter 10.

1It is perhaps worth emphasising that an instance space like this is an unimaginably vast set (e.g., the set

of all possible text messages of 160 characters using only lower-case letters, spaces and full stops is 28160, a

number too large for most pocket calculators), and that only a minuscule fraction of this set carries enough

meaning to be possibly encountered in the real world.
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2. Binary classification and related tasks 51

We briefly review some important concepts from discrete mathematics. A set is a collec-

tion of objects, usually of the same kind (e.g., the set of all natural numbers N or the set of

real numbers R). We write x ∈ A if x is an element of set A, and A ⊆ B if all elements of A

are also elements of B (this includes the possibility that A and B are the same set, which

is equivalent to A ⊆ B and B ⊆ A). The intersection and union of two sets are defined as

A∩B = {x|x ∈ A and x ∈ B} and A∪B = {x|x ∈ A or x ∈ B}. The difference of two sets is

defined as A \ B = {x|x ∈ A and x 
∈ B}. It is customary to fix a universe of discourse U such

that all sets under consideration are subsets of U . The complement of a set A is defined as

A =U \ A. Two sets are disjoint if their intersection is empty: A∩B = �. The cardinality

of a set A is its number of elements and is denoted |A|. The powerset of a set A is the set

of all its subsets 2A = {B |B ⊆ A}; its cardinality is |2A | = 2|A|. The characteristic function of

a set A is the function f : U → {true, false} such that f (x)= true if x ∈ A and f (x)= false if

x ∈U \ A.

If A and B are sets, the Cartesian product A×B is the set of all pairs {(x, y)|x ∈ A and y ∈B};

this generalises to products of more than two sets. A (binary) relation is a set of pairs

R ⊆ A×B for some sets A and B ; if A =B we say the relation is over A. Instead of (x, y) ∈R

we also write xR y . A relation over A is (i) reflexive if xRx for all x ∈ A; (ii) symmetric if xR y

implies yRx for all x, y ∈ A; (iii) antisymmetric if xR y and yRx implies x = y for all x, y ∈ A;

(iv) transitive if xR y and yRz implies xRz for all x, y, z ∈ A. (v) total if xR y or yRx for all

x, y ∈ A.

A partial order is a binary relation that is reflexive, antisymmetric and transitive. For in-

stance, the subset relation ⊆ is a partial order. A total order is a binary relation that is

total (hence reflexive), antisymmetric and transitive. The ≤ relation on real numbers is

a total order. If xR y or yRx we say that x and y are comparable; otherwise they are in-

comparable. An equivalence relation is a binary relation ≡ that is reflexive, symmetric

and transitive. The equivalence class of x is [x] = {y |x ≡ y}. For example, the binary re-

lation ‘contains the same number of elements as’ over any set is an equivalence relation.

Any two equivalence classes are disjoint, and the union of all equivalence classes is the

whole set – in other words, the set of all equivalence classes forms a partition of the set.

If A1, . . . , An is a partition of a set A, i.e. A1∪ . . .∪ An = A and Ai ∩ A j =� for all i 
= j , we

write A = A1� . . .� An .

To illustrate this, let T be a feature tree, and define a relation∼T⊆X ×X such that x ∼T x′

if and only if x and x′ are assigned to the same leaf of feature tree T , then ∼T is an equiv-

alence relation, and its equivalence classes are precisely the instance space segments as-

sociated with T .

Background 2.1. Useful concepts from discrete mathematics.

The sections in this chapter are devoted to the first three scenarios in Table 2.1:
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Task Label space Output space Learning problem

Classification L =C Y =C learn an approximation ĉ :

X → C to the true labelling

function c

Scoring and

ranking

L =C Y =R|C | learn a model that outputs a

score vector over classes

Probability

estimation

L =C Y = [0,1]|C | learn a model that outputs a

probability vector over classes

Regression L =R Y =R learn an approximation f̂ :

X → R to the true labelling

function f

Table 2.1. Predictive machine learning scenarios.

classification in Section 2.1, scoring and ranking in Section 2.2 and class probability

estimation in Section 2.3. To keep things manageable we mostly restrict attention to

two-class tasks in this chapter and deal with more than two classes in Chapter 3. Re-

gression, unsupervised and descriptive learning will also be considered there.

Throughout this chapter I will illustrate key concepts by means of examples us-

ing simple models of the kind discussed in the Prologue. These models will either be

simple tree-based models, representative of grouping models, or linear models, rep-

resentative of grading models. Sometimes we will even construct models from single

features, a setting that could be described as univariate machine learning. We will start

dealing with the question of how to learn such models from Chapter 4 onwards.

2.1 Classification

Classification is the most common task in machine learning. A classifier is a mapping

ĉ : X →C , where C = {C1,C2, . . . ,Ck } is a finite and usually small set of class labels. We

will sometimes also use Ci to indicate the set of examples of that class. We use the ‘hat’

to indicate that ĉ(x) is an estimate of the true but unknown function c(x). Examples

for a classifier take the form (x,c(x)), where x ∈X is an instance and c(x) is the true

class of the instance. Learning a classifier involves constructing the function ĉ such

that it matches c as closely as possible (and not just on the training set, but ideally on

the entire instance space X ).

In the simplest case we have only two classes which are usually referred to as pos-

itive and negative, ⊕and �, or +1 and −1. Two-class classification is often called bi-

nary classification (or concept learning, if the positive class can be meaningfully called
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Figure 2.1. (left) A feature tree with training set class distribution in the leaves. (right) A decision

tree obtained using the majority class decision rule.

a concept). Spam e-mail filtering is a good example of binary classification, in which

spam is conventionally taken as the positive class, and ham as the negative class (clearly,

positive here doesn’t mean ‘good’!). Other examples of binary classification include

medical diagnosis (the positive class here is having a particular disease) and credit card

fraud detection.

The feature tree in Figure 2.1 (left) can be turned into a classifier by labelling each

leaf with a class. The simplest way to do this is by assigning the majority class in each

leaf, resulting in the decision tree in Figure 2.1 (right). The classifier works as follows: if

an e-mail contains the word ‘Viagra’ it is classified as spam (right-most leaf); otherwise,

the occurrence of the word ‘lottery’ decides whether it gets labelled spam or ham.2

From the numbers in Figure 2.1 we can get an idea how well this classifier does. The

left-most leaf correctly predicts 40 ham e-mails but also mislabels 20 spam e-mails

that contain neither ‘Viagra’ nor ‘lottery’. The middle leaf correctly classifies 10 spam

e-mails but also erroneously labels 5 ham e-mails as spam. The ‘Viagra’ test correctly

picks out 20 spam e-mails but also 5 ham e-mails. Taken together, this means that 30

out of 50 spam e-mails are classified correctly, and 40 out of 50 ham e-mails.

Assessing classification performance

The performance of such classifiers can be summarised by means of a table known as a

contingency table or confusion matrix (Table 2.2 (left)). In this table, each row refers to

2If you are keen to know how such a decision tree can be learned from data, you may want to take a sneak

preview at Algorithm 5.1 on p.132.
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54 2. Binary classification and related tasks

actual classes as recorded in the test set, and each column to classes as predicted by the

classifier. So, for instance, the first row states that the test set contains 50 positives, 30

of which were correctly predicted and 20 incorrectly. The last column and the last row

give the marginals (i.e., column and row sums). Marginals are important because they

allow us to assess statistical significance. For instance, the contingency table in Table

2.2 (right) has the same marginals, but the classifier clearly makes a random choice as

to which predictions are positive and which are negative – as a result the distribution

of actual positives and negatives in either predicted class is the same as the overall

distribution (uniform in this case).

Predicted ⊕ Predicted �
Actual ⊕ 30 20 50

Actual � 10 40 50

40 60 100

⊕ �
⊕ 20 30 50

� 20 30 50

40 60 100

Table 2.2. (left) A two-class contingency table or confusion matrix depicting the performance

of the decision tree in Figure 2.1. Numbers on the descending diagonal indicate correct predic-

tions, while the ascending diagonal concerns prediction errors. (right) A contingency table with

the same marginals but independent rows and columns.

