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19 Border Table

The border table, as well as the prefix table in Problem 22, are basic tools
for building efficient algorithms on words. They are used mostly for searching
texts online for various types of given patterns.

The border table of a non-empty word x is defined on the lengths �,
� = 0, . . . ,|x|, of its prefixes both by border[0] = −1 and, for � > 0, by
border[�] = |Border(x[0 . . � − 1])|. Here is the border table of the word
abaababaaba:
i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a a b a b a a b a

� 0 1 2 3 4 5 6 7 8 9 10 11

border[�] −1 0 0 1 1 2 3 2 3 4 5 6

Question. Prove that Algorithm Borders correctly computes the border
table of a non-empty word x and executes a maximum of 2|x| − 3 letter
comparisons when |x| > 1.

Borders(x non-empty word)

1 border[0] ← −1

2 for i ← 0 to |x| − 1 do
3 � ← border[i]

4 while � ≥ 0 and x[�] �= x[i] do
5 � ← border[�]

6 border[i + 1] ← � + 1

7 return border

Example. Let us consider the prefix u = abaababa of the above word. Its
border is v = aba of length 3 = border[8]. The next letter a extends the
border, that is, Border(ua) = va.

a b a a b a b a
v v

� �

If the next letter c is not a, the border of uc is the border of vc, which sketches
the proof of the recurrence relation, for u a word and c a letter:

Border(uc) =
{

Border(u)c if Border(u)c is a prefix of u,

Border(Border(u)c) otherwise.
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19 Border Table 55

Question. Show how to detect the non-primitive prefixes of a word using its
border table.

Solution
The proof of correctness relies on the above recurrence relation. It can be
restated by saying that the second longest border of a word u, if it exists, is
the border of its border.

v v
0 � i

��
� = border[i]

Correctness of Algorithm Borders. First note that border[0] is set up
correctly.

Instructions in the for loop, lines 3–6, compute border[i + 1] from all the
other values border[i′], i′ = 0, . . . ,i. During the execution of the while loop,
� runs through lengths of the borders of x[0 . . i − 1] from the longest to the
shortest.

If the while stops and � = −1, no border can be extended by the letter x[i];
then the next border is empty, that is, border[i + 1] = 0, as done. Otherwise,
the loop stops the first time a match is found providing the longest border of
x[0 . . i − 1], of length �, extensible by letter x[i]. Then border[i + 1] = �+ 1,
as done again. This ends the proof.

Running time of Algorithm Borders. Note it is sufficient to establish the
bound to prove the linear running time. To do it we show that the value of
2i − � increases by at least 1 after each letter comparison. Indeed, i and � are
both incremented after a positive comparison and � is decreased by at least 1
with i unchanged after a negative comparison.

When |x| > 1, the value of 2i − � runs from 2, for the first comparison with
i = 1 and � = 0, to at most 2|x|−2 during the last comparison with i = |x|−1
and � ≥ 0. The overall number of comparisons is thus bounded by 2|x| − 3, as
stated. The bound of 2|x| − 3 is reached by any string x of the form a|x|−1b,
where a and b are different letters.

Non-primitive prefixes. By definition, a non-primitive word u is of the form
wk for some non-empty word w and an integer k > 1. It means |u| = k|w|;
that is, the period |w| of u divides its length |u|. Therefore the detection of a
non-primitive prefix of length i of x from the border table of x can be done by
checking if the exponent i/(i − border[i]) of the prefix is an integer greater
than 1.
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56 Pattern Matching

Notes
The use of border tables for matching words is a classical topic in textbooks
like [74, 96, 134, 194, 228]. The initial design is by Morris and Pratt (see
[162]).

Since |u|−border[|u|] is the smallest period of u, the border table of a word
can be transformed into the table of periods of its prefixes. A striking solution
for computing this latter table for a Lyndon word is shown in Problem 42.

20 Shortest Covers

The notion of cover tries to capture the regularity of a word. It goes beyond the
possible periodicity of the word by considering an a priori shorter factor that
covers the whole word. Period words are specific covers that occur consecu-
tively in the word while general covers may have overlapping occurrences. In
that sense the notion of cover generalises the notion of period. More accurately,
a cover u of a word x is a border of x whose consecutive occurrence positions
are at maximum distance |u|.
Example. The word u = aba is a cover of the word x = abaababa.
Indeed, the sorted list of starting positions of occurrences of u in x is
pos(aba,abaababa) = (0,3,5) and the maximum distance consecutive
positions of the list is MaxGap({0,3,5}) = 3 ≤ |u|. The word u is the shortest
cover of x.

The shortest cover of abaababaaaba is the whole word, which is always
a trivial cover of itself. When this condition holds the word is said to be super-
primitive. It is also primitive.

The cover table , denoted by cover, associated with a word x is defined on
length � of its prefixes as follows: cover[�] is the smallest length of covers of
x[0 . . � − 1]. Here is the cover table of the word abababaaba.

i 0 1 2 3 4 5 6 7 8 9

x[i] a b a b a b a a b a

� 0 1 2 3 4 5 6 7 8 9 10

cover[�] 0 1 2 3 2 3 2 3 8 9 3
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Question. Design a linear-time algorithm computing the shortest cover of
each prefix of a word.

[Hint: Use the border table of the word.]

Solution
The present solution, an online algorithm to compute the cover table of a
word x, relies on a key observation. (The border table of a word is treated
in Problem 19.)

Observation. The only candidate for a non-trivial shortest cover of x[0 . . j−1]
is the shortest cover u = x[0 . . �−1] of v = x[0 . . border[j ]−1], which is the
(longest) border of x[0 . . j − 1] (see picture). This is because any non-trivial
cover of x[0 . . j − 1] is a cover, possibly trivial, of its border.

In addition, the algorithm makes a crucial use of a supplementary table
range: range[�] is the length of the longest prefix of x[0 . . j − 1] covered
by x[0 . . � − 1] (prefix v is covered by u on the picture). The next observation
explains the role of the table range.

Observation. If u = x[0 . . � − 1] is a cover of the border of x[0 . . j − 1] and
range[�] is as large as the period of x[0 . . j − 1], u is a cover of x[0 . . j − 1].

v v
0 � j

u u u u

��
border[j ]

w ��
range[�]

Algorithm ShortestCovers implements the observations.

ShortestCovers(x non-empty word)

1 border ← Borders(x)

2 for j ← 0 to |x| do
3 (cover[j ],range[j ]) ← (j,j)

4 for j ← 2 to |x| do
5 � ← cover[border[j ]]

6 if � > 0 and (range[�] ≥ j − border[j ]) then
7 (cover[j ],range[�]) ← (�,j)

8 return cover
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After a run of Algorithm ShortestCovers on the above example
abababaaba, the tables get their final values:

j 0 1 2 3 4 5 6 7 8 9 10

border[j ] −1 0 0 1 2 3 4 5 1 2 3
range[j ] 0 1 6 10 4 5 6 7 8 9 10
cover[j ] 0 1 2 3 2 3 2 3 8 9 3

Note that super-primitive prefixes are those whose length j satisfies
cover[j ] = j .

Following the computation of the table border, the instruction at lines 3
initialises trivially tables cover and range. Instructions at lines 4–7 compute
cover[j ] and update range. The condition (range[�] ≥ j −border[j ]) at line 6
checks, according to the second observation, whether � is actually the length
of the shortest cover of x[0 . . j − 1]. This completes the proof of correctness.

Since Algorithm Borders runs in linear time, this is also the case for
Algorithm ShortestCovers.

Notes
The present algorithm was designed by Breslauer in [43] to test the super-
primitivity of words.

21 Short Borders

The problem deals with a special type of border table of a word. It is adapted
to search texts for Zimin patterns containing word variables (see Problem 43).
It shows the notion of border table is powerful when tuned for searching online
for various types of patterns.

A border of a non-empty word x is any word that is both a proper prefix
and a suffix of it. A border is said to be short if its length is smaller than |x|/2.
The notations Border(x) and ShortBorder(x) stand for the longest border of x

and for its longest short border, respectively. Any of these borders can be the
empty word.

For example, borders of x = abababab are ε, ab, abab and ababab.
Only ε and ab are short, Border(x) = ababab and ShortBorder(x) = ab.
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21 Short Borders 59

In some algorithms the notion of a short border is more appropriate when
known for all the prefixes of a word. Let shbord denote the short-border table
of prefixes of a non-empty word x. It is defined on prefix lengths �, 0 < � ≤
|x|, by

shbord[�] = |ShortBorder(x[0 . . � − 1])|

(by convention shbord[0] = −1). Below are the tables for the word
abaababaaba. They differ at positions � = 6,10,11.

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a a b a b a a b a

� 0 1 2 3 4 5 6 7 8 9 10 11

border[�] −1 0 0 1 1 2 3 2 3 4 5 6
shbord[�] −1 0 0 1 1 2 1 2 3 4 2 3

Question. Design a linear-time algorithm computing the table shbord of a
non-empty word.

Solution
A straightforward solution would be to compute the table shbord from the table
border of the word without looking at the word itself. But this is likely to yield
a quadratic execution time on examples like ak or (ab)k .

Instead, Algorithm ShortBorders, which still uses the table of borders, is
a modification of Algorithm Borders that computes this table (see Problem
19). Then it also runs in linear time. It tries to enlarge the previous short border
and when the extension is too long uses the table of borders to switch to a
shorter border.

ShortBorders(x non-empty word)

1 border ← Borders(x)

2 shbord[0] ← −1

3 for i ← 0 to |x| − 1 do
4 � ← shbord[i]

5 while (� ≥ 0 and x[�] �= x[i]) or (2� + 1 ≥ i) do
6 � ← border[�]

7 shbord[i + 1] ← � + 1

8 return shbord
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The correctness of Algorithm ShortBorders follows from the fact that the
next short border is an extension of the previous short border of u= x[0 . . i−1]
by the single symbol x[i], or is an extension of a shorter border of u.

Since the number of executions of the instruction at line 6 is bounded by
the number of increments of �, the overall running time is O(|x|), as expected.

Notes
The motivation to introduce and compute the table shbord is its essential
implication in the computation of Zimin types of words and their crucial use
in algorithms fast searching for a given Zimin pattern (containing variables) in
words (without variables) (Problem 43).

22 Prefix Table

The prefix table, like the border table of Problem 19, is a basic tool for
building efficient algorithms on words. It is used mostly when searching texts
for various types of given patterns.

Let x be a non-empty string. The prefix table of x is defined on its positions
i, i = 0, . . . ,|x| − 1, by: pref [i] is the length of the longest prefix of x starting
at position i. Obviously pref [0] = |x|.

v v
0 i

a b��
pref [i]

Here is the prefix table of the word abaababaaba:

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a a b a b a a b a
pref [i] 11 0 1 3 0 6 0 1 3 0 1

Question. Show that Algorithm Prefixes computes in linear time the
prefix table of its input word x and executes no more than 2|x| − 2 letter
comparisons.
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Prefixes(x non-empty word)

1 pref [0] ← |x|
2 g ← 0

3 for i ← 1 to |x| − 1 do
4 if i < g and pref [i − f ] �= g − i then
5 pref [i] ← min{pref [i − f ],g − i}
6 else (f ,g) ← (i, max{g,i})
7 while g < |x| and x[g] = x[g − f ] do
8 g ← g + 1

9 pref [f ] ← g − f

10 return pref

The key idea in Algorithm Prefixes that computes the table sequentially
from left to right is to benefit from what has been computed before the current
position.

w c a w c b

0 i − f g − f f i g

��
pref [i − f ]

��
pref [f ]

When v = x[f . . g − 1] is a prefix of x and position i is between f and g (see
picture), the first step for computing pref [i] is to check whether or not its value
can be deduced from the work done on the prefix occurrence of v, that is, at
position i − f on x. This saves enough work to get a linear-time algorithm.

