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Linear Learning Machines

In supervised learning, the learning machine is given a training set of examples
(or inputs) with associated labels (or output values). Usually the examples are in
the form of attribute vectors, so that the input space is a subset of R". Once the
attribute vectors are available, a number of sets of hypotheses could be chosen for
the problem. Among these, linear functions are the best understood and simplest to
apply. Traditional statistics and the classical neural networks literature have devel-
oped many methods for discriminating between two classes of instances using linear
Sfunctions, as well as methods for interpolation using linear functions. These tech-
niques, which include both efficient iterative procedures and theoretical analysis of
their generalisation properties, provide the framework within which the construction
of more complex systems will be developed in the coming chapters. In this chapter
we review results from the literature that will be relevant to the study of Support
Vector Machines. We will first discuss algorithms and issues of classification, and
then we will move on to the problem of regression. Throughout this book, we will
refer to learning machines using hypotheses that form linear combinations of the
input variables as linear learning machines.

Importantly, we will show that in most cases such machines can be represented
in a particularly useful form, which we will call the dual representation. This fact
will prove crucial in later chapters. The important notions of margin and margin
distribution are also introduced in this chapter. The classification results are all
introduced for the binary or two-class case, and at the end of the chapter it is
shown how to generalise them to multiple classes.

2.1 Linear Classification

Binary classification is frequently performed by using a real-valued function
f : X € R" > R in the following way: the input x = (xi,...,Xx,) is assigned to
the positive class, if f(x) > 0, and otherwise to the negative class. We consider
the case where f(x) is a linear function of x € X, so that it can be written as

fx) (w-x)+b

n
Z w;x; + b
i=1

9
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10 2 Linear Learning Machines

Figure 2.1: A separating hyperplane (w,b) for a two dimensional training set

where (w,b) € R" x R are the parameters that control the function and the
decision rule is given by sgn(f(x)), where we will use the convention that
sgn (0) = 1. The learning methodology implies that these parameters must be
learned from the data.

A geometric interpretation of this kind of hypothesis is that the input space
X is split into two parts by the hyperplane