From a contingency table we can calculate a range of performance indicators. The

simplest of these is accuracy, which is the proportion of correctly classified test in-

stances. In the notation introduced at the beginning of this chapter, accuracy over a

test set Te is defined as

acc= 1

|Te|
∑

x∈Te
I [ĉ(x)= c(x)] (2.1)

Here, the function I [·] denotes the indicator function, which is 1 if its argument evalu-

ates to true, and 0 otherwise. In this case it is a convenient way to count the number of

test instances that are classified correctly by the classifier (i.e., the estimated class label

ĉ(x) is equal to the true class label c(x)). For example, in Table 2.2 (left) the accuracy

of the classifier is 0.70 or 70%, and in Table 2.2 (right) it is 0.50. Alternatively, we can

calculate the error rate as the proportion of incorrectly classified instances, here 0.30

and 0.50, respectively. Clearly, accuracy and error rate sum to 1.

Test set accuracy can be seen as an estimate of the probability that an arbitrary

instance x ∈X is classified correctly: more precisely, it estimates the probability

PX (ĉ(x)= c(x))

(Notice that I write PX to emphasise that this is a probability distribution over the

instance space X ; I will often omit subscripts if this is clear from the context.) We
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2.1 Classification 55

typically only have access to the true classes of a small fraction of the instance space

and so an estimate is all we can hope to get. It is therefore important that the test set

is as representative as possible. This is usually formalised by the assumption that the

occurrence of instances in the world – i.e., how likely or typical a particular e-mail is

– is governed by an unknown probability distribution on X , and that the test set Te is

generated according to this distribution.

It is often convenient – not to say necessary – to distinguish performance on the

classes. To this end, we need some further terminology. Correctly classified positives

and negatives are referred to as true positives and true negatives, respectively. Incor-

rectly classified positives are, perhaps somewhat confusingly, called false negatives;

similarly, misclassified negatives are called false positives. A good way to think of this is

to remember that positive/negative refers to the classifier’s prediction, and true/false

refers to whether the prediction is correct or not. So, a false positive is something that

was incorrectly predicted as positive, and therefore an actual negative (e.g., a ham e-

mail misclassified as spam, or a healthy patient misclassified as having the disease in

question). In the previous example (Table 2.2 (left)) we have 30 true positives, 20 false

negatives, 40 true negatives and 10 false positives.

The true positive rate is the proportion of positives correctly classified, and can be

defined mathematically as

tpr =
∑

x∈Te I [ĉ(x)= c(x)=⊕]∑
x∈Te I [c(x)=⊕]

(2.2)

True positive rate is an estimate of the probability that an arbitrary positive is classified

correctly, that is, an estimate of PX (ĉ(x) = ⊕|c(x) = ⊕). Analogously, the true nega-

tive rate is the proportion of negatives correctly classified (see Table 2.3 on p.57 for the

mathematical definition), and estimates PX (ĉ(x)=�|c(x)=�). These rates, which are

sometimes called sensitivity and specificity, can be seen as per-class accuracies. In the

contingency table, the true positive and negative rates can be calculated by dividing

the number on the descending (good) diagonal by the row total. We can also talk about

per-class error rates, which is the false negative rate for the positives (i.e., the number

of misclassified positives or false negatives as a proportion of the total number of pos-

itives) and the false positive rate for the negatives (sometimes called the false alarm

rate). These rates can be found by dividing the number on the ascending (bad) diago-

nal by the row total.

In Table 2.2 (left) we have a true positive rate of 60%, a true negative rate of 80%, a

false negative rate of 40% and a false positive rate of 20%. In Table 2.2 (right) we have

a true positive rate of 40%, a true negative rate of 60%, a false negative rate of 60% and

a false positive rate of 40%. Notice that the accuracy in both cases is the average of

the true positive rate and the true negative rate (and the error rate is the average of the

false positive rate and the false negative rate). However, this is true only if the test set
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56 2. Binary classification and related tasks

contains equal numbers of positives and negatives – in the general case we need to use

a weighted average, where the weights are the proportions of positives and negatives

in the test set.

Example 2.1 (Accuracy as a weighted average). Suppose a classifier’s predic-

tions on a test set are as in the following table:

Predicted ⊕ Predicted �
Actual ⊕ 60 15 75

Actual � 10 15 25

70 30 100

From this table, we see that the true positive rate is tpr = 60/75= 0.80 and the true

negative rate is tnr = 15/25 = 0.60. The overall accuracy is acc = (60+15)/100 =
0.75, which is no longer the average of true positive and negative rates. However,

taking into account the proportion of positives pos = 0.75 and the proportion of

negatives neg = 1−pos= 0.25, we see that

acc= pos · tpr+neg · tnr (2.3)

This equation holds in general: if the numbers of positives and negatives are

equal, we obtain the unweighted average from the earlier example (acc = (tpr+
tnr)/2).

Equation 2.3 has a neat intuition: good performance on either class contributes to

good classification accuracy, but the more prevalent class contributes more strongly. In

order to achieve good accuracy, a classifier should concentrate on the majority class,

particularly if the class distribution is highly unbalanced. However, it is often the case

that the majority class is also the least interesting class. To illustrate, suppose you issue

a query to an internet search engine,3 and suppose that for that particular query there

is only one relevant page in every 1 000 web pages. Now consider a ‘reluctant’ search

engine that doesn’t return any answers – i.e., it classifies every web page as irrelevant to

your query. Consequently, it will achieve 0% true positive rate and 100% true negative

rate. Because pos = 1/1000 = 0.1% and neg = 99.9%, the reluctant search engine’s ac-

curacy is very high (99.9%). Put differently, if we select a random web page uniformly

3An internet search engine can be seen as a binary classifier into the classes relevant and irrelevant, or

interesting and not interesting, if we fix the query – not very realistic in practice, but a useful analogy for our

purposes.
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Measure Definition Equal to Estimates

number of positives Pos=∑x∈Te I [c(x)=⊕]

number of negatives Neg =∑x∈Te I [c(x)=�] |Te|−Pos

number of true positives TP =∑x∈Te I [ĉ(x)= c(x)=⊕]

number of true negatives TN =∑x∈Te I [ĉ(x)= c(x)=�]

number of false positives FP =∑x∈Te I [ĉ(x)=⊕,c(x)=�] Neg−TN

number of false negatives FN =∑x∈Te I [ĉ(x)=�,c(x)=⊕] Pos−TP

proportion of positives pos= 1
|Te|
∑

x∈Te I [c(x)=⊕] Pos/|Te| P (c(x)=⊕)

proportion of negatives neg = 1
|Te|
∑

x∈Te I [c(x)=�] 1−pos P (c(x)=�)

class ratio clr = pos/neg Pos/Neg

(*) accuracy acc= 1
|Te|
∑

x∈Te I [ĉ(x)= c(x)] P (ĉ(x)= c(x))

(*) error rate err = 1
|Te|
∑

x∈Te I [ĉ(x) 
= c(x)] 1−acc P (ĉ(x) 
= c(x))

true positive rate, sensi-

tivity, recall

tpr =
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [c(x)=⊕] TP/Pos P (ĉ(x)=⊕|c(x)=⊕)

true negative rate, speci-

ficity, negative recall

tnr =
∑

x∈Te I [ĉ(x)=c(x)=�]∑
x∈Te I [c(x)=�] TN/Neg P (ĉ(x)=�|c(x)=�)

false positive rate, false

alarm rate

fpr =
∑

x∈Te I [ĉ(x)=⊕,c(x)=�]∑
x∈Te I [c(x)=�] FP/Neg = 1− tnr P (ĉ(x)=⊕|c(x)=�)

false negative rate fnr =
∑

x∈Te I [ĉ(x)=�,c(x)=⊕]∑
x∈Te I [c(x)=⊕] FN/Pos= 1− tpr P (ĉ(x)=�|c(x)=⊕)

precision, confidence prec=
∑

x∈Te I [ĉ(x)=c(x)=⊕]∑
x∈Te I [ĉ(x)=⊕] TP/(TP+FP) P (c(x)=⊕|ĉ(x)=⊕)

Table 2.3. A summary of different quantities and evaluation measures for classifiers on a test set

Te. Symbols starting with a capital letter denote absolute frequencies (counts), while lower-case

symbols denote relative frequencies or ratios. All except those indicated with (*) are defined only

for binary classification. The right-most column specifies the instance space probabilities that

these relative frequencies are estimating.

over all web pages, the probability of selecting a positive is only 0.001, and these are

the only pages on which the reluctant engine makes an error. However, we are not nor-

mally selecting pages from the web uniformly, and hence accuracy is not a meaningful

quantity in this context. To be of any use at all, a search engine should achieve a much

better true positive rate, which usually comes at the expense of a worse true negative

rate (and hence a drop in accuracy).