Solution
Correctness of Prefixes. Let us first clarify the role of variables f and g. At
some point during a run of the algorithm, the position g is the farthest position
to the right where a (negative) letter comparison happened. More accurately,
for a given position i, g = max{j + pref [j ] : 0 < j < i}. And the associated
position f satisfies f + pref [f ] = g.

During the first pass in the for loop, f and g are set as well as is pref [i] =
pref [f ] in accordance with their definitions by mere letter comparisons, which
gives the invariant of the loop.

To show the invariant is maintained during other passes in the for loop, we
examine what instructions at lines 4–9 do.

If i < g and pref [i − f ] < g − i it is clear that pref [i] = pref [i − f ]; see
the above picture. If i < g and pref [i − f ] > g − i the longest prefix of x

starting at position i − f is of the form v′x[g − f ]v′′, where v′ is a suffix of
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x[i − f . . g − f − 1] = x[f . . g − 1]. Then, since x[g] �= x[g − f ], v′ is the
longest prefix of x starting at i, that is, pref [i] = g − i. Therefore, when i < g

and pref [i − f ] �= g − i, the instruction at line 5 sets correctly the value of
pref [i] without changing the invariant.

When the condition at line 4 does not hold, as in the first pass, the value of
pref [i] is set correctly by letter comparisons and the invariant is satisfied after
that pass. This ends the proof of correctness.

Running time of Prefixes. The running time depends essentially on the
number of letter comparisons at line 7. There is at most one negative
comparison for each value of i because this stops the execution of the while
loop, that is, at most |x|−1. There is at most one positive comparison for each
value of g because it increases the value of g that never decreases, that is, at
most |x|−1 again. The total number of letter comparisons is thus no more that
2|x| − 2, which shows that the overall running time is O(|x|).
Notes
Prefix tables, as well as border tables in Problem 19, are basic notions on words
to design algorithms on texts, presented sometimes implicitly in textbooks
like [74, 96, 134, 194, 228]. Algorithm Prefixes is called the Z algorithm in
[134, page 9].

23 Border Table to the Maximal Suffix

The maximal suffix of a word, its alphabetically greatest suffix, helps designing
optimal text searches and periodicity tests. The problem introduces a compu-
tation of it based on the border table algorithm.

Question. Show that the following version of the border table computation
correctly returns the starting position on the input word of its maximal suffix
and that it runs in linear time.
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MaxSuffixPos(x non-empty word)

1 ms ← 0

2 border[0] ← −1

3 for i ← 0 to |x| − 1 do
4 � ← border[i − ms]

5 while � ≥ 0 and x[ms + �] �= x[i] do
6 if x[ms + �] < x[i] then
7 ms ← i − �

8 � ← border[�]

9 border[i − ms + 1] ← � + 1

10 return ms

Example. The word x = abcbcacbc has maximal suffix MaxSuffix(x) =
cbcacbc whose longest border is v = cbc. A next letter is to be compared
with the letter following the prefix cbc of the maximal suffix.

ms
a b c b c a a c b c

v v

� �

The following pictures show how the maximal suffix evolves according to the
appended letter a, b, c or d. Note that if the periodicity of the maximal suffix
changes, the maximal suffix is of the form va where v is a border of the initial
maximal suffix and a is the new letter.

ms
a b c b c a a c b c a

ms
a b c b c a a c b c c

ms
a b c b c a a c b c b

ms
a b c b c a a c b c d

Question. Show how to find the alphabetically largest conjugate (rotation)
of a word.

Solution
The online algorithm is based on the above remark on the border of the
previous maximal suffix. The role of instructions inside the for loop is
simultaneously to update the starting position of the maximal suffix and to
compute the length of its border. Note that without instruction at lines 6–7, the
variable ms remains null and the algorithm computes the table border of the
whole word x.
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x

v v

ms ms + � i − � i

��
�

Correctness of MaxSuffixPos. The proof is done by showing the following
invariant holds after executing instructions inside the for loop, lines 4–9: ms is
the starting position of the maximal suffix of x[0 . . i − 1] and border[i − ms]
is the border length of this suffix of length i − ms.

After the initial instructions and the first pass in the loop for i = 0, we get
ms = 0 and border[1] = 0, the correct result for the word x[0].

By induction, other passes start by setting � to the border length of
x[ms . . i−1]. The fact that the border length of x[ms . . i] is correctly computed
follows the same argument as in the construction of the border tables in
Problem 19 about the iteration of border at line 8. In short, when the while
loop stops ms was updated at line 7 each time the border v of the current
maximal suffix satisfies vx[ms + �] < ux[i], which effectively locates the
maximal suffix of x[ms . . i].

Running time of MaxSuffixPos. This is the same running time as for
the computation of the border table (see Problem 19), that is, O(|x|), since
instruction at lines 6–7 takes constant time.

Largest conjugate. Let ms = MaxSuffixPos(y), where y = xx. Then the
largest conjugate of x is y[ms . . ms + |x| − 1]. Modular arithmetic on indices
can be used to avoid duplicating x.

Notes
The above algorithm is adapted from the computation of the smallest rotation
of a circular word by Booth [39].

Two other solutions for the computation of the maximal suffix of a word
are shown in Problems 38 and 40. They also run in linear time but with
the advantage of requiring only constant extra memory space. The second
additionally reports the period of the maximal suffix.
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24 Periodicity Test

The detection of periodicities in words is an essential question to cope with
when designing text searching or text compression methods. The goal is to test
the periodicity of a word in a space-economical way.

A word x is said to be periodic if its (smallest) period is no more than half
its length, per(x) ≤ |x|/2. Equivalently, x is periodic if it is of the form ukv

for two words u and v and an integer k, u non-empty, v a proper prefix of u

and k ≥ 2.
Checking the property is straightforward from the border or prefix tables

of x. The goal here is to do it still in linear time but with only constant extra
space (in addition to input). The idea is to use the function MaxSuffixPos of
Problem 40 that gives the position and period of the maximal suffix of x.

The examples below illustrate variations of the period of a word according
to its maximal suffix. The maximal suffix starts at position ms and is in the
form ukv (here k = 1), where u = x[ms . . ms+p − 1], p is its period and v is
a proper prefix of u.

First, x = ababbaababbaab. The prefix aba of x preceding the
maximal suffix uv is a suffix of u. Then x is periodic with period 6.

ms
a b a b b a a b a b b a a b

u v��

Second, x = ababbaaabbaababbaa. The prefix of x preceding uv is
longer than u. The period of x is 11 > |uv| and x is not periodic.

ms
a b a b b a a a b b a a b a b b a a

u v ��

Third, x = baabbaababbaab. The prefix of x preceding uv is shorter
than u but not a suffix of it. The period of x is 10 > |x| − |v| and x is not
periodic.

ms
b a a b b a a b a b b a a b

u v��

Question. Show that the periodicity of a word x can be tested with less than
|x|/2 letter comparisons if the starting position and the period of its maximal
suffix are given.
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Solution
Let ms be the starting position and p be the period of the maximal suffix of x.
The solution consists in checking the condition at line 2 below, which takes
less than |x|/2 comparisons and answers the question.

Periodic(x non empty word)

1 (ms,p) ← MaxSuffixPP(x)

2 if ms < |x|/2 and p ≤ |x|/2

and x[0 . . ms − 1] suffix of x[ms . . ms + p − 1] then
3 return true

4 else return false

It is clear that if the condition holds x is periodic with period p and if
ms ≥ |x|/2 or p > |x|/2 the word is not periodic.

Let x = yz, where y = x[0 . . ms − 1], z = x[ms . . |x| − 1] = ukv is the
maximal suffix, u the prefix period of z, v a proper prefix of u and k > 0.
Assume y is not a suffix of u.

y u u v

y

w w w

0 ms

We first consider the case where |y| ≥ |u| and show that per(x) > |z|. If
not (above picture), a second occurrence of y in x overlaps some occurrence
of u. Let w be their overlap, suffix of y and prefix of u (or v) and then of z. Let
z = wz′. Both wz and z′ are suffixes of x smaller than z. But wz < z = wz′

implies z < z′, a contradiction. In this situation, we have per(x) > |z| and
per(x) > |y| (see Problem 41), which yields 2per(x) > |y| + |z| and proves
that x is not periodic.

y u u v

y u

w

0 ms

In the second case |y| < |u| and we first show per(x) > min{|z|,|x| − |v|}.
If not and per(x) ≤ |z| we get the same conclusion as above. We then consider
by contradiction that per(x) ≤ |x| − |v|. In fact we have per(x) < |x| − |v|
because y is not suffix of u. Thus u (strictly) overlaps itself (picture below).
A contradiction because u is border-free (see Problem 40 for example). In this
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situation, we have per(x) > |x| − |v| and also trivially per(x) > |v| then
2per(x) > |x|, which shows that x is not periodic. This ends the proof of
correctness of Periodic.

Notes
Algorithm Periodic tests the periodicity of x but does not compute its period.
In fact it is possible to compute the period with the same time and space
complexities using the time–space optimal string matching in [69]. The time–
space optimal algorithm by Galil and Seiferas [124] (see [97]) can certainly be
tuned to yield the same result as well.

25 Strict Borders

When used for searching texts online, the border table of a pattern is better
replaced by the notion introduced in this problem. The effect is to improve the
behaviour of searches as shown in Problem 26.

The strict-border table of a non-empty word x is defined on the lengths �,
� = 0, . . . ,|x|, of its prefixes by: stbord[0] = −1, stbord[|x|] = border[|x|]
and, for 0 < � < |x|, stbord[�] is the greatest t satisfying

• −1 ≤ t < � and

• (x[0 . . t − 1] is a border of x[0 . . � − 1] and x[t] �= x[�]) or t = −1.

Word x[0 . . stbord[�] − 1] is the strict border of prefix x[0 . . � − 1] of x. It
exists only if stbord[�] �= −1.

Here are border and strict-border tables of the word abaababaaba:

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a a b a b a a b a

� 0 1 2 3 4 5 6 7 8 9 10 11

border[�] −1 0 0 1 1 2 3 2 3 4 5 6
stbord[�] −1 0 −1 1 0 −1 3 −1 1 0 −1 6
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Question. Design a linear-time algorithm computing the table stbord with-
out using the table border or any other additional table.

Solution
First notice that the table stbord can be used to compute the table border.
It consists just in substituting stbord to border in the instruction at line 5 of
Algorithm Borders (see Problem 19), which gives

Borders(x non-empty word)

1 border[0] ← −1

2 for i ← 0 to |x| − 1 do
3 � ← border[i]

4 while � ≥ 0 and x[i] �= x[�] do
5 � ← stbord[�]

6 border[i + 1] ← � + 1

7 return border

This accelerates the computation of the table on examples like anb.

v v
0 � i

a a

u b u a��
stbord[�]

��
� = border[i]

Observation. The computation of the table of strict borders is based on the
following property. If � = border[i] for some i, 0 ≤ i ≤ |x|, then

stbord[i] =
⎧⎨⎩� if i = 0 or i = |x| or x[i] �= x[�],

stbord[�] else (0 < i < |x| and x[i] = x[�]).