We conclude from this example that, if the minority class is the class of interest and

very small, accuracy and performance on the majority class are not the right quanti-

ties to optimise. For this reason, an alternative to true negative rate called precision is

usually considered in such cases. Precision is a counterpart to true positive rate in the

following sense: while true positive rate is the proportion of predicted positives among

the actual positives, precision is the proportion of actual positives among the predicted

positives. In Example 2.1 the classifier’s precision on the test set is 60/70 = 85.7%. In
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Figure 2.2. (left) A coverage plot depicting the two contingency tables in Table 2.2. The plot is

square because the class distribution is uniform. (right) Coverage plot for Example 2.1, with a

class ratio clr = 3.

the reluctant search engine example we have not only 0 true positive rate (which in this

context is usually called recall) but also 0 precision, which clearly demonstrates the

problem with a search engine that doesn’t return any answers. Table 2.3 summarises

the evaluation measures introduced in this section.

Visualising classification performance

I will now introduce an important tool for visualising the performance of classifiers

and other models called a coverage plot. If you look at two-class contingency tables

such as the ones depicted in Table 2.2, you realise that, even though the table contains

nine numbers, only four of those can be chosen freely. For instance, once you’ve de-

termined the true/false positives/negatives, the marginals are fixed. Or if you know

the true positives, true negatives, total number of positives and size of the test set, you

can reconstruct all other numbers. Statisticians say that the table has four degrees of

freedom.4

Often we are particularly interested in the following four numbers that completely

determine the contingency table: the number of positives Pos, the number of negatives

Neg, the number of true positives TP and the number of false positives FP. A coverage

plot visualises these four numbers by means of a rectangular coordinate system and a

point. Imagine a rectangle with height Pos and width Neg. Imagine furthermore that

all positives live on the y-axis of this rectangle, and all negatives on the x-axis. We don’t

4More generally, a k-class contingency table has (k+1)2 entries and k2 degrees of freedom.
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Figure 2.3. (left) C1 and C3 both dominate C2, but neither dominates the other. The diagonal

line indicates that C1 and C3 achieve equal accuracy. (right) The same plot with normalised

axes. We can interpret this plot as a merger of the two coverage plots in Figure 2.2, employing

normalisation to deal with the different class distributions. The diagonal line now indicates that

C1 and C3 have the same average recall.

really care how positives and negatives are ordered on their respective axes, as long as

positive predictions come before negative predictions. This gives us enough information

to depict the whole contingency table as a single point within the rectangle (Figure 2.2).

Consider the two classifiers marked C1 and C2 in Figure 2.2 (left). One reason why

coverage plots are so useful is that we can immediately see that C1 is better than C2.

How do we know that? Well, C1 has both more true positives and fewer false positives

than C2, and so is better in both respects. Put differently, C1 achieves better perfor-

mance than C2 on both classes. If one classifier outperforms another classifier on all

classes, the first one is said to dominate the second.5 However, things are not always

that straightforward. Consider a third classifier C3, better than C1 on the positives but

worse on the negatives (Figure 2.3 (left)). Although both C1 and C3 dominate C2, nei-

ther of them dominates the other. Which one we prefer depends on whether we put

more emphasis on the positives or on the negatives.

We can make this a little bit more precise. Notice that the line segment connecting

C1 and C3 has a slope of 1. Imagine travelling up that line: whenever we gain a true

positive, we also lose a true negative (or gain a false positive, which is the same thing).

This doesn’t affect the sum of true positives and true negatives, and hence the accu-

racy is the same wherever we are on the line. It follows that C1 and C3 have the same

accuracy. In a coverage plot, classifiers with the same accuracy are connected by line

segments with slope 1. If true positives and true negatives are equally important, the

5This terminology comes from the field of multi-criterion optimisation. A dominated solution is one that

is not on the Pareto front.
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choice between C1 and C3 is arbitrary; if true positives are more important we should

choose C3, if true negatives are more important we prefer C1.

Now consider Figure 2.3 (right). What I have done here is renormalise the axes by

dividing the x-axis by Neg and the y-axis by Pos, resulting in a plot in the unit square

with true positive rate on the y-axis and false positive rate on the x-axis. In this case

the original coverage plot was already square (Pos=Neg), so the relative position of the

classifiers isn’t affected by the normalisation. However, since the normalised plot will

be square regardless of the shape of the original plot, normalisation is a way to com-

bine differently shaped coverage plots, and thus to combine results on test sets with

different class distributions. Suppose you would normalise Figure 2.2 (right): since C3’s

true and false positive rates are 80% and 40%, respectively (see Example 2.1 on p.56),

its position in a normalised plot is exactly the same as the one labelled C3 in Figure

2.3 (right)! In other words, classifiers occupying different points in different coverage

spaces (e.g., C3 in Figure 2.2 (right) and C3 in Figure 2.3 (left)) can end up in the same

point in a normalised plot.

What is the meaning of the diagonal line connecting C1 and C3 in Figure 2.3 (right)?

It can’t have the same meaning as in the coverage plot, because in a normalised plot we

know the true and false positive rates but not the class distribution, and so we cannot

calculate accuracy (refer back to Equation 2.3 on p.56 if you want to remind yourself

why). The line is defined by the equation tpr = fpr + y0, where y0 is the y-intercept

(the value of tpr where the line intersects the y-axis) . Now consider the average of the

true positive rate and the true negative rate, which we will call average recall, denoted

avg-rec.6 On a line with slope 1 we have avg-rec = (tpr+ tnr)/2 = (tpr+ 1− fpr)/2 =
(1+ y0)/2, which is a constant. In a normalised coverage plot, line segments with slope 1

connect classifiers with the same average recall. If recall on the positives and the nega-

tives are equally important, the choice between C1 and C3 is arbitrary; if positive recall

is more important we should choose C3, if negative recall is more important we prefer

C1.

In the literature, normalised coverage plots are referred to as ROC plots, and we

will follow that convention from now on.7 ROC plots are much more common than

coverage plots, but both have their specific uses. Broadly speaking, you should use

a coverage plot if you explicitly want to take the class distribution into account, for

instance when you are working with a single data set. An ROC plot is useful if you want

to combine results from different data sets with different class distributions. Clearly,

there are many connections between the two. Since an ROC plot is always square,

lines of constant average recall (so-called average recall isometrics) do not only have

6Remember that recall is just a different name for true positive rate; negative recall is then the same as

the true negative rate, and average recall is the average of positive recall (or true positive rate) and negative

recall (or true negative rate). It is sometimes called macro-averaged accuracy.
7ROC stands for receiver operating characteristic, a term originating from signal detection theory.
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Figure 2.4. (left) In a coverage plot, accuracy isometrics have a slope of 1, and average recall

isometrics are parallel to the ascending diagonal. (right) In the corresponding ROC plot, average

recall isometrics have a slope of 1; the accuracy isometric here has a slope of 3, corresponding to

the ratio of negatives to positives in the data set.

a slope of 1 but are parallel to the ascending diagonal. The latter property carries over

to coverage plots. To illustrate, in the coverage plot in Figure 2.4, C1 and C2 have the

same accuracy (they are connected by a line segment with slope 1), and C1 and C3 have

the same average recall (they are connected by a line segment parallel to the diagonal).

You can also argue that C2 has both higher accuracy and higher average recall than C3

(why?). In the corresponding ROC plot, the average recall isometric has a slope of 1,

and the accuracy isometric’s slope is Neg/Pos= 1/clr.

2.2 Scoring and ranking

Many classifiers compute scores on which their class predictions are based. For in-

stance, in the Prologue we saw how SpamAssassin calculates a weighted sum from the

rules that ‘fire’ for a particular e-mail. Such scores contain additional information that

can be beneficial in a number of ways, which is why we perceive scoring as a task in its

own right. Formally, a scoring classifier is a mapping ŝ : X → Rk , i.e., a mapping from

the instance space to a k-vector of real numbers. The boldface notation indicates that

a scoring classifier outputs a vector ŝ(x)= (ŝ1(x), . . . , ŝk (x)) rather than a single number;

ŝi (x) is the score assigned to class Ci for instance x. This score indicates how likely it

is that class label Ci applies. If we only have two classes, it usually suffices to consider

the score for only one of the classes; in that case, we use ŝ(x) to denote the score of the

positive class for instance x.