Indeed, if the first condition is met the border of x[0 . . i − 1] complies with
the definition of a strict border; then stbord[i] = border[i]. If not (see picture),
the situation is the same as when computing the strict border of x[0 . . �], then
stbord[i] = stbord[�].
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StrictBorders(x non-empty word)

1 stbord[0] ← −1

2 � ← 0

3 for i ← 1 to |x| − 1 do
4 � here � = border[i]

5 if x[i] = x[�] then
6 stbord[i] ← stbord[�]

7 else stbord[i] ← �

8 do � ← stbord[�]

9 while � ≥ 0 and x[i] �= x[�]

10 � ← � + 1

11 stbord[|x|] ← �

12 return stbord

Algorithm StrictBorders solves the problem. The instructions at
lines 5–7 implement the observation. Instructions at lines 8–9 correspond
to those at lines 4–5 in Algorithm Borders and serve to compute the length �

of the border of x[0 . . i + 1]. The correctness follows from these remarks and
the linear running time follows from that of Algorithm Borders.

Notes
The table stbord is part of the design of the string-matching algorithm by
Knuth, Morris and Pratt [162], which improves on the initial algorithm
by Morris and Pratt (see [74, chapter 2]). For this online algorithm the
improvement is on the delay between processing two consecutive symbols of
the searched text (see Problem 26). A further improvement on the delay is
provided by String matching automata (see Problem 27).
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26 Delay of Sequential String Matching

Algorithm KMP encapsulates a key feature (the use of a border table or
the like) for the design of string-matching algorithms processing the text
sequentially. Its concept is used for various types of patterns after appropriate
preprocessing.

Algorithm KMP searches a text for occurrences of a pattern x. After
preprocessing x it treats the text in an online manner and outputs found
occurrences. It runs in linear time executing no more letter comparisons than
twice the text length. In the version below, it just outputs ‘1’ each time an
occurrence of x is found in the text and outputs ‘0’ otherwise.

The algorithm runs in linear time but not in real time due to the internal
while loop of the algorithm dealing with a symbol of the text and that can take
some time. This is called the delay of the algorithm. The goal of the problem is
to bound the delay, precisely defined as the maximum number of comparisons
executed at line 4 on the letter a of the input text.

KMP(x,text non-empty words)

1 stbord ← StrictBorders(x)

2 i ← 0

3 for each letter a of text, sequentially do
4 while (i = |x|) or (i ≥ 0 and a �= x[i]) do
5 i ← stbord[i]

6 i ← i + 1

7 if i = |x| then output 1 else output 0

If the table border (see Problem 19) of x is used in the algorithm instead
of its table stbord (see Problem 25), the delay is |x| in the worst-case. For
example, if x = am is aligned with a factor am−1b of the text, the letter b is
compared to all the letters of x. But with the table stbord the delay becomes
logarithmic.

Question. Show the delay of Algorithm KMP is �(log |x|) when searching
for a word x.

[Hint: Consider interlocked periods and apply the Periodicity Lemma.]
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Solution
Delay lower bound. The worst-case delay �(log |x|) is reached, for example,
when x is a prefix of a Fibonacci word.

Let x (|x| > 2) be such a word and let k be the integer for which Fk+2 ≤
|x| + 1 < Fk+3. The pattern x is a prefix of fk+1 (of length Fk+3) of the form
uabv, where uab = fk for some letters a,b ∈ {a,b}. When ua is aligned with
a factor uc of text and c �∈ {a,b}, letter c is compared k times unsuccessfully
alternatively to a and to b. Since k is of the order of log Fk+2, then of the order
of log |x|, this gives the lower bound.

Example. Let x = abaababaabaababa, prefix of f6 (|f6| = F8). We
have F7 = 13, |x| + 1 = 17, F8 = 21. When the prefix abaababaabaa
is aligned with the factor abaababaabac of the searched text, exactly
k = 5 comparisons are done by Algorithm KMP before dealing with the letter
following c (see picture).

a b a a b a b a a b a a b a b ax

a b a a b a b a a b a a b a b ax

a b a a b a b a a b a a b a b ax

a b a a b a b a a b a a b a b ax

a b a a b a b a a b a a b a b ax

. . . . . . . . . . . . . . . . .y . . a b a a b a b a a b a c

Delay upper bound. For a position i on x let k be the largest integer for which
both stbordk−1[i] is defined and stbordk[i] is not. We show that the integer k

is an upper bound on the number of comparisons between x[i] and a letter of
the text.

Let us first show that if stbord2[i] is defined the prefix u = x[0 . . i − 1]
satisfies |u| ≥ stbord[i] + stbord2[i] + 2. Since stbord[i] and stbord2[i] are
borders of x[0 . . i−1], p = |u|−stbord[i] and q = |u|−stbord2[i] are periods
of u. By contradiction, if |u| < stbord[i]+stbord2[i]+2 then p+q−1 ≤ |u|.
Thus, by the Periodicity Lemma, q − p is also a period of u. This implies
that x[stbord2[i]] = x[stbord[i]], letters at distance q − p in u, which is a
contradiction with the definition of stbord.

The inequality enables to show, by recurrence, that |u| ≥ Fk+2 − 2. Thus
|x|+ 1 ≥ |u|+ 2 ≥ Fk+2. From the classical inequality Fn+2 ≥ �n we get the
delay upper bound of O(log� |x|).

Lower and upper bounds answer the question.
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Notes
The proof of the problem can be found in [162] (see also [74]). The algorithm
by Simon [225] and by Hancart [136] reduces even more the upper bound
on the delay to min{log2 |x|,|alph (x)|} using sparse matching automata (see
Problem 27).

27 Sparse Matching Automaton

The most standard method to locate given patterns in a text processed
sequentially is to use a pattern-matching automaton. Border tables used in
Algorithm KMP may be viewed as implementations of such an automaton.
The aim of the problem is to show another implementation technique that
eventually improves searches. Searches using this implementation run at least
as fast as Algorithm KMP, then run in linear time executing no more letter
comparisons than twice the text length.

The pattern-matching or string-matching automaton M(x) of a word x

drawn from the alphabet A is the minimal deterministic automaton accepting
words ending with x. It accepts the language A∗x and has |x| + 1 states,
0,1, . . . ,|x|, the initial state 0 and its only accepting state |x|. Its transition
table δ is defined, for a state i and a letter a, by

δ(i,a) = max{s + 1 : −1 ≤ s ≤ i and x[0 . . s] suffix of x[0 . . i − 1] · a}.
Observe that the size of the table is �(|x|2) when the alphabet of x is as large
as its length. But the table is very sparse, since most of its values are null.

Below is the string-matching automaton of abaab of length 5 on the
alphabet {a,b}. Labelled arcs represent non-null values in the transition table.
There are five forward arcs (on the main line) and four backward arcs. All
other undrawn arcs have 0 as the target state. Were the alphabet to contain a
third letter, all arcs labelled with it would also have 0 as the target state.

0 1
a

a

2
b

3
a

b

4
a

a

5
b

a
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Question. Show that the table δ associated with the string-matching automa-
ton of a word of length n has at most 2n non-zero entries and that the bound
is tight.

Solution
In the automaton M(x), there are n forward arcs corresponding to δ(i,a) =
i + 1. The other arcs are backward arcs when 0 < δ(i,a) ≤ i. Showing that
there are at most n backward arcs answers the question.

Observation. An entry δ(i,a) = t associated with a backward arc satisfies
x[t] = a, x[i] �= a and x[0 . . t − 1] = x[i − t . . i − 1]. Then since the latter
word is a border of length t of x[0 . . i − 1], i − t is a period (not necessarily
the smallest) of x[0 . . i − 1] denoted by p(i,a).

For the above example, associated with the backward arcs we have p(1,a) =
1, p(3,b) = 2, p(4,a) = 4 and p(5,a) = 3. Note that p(4,a) = 4 is not the
smallest period of x[0 . . 3] = abaa.

To prove the bound on the number of backward arcs we first show that p is
a one-to-one function between backward arcs and periods of prefixes of x.

Let δ(i,a) = t +1 with 0 ≤ t < i, δ(j,b) = t ′ with 0 ≤ t ′ < j . We assume
p(i,a) = p(j,b); that is, i − t = j − t ′, and prove that (i,a) = (j,b).

x a a
0 t t ′ i j

��
p(i,a) = p(j,b)

Indeed, if i = j we get t = t ′ and then a = x[t] = x[t ′] = b; thus
(i,a) = (j,b). And otherwise, if for example i < j like in the picture, since
i − t = p(i,a) = p(j,b) is a period of x[0 . . j − 1], we immediately get
x[t] = x[t + (i − t)] = x[i], which contradicts the definition of t .

Consequently p is a one-to-one function and since its values range from 1
to n, the number of backward arcs is no more than n, which achieves the first
part of the proof.

0 1
a

a

2
b
a

3
b

a

4
b

a

5
b

a
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The bound in the statement is tight because the string-matching automa-
ton of the word abn−1 has exactly n backward arcs in addition to its n

forward arcs.

Notes
The sparsity of the transition table of string-matching automata was observed
by Simon [225]. The complete analysis is by Hancart [136] (see [74, chapter
2]), who showed how to use it for improving the string-matching algorithm by
Knuth, Morris and Pratt [162]. The sparsity of the automaton does not extend
to the similar automaton for a finite set of words.

The above result also applies to an analogue table used in the string-
matching algorithm by Boyer and Moore (see [74, 98, 134]).

28 Comparison-Effective String Matching

When the access to textual data is through equality comparisons between
symbols only, it is appropriate to reduce their number during searches for
patterns. For example, Algorithm KMP (in Problem 26) executes in the worst
case 2|y| − 1 letter comparisons to find occurrences of a preprocessed pattern
x in a text y. The same result holds when the search uses a string-matching
automaton with an appropriate implementation.

The problem shows that the number of letter comparisons can easily be
reduced to only |y| comparisons for simple patterns. A similar approach,
sketched at the end of the solution, leads to a maximum of 3

2 |y| letter
comparisons for general patterns.

Question. Design an algorithm searching a text y for all occurrences of a
two-letter pattern x and using at most |y| comparisons in the equality model.

[Hint: Distinguish whether the two letters are identical or not.]

Solution
We consider two cases, whether the pattern x is of the form aa or ab for two
letters a and b with a �= b.
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In the first case, Algorithm KMP executes exactly |y| comparisons
whichever border table is used. Note that a straightforward naive approach
is likely to execute close to 2|y| comparisons.

In the second case, when x = ab with a �= b, the search is done with the
following algorithm.

Search-for-ab-in(y word,a and b different letters)

1 j ← 1

2 while j < |y| do
3 if y[j ] = b then
4 if y[j − 1] = a then
5 ab occurs at position j − 1 on y

6 j ← j + 2

7 else j ← j + 1

The algorithm can be viewed as a recursive algorithm:

find the smallest position j > 0 for which y[j ] = b,
check if y[j − 1] = a,
then recursively search for ab in y[j + 1 . . |y| − 1].

Note that computing j during the first step of the recursive version takes
exactly j comparisons since there is no comparison on y[0].

We prove that Algorithm Search-for-ab-in makes at most |y| symbol
comparisons by induction on the length of y. Assume we found the first
occurrence of b at position � on y. This is done with � comparisons. Then
accounting for the comparison y[�− 1] = a gives a total of �+ 1 comparisons
to deal with y[0 . . �] of length � + 1.

Since the same steps are applied to y[� + 1 . . |y| − 1], by the inductive
assumption the algorithm executes at most |y| − � − 1 = |y[� + 1 . . |y| − 1]|
more comparisons. Together we get at most |y| comparisons as expected. This
proves the inductive claim and completes the proof.

General patterns. To apply a similar technique for a general non-empty
pattern x, this one is split as x = akbu, where u is a word, a and b are
different letters and k > 0. The algorithm consists in searching for bu in the
text (scanning it from left to right) and, whenever it makes sense, in checking
if ak occurs immediately before occurrences of bu. The search for bu can use,
for example, the Morris-Pratt algorithm (Algorithm KMP with the table border
instead of stbord in Problem 26). There are several versions implementing this
method. However, it is quite technical and details are not included here.
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Notes
The first string-matching algorithm achieving a 3

2n (n = |y|) upper bound on
letter comparisons is by Apostolico and Crochemore [14]. It has been improved
to a 4

3n − 1
3m comparisons bound by Galil and Giancarlo [123]. A tight upper

bound of n + 8
3(m+1)

(n − m) comparisons, where m = |x|, is proved by Cole
and Hariharan in [60].

Under the additional constraint that searches operate strictly online on the
text, the exact upper bound (obviously larger than above best bounds) on letter
comparisons is (2 − 1

m
)n by Hancart [136] and by Breslauer et al. [44].

29 Strict Border Table of the Fibonacci Word

The border table border (see Problem 19) of the infinite Fibonacci word f has
a simple structure but values in its strict border table stbord (see Problem 25)
look chaotic at first glance. The problem examines a simple relation between
the two tables, which helps to quickly compute any individual value of the
table stbord.

Below are tables of periods, borders and strict borders related to a prefix
of Fibonacci word. Values at index � correspond to the prefix f[0 . . � − 1] of
length �.

i 0 1 2 3 4 5 6 7 8 9 10

x[i] a b a a b a b a a b a

� 0 1 2 3 4 5 6 7 8 9 10 11

period[�] 1 2 2 3 3 3 5 5 5 5 5
border[�] −1 0 0 1 1 2 3 2 3 4 5 6
stbord[�] −1 0 −1 1 0 −1 3 −1 1 0 −1 6

Question. Show how to compute in logarithmic time the nth element of the
strict border table of the infinite Fibonacci word f.

[Hint: Examine positions where tables border and stbord match.]
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Solution
Positions � on tables border and stbord pointing to the same entry are essential
for the computation of stbord[�]. Other values in stbord can be computed from
them.

The table period of periods of prefixes of f (defined for �> 0 by period[�] =
per(f[0 . . �−1])= �−border[�]) has an extremely simple structure, encapsuled
in the following observation.

Observation. Values in the table period of Fibonacci word can be seen as the
word

122333555558 · · · = 11 22 33 55 88 1313 2121 · · ·

composed of a concatenation of runs. Runs are all unary runs of a Fibonacci
number with exponent equal to the same number and starting with F2 = 1.

Notice that, for � > 0, the equality stbord[�] = border[�] holds exactly at
positions where the periodicity breaks, that is, at the end of a unary run. Let
H be the increasing sequence of these (positive) positions. Hence, due to the
observation on the structure of periods, the positions in H are

1, 1 + 2, 1 + 2 + 3, 1 + 2 + 3 + 5, 1 + 2 + 3 + 5 + 8, . . .

and it is rather straightforward to see that

H = (1,3,6,11,19,32, . . .) = (n > 0 : n + 2 is a Fibonacci number).

The relation between tables border and stbord (shown in Problem 25) can
then be reformulated as

stbord[�] =
{

border[�] if � ∈ H ,

stbord[border[�]] otherwise.

The formula translates immediately into Algorithm FibStrictBorders that
computes stbord[n] corresponding to the prefix of length n of the Fibonacci
word. In the algorithm, the computation of border[n] = n − period[n] is fast
due to the structure of the sequence of periods. Testing if n + 2 is a Fibonacci
number can be done by keeping the greatest two Fibonacci numbers not larger
than n + 2. When going to smaller values in the recursion, the two Fibonacci
numbers follow naturally.
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FibStrictBorders(n natural number)

1 if n = 0 then
2 return −1

3 elseif n + 2 is a Fibonacci number then
4 return n − period[n]

5 else return FibStrictBorders(n − period[n])

The following observation is the argument used to prove the running time
of the algorithm.

Observation. period[n]/n ≥ limn→∞ Fn−2
Fn

≥ 1
3 .

As a consequence n − period[n] ≤ 2
3n, which implies that the depth of the

recursion is logarithmic. Consequently the total running time of the algorithm
is also logarithmic with respect to n.

30 Words with Singleton Variables

The problem shows the flexibility of the border table notion and of the fast
algorithm computing this table. Having such a table is a valuable element to
design efficient pattern matching, searching here for patterns with a variable.

We consider words over the alphabet A={a,b, . . .} in which letters are
considered as singleton variables, that is, each letter represents a distinct
unknown letter of the alphabet.

Two words u and v are said to be equivalent, denoted as u ≡ v, if there is a
bijective letter-to-letter morphism h : alph(u)∗ → alph(v)∗ for which h(u) =
v. For example aacbaba ≡ bbdabab through the morphism h on A∗ to itself
defined by h(a) = b, h(b) = a, h(c) = d and h(d) = c. When alph (u) =
alph (v) and u ≡ v the words become equal after permuting their letters.

The pattern-matching problem is naturally redefined as follows: given a
pattern word x and a text y, check if a factor z of y is equivalent to x: z ≡ x.
For example, the pattern x = aacbaba occurs in y = babbdababbacb
because its factor z = bbdabab is equivalent to x.
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Question. Assume the alphabet is sortable in linear time. Design a linear-
time algorithm that searches a text for a pattern with singleton variables.

[Hint: Design a notion of border table adequate to the problem.]

Solution
The solution is based on the notion of a varying border table . It is denoted by
vbord and defined, for a parameter m and a non-empty word w = w[0 . . n−1],
on the lengths � = 0, . . . ,n of its prefixes as follows: vbord[0] = −1 and, for
0 < j ≤ n, vbord[j ] is

max{t : 0 ≤ t < min{j,m + 1} and w[0 . . t − 1] ≡ w[j − t + 1 . . j ]}.

In other words, vbord[j ] is the length � of a longest proper suffix of length at
most m of w[1 . . j ] that is equivalent to its prefix of length �. The reason for
the restriction to length m appears when matching a pattern of length m.

Here is the table vbord for w = abaababbabba and m = 4:

i 0 1 2 3 4 5 6 7 8 9 10 11

w[i] a b a a b a b b a b b a

� 0 1 2 3 4 5 6 7 8 9 10 11 12

vbord[�] −1 0 1 2 1 2 3 3 4 2 3 4 2

In the algorithm that builds vbord another table named pred is used and
defined, for 0 ≤ i < n, by

pred[i] = max{t : t < i and w[i] = w[t]} ∪ {−1}.

For example, if w = abcaabac we get pred = [−1,−1,−1,0,3,1,4,2].

Observation 1. Table pred can be computed in linear time.
Let ∇m denote the following predicate: ∇m(i,�) = true if and only if

(pred[�] ≥ 0 & i = pred[i] + k) or (pred[�] = −1 & pred[i] < i − �),

where k = � − pred[�].
The proof of the next technical simple fact is left to the reader.

Observation 2. Assume w[0 . . � − 1] ≡ w[i − � . . i − 1] and � < m. Then
w[0 . . �] ≡ w[i − � . . i] ⇐⇒ ∇m(i,�).

In the classical algorithm computing border tables (see Problem 19) we can
replace the test for symbols inequality by ∇m. In this way we get the following
linear-time algorithm computing the varying border table. Its correctness
follows from Observation 2.
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VarBorders(x non-empty word)

1 vbord[0] ← −1

2 for i ← 0 to |x| − 1 do
3 � ← vbord[i]

4 while � ≥ 0 and not ∇m(i,�) do
5 � ← vbord[�]

6 if � < m then
7 vbord[i + 1] ← � + 1

8 else vbord[i + 1] ← vbord[� + 1]

9 return vbord

How it is related to pattern matching. The pattern-matching question,
searching a text y for occurrences of the pattern x of length m, is solved
with table vbord. This varying border table is built for the word w = xy and
parameter m. Then

x ≡ y[i − m + 1 . . i] ⇐⇒ vbord[m + i − 1] = m.

Hence searching y for pattern x with singleton variables reduces to the
computation of the table vbord.

Notes
The problem here is a simplified version of the so-called parameterised pattern
matching; see [24]. In this more general problem some symbols stands for
singleton variables and some symbols are just constant letters. This is the
subject of Problem 32.
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31 Order-Preserving Patterns

Searching time series or list of values for patterns representing specific
fluctuations of the values requires a redefinition of the notion of pattern. The
question is to deal with the recognition of peaks, breakdowns, double-dip
recessions or more features on expenses, rates or the like.

In the problem we consider words drawn from a linear-sortable alphabet
� of integers. Two words u and v of the same length over � are said to be
order-equivalent, written u ≈ v, if

u[i] < u[j ] ⇐⇒ v[i] < v[j ]

for all pairs of positions i,j on the words. For example,

5 2 9 4 3 ≈ 6 1 7 5 2,

which shows in particular their central value is the largest in both words.
The order-preserving pattern-matching problem is naturally defined as

follows: given a pattern x ∈ �∗ and a text y ∈ �∗, check if x is order-
equivalent to some factor of y. For example, word 5 2 9 4 3 appears
equivalently at position 1 on

4 6 1 7 5 2 9 8 3

but nowhere else. For instance, it does not appear at position 4 because 5 < 8,
while in the pattern the corresponding values satisfy 5 > 4.

For simplicity we assume that letters in each considered word are pairwise
distinct (words are permutations of their set of letters).

Question. Design a linear-time algorithm for the order-preserving pattern-
matching.

[Hint: Design a notion of border table adequate to the problem.]

Solution
The present solution is based on the notion of an OP-border table . For the
non-empty word w = w[0 . . n − 1] ∈ �∗, the table opbord is defined by
opbord[0] = −1 and, for 0 < � ≤ n, by opbord[�] = t , where t < � is the
largest integer for which w[0 . . t − 1] ≈ w[� − t + 1 . . �].

Below is table opbord associated with w = 1 3 2 7 11 8 12 9.
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i 0 1 2 3 4 5 6 7

w[i] 1 3 2 7 11 8 12 9

� 0 1 2 3 4 5 6 7 8

opbord[�] −1 0 1 1 2 2 3 4 3

Two additional tables associated with w are defined to deal with the problem:

LMax[i] = j, where w[j ] = max{w[k] : k < i and w[k] ≤ w[i]}

and LMax[i] = −1 if there no such w[j ],

LMin[i] = j, where w[j ] = min{w[k] : k < i and w[k] ≥ w[i]}

and LMin[i] = −1 if there no such w[j ].

Observation 1. Both tables LMax and LMin can be computed in linear time.
Let us redefine the predicate ∇ (introduced in Problem 30) as follows:

∇n(i,�) = 1 ⇐⇒ w[p] ≤ w[i] ≤ w[q],

where p = LMax[�] and q = LMin[�] (if p or q equals −1 then the respective
inequality is satisfied in the vacuum).

We leave to the reader the simple but technical proof of the following fact
(see Notes).

Observation 2. Assume w[0 . . � − 1] ≈ w[i − � . . i − 1] and � < n. Then

w[0 . . �] ≈ w[i − � . . i] ⇐⇒ ∇n(i,�).

Pattern matching. To conclude, the algorithm to check if w is order-
equivalent to some factor of a text is the same as for matching a pattern with
singleton variables in Problem 30 except that the predicate ∇ is the predicate
defined above.

Notes
The present algorithm is a version of the order-preserving pattern matching
by Kubica et al. in [170], where Observation 2 is proved (see also [54, 139,
160]). The problem together with the possibility of mismatches is treated
by Gawrychowski and Uznanski in [129]. Suffix trees for order-preserving
indexing are introduced in [81].
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32 Parameterised Matching

The problem considers a more general and more complex version of Problem
30 where some symbols are unknown and some others are fixed constant
symbols. Searching texts for a fixed pattern is rather restrictive in some
contexts, and parameterised string matching provides an efficient solution in
several applications by introducing variables in patterns. The problem was
initially stated to detect code duplicates in which, for example, identifiers are
substituted for the original names.