Figure 2.5 demonstrates how a feature tree can be turned into a scoring tree. In

order to obtain a score for each leaf, we first calculate the ratio of spam to ham, which

is 1/2 for the left leaf, 2 for the middle leaf and 4 for the right leaf. Because it is often

more convenient to work with an additive scale, we obtain scores by taking the loga-

rithm of the class ratio (the base of the logarithm is not really important; here we have
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Figure 2.5. (left) A feature tree with training set class distribution in the leaves. (right) A scoring

tree using the logarithm of the class ratio as scores; spam is taken as the positive class.

taken base-2 logarithms to get nice round numbers). Notice that the majority class de-

cision tree corresponds to thresholding ŝ(x) at 0: i.e., predict spam if ŝ(x)> 0 and ham

otherwise.

If we take the true class c(x) as +1 for positive examples and −1 for negative ex-

amples, then the quantity z(x) = c(x)ŝ(x) is positive for correct predictions and nega-

tive for incorrect predictions: this quantity is called the margin assigned by the scor-

ing classifier to the example.8 We would like to reward large positive margins, and

penalise large negative values. This is achieved by means of a so-called loss function

L : R �→ [0,∞) which maps each example’s margin z(x) to an associated loss L(z(x)). We

will assume that L(0)= 1, which is the loss incurred by having an example on the deci-

sion boundary. We furthermore have L(z)≥ 1 for z < 0, and usually also 0≤ L(z)< 1 for

z > 0 (Figure 2.6). The average loss over a test set Te is 1
|Te|
∑

x∈Te L(z(x)).

The simplest loss function is 0–1 loss, which is defined as L01(z) = 1 if z ≤ 0 and

L(z) = 0 if z > 0. The average 0–1 loss is simply the proportion of misclassified test

examples:

1

|Te|
∑

x∈Te
L01(z(x))= 1

|Te|
∑

x∈Te
I [c(x)ŝ(x)≤ 0]= 1

|Te|
∑

x∈Te
I [c(x) 
= ĉ(x)]= err

where ĉ(x) = +1 if ŝ(x) > 0, ĉ(x) = 0 if ŝ(x) = 0, and ĉ(x) = −1 if ŝ(x) < 0. (It is some-

times more convenient to define the loss of examples on the decision boundary as 1/2).

In other words, 0–1 loss ignores the magnitude of the margins of the examples, only

8Remember that in Chapter 1 we talked about the margin of a classifier as the distance between the deci-

sion boundary and the nearest example. Here we use margin in a slightly more general sense: each example

has a margin, not just the nearest one. This will be further explained in Section 7.3.
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Figure 2.6. Loss functions: from bottom-left (i) 0–1 loss L01(z) = 1 if z ≤ 0, and L01(z) = 0 if

z > 0; (ii) hinge loss Lh(z) = (1− z) if z ≤ 1, and Lh(z) = 0 if z > 1; (iii) logistic loss Llog(z) =
log2(1+exp(−z)); (iv) exponential loss Lexp(z)= exp(−z); (v) squared loss Lsq(z)= (1− z)2 (this

can be set to 0 for z > 1, just like hinge loss).

taking their sign into account. As a result, 0–1 loss doesn’t distinguish between scoring

classifiers, as long as their predictions agree. This means that it isn’t actually that use-

ful as a search heuristic or objective function when learning scoring classifiers. Figure

2.6 pictures several loss functions that are used in practice. Except for 0–1 loss, they

are all convex: linear interpolation between any two points on the curve will never re-

sult in a point below the curve. Optimising a convex function is computationally more

tractable.

One loss function that will be of interest later is the hinge loss, which is defined as

Lh(z)= (1−z) if z ≤ 1, and Lh(z)= 0 if z > 1. The name of this loss function comes from

the fact that the loss ‘hinges’ on whether an example’s margin is greater than 1 or not:

if so (i.e., the example is on the correct side of the decision boundary with a distance

of at least 1) the example incurs zero loss; if not, the loss increases with decreasing

margin. In effect, the loss function expresses that it is important to avoid examples

having a margin (much) less than 1, but no additional value is placed on achieving large

positive margins. This loss function is used when training a �support vector machine

(Section 7.3). We will also encounter exponential loss later when we discuss �boosting

in Section 11.2.

Assessing and visualising ranking performance

It should be kept in mind that scores are assigned by a classifier, and are not a prop-

erty inherent to instances. Scores are not estimated from ‘true scores’ – rather, a scor-

ing classifier has to be learned from examples in the form of instances x labelled with
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classes c(x), just as a classifier. (The task where we learn a function f̂ from examples

labelled with true function values (x, f (x)) is called �regression and is covered in Sec-

tion 3.2.) Often it is more convenient to keep the order imposed by scores on a set of

instances, but ignore their magnitudes – this has the advantage, for instance, of being

much less sensitive to outliers. It also means that we do not have to make any assump-

tions about the scale on which scores are expressed: in particular, a ranker does not

assume a particular score threshold for separating positives from negatives. A ranking

is defined as a total order on a set of instances, possibly with ties.9

Example 2.2 (Ranking example). The scoring tree in Figure 2.5 produces the

following ranking: [20+,5−][10+,5−][20+,40−]. Here, 20+ denotes a sequence

of 20 positive examples, and instances in square brackets [. . . ] are tied. By select-

ing a split point in the ranking we can turn the ranking into a classification. In

this case there are four possibilities: (A) setting the split point before the first seg-

ment, and thus assigning all segments to the negative class; (B) assigning the first

segment to the positive class, and the other two to the negative class; (C) assign-

ing the first two segments to the positive class; and (D) assigning all segments to

the positive class. In terms of actual scores, this corresponds to (A) choosing any

score larger than 2 as the threshold; (B) choosing a threshold between 1 and 2;

(C) setting the threshold between −1 and 1; and (D) setting it lower than −1.

Suppose x and x ′ are two instances such that x receives a lower score: ŝ(x)< ŝ(x ′).

Since higher scores express a stronger belief that the instance in question is positive,

this would be fine except in one case: if x is an actual positive and x ′ is an actual neg-

ative. We will call this a ranking error. The total number of ranking errors can then be

expressed as
∑

x∈Te⊕,x′∈Te� I [ŝ(x) < ŝ(x ′)]. Furthermore, for every positive and negative

that receive the same score – a tie – we count half a ranking error. The maximum num-

ber of ranking errors is equal to |Te⊕| · |Te�| = Pos ·Neg, and so the ranking error rate is

defined as

rank-err =
∑

x∈Te⊕,x′∈Te� I [ŝ(x)< ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
(2.4)

and analogously the ranking accuracy

rank-acc=
∑

x∈Te⊕,x′∈Te� I [ŝ(x)> ŝ(x ′)]+ 1
2 I [ŝ(x)= ŝ(x ′)]

Pos ·Neg
= 1− rank-err (2.5)

9A total order with ties should not be confused with a partial order (see Background 2.1 on p.51). In a total

order with ties (which is really a total order on equivalence classes), any two elements are comparable, either

in one direction or in both. In a partial order some elements are incomparable.
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Ranking accuracy can be seen as an estimate of the probability that an arbitrary positive–

negative pair is ranked correctly.

Example 2.3 (Ranking accuracy). We continue the previous example consider-

ing the scoring tree in Figure 2.5, with the left leaf covering 20 spam and 40 ham,

the middle leaf 10 spam and 5 ham, and the right leaf 20 spam and 5 ham. The

5 negatives in the right leaf are scored higher than the 10 positives in the middle

leaf and the 20 positives in the left leaf, resulting in 50+100= 150 ranking errors.

The 5 negatives in the middle leaf are scored higher than the 20 positives in the

left leaf, giving a further 100 ranking errors. In addition, the left leaf makes 800

half ranking errors (because 20 positives and 40 negatives get the same score), the

middle leaf 50 and the right leaf 100. In total we have 725 ranking errors out of a

possible 50 ·50= 2500, corresponding to a ranking error rate of 29% or a ranking

accuracy of 71%.

The coverage plots and ROC plots introduced in the previous section for visualising

classifier performance provide an excellent tool for visualising ranking performance

too. If Pos positives and Neg negatives are plotted on the vertical and horizontal axes,

respectively, then each positive–negative pair occupies a unique ‘cell’ in this plot. If we

order the positives and negatives on decreasing score, i.e., examples with higher scores

are closer to the origin, then we can clearly distinguish the correctly ranked pairs at

the bottom right, the ranking errors at the top left, and the ties in between (Figure 2.7).

The number of cells in each area gives us the number of correctly ranked pairs, ranking

errors and ties, respectively. The diagonal lines cut the ties area in half, so the area

below those lines corresponds to the ranking accuracy multiplied by Pos ·Neg, and the

area above corresponds to the ranking error rate times that same factor.

Concentrating on those diagonal lines gives us the piecewise linear curve shown in

Figure 2.7 (right). This curve, which we will call a coverage curve, can be understood

as follows. Each of the points marked A, B, C and D specifies the classification per-

formance, in terms of true and false positives, achieved by the corresponding ranking

split points or score thresholds from Example 2.2. To illustrate, C would be obtained by

a score threshold of 0, leading to TP2= 20+10= 30 true positives and FP2= 5+5= 10

false positives. Similarly, B would be obtained by a higher threshold of 1.5, leading to

TP1 = 20 true positives and FP1 = 5 false positives. Point A would result if we set the

threshold unattainably high, and D if we set the threshold trivially low.

Why are these points connected by straight lines? How can we interpolate between,

say, points C and D? Suppose we set the threshold exactly at −1, which is the score
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Figure 2.7. (left) Each cell in the grid denotes a unique pair of one positive and one negative

example: the green cells indicate pairs that are correctly ranked by the classifier, the red cells

represent ranking errors, and the orange cells are half-errors due to ties. (right) The coverage

curve of a tree-based scoring classifier has one line segment for each leaf of the tree, and one

(FP,TP) pair for each possible threshold on the score.

assigned by the left leaf of the tree. The question is now what class we predict for the

20 positives and 40 negatives that filter down to that leaf. It would seem reasonable to

decide this by tossing a fair coin, leading to half of the positives receiving a positive pre-

diction (on average) and half of them a negative one, and similar for the negatives. The

total number of true positives is then 30+20/2= 40, and the number of false positives

is 10+40/2= 30. In other words, we land exactly in the middle of the CD line segment.

We can apply the same procedure to achieve performance half-way BC, by setting the

threshold at 1 and tossing the same fair coin to obtain uniformly distributed predic-

tions for the 10 positives and 5 negatives in the middle leaf, leading to 20+10/2 = 25

true positives and 5+ 5/2 = 7.5 false positives (of course, we cannot achieve a non-

integer number of false positives in any trial, but this number represents the expected

number of false positives over many trials). And what’s more, by biasing the coin to-

wards positive or negative predictions we can achieve expected performance anywhere

on the line.

More generally, a coverage curve is a piecewise linear curve that rises monotoni-

cally from (0,0) to (Neg,Pos) – i.e., TP and FP can never decrease if we decrease the

decision threshold. Each segment of the curve corresponds to an equivalence class of

the instance space partition induced by the model in question (e.g., the leaves of a fea-

ture tree). Notice that the number of segments is never more than the number of test

instances. Furthermore, the slope of each segment is equal to the ratio of positive to

negative test instances in that equivalence class. For instance, in our example the first

segment has a slope of 4, the second segment slope 2, and the third segment slope 1/2
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Figure 2.8. (left) A coverage curve obtained from a test set with class ratio clr = 1/2. (right) The

corresponding ROC curve is the same as the one corresponding to the coverage curve in Figure

2.7 (right).

— exactly the scores assigned in each leaf of the tree! This is not true in general, since

the coverage curve depends solely on the ranking induced by the scores, not on the

scores themselves. However, it is not a coincidence either, as we shall see in the next

section on class probability estimation.

An ROC curve is obtained from a coverage curve by normalising the axes to [0,1].

This doesn’t make much of a difference in our running example, but in general cover-

age curves can be rectangular whereas ROC curves always occupy the unit square. One

effect this has is that slopes are multiplied by Neg/Pos= 1/clr. Furthermore, while in a

coverage plot the area under the coverage curve gives the absolute number of correctly

ranked pairs, in an ROC plot the area under the ROC curve is the ranking accuracy as

defined in Equation 2.5 on p.64. For that reason people usually write AUC for ‘Area

Under (ROC) Curve’, a convention I will follow.

Example 2.4 (Class imbalance). Suppose we feed the scoring tree in Figure 2.5

on p.62 an extended test set, with an additional batch of 50 negatives. The added

negatives happen to be identical to the original ones, so the net effect is that the

number of negatives in each leaf doubles. As a result the coverage curve changes

(because the class ratio changes), but the ROC curve stays the same (Figure 2.8).

Note that the AUC stays the same as well: while the classifier makes twice as

many ranking errors, there are also twice as many positive–negative pairs, so the

ranking error rate doesn’t change.

Let us now consider an example of a coverage curve for a grading classifier. Figure

2.9 (left) shows a linear classifier (the decision boundary is denoted B) applied to a
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Figure 2.9. (left) A linear classifier induces a ranking by taking the signed distance to the decision

boundary as the score. This ranking only depends on the orientation of the decision boundary:

the three lines result in exactly the same ranking. (right) The grid of correctly ranked positive–

negative pairs (in green) and ranking errors (in red).

small data set of five positive and five negative examples, achieving an accuracy of 0.80.

We can derive a score from this linear classifier by taking the distance of an example

from the decision boundary; if the example is on the negative side we take the negative

distance. This means that the examples are ranked in the following order: p1 – p2 – p3

– n1 – p4 – n2 – n3 – p5 – n4 – n5. This ranking incurs four ranking errors: n1 before p4,

and n1, n2 and n3 before p5. Figure 2.9 (right) visualises these four ranking errors in

the top-left corner. The AUC of this ranking is 21/25= 0.84.

From this grid we obtain the coverage curve in Figure 2.10. Because of its stepwise

character, this curve looks quite different from the coverage curves for scoring trees

that we saw earlier in this section. The main reason is the absence of ties, which means

that all segments in the curve are horizontal or vertical, and that there are as many

segments as examples. We can generate this stepwise curve from the ranking as fol-

lows: starting in the lower left-hand corner, we go up one step if the next example in

the ranking is positive, and right one step if the next example is negative. The result is

a curve that goes three steps up (for p1–3), one step to the right (for n1), one step up

(p4), two steps to the right (n2–3), one step up (p5), and finally two steps to the right

(n4–5).

We can actually use the same procedure for grouping models if we handle ties as

follows: in case of a tie between p positive examples and n negative examples, we go

p steps up and at the same time n steps to the right. Looking back at Figure 2.7 on

p.66, you will see that this is exactly what happens in the diagonal segments spanning

the orange rectangles which arise as a result of the ties in the leaves of the decision

tree. Thus, the principles underlying coverage and ROC curves are the same for both
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grouping and grading models, but the curves themselves look quite different in each

case. Grouping model ROC curves have as many line segments as there are instance

space segments in the model; grading models have one line segment for each example

in the data set. This is a concrete manifestation of something I mentioned in the Pro-

logue: grading models have a much higher ‘resolution’ than grouping models; this is

also called the model’s refinement.

Notice the three points in Figure 2.10 labelled A, B and C. These points indicate the

performance achieved by the decision boundaries with the same label in Figure 2.9. As

an illustration, the middle boundary B misclassifies one out of five positives (tpr = 0.80)

and one out of five negatives (fpr = 0.80). Boundary A doesn’t misclassify any negatives,

and boundary C correctly classifies all positives. In fact, while they should all have

the same orientation, their exact location is not important, as long as boundary A is

between p3 and n1, boundary B is between p4 and n2, and boundary C is between

p5 and n4. There are good reasons why I chose exactly these three boundaries, as we

shall see shortly. For the moment, observe what happens if we use all three boundaries

to turn the linear model into a grouping model with four segments: the area above A,

the region between A and B, the bit between B and C, and the rest below C. The result

is that we no longer distinguish between n1 and p4, nor between n2–3 and p5. The

ties just introduced change the coverage curve to the dotted segments in Figure 2.10.

Notice that this results in a larger AUC of 0.90. Thus, by decreasing a model’s refinement

we sometimes achieve better ranking performance. Training a model is not just about

amplifying significant distinctions, but also about diminishing the effect of misleading

distinctions.