Let A and V be two disjoint alphabets: A is the alphabet of constant letters
and V is the alphabet of variable letters. We assume that no alphabet contains
integers. A word over A∪V is called a parameterised word or a p-word. Two
p-words x and y are said to match or p-match if x can be transformed into y

by applying a one-to-one mapping on symbols of V occurring in x.
For example, with A = {a,b,c} and V = {t,u,v,w}, aubvaub and

awbuawb p-match by mapping u to w and v to u. But aubvaub and
avbwazb do not p-match, since u should be mapped to both v and z.

The parameterised pattern matching problem can be stated as follows: given
a pattern x ∈ (A ∪ V)∗ and a text y ∈ (A ∪ V)∗ find all the p-occurrences of x

in y, that is, find all the positions j on y, 0 ≤ j ≤ |y| − |x|, for which x and
y[j . . j + |x| − 1] p-match.

For instance, with y = azbuazbzavbwavb the pattern x = aubvaub
occurs at position 0 by mapping u to z and v to u and at position 8 by mapping
u to v and v to w.

Question. Design an algorithm that solves the parameterised pattern match-
ing problem and runs in linear time for a fixed alphabet.

Solution
The problem can be solved by adapting Algorithm KMP (see Problem 26) after
a careful encoding of variables.

For a word x ∈ (A ∪ V)∗ let prev(x) be the word z ∈ (A ∪ N)∗ defined, for
a position i on x, by

z[i] =

⎧⎪⎪⎨⎪⎪⎩
x[i] if x[i] ∈ A

0 if x[i] ∈ V not in x[0 . . i − 1].

i − max{j < i : x[j ] = x[i]} if x[i] ∈ V

For instance, prev(aubvaub) = a0b0a4b. The word prev(x) can be com-
puted in time O(|x| × min{log |x|, log |V|}) and O(|x|) space, which reduces
to O(|x|) time and O(|V|) space if V is a fixed alphabet.
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Let zi = z[i . . |z| − 1] be a suffix of z ∈ (A ∪ N)∗. Then, shorten(zi) is
the word s defined, for 0 ≤ j ≤ |zi | − 1, by s[j ] = zi[j ] if zi[j ] ≤ j , and
by s[j ] = 0 otherwise. For instance, with z = a0b0a4b, z3 = 0a4b and
shorten(z3) = 0a0b.

Observation. Let z = prev(x). Letter x[i] ∈ V p-matches the letter y[j ] ∈ V
in y if one of the two conditions holds:

• z[i] = 0.

• z[i] �= 0 and y[j − z[i]] = y[j ].

Due to the observation, p-matching x at a position j on y takes no long than
O(|x|) time. Mimicking Algorithm KMP with a parameterised-border table
pbord gives a linear-time solution. For x ∈ (A∪V)∗, it is defined by pbord[0] =
−1 and, for 1 ≤ i ≤ |x|, pbord[i] = j , where j < i is the largest integer for
which prev(x[0 . . j − 1]) is a suffix of shorten(prev(x[i − j . . i − 1])). Tables
prev and pbord for x = aubvaub:

i 0 1 2 3 4 5 6 7

x[i] a u b v a u b

prev(x)[i] a 0 b 0 a 4 b

pbord[i] −1 0 0 0 0 1 2 3

Given pbord for the p-word x, the next algorithm reports all positions of an
occurrence of x in the word y.

ParameterisedMatching(x,y ∈ (A ∪ V)∗)
1 z ← prev(x)

2 i ← 0

3 for j ← 0 to |y| − 1 do
4 while i ≥ 0 and not ((x[i],y[j ] ∈ A and x[i] = y[j ])

or (x[i],y[j ] ∈ V and

(z[i] = 0 or y[j − z[i]] = y[j ]))) do
5 i ← pbord[i]

6 i ← i + 1

7 if i = |x| then
8 report an occurrence of x at position j − |x| + 1

9 i ← pbord[i]
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The proofs of correctness and of the complexity analysis of Parameteri-
sedMatching are similar to the ones of Algorithm KMP. And the parame-
terised border table pbord can be computed by adapting Algorithm Borders
that computes the usual border table (see Problem 19).

Notes
Parameterised pattern matching was first formalised by B. Baker [23, 24].
She introduced a solution based on Suffix trees for the offline version of
the problem. A first solution for the online version was given in [11]. The
present solution was first published in [145] together with a solution for online
multiple parameterised pattern matching. The reader can refer to the survey
that appeared in [188].

33 Good-Suffix Table

The Boyer–Moore algorithm (BM in Problem 34) applies the sliding window
strategy on the text to locate occurrences of a pattern. It requires a pattern
preprocessing to accelerate the search.

At a given step, the algorithm compares the pattern and a window on the
text by computing their longest common suffix u. If u = x a match occurs.
Otherwise, in the generic situation, pattern x[0 . . m − 1] is aligned with the
window, factor y[j − m + 1 . . j ] of the text, au is a suffix of x and bu a suffix
of the window, for different letters a and b.

y
0 j n − 1

b u
i �

x a u

x c u

good-suff [i]��

To continue the search, Algorithm BM slides the window according to the
period of x in case of a match or otherwise to the factor bu of the text to
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avoid positions of the window where no occurrence of x is possible. To do
so it uses the good-suffix table good-suff defined for a position i on x and
u = x[i + 1 . . m − 1] by

good-suff [i] = min{|v| : x suffix of uv or cuv suffix of x,c �= x[i]}.

The condition ‘cuv suffix of x’ with c �= a = x[i] ensures that when letter
c is aligned with letter b = y[j −m+1+ i] after sliding the window, the same
mismatch does not re-occur immediately (see picture). From the definition note
that good-suff [0] = per(x).

Question. Design a linear-time algorithm for computing the good suffix
table of a word.

[Hint: Use the reverse table of prefixes of xR.]

Solution
The solution uses the table of suffixes of x, suff , symmetric of the table of pre-
fixes (see Problem 22), defined for a position i by suff [i] = |lcs(x[0 . . i],x)|,
where lcs denotes the longest common suffix between x and x[0 . . i].

Example. Tables suff and good-suff of baacababa are

i 0 1 2 3 4 5 6 7 8

x[i] b a a c a b a b a
suff [i] 0 2 1 0 1 0 3 0 9
good-suff [i] 7 7 7 7 7 2 7 4 1

i
x a u

k
x c u

m − 1 − k��

��
suff [k]

Observation. Tables good-suff and suff are closely related (see picture, in
which i = m − 1 − suff [k]): good-suff [m − 1 − suff [k]] ≤ m − 1 − k.

Then the computation of table good-suff is a mere application of the
inequality and done by Algorithm GoodSuffixes. The get the smallest value
of m−1−k, suff is scanned in increasing order of positions k (lines 8–9) after
the table is filled in by periods of x (lines 3–7).
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GoodSuffixes(x non-empty word,suff its table of suffixes)

1 m ← |x|
2 p ← 0

3 for k ← m − 2 to −1 do
4 if k = −1 or suff [k] = k + 1 then
5 while p < m − 1 − k do
6 good-suff [p] ← m − 1 − k

7 p ← p + 1

8 for k ← 0 to m − 2 do
9 good-suff [m − 1 − suff [k]] ← m − 1 − k

10 return good-suff

The overall computation takes O(|x|) time, since the table suff can be
computed in linear time (like table pref in Problem 22) and the above algorithm
also runs in linear time when suff is given.

Notes
Table good-suff is often associated with a heuristics to account for the
mismatch letter b as proposed by Boyer and Moore [41] (see also [162]). In
fact this can be done for most string-matching methods.

The first exact algorithm for computing the good suffix table was designed
by Rytter [212].

Table good-suff is the essential element of Algorithm BM. However, its
above definition does not accurately use the mismatch letter b. This can be
done using techniques related to sparse matching automata (see Problem 27)
within space O(|x|) independently of the alphabet size.

Table suff is used in a more efficient variant of Algorithm BM by Apos-
tolico and Giancarlo [16] for which the maximal number of letter comparisons
is 1.5|y| (see [89]).
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34 Worst Case of the Boyer–Moore Algorithm

Boyer–Moore string matching is based on a technique that leads to the fastest
searching algorithms for fixed patterns. Its main feature is to scan the pattern
backward when aligned with a factor of the searched text. A typical pattern
preprocessing is shown in Problem 33.

When locating a fixed pattern x of length m in a text y of length n, in
the generic situation x is aligned with a factor (the window) of y ending at
position j (see picture). The algorithm computes the longest common suffix
(lcs) between x and the factor of y, and, after possibly reporting an occurrence,
slides the window towards the end of y based on the preprocessing and on
information collected during the scan, without missing an occurrence of x.
Algorithm BM implements the method with table good-suff of Problem 33:

y

x

0 j n − 1
b u
i
a u

�

BM(x,y non-empty words,m,n their lengths)

1 j ← m − 1

2 while j < n do
3 i ← m − 1 − |lcs(x,y[j − m + 1 . . j ])|
4 if i < 0 then
5 report an occurrence of x at position j − m + 1 on y

6 j ← j + per(x) � per(x) = good-suff [0]

7 else j ← j + good-suff [i]

After position j on y is treated, if an occurrence of x is found the algorithm
slides naturally the window at distance per(x). If no occurrence is found, the
distance good-suff [i] depends on the factor bu of y (it depends on au of x

in Problem 33). Value per(x) and array good-suff are preprocessed before the
search.

Question. Give examples of a non-periodic pattern and of a text y for
which Algorithm BM performs close to 3|y| letter comparisons at line 3 for
computing the longest common suffix.

Solution
Let x = ak−1bak−1 and y = ak−1(abak−1)� with k ≥ 2. Then m = 2k − 1
and n = �(k + 1) + (k − 1).
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Example. Let k = 5 and � = 4 when considering the pattern a4ba4 of length
9 and the text a4(aba4)4 of length 28. The picture illustrates the beginning of
the search, which overall executes 4 × 13 = 52 letter comparisons.

y

x

a a a a a b a a a a a b a a a a a b a a a a a b a a a a

a a a a b a a a a

y

x

a a a a a b a a a a a b a a a a a b a a a a a b a a a a

a a a a b a a a a

y

x

a a a a a b a a a a a b a a a a a b a a a a a b a a a a

a a a a b a a a a

y

x

a a a a a b a a a a a b a a a a a b a a a a a b a a a a

a a a a b a a a a

Consider the position j = (k − 3) + p(k + 1) on y with p ≥ 1. We have
y[j −m+1 . . j ] = akbak−2 and |lcs(x,y[j −m+1 . . j ])| = k−2 computed
with k − 1 letter comparisons. The window slide length is good-suff [m − k −
1] = 1, updating j to (k − 2) + p(k + 1), and y[j − m + 1 . . j ] becomes
ak−1bak−1. This time |lcs(x,y[j − m + 1 . . j ])| = m computed with m letter
comparisons and the next slide length is per(x) = k, producing j = (k − 3)+
(p + 1)(k + 1).

The two steps require k − 1 + m = 3k − 2 comparisons and lead to a
similar situation from which the same process repeats on each of the �−1 first
occurrences of the factor abak−1 (of length k+1) of y. On the last occurrence
(k − 1)+ (k + 1) = 2k comparisons are performed and on the prefix of length
k − 1 of y, k − 2 comparisons are performed. Overall, Algorithm BM with

these inputs x and y executes 3k−2
k+1 (n − k + 1) =

(
n − m−1

2

) (
3 − 10

m+3

)
comparisons, as expected.