Turning rankers into classifiers

I mentioned previously that the main difference between rankers and scoring classi-

fiers is that a ranker only assumes that a higher score means stronger evidence for the

positive class, but otherwise makes no assumptions about the scale on which scores

are expressed, or what would be a good score threshold to separate positives from neg-

atives. We will now consider the question how to obtain such a threshold from a cov-

erage curve or ROC curve.

The key concept is that of the accuracy isometric. Recall that in a coverage plot

points of equal accuracy are connected by lines with slope 1. All we need to do, there-

fore, is to draw a line with slope 1 through the top-left point (which is sometimes called

ROC heaven) and slide it down until we touch the coverage curve in one or more points.

Each of those points achieves the highest accuracy possible with that model. In Figure

2.10 this method would identify points A and B as the points with highest accuracy

(0.80). They achieve this in different ways: e.g., model A is more conservative on the

positives.
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Figure 2.10. The coverage curve of the linear classifier in Figure 2.9. The points labelled A, B

and C indicate the classification performance of the corresponding decision boundaries. The

dotted lines indicate the improvement that can be obtained by turning the grading classifier

into a grouping classifier with four segments.

A similar procedure can be followed with ROC plots, as long as you keep in mind

that all slopes have to be multiplied by the reciprocal of the class ratio, 1/clr =Neg/Pos.

Example 2.5 (Tuning your spam filter). You have carefully trained your

Bayesian spam filter, and all that remains is setting the decision threshold.

You select a set of six spam and four ham e-mails and collect the scores assigned

by the spam filter. Sorted on decreasing score these are 0.89 (spam), 0.80 (spam),

0.74 (ham), 0.71 (spam), 0.63 (spam), 0.49 (ham), 0.42 (spam), 0.32 (spam), 0.24

(ham), and 0.13 (ham). If the class ratio of 3 spam against 2 ham is represen-

tative, you can select the optimal point on the ROC curve using an isometric

with slope 2/3. As can be seen in Figure 2.11, this leads to putting the decision

boundary between the sixth spam e-mail and the third ham e-mail, and we can

take the average of their scores as the decision threshold (0.28).

An alternative way of finding the optimal point is to iterate over all possible

split points – from before the top ranked e-mail to after the bottom one – and

calculate the number of correctly classified examples at each split: 4 – 5 – 6 – 5 –

6 – 7 – 6 – 7 – 8 – 7 – 6. The maximum is achieved at the same split point, yielding

an accuracy of 0.80. A useful trick to find out which accuracy an isometric in an

ROC plot represents is to intersect the isometric with the descending diagonal.
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Figure 2.11. Selecting the optimal point on an ROC curve. The top dotted line is the accuracy

isometric, with a slope of 2/3. The lower isometric doubles the value (or prevalence) of negatives,

and allows a choice of thresholds. By intersecting the isometrics with the descending diagonal

we can read off the achieved accuracy on the y-axis.

Since accuracy is a weighted average of the true positive and true negative rates,

and since these are the same in a point on the descending diagonal, we can read

off the corresponding accuracy value on the y-axis.

If the class distribution in the data is not representative, we can simply adjust the

slope of the isometric. For example, if ham is in fact twice as prevalent, we use an

isometric with slope 4/3. In the previous example this leads to three optimal points

on the ROC curve.10 Even if the class ratio in the data is representative, we may have

other reasons to assign different weights to the classes. To illustrate, in the spam e-mail

situation our spam filter may discard the false positives (ham e-mails misclassified as

spam) so we may want to drive the false positive rate down by assigning a higher weight

to the negatives (ham). This is often expressed as a cost ratio c = cFN/cFP of the cost of

false negatives in proportion to the cost of false positives, which in this case would

be set to a value smaller than 1. The relevant isometrics then have a slope of 1/c in a

coverage plot, and 1/(c · clr) in an ROC plot. The combination of cost ratio and class

ratio gives a precise context in which the classifier is deployed and is referred to as the

10It seems reasonable to choose the middle of these three points, leading to a threshold of 0.56. An alter-

native is to treat all e-mails receiving a score in the interval [0.28,0.77] as lying on the decision boundary, and

to randomly assign a class to those e-mails.
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operating condition.

If the class or cost ratio is highly skewed, this procedure may result in a classifier

that assigns the same class to all examples. For instance, if negatives are 1 000 times

more prevalent than positives, accuracy isometrics are nearly vertical, leading to an

unattainably high decision threshold and a classifier that classifies everything as neg-

ative. Conversely, if the profit of one true positive is 1 000 times the cost of a false

positive, we would classify everything as positive – in fact, this is the very principle

underlying spam e-mail! However, often such one-size-fits-all behaviour is unaccept-

able, indicating that accuracy is not the right thing to optimise here. In such cases we

should use average recall isometrics instead. These run parallel to the ascending diag-

onal in both coverage and ROC plots, and help to achieve similar performance on both

classes.

The procedure just described learns a decision threshold from labelled data by

means of the ROC curve and the appropriate accuracy isometric. This procedure is

often preferable over fixing a decision threshold in advance, particularly if scores are

expressed on an arbitrary scale – for instance, this would provide a way to finetune the

SpamAssassin decision threshold to our particular situation and preferences. Even if

the scores are probabilities, as in the next section, these may not be sufficiently well

estimated to warrant a fixed threshold of 0.5.

2.3 Class probability estimation

A class probability estimator – or probability estimator in short – is a scoring classifier

that outputs probability vectors over classes, i.e., a mapping p̂ : X → [0,1]k . We write

p̂(x)= (p̂1(x), . . . , p̂k (x)
)
, where p̂i (x) is the probability assigned to class Ci for instance

x, and
∑k

i=1 p̂i (x)= 1. If we have only two classes, the probability associated with one

class is 1 minus the probability of the other class; in that case, we use p̂(x) to denote

the estimated probability of the positive class for instance x. As with scoring classifiers,

we usually do not have direct access to the true probabilities pi (x).

One way to understand the probabilities p̂i (x) is as estimates of the probability

PC (c(x ′) = Ci |x ′ ∼ x), where x ′ ∼ x stands for ‘x ′ is similar to x’. In other words, how

frequent are instances of this class among instances similar to x? The intuition is that

the more (or less) frequent they are, the more (or less) confident we should be in our

belief that x belongs to that class as well. What we mean with similarity in this context

will depend on the models we are considering – we will illustrate it here by means of a

few two-class examples. First, assume a situation in which any two instances are sim-

ilar to each other. We then have PC (c(x ′) = ⊕|x ′ ∼ x) = PC (c(x ′) = ⊕) which is simply

estimated by the proportion pos of positives in our data set (I am going to drop the sub-

script C from now on). In other words, in this scenario we predict p̂(x)= pos regardless
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Figure 2.12. A probability estimation tree derived from the feature tree in Figure 1.4.

of whether we know anything about x’s true class. At the other extreme, consider a situ-

ation in which no two instances are similar unless they are the same, i.e., x ′ ∼ x if x ′ = x,

and x ′ 
∼ x otherwise. In this case we have P (c(x ′) = ⊕|x ′ ∼ x) = P (c(x) = ⊕), which –

because x is fixed – is 1 if c(x)=⊕ and 0 otherwise. Put differently, we predict p̂(x)= 1

for all known positives and p̂(x)= 0 for all known negatives, but we can’t generalise this

to unseen instances.

A feature tree allows us to strike a balance between these extreme and simplistic

scenarios, using the similarity relation∼T associated with feature tree T : x ′ ∼T x if, and

only if, x and x ′ are assigned to the same leaf of the tree. In each leaf we then predict

the proportion of positives assigned to that leaf. For example, in the right-most leaf

in Figure 1.4 on p.32 the proportion of positives is 40/50 = 0.80, and thus we predict

p̂(x) = 0.80 for all instances x assigned to that leaf; similarly for the other two leaves

(Figure 2.12). If we threshold p̂(x) at 0.5 (i.e., predict spam if the spam probability

is 0.5 or more and predict ham otherwise), we get the same classifier as obtained by

predicting the majority class in each leaf of the feature tree.

Assessing class probability estimates

As with classifiers, we can now ask the question of how good these class probability

estimators are. A slight complication here is that, as already remarked, we do not have

access to the true probabilities. One trick that is often applied is to define a binary

vector (I [c(x)=C1], . . . , I [c(x)=Ck ]), which has the i -th bit set to 1 if x’s true class is Ci

and all other bits set to 0, and use these as the ‘true’ probabilities. We can then define

the squared error (SE) of the predicted probability vector p̂(x)= (p̂1(x), . . . , p̂k (x)
)

as

SE(x)= 1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2 (2.6)
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and the mean squared error (MSE) as the average squared error over all instances in

the test set:

MSE(Te)= 1

|Te|
∑

x∈Te
SE(x) (2.7)

This definition of error in probability estimates is often used in forecasting theory where

it is called the Brier score. The factor 1/2 in Equation 2.6 ensures that the squared er-

ror per example is normalised between 0 and 1: the worst possible situation is that the

wrong class is predicted with probability 1, which means two ‘bits’ are wrong. For two

classes this reduces to a single term (p̂(x)− I [c(x) = ⊕])2 only referring to the positive

class. Notice that, if a class probability estimator is ‘categorical’ – i.e., it assigns proba-

bility 1 to one class and probability 0 to the rest – it is effectively a classifier, and MSE

reduces to accuracy as defined in Section 2.1.

Example 2.6 (Squared error). Suppose one model predicts (0.70,0.10,0.20) for

a particular example x in a three-class task, while another appears much more

certain by predicting (0.99,0,0.01). If the first class is the actual class, the second

prediction is clearly better than the first: the SE of the first prediction is ((0.70−
1)2+(0.10−0)2+(0.20−0)2)/2= 0.07, while for the second prediction it is ((0.99−
1)2+(0−0)2+(0.01−0)2)/2= 0.0001. The first model gets punished more because,

although mostly right, it isn’t quite sure of it.

However, if the third class is the actual class, the situation is reversed: now

the SE of the first prediction is ((0.70−0)2+ (0.10−0)2+ (0.20−1)2)/2= 0.57, and

of the second ((0.99−0)2+ (0−0)2+ (0.01−1)2)/2= 0.98. The second model gets

punished more for not just being wrong, but being presumptuous.

Returning to the probability estimation tree in Figure 2.12, we calculate the squared

error per leaf as follows (left to right):

SE1 = 20(0.33−1)2+40(0.33−0)2 = 13.33

SE2 = 10(0.67−1)2+5(0.67−0)2 = 3.33

SE3 = 20(0.80−1)2+5(0.80−0)2 = 4.00

which leads to a mean squared error of MSE= 1
100 (SE1+SE2+SE3)= 0.21. An interesting

question is whether we can change the predicted probabilities in each leaf to obtain a

lower mean squared error. It turns out that this is not possible: predicting probabilities

obtained from the class distributions in each leaf is optimal in the sense of lowest MSE.
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For instance, changing the predicted probabilities in the left-most leaf to 0.40 for spam

and 0.60 for ham, or 0.20 for spam and 0.80 for ham, results in a higher squared error:

SE′1 = 20(0.40−1)2+40(0.40−0)2 = 13.6

SE′′1 = 20(0.20−1)2+40(0.20−0)2 = 14.4

The reason for this becomes obvious if we rewrite the expression for two-class

squared error of a leaf as follows, using the notation n⊕ and n� for the numbers of

positive and negative examples in the leaf:

n⊕(p̂−1)2+n�p̂2 = (n⊕+n�)p̂2−2n⊕p̂+n⊕ = (n⊕+n�)
[
p̂2−2ṗ p̂+ ṗ

]
= (n⊕+n�)

[
(p̂− ṗ)2+ ṗ(1− ṗ)

]
where ṗ = n⊕/(n⊕+n�) is the relative frequency of the positive class among the exam-

ples covered by the leaf, also called the empirical probability. As the term ṗ(1− ṗ) does

not depend on the predicted probability p̂, we see immediately that we achieve lowest

squared error in the leaf if we assign p̂ = ṗ.

Empirical probabilities are important as they allow us to obtain or finetune proba-

bility estimates from classifiers or rankers. If we have a set S of labelled examples, and

the number of examples in S of class Ci is denoted ni , then the empirical probability

vector associated with S is ṗ(S) = (n1/|S|, . . . ,nk /|S|). In practice, it is almost always a

good idea to smooth these relative frequencies to avoid issues with extreme values (0

or 1). The most common way to do this is to set

ṗi (S)= ni +1

|S|+k
(2.8)

This is called the Laplace correction, after the French mathematician Pierre-Simon

Laplace, who introduced it for the case k = 2 (also known as Laplace’s rule of suc-

cession). In effect, we are adding uniformly distributed pseudo-counts to each of the

k alternatives, reflecting our prior belief that the empirical probabilities will turn out

uniform.11 We can also apply non-uniform smoothing by setting

ṗi (S)= ni +m ·πi

|S|+m
(2.9)

This smoothing technique, known as the m-estimate, allows the choice of the number

of pseudo-counts m as well as the prior probabilities πi . The Laplace correction is a

special case of the m-estimate with m = k and πi = 1/k.

If all elements of S receive the same predicted probability vector p̂(S) – which hap-

pens if S is a segment of a grouping model – then a similar derivation to the one above

11This can be modelled mathematically by a prior probability distribution known as a Dirichlet prior.
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allows us to write the total incurred squared error over S in terms of estimated and

empirical probabilities as

SE(S)=∑
x∈S

SE(x)=∑
x∈S

1

2

k∑
i=1

(p̂i (x)− I [c(x)=Ci ])2

= 1

2
|S|

k∑
i=1

(p̂i (S)− ṗi (S))2+ 1

2
|S|

k∑
i=1

(ṗi (S)(1− ṗi (S))

The first term of the final expression is called the calibration loss, and measures squared

error with respect to the empirical probabilities. It can be reduced to 0 in grouping

models where we are free to choose the predicted probabilities for each segment, as

in probability estimation trees. Models with low calibration loss are said to be well-

calibrated. The second term is called the refinement loss; this depends only on the

empirical probabilities, and is smaller if they are less uniform.

This analysis suggests that the best way of obtaining probability estimates is from

empirical probabilities, obtained from the training set or from another set of labelled

examples specifically set aside for the purpose. However, there are two issues we need

to consider here. The first is that with some models we must make sure that the pre-

dicted probabilities obey the ranking imposed by the model. The second is that with

grading models we don’t have immediate access to empirical probabilities, since each

example tends to get assigned an equivalence class of its own. We will now discuss this

in a bit more detail.

Turning rankers into class probability estimators

Consider again Example 2.5 on p.70, and imagine the scores are not probabilities but

on some unknown scale, so that the spam filter is a ranker rather than a class proba-

bility estimator. Since each test example receives a different score, the ‘empirical prob-

abilities’ are either 0 (for negative examples) or 1 (for positive examples), leading to a

sequence of ṗ-values of 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0 in order of decreasing scores. The

obvious problem is that these ṗ-values do not obey the order imposed by the scores,

and so cannot be used directly to obtain probability estimates. Smoothing the empiri-

cal probabilities using Laplace correction doesn’t really address this problem, since all

it does is replace 0 with 1/3 and 1 with 2/3. We need a different idea.

Looking at Figure 2.11, we see that ṗ = 1 corresponds to a vertical segment of the

ROC curve, and ṗ = 0 to a horizontal segment. The problem we have is caused by

having a vertical segment following a horizontal one, or, more generally, a segment

with steeper slope following a flatter segment. We will call a sequence of segments

with increasing slope a concavity, as it forms a ‘dent’ in the ROC curve. A curve without

concavities is a convex ROC curve. Our curve has two concavities: one formed by the

third, fourth and fifth example, and the other by the sixth, seventh and eighth example.
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Figure 2.13. (left) The solid red line is the convex hull of the dotted ROC curve. (right) The cor-

responding calibration map in red: the plateaus correspond to several examples being mapped

to the same segment of the convex hull, and linear interpolation between example scores occurs

when we transition from one convex hull segment to the next. A Laplace-corrected calibration

map is indicated by the dashed line in blue: Laplace smoothing compresses the range of cali-

brated probabilities but can sometimes affect the ranking.

Suppose now that the third to the fifth example all receive the same score, say 0.7; and

the sixth to the eight example are also tied, say at 0.4. In that case the ROC curve would

have six segments, with empirical probabilities 1 – 1 – 2/3 – 2/3 – 0 – 0. As we see,

the ṗ-values are now decreasing with the scores; in other words, the concavities have

disappeared and the ROC curve has become convex.