Notes
Boyer–Moore string matching is from [41] (see also [162]). The proof of the 3n

comparison bound for searching for an aperiodic pattern in a text of length n is
by Cole [59]. Detailed descriptions and variants of the Boyer–Moore algorithm
can be found in classical textbooks on string algorithms [74, 96, 98, 134, 228].
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35 Turbo-BM Algorithm

The problem shows how a very light modification of Boyer–Moore string
matching produces a much faster algorithm when the method is used to locate
all the pattern occurrences in a text, like Algorithm BM in Problem 34 does.
The initial design of the Boyer–Moore algorithm was to find the first pattern
occurrence. It is known that for that goal it runs in linear time according to the
searched text length. But it has a quadratic worst-case running time to report all
pattern occurrences, especially for periodic patterns. This is due to its amnesic
aspect when it slides the window to the next position.

The goal of Algorithm Turbo-BM is to get a linear-time search by adapting
the Boyer–Moore search algorithm, Algorithm BM, without changing its
pattern preprocessing, table good-suff . Only constant extra space is added and
used during the search.

y
0 j n − 1

b u
i

x a u

�

y
0 j n − 1

b c v
i

x b c v

d v

c v

�

��
turbo

Algorithm Turbo-BM uses the lengths mem = |u| of the previous
suffix match u and � = |v| of the current suffix match v to compute
max{good-suff [i],|u| − |v|}.

In the example below, the first match u = bababa of length 6 leads to
a slide of length 4 = good-suff [4]. After sliding the window, the new match
v = a alone would give a slide of length 1 = good-suff [9]. But the turbo-shift
applies and produces a slide of length turbo = 6 − 1 = 5.

y b a b a b b a b a b a a b a a . . . . .

x b b a b a b a b a b a
u

y b a b a b b a b a b a a b a a . . . . .

x b b a b a b a b a b a
u v

Question. Show that Algorithm Turbo-BM correctly reports all occur-
rences of the pattern x in y.
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Turbo-BM(x,y non-empty words,m,n their lengths)

1 (j,mem) ← (m − 1,0)

2 while j < n do
3 � jumping over memory if mem > 0

4 i ← m − 1 − |lcs(x,y[j − m + 1 . . j ])|
5 if i < 0 then
6 report an occurrence of x at position j − m + 1 on y

7 (shift,�) ← (per(x),m − per(x))

8 else (shift,�) ← (good-suff [i],m − i − 1)

9 turbo ← mem − (m − i − 1)

10 if turbo > shift then
11 (j,mem) ← (j + turbo,0)

12 else (j,mem) ← (j + shift,�)

Solution
Based on the proof of correctness of the original algorithm, that of Algorithm
Turbo-BM depends on the fact that no occurrence of the pattern x in y is
missed when the window is slid by turbo positions (line 11).

Indeed, when line 11 executes, turbo > 1 because turbo > shift ≥ 1. Then
cv is a (proper) suffix of u in x and in y, since the occurrences of u are aligned
(see picture). The suffix uzcv of x, z a word and c a letter, has period |zcv|
because u is a suffix of x. It is aligned with the factor uz′dv of y, where z′ is a
word and d a letter. But since c �= d , |zcv| is not a period of the latter factor.

Therefore, the suffix uzcv of x cannot cover both letters c and d occurring
in y, which shows the ending position of the next possible occurrence of x in
y is at least at position j + turbo as required.

Notes
Several solutions have been proposed to cope with the quadratic-time
behaviour of the Boyer–Moore algorithm. The first solution is by Galil
[122] who showed a linear-time variant. Another solution by Apostolico
and Giancarlo [16] requires extra memory space, linear in the pattern length,
during both the preprocessing and the search steps and executes no more than
1.5n letter comparisons [89].

Algorithm Turbo-BM [70] is certainly the lightest improvement of the
original algorithm. Not only does it provide a linear-time solution but also
executes no more than 2n letter comparisons during the search step (see
[74, 96]) at the cost of a constant extra memory space.
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36 String Matching with Don’t Cares

Words in the problem are drawn from the alphabet of positive integers with an
extra letter ∗. Letter ∗, called a don’t care (or joker), stands for any other letter
of the alphabet and matches any letter including itself.

Matching strings with don’t cares consists in searching a text y for all
occurrences of a pattern x, assuming the two words contain don’t care symbols.
Let m = |x| and n = |y|.
Example. ab*b occurs in abaaba*cbcb at positions 3 and 5 only.

Contrary to several other string-matching algorithms, solutions to the
present problem often use arithmetic operations for convolution: given
sequences B and C of length at most n compute the sequence A of length
2n defined, for 0 ≤ i ≤ 2n − 1, by

A[i] =
n−1∑
j=0

B[j ] · C[i + j ].

It is assumed that each elementary arithmetic operation executes in constant
time and that convolution of sequences of length n can be done in O(n log n)

time.

Question. Show how string matching with don’t cares can be reduced in
linear time to the convolution problem.

Solution
After changing the don’t care symbol to zero, we define the sequence
A[0 . . n − m] by: A[i] = ∑m−1

j=0 x|j ] · y[i + j ] · (x[j ] − y[i + j ])2, which is

m−1∑
j=0

x[j ]3y[i + j ] − 2
m−1∑
j=0

x[j ]2y[i + j ]2 +
m−1∑
j=0

x[j ] · y[i + j ]3.

The computation can then be done with three instances of convolution, running
overall in O(n log n) time. The relation between A and the question stands in
the next observation.

Observation. A[i] = 0 if and only if pattern x occurs at position i on y.
Indeed A[i] is null if and only if each term x|j ] ·y[i+ j ] · (x[j ]−y[i+ j ])2

is null, which means that either x[j ] or y[i + 1] (originally equal to the don’t
care symbol) are null or both are equal. This corresponds to a match of letters
and proves the correctness of the reduction algorithm.
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Notes
Convolution adapted to string matching has been introduced by Masek and
Paterson in [186]. The present simplification is from [58].

37 Cyclic Equivalence

Two words are cyclically equivalent if one is a conjugate (rotation) of the other.
Testing their equivalence appears in some string matching questions but also
in graph algorithms, for example, for checking the isomorphism of directed
labelled graphs, in which the test applies to graph cycles.

a
b

a
b

a

b

a

a
b

a
b

a

a
b

aa

b

a

b
a a b

a

b

The picture shows equivalent words drawn cyclically. The following algo-
rithm tests cyclic equivalence using the alphabet ordering.

CyclicEquivalence(u,v non-empty words of length n)

1 (x,i,y,j) ← (uu,0,vv,0)

2 while i < n and j < n do
3 k ← 0

4 while k < n and x[i + k] = y[j + k] do
5 k ← k + 1

6 if k = n then
7 return true

8 if x[i + k] > y[j + k] then
9 i ← i + k + 1

10 else j ← j + k + 1

11 return false
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Question. Show that Algorithm CyclicEquivalence checks if two words
are cyclically equivalent and runs in linear time with constant extra space.

[Hint: Consider Lyndon conjugates.]

When the alphabet has no clear ordering, it is useful to have a solution based
on simpler types of symbol comparisons.

Question. How would you test the cyclic equivalence of two strings with no
ordering, that is, using only =/�= letter comparisons?

Solution
Let us run Algorithm CyclicEquivalence on words u = abbab and v =
babab and look how pairs of indices (i,j) on x = uu and y = vv respectively
evolve.

0 1 2 3 4 5 6 7 8 9
x = uu a b b a b a b b a b

y = vv b a b a b b a b a b

Starting from the pair of indices (i,j) = (0,0), after the first execution of
instructions in the main while loop the pair becomes (0,1) because x[0] <

y[0]. The algorithm then compares factor x[0 . . 2] = abb of x with factor
y[1 . . 3] = aba of y, producing the next pair (3,1) because x[2] > y[3].
Eventually, in the next pass of the loop it detects that u and v are conjugate.

Commenting on the algorithm’s run, note that indices i and j bump on the
starting positions on x and y of the Lyndon conjugate ababb of the cyclically
equivalent words u and v. (If u or v are not primitive, the argument applies to
their roots.) The dramatic increase of i at line 9 or of j at line 10 intuitively
comes from that property of Lyndon words: if wa is a prefix of a Lyndon word
and letter a is smaller than letter b then wb is a Lyndon word. A consequence
is that wb is border free. Therefore matching wa can resume right after an
occurrence of wb. This is illustrated in particular when comparing aba and
abb in the example.

Analysis of CyclicEquivalence. Let u(k) be the kth conjugate (kth
rotation or kth-shift) of u, k = 0,1, . . . ,n − 1. For x = uu, u(k) =
x[k . . k + n − 1]. Similarly for y = vv, v(k) = y[k . . k + n − 1].

Let D(u) and D(v) be the set of positions on x and on y respectively:

D(u) = {k : 0 ≤ k < n and u(k) > v(j) for some j},

D(v) = {k : 0 ≤ k < n and v(k) > u(i) for some i}.
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The algorithm’s correctness relies on the invariant of the main while loop:
[0 . . i − 1] ⊆ D(u) and [0 . . j − 1] ⊆ D(v), which is easy to check because,
for example, if we have x[i + k] > y[j + k] at line 8, we have x[i . . i + k] >

y[j . . j + k], x[i + 1 . . i + k] > y[j + 1 . . j + k], etc.
If the algorithm returns true then u(i) = v(j) and the two words are

conjugate. If it returns false, we have either i = n or j = n. W.l.o.g.,
assuming i = n we get D(u) = [1 . . n]. This means that every cyclic conjugate
of u has a smaller conjugate of v. So the words cannot have the same smallest
conjugate, which implies they are not conjugate.

The number of symbol comparisons is clearly linear. The largest number of
comparisons is for conjugate words of the form u = bkab� and v = b�abk .
This implies linear running time. Modular arithmetic on indices can be used to
avoid duplicating u and v, then reducing the extra space to a constant amount.

No ordering. A solution to solve the question without considering any
ordering on the alphabet is to use a string-matching technique with this feature
or the border table. For example, the border table of u#vv, where # is a letter
that does not occur in uv, allows locating u in vv. An occurrence exists if and
only if u and v of the same length are conjugate.

Using a time–space optimal string-matching algorithms gives an overall
algorithm sharing the features of CyclicEquivalence but that is far less
simple and elegant than it.

Notes
The design of Algorithm CyclicEquivalence borrows ideas from the circular
lists equivalence algorithm by Shiloach [223].

A less direct approach to solve cyclic equivalence is to use the function
MaxSuffixPos (see Problems 38 and 40). After computing indices i =
MaxSuffixPos(uu) and j = MaxSuffixPos(vv) that identify the maximal
suffixes MaxSuffix(uu) and MaxSuffix(vv), the solution consists in testing the
equality of their prefixes of length |u| = |v|.

The table Lyn (see Problem 87) can also be used but yields a less efficient
technique.

Time–space optimal string-matching algorithms may be found in [94, 97,
124].
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38 Simple Maximal Suffix Computation

The maximal suffix of a word is its alphabetically greatest suffix. The notion is
a key element in some combinatorial aspects of words (e.g. related to runs or
critical positions) but also in the development of string-matching algorithms
(e.g. the two-way algorithm used in some C libraries such as glibc and
FreeBSD’s lib). The algorithm presented in this problem is tricky but simpler
than the one in Problem 40. Both work in place, that is, need only constant
space to work in addition to their input (contrary to the solution in Problem
23), which makes their implementation straightforward.

For a non-empty word x, Algorithm MaxSuffixPos computes the
starting position of MaxSuffix(x), maximal suffix of x. For example,
MaxSuffixPos(bbabbbba) = 3 position of suffix bbbba of the input.