More generally speaking, concavities in ROC curves can be remedied by combining

segments through tied scores. This is achieved by identifying what are sometimes called

adjacent violators. For instance, in the sequence 1 – 1 – 0 – 1 – 1 – 0 – 1 – 1 – 0 – 0,

the third and fourth example are adjacent violators, because they violate the rule that

scores should be decreasing from left to right in the sequence (or, mathematically more

accurate, they should be non-increasing). This is remedied by assigning them both

their average score, leading to the sequence 1 – 1 – [1/2 – 1/2] – 1 – 0 – 1 – 1 – 0 – 0.

The newly introduced segment now forms an adjacent violator pair with the fourth

example, so we give them all their mean score, leading to the sequence 1 – 1 – [2/3 –

2/3 – 2/3] – 0 – 1 – 1 – 0 – 0.12 The second 0 – 1 – 1 concavity is treated identically, and

the final sequence is 1 – 1 – [2/3 – 2/3 – 2/3] – [2/3 – 2/3 – 2/3] – 0 – 0.

The result is illustrated in Figure 2.13. On the left, we see how the two concavi-

ties are replaced with two diagonal line segments with the same slope. These diagonal

segments coincide with the accuracy isometric that gives the three ‘outermost’ points

12These two steps can be combined into one: once a pair of adjacent violators is found, we can scan to the

left and right to include examples with the same score as the left and right example in the pair, respectively.

https://doi.org/10.1017/CBO9780511973000.004 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.004


78 2. Binary classification and related tasks

involved in the concavities the same accuracy (Figure 2.11 on p.71). Jointly, the red seg-

ments constitute the convex hull of the ROC curve, which is the unique convex curve

through the outermost points of the original ROC curve. The convex hull has a higher

AUC than the original curve, because it replaces (some of) the ranking errors of the

original curve with half-errors due to ties. In our example the original ranking incurs

6 out of 24 ranking errors (AUC = 0.75), while the convex hull turns all of these into

half-errors (AUC= 0.83).

Once we have determined the convex hull, we can use the empirical probabilities

in each segment of the convex hull as calibrated probabilities. Figure 2.13 (right) shows

the resulting calibration map, which is a piecewise linear, non-decreasing curve map-

ping original scores on the x-axis to calibrated probabilities on the y-axis. Also shown

is an alternative calibration map giving probability estimates after Laplace correction:

for the given sequence these are 2/3 – 2/3 – [3/5 – 3/5 – 3/5] – [3/5 – 3/5 – 3/5] – 1/3 –

1/3, giving rise to a much compressed range of probability estimates.

Let’s now look at this process from the point of view of mean squared error, calibra-

tion and refinement. The original scores had a mean squared error of 1
10 [(0.89−1)2+

(0.80−1)2+(0.74−0)2+(0.71−1)2+(0.63−1)2+(0.49−0)2+(0.42−1)2+(0.32−1)2+(0.24−
0)2+ (0.13−0)2] = 0.19. Notice that this is entirely incurred by the calibration loss, as

all empirical probabilities are either 0 or 1 and thus the refinement loss is zero. The

calibrated scores have a mean squared error of 1
10 [(1−1)2+(1−1)2+(0.67−0)2+(0.67−

1)2+(0.67−1)2+(0.67−0)2+(0.67−1)2+(0.67−1)2+(0−0)2+(0−0)2]= 0.13. Now the

entire mean squared error is incurred by refinement loss as the estimated probabilities

are equal to the empirical ones in each segment by construction. We have traded an in-

crease in refinement loss for a decrease in calibration loss; since the latter is larger than

the former, the overall error decreases. The increase in refinement loss comes from the

construction of the convex hull, which introduces diagonal segments. The technical

term for this process of obtaining calibrated scores through the convex hull of the ROC

curve is isotonic calibration, as the mathematical problem underlying it is called iso-

tonic regression. Some caution is in order when applying isotonic calibration, as it is

easy to overfit the data in this process. In the calibration map in Figure 2.13 (right),

both the horizontal transition points and the vertical levels are directly obtained from

the given data, and may not generalise well to unseen data. This is why it is advisable to

apply the Laplace correction to the empirical probabilities, even though it will increase

the calibration loss on the given data.
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2.4 Binary classification and related tasks: Summary and fur-

ther reading

In this chapter we have looked at binary classification, a ubiquitous task that forms the

starting point of a lot of work in machine learning. Although we haven’t talked much

about learning in this chapter, my philosophy is that you will reach a better under-

standing of machine learning models and algorithms if you first study the tasks that

these models are meant to address.

� In Section 2.1 we defined the binary classification task and introduced an impor-

tant tool to assess performance at such a task, namely the two-by-two contin-

gency table. A wide range of performance indicators are derived from the counts

in a contingency table. I introduced the coverage plot, which visualises a con-

tingency table as a rectangle with size Pos up and size Neg across, and within

that rectangle a point with y-coordinate TP and x-coordinate FP. We can visu-

alise several models evaluated on the same data set by several points, and use

the fact that accuracy is constant along line segments with slope 1 to visually

rank these classifiers on accuracy. Alternatively, we can normalise the rectangle

to be a unit square with true and false positive rate on the axes. In this so-called

ROC space, line segments with slope 1 (i.e., those parallel to the ascending diag-

onal) connect points with the same average recall (sometimes also called macro-

accuracy). The use of these kinds of plot in machine learning was pioneered by

Provost and Fawcett (2001). Unnormalised coverage plots were introduced by

Fürnkranz and Flach (2003).

� Section 2.2 considered the more general task of calculating a score for each ex-

ample (or a vector of scores in the general case of more than two classes). While

the scale on which scores are expressed is unspecified, it is customary to put the

decision threshold at ŝ(x) = 0 and let the sign of the score stand for the predic-

tion (positive or negative). Multiplying the score with the true class gives us the

margin, which is positive for a correct prediction and negative for an incorrect

one. A loss function determines how much negative margins are penalised and

positive margins rewarded. The advantage of working with convex and continu-

ously differentiable ‘surrogate’ loss functions (rather than with 0–1 loss, which is

the loss function we ultimately want to optimise) is that this often leads to more

tractable optimisation problems.

� Alternatively, we can ignore the scale on which scores are measured altogether

and only work with their order. Such a ranker is visualised in coverage or ROC

space by a piecewise continuous curve. For grouping models the line segments

in these curves correspond to instance space segments (e.g., the leaves of a tree
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model) whereas for grading models there is a segment for each unique score as-

signed by the model. The area under the ROC curve gives the ranking accuracy

(an estimate of the probability that a random positive is ranked before a ran-

dom negative) and is known in statistics as the Wilcoxon-Mann-Whitney statis-

tic These curves can be used to find a suitable operating point by translating

the operating condition (class and cost distribution) into an isometric in ROC or

coverage space. The origins of ROC curves are in signal detection theory (Egan,

1975); accessible introductions can be found in (Fawcett, 2006; Flach, 2010b).

� In Section 2.3 we looked at scoring models whose scores can be interpreted as

estimates of the probability that the instance belongs to a particular class. Such

models were pioneered in forecasting theory by Brier (1950) and Murphy and

Winkler (1984), among others. We can assess the quality of class probability es-

timates by comparing them to the ‘ideal’ probabilities (1 for a positive, 0 for a

negative) and taking mean squared error. Since there is no reason why the true

probabilities should be categorical this is quite a crude assessment, and decom-

posing it into calibration loss and refinement loss provides useful additional in-

formation. We have also seen a very useful trick for smoothing relative frequency

estimates of probabilities by adding pseudo-counts, either uniformly distributed

(Laplace correction) or according to a chosen prior (m-estimate). Finally, we

have seen how we can use the ROC convex hull to obtain calibrated class prob-

ability estimates. The approach has its roots in isotonic regression (Best and

Chakravarti, 1990) and was introduced to the machine learning community by

Zadrozny and Elkan (2002). Fawcett and Niculescu-Mizil (2007) and Flach and

Matsubara (2007) show that the approach is equivalent to calibration by means

of the ROC convex hull. (Note that in this chapter we have seen two different uses

of the term ‘convex’: one in relation to loss functions, where convexity means

that linear interpolation between any two points on the curve depicting the loss

function will never result in a point below the curve; and the other in relation to

the ROC convex hull, where it refers to the linearly interpolated boundary of a

convex set which envelopes all points in the set.)

�
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