Note the similarity between MaxSuffixPos and Algorithm Cyclic-
Equivalence in Problem 37 and the similarity of its pseudo-code with that of
the other version in Problem 40.

MaxSuffixPos(x non-empty word)

1 (i,j) ← (0,1)

2 while j < |x| do
3 � note the invariant i < j

4 k ← 0

5 while j + k < |x| and x[i + k] = x[j + k] do
6 k ← k + 1

7 if j + k = |x| or x[i + k] > x[j + k] then
8 j ← j + k + 1

9 else i ← i + k + 1

10 if i ≥ j then
11 j ← i + 1

12 return i

Question. Show that Algorithm MaxSuffixPos computes the position on a
word of its maximal suffix and that it runs in linear time with constant extra
space.
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Solution
Let us run Algorithm MaxSuffixPos on word x = bbabbbba, which is
duplicated on the picture below to better show values of indices, i on the top
row and j on the bottom row.

0 1 2 3 4 5 6 7 8
x b b a b b b b b a

x b b a b b b b b a

The first pair (i,j) of indices on x is (0,1), leading x[0 . . 1] = bb to be
compared to x[1 . . 2] = ba. This produces the next pair (0,3). Then the
comparison between x[0 . . 2] = bba and x[3 . . 5] = bbb leads to increase i

to 3 and additionally j to 4 to avoid equality. Eventually, j moves to 9, which
causes the main loop and the procedure to stop. The algorithm returns position
3 of the maximal suffix bbbbba of bbabbbbba.

Correctness of MaxSuffixPos. The proof is just sketched, since its
elements may be found in Problem 40. The proof relies on the following
invariant of the main iteration (while loop):

in the interval [0 . . j − 1] the position i is the only candidate as starting position
of the maximal suffix of x[0 . . j − 1]. In other words if t �= i and t < j then t is
not a starting position of the maximal suffix.

Hence, at the end j is not less than |x| and i is the only possible position
in the interval [0 . . |x| − 1] (all positions of x) starting the maximal suffix.
Consequently i is the required output.

Notes
The present Algorithm MaxSuffixPos is a version of the algorithm by
Adamczyk and Rytter [1].

The algorithm, after a simple cosmetic modification, also computes the
shortest period of the maximal suffix as its other pseudo-code in Problem 40
does. Indeed, it is i − j ′, where j ′ is the penultimate value of j (the last value
of j is |x|, out of the range).
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39 Self-Maximal Words

The notion of a self-maximal word , word that is the alphabetically greatest
among its suffixes, is somehow dual to the notion of Lyndon word, word that
is smaller than all its proper non-empty suffixes. The former words appear
naturally when locating critical positions on a word (see Problem 41) and in
string-matching algorithms based on them.

Algorithm SelfMaximal checks if its input word x is self-maximal, that
is, if x = MaxSuffix(x). It processes the word in real time since the instruction
in the for loop executes in constant time.

SelfMaximal(x non-empty word)

1 p ← 1

2 for i ← 1 to |x| − 1 do
3 if x[i] > x[i − p] then
4 return false

5 elseif x[i] < x[i − p] then
6 p ← i + 1

7 return true

Example. The word cbcbacbcbacbc = (cbcba)2cbc is self-maximal
as well as its prefix period cbcba that is additionally border free. Its suffix
cbcbacbc is essentially the only suffix competing with it as the greatest
suffix. A letter a appended to it is then to be compared to the letter following
the prefix occurrence of cbcbacbc.

c b c b a c b c b a c b c a
u u v

� �

Question. Prove that the above really simple algorithm correctly tests if its
input word is greater than all its proper suffixes.

The next picture illustrates the role of variables in SelfMaximal.

u u u v
0 p i − p i

a

v v v vb b b a
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Question. Upgrade the above algorithm to SMPrefix that computes the
longest self-maximal prefix of a word.

Solution
A note before starting the proofs. Let y be a non-empty self-maximal word that
is also border free, that is, per(y) = |y|. Then any proper non-empty suffix z

of y satisfies z << y (i.e., z = ras and y = rbt with letter a smaller than letter
b). Therefore zs′ << yt ′ for any words s′ and t ′.

Correctness of SelfMaximal. Consider the invariant of the for loop:
u= x[0 . . p − 1] is a non-empty self-maximal and border-free word,
x[0 . . i − 1] = uev, where e > 0 and v a proper prefix of u.

The invariant holds at the start of the loop because u = x[0], e = 1 and
v is the empty word. If the invariant holds at line 7, x = uev and then x is
self-maximal, as expected, with period p = |u|.

It remains to show that instructions within the loop do not change the
invariant validity. We have three cases to consider according to the result of
the letter comparison.

If x[i] > x[i−p], x is not self-maximal, since its factor x[p . . i−1]x[i] =
x[0 . . i − p − 1]x[i] is greater than its prefix x[0 . . i − p − 1]x[i − p]. If
x[i] = x[i − p], the invariant still holds, possibly with e + 1 and v = ε.

The case in which x[i] < x[i−p] provides the key feature of the algorithm:
x[0 . . i] becomes border free in addition to being self-maximal. To show it, let
a = x[i] and b = x[i−p] with a < b. First consider suffixes of the form v′a of
va. Since vb is a prefix of the self-maximal u, v′b ≤ u < x[p . . i], and since
v′a < v′b we get v′a < x[p . . i]. Second, suffixes x′a starting at positions
j < e|u| that are not multiple of p are prefixed by a proper suffix u′ of u.
Referring to the above note, we have u′ << u, which implies x′a << ueva =
x[p . . i]. Third, the remaining suffixes x′a to consider start at positions of the
form p, 2p, . . . , ep. All x′ are also prefixes of ue and followed by the letter b.
Therefore x′a < x′b < x[p . . i]. This completes the proof.

Algorithm SMPrefix. Its design follows closely that of SelfMaximal and
its correctness readily comes from the above proof.
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SMPrefix(x non-empty word)

1 p ← 1

2 for i ← 1 to |x| − 1 do
3 if x[i] > x[i − p] then
4 return x[0 . . p − 1]

5 elseif x[i] < x[i − p] then
6 p ← i + 1

7 return x[0 . . |x| − 1]

Notes
Algorithm SelfMaximal is adapted from the Lyndon factorisation algorithm
by Duval [105] and reduced to exhibit its key feature.

40 Maximal Suffix and Its Period

The maximal suffix of a word is its alphabetically greatest suffix. The
problem follows Problem 38 and presents another pseudo-code for computing
a maximal suffix. As the other it processes its input in linear time using only
constant extra space.

MaxSuffixPP(x non-empty word)

1 (ms,j,p,k) ← (0,1,1,0)

2 while j + k < |x| do
3 if x[j + k] > x[ms + k] then
4 (ms,j,p,k) ← (j,j + 1,1,0)

5 elseif x[j + k] < x[ms + k] then
6 (j,p,k) ← (j + k + 1,j − ms,0)

7 elseif k = p − 1 then
8 (j,k) ← (j + k + 1,0)

9 else k ← k + 1

10 return (ms,p)
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Question. Show that Algorithm MaxSuffixPP computes the starting posi-
tion and the period of the maximal suffix of its input word.

Example. (cbcba)3cbc = MaxSuffix(aba(cbcba)3cbc). A next letter is
to be compared to the letter following prefix cbc of the maximal suffix.

ms j
a b a c b c b a c b c b a c b c b a c b c

u u u v

� �

The pictures display the three possibilities corresponding to the execution
of instructions at lines 4, 6 and 8 respectively.

ms j
a b a c b c b a c b c b a c b c b a c b c c

u

ms j
a b a c b c b a c b c b a c b c b a c b c a

u

ms j
a b a c b c b a c b c b a c b c b a c b c b

u u u v

Question. Show how to test the primitivity of a word in linear time and
constant extra space.

Solution
Correctness of Algorithm MaxSuffixPP. Up to a change of variables
the structure of MaxSuffixPP and its proof follow that of the algorithms in
Problem 39. Here, ms stands for the starting position of MaxSuffix(x[0 . . j +
k−1]) = uev with u self-maximal and border free, e > 0 and v a proper prefix
of u. The picture illustrates the role of variables i, j and k. The letter x[j + k]
is compared to x[ms + k] = x[j + k − p].

x

u u u v

0 ms ms + k j j + k

��
p

Lines 3–4 correspond to the case when the candidate starting position ms of
the maximal suffix has to be updated. Position j becomes the next candidate
because suffix x[j . . j + k] is larger than suffixes of x[ms . . j + k] starting
before j . And the process restarts from that position forgetting what has been
done beyond j .
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Lines 5–6 deal with the key feature. The word x[ms . . j+k] is self-maximal
and border free of period j + k − ms + 1, its length.

Eventually, lines 7–9 manage the incrementation of k, possibly updating j

to keep k smaller than p.

Complexity of Algorithm MaxSuffixPP. Its memory space requirement is
clear. Its running time is less obvious to evaluate due to its oblivious element
at line 4. But it suffices to consider the value of the expression ms + j + k.

At line 4, ms is incremented by at least p, j by 1 and k decremented by at
most p − 1, while p is unchanged; thus the value is strictly incremented. At
line 6, j is incremented by k + 1 before k becomes null, leading again to a
strict incrementation of the value. At lines 8–9, j + k is incremented by 1 and
ms unchanged, yielding the same conclusion.

Since ms+j+k runs from 1 to at most 2|x|+1, this shows that the algorithm
stops and performs no more than 2|x| letter comparisons.

Primitivity test. Let ms=MaxSuffixPP(x) and p be the period of
MaxSuffix(x). It is known that ms < p (see Problem 41). Let k be the
largest integer for which j = ms + kp ≤ |x|. Then testing primitivity amounts
to check if x[j . . n − 1]x[0 . . ms − 1] = x[ms . . ms + p − 1].

Notes
Algorithm MaxSuffixPP is by Crochemore and Perrin in [94], where it is
used for the preprocessing of a time–space optimal string matching, known as
the two-way algorithm.

Relaxing the constant extra space aspect of the algorithm with a border table
improves the running time of the technique but keeps the asymptotic behaviour
unchanged in the worst case.
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41 Critical Position of a Word

The existence of critical positions on a word is a wonderful tool for combina-
torial analyses and also for the design of text algorithms. One of its striking
application is the two-way string matching implemented in some C libraries.

Let x be a non-empty word and �per(i) denote the local period at i on x,
i = 0, . . . ,|x|, length of the shortest non-empty word w that is

suffix of A∗x[0 . . i − 1] and prefix of x[i . . |x| − 1]A∗.

In lay terms this roughly means the shortest non-empty square ww centred
at position i has period �per(i). For the word baabababba of period 8 we
have �per(1) = |aab| = 3, �per(6) = |ab| = 2, �per(10) = |a| = 1 and
�per(7) = |bbaababa| = 8. Some squares overflow the word to the right, to
the left or to both.

b a a b a b a b b a
3 12

8

Note that �per(i) ≤ per(x) for any i. If �per(i) = per(x), i is called a
critical position . When x = u · v its factorisation is said to be critical if
�per(|u|) = per(x).

Let MaxSuffix(≤ ,x) and ms = MaxSuffixPos(≤ ,x) be the respective
greatest suffix of x and its position according to the alphabet ordering ≤.

Question. Let x = yz where z = MaxSuffix(≤ ,x). Show that |y| <

per(x), that is MaxSuffixPos(≤ ,x) < per(x).

Algorithm CriticalPos computes a critical position in linear time and
constant extra space following Problems 38 and 40.

CriticalPos(x non-empty word)

1 i ← MaxSuffixPos(≤ ,x)

2 j ← MaxSuffixPos(≤−1 ,x)

3 return max{i,j}

Applied to x = baabababba, MaxSuffixPos(≤ ,x) = 7 is a critical
position and, for this example, MaxSuffixPos(≤−1 ,x) = 1 is not.

Question. Show that Algorithm CriticalPos computes a critical position
on its non-empty input word.
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[Hint: Note the intersection of the two word orderings is the prefix ordering
and use the duality between borders and periods.]

Solution
Answer to the first question. By contradiction assume y ≥ per(x) and let w

be the suffix of y of length per(x). Due to the periodicity, either w is a prefix
of z or z is a suffix of w.
Case 1: If z = ww′, by its definition www′ < ww′, then ww′ < w′, a
contradiction with the same definition.
Case 2: If w = zz′, zz′z is a suffix of x, then z < zz′z, a contradiction with the
definition of z.

Answer to the second question. The case of the alphabet of x reduced to one
letter is easily solved because any position is critical. Then we consider both
that x contains at least two different letters and w.l.o.g. that i > j and show
that i is a critical position.

Let w be the shortest non-empty square centred at i, that is, |w| = �per(i).
From the first question we know that y is a proper suffix of w.

y z
i

w w

Case 1: Assume z is a prefix of w. Then |w| = per(x) because x being factor
of ww has period |w| = �per(i) that cannot be larger than per(x). Thus i is a
critical position.

y z
j i

w w

y′ z′

y′′ y′′ v

Case 2: Assume z = wv for a non-empty word v. Then v < z by definition
of z. Let x = y′z′, where z′ = MaxSuffix(≤−1 ,x) and y′′ the non-empty word
for which y = y′y′′ and z′ = y′′z. Since y′′v is a suffix of x, it is smaller than
z′ = y′′z according to the ordering induced by ≤−1, and thus v is smaller
than z according to the same ordering. Referring to the hint, v being
smaller than z according to both orderings is a prefix of z, then a border
of it. Therefore |w| is a period of z and consequently also of x = yz. Then as
in the previous case i is a critical position.

This concludes the proof.
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Notes
The Critical Factorisation Theorem, the existence of a critical position on any
non-empty word, is due to Cesari, Duval and Vincent [49, 105] (see Lothaire
[175, chapter 8]).

The present proof appears in [96, 98] and is by Crochemore and Perrin [94],
where it is part of the design of the two-way string-matching algorithm, which
is time–space optimal. It is extended to a real-time algorithm by Breslauer et al.
in [45].

42 Periods of Lyndon Word Prefixes

A Lyndon word is a non-empty self-minimal word, that is, it is alphabetically
smaller than all its non-empty proper suffixes. The dual self-maximal words
share some of their features. Lyndon words have useful properties for the
design of matching algorithms and for the analysis of methods such as testing
the cyclic equivalence of two words (Problem 37). The present problem deals
with a remarkable simple solution to compute their prefix periods.

Let period denote the table of periods of prefixes of the word x. It is defined
on non-empty prefix lengths �, � = 1, . . . ,|x| by

period[�] = smallest period of x[0 . . � − 1].

For the word x = aabababba we get

i 0 1 2 3 4 5 6 7 8

x[i] a a b a b a b b a

� 1 2 3 4 5 6 7 8 9

period[�] 1 1 3 3 5 5 7 8 8

Question. Show that Algorithm PrefixPeriods correctly computes the
table of periods of prefixes of a Lyndon word.
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PrefixPeriods(x Lyndon word)

1 period[1] ← 1

2 p ← 1

3 for � ← 2 to |x| do
4 if x[� − 1] �= x[� − 1 − p] then
5 p ← �

6 period[�] ← p

7 return period

Question. What changes are to be made to PrefixPeriods to compute the
prefix periods of a self-maximal word?

Question. Show that testing if a word is a Lyndon word can be done in linear
time with only constant extra space.

[Hint: Tune Algorithm PrefixPeriods.]

Solution
The solutions are very similar to those of Problem 39 although the notions of
self-maximality and self-minimality are not strictly symmetric.

Adapting proofs in Problem 39, it is rather straightforward to prove that
non-empty prefixes of a Lyndon word are of the form uev, where u is a Lyndon
word and v is a proper prefix of u.

Correctness of PrefixPeriods. In Algorithm PrefixPeriods the variable
p stores the period of the prefix x[0 . . � − 2]. As recalled, the prefix is of
the form uev with p = |u|. The variable p is updated within the for loop.
The comparison at line 4 is to check if the periodicity p continues, in which
case p is also the period of x[0 . . � − 1] as done by the assignment at line 6. If
the comparison is negative, we cannot have x[�−1] < x[�−1−p] because the
suffix vx[�− 1−p] would be smaller than x, a contradiction with the fact that
x is a Lyndon word. Thus, in that case, x[�− 1] > x[�− 1−p]; this is the key
feature mentioned in the solutions of Problem 39 and for which x[0 . . �− 1] is
border free, then of period �, as done by the assignment at line 5.

Periods of self-maximal prefixes. When the input to PrefixPeriods is self-
maximal, without any change the algorithm computes its table of prefixes
periods. The above argument is still valid after exchanging ‘<’ and ‘>’
essentially because the key feature also applies.
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Lyndon test. Algorithm Lyndon adapts the above algorithm and is like
Algorithm SelfMaximal (Problem 39) after exchanging ‘<’ and ‘>’. An extra
check is required to verify the whole word is border free.

Lyndon(x non-empty word)

1 p ← 1

2 for � ← 2 to |x| do
3 if x[� − 1] < x[� − 1 − p] then
4 return false

5 elseif x[� − 1] > x[� − 1 − p] then
6 p ← �

7 if p = |x| then
8 return true

9 else return false

Prefixes of lengths 1, 3, 5, 7 and 8 of aabababba are Lyndon words. The
word itself is not because it has border a.

At line 7, if |x| is a multiple of p, x is a necklace; otherwise it is a prefix of
a necklace.

43 Searching Zimin Words

The problem considers patterns that are words with variables. Besides the
alphabet A = {a,b, . . .} of constant letters, variables are from the (disjoint)
alphabet V = {α1,α2, . . .}.

A pattern P ∈ V∗ is said to match a word w ∈ A∗ if w = ψ(P ), where
ψ : alph (P )+ → A+ is a morphism. Zimin words Zn, n ≥ 0, play a crucial
role in pattern avoidability questions (see Problem 93). They are defined by

Z0 = ε and Zn = Zn−1 · αn · Zn−1.

For example, Z1 = α1, Z2 = α1α2α1 and Z3 = α1α2α1α3α1α2α1.
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The Zimin type of a word w is the greatest natural integer k for which
w = ψ(Zk), where ψ is some morphism. The type is always defined since
the empty word has type 0 and the type of a non-empty word is at least 1. For
example, the Zimin type of w = adbadccccadbad is 3 because it is the
image of Z3 by the morphism ψ defined by⎧⎪⎪⎨⎪⎪⎩

ψ(α1) = ad,

ψ(α2) = b,

ψ(α3) = cccc.

Question. Show how to compute in linear time Zimin types of all prefixes
of a given word.

[Hint: Consider short borders of prefixes.]

Question. Show how to check in quadratic time if a given Zimin pattern
occurs in a word.

[Hint: Consider Zimin types of words.]

Solution
Computing Zimin types. The computation of Zimin types of prefixes of w ∈
A+ is done online on w as follows. Let Ztype[i] be the type of the prefix of
length i if w. We have Ztype[0] = 0. For other values, it is enough to prove
they are computed iteratively via the equality

Ztype[i] = Ztype[j ] + 1,

where j = |ShortBorder(w[0 . . i − 1])|.
Letting z = w[0 . . i − 1] and u = ShortBorder(z) we have z = uvu for

two words u and v, v �= ε. By definition of Ztype[j ] the word u is the image
of ZZtype[j ] by a morphism ψ : {α1,α2, . . . ,αZtype[j ]}+ → A+. Extending the
morphism by setting ψ(αZtype[j ] + 1) = v shows that the Zimin type of z is at
least Ztype[j ] + 1. It remains to show that no border of z shorter than u can
give a higher value.

Let u′v′u′ be a factorisation of z for which Ztype[|u′|] = Ztype[|z|] − 1 and
assume by contradiction that u′ is shorter than u with Ztype[|u′|] > Ztype[|u|].
Since then Ztype[|u|] > 0, Ztype[|u′|] > 1 which implies that u′ = u′′v′′u′′ for
words such that v′′ �= ε and Ztype[|u′′|] = Ztype[|u′|]− 1. Then Ztype[|u′′|] =
Ztype[|z|] − 2. But since u′′ is also a border of z, Ztype[|z|] = Ztype[|u′′|] + 1,
a contradiction.
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The algorithm computing short borders of prefixes (Problem 21) infers the
solution.

Matching a Zimin pattern. The following fact reduces the question to the
computation of Zimin types.

Fact. The prefix w[0 . . i − 1] of w matches a Zimin pattern Zk if and only if
Ztype[i] ≥ k.

Indeed if a word is a morphic image of Zj for some j ≥ k it is also a morphic
image of Zk .

The solution comes readily. The table Ztype is computed for each suffix z

of w, which allows to detect prefixes of z that match Zk . And if Zk occurs in
w it will be detected that way.

MatchingZiminPattern(w non-empty word,k positive integer)

1 for s ← 0 to |w| − 1 do
2 Ztype[0] ← 0

3 for i ← s to |w| − 1 do
4 compute Ztype[i − s + 1] on w[s . . |w| − 1]

5 if Ztype[i − s + 1] ≥ k then
6 return true

7 return false

The computation at line 4 uses the linear-time algorithm from the previous
question. Therefore the whole test takes O(|w|2) running time as expected.

Note that a simple modification of the algorithm can produce the largest
integer k for which Zk occurs in the input word.

Notes
A more interesting question is the reverse pattern matching with variables, that
is, to check if a given word with variables occurs in a given Zimin pattern. The
problem is known to be in the NP class of complexity, but it is not known if it
belongs to the NP-hard class.
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110 Pattern Matching

44 Searching Irregular 2D Patterns

Let P be a given (potentially) irregular two-dimensional (2D) pattern. By
irregular is meant that P is not necessarily a rectangle, it can be of any shape.
The aim is to find all occurrences of P in a 2D n × n′ text T of total size
N = nn′.

b b a b b

a a a a b

a a a b b

a a a b a

b b b b b

T

a b

a a b

b

P

The figure shows an irregular pattern P . It fits in a 3 × 3 box and has 2
occurrences in T , one of them is shown.

Question. Show that two-dimensional pattern matching of irregular 2D-
patterns can be done in O(N log N) time.

Solution
The solution is to linearise the problem. Let P be a non-rectangular pattern
that fits into an m × m′ box. Assume w.l.o.g. that the first and last column, as
well as the first and last row of this box, contain an element of P . Otherwise
rows or columns are removed.

Text T is linearised into T ′ by concatenating its rows. The transformation of
P is more subtle. First P is inserted into the m×m′ box whose elements that are
not of P (empty slots) are changed to ∗. Rows of this box are concatenated,
inserting between the rows the word of n′ − m′ symbols ∗. This way P is
linearised to P ′.

Example. For P in the figure, rows of the 3×3 box are ∗ b ∗, a a b, and a ∗ b,
and P ′ = ∗ b ∗ ∗ ∗ a a b ∗ ∗ a ∗ b.

The basic property of the transformation is that occurrences of P in T

correspond to occurrences of word P ′ in word T ′, where P ′ contains don’t
care symbols.

Consequently all occurrences of P can be found using the method of
Problem 36. The total running time of the solution then becomes O(N log N).

Notes
The running time can be reduced to O(N log(max(m,m′))). The linearisation
method presented here is used in [10].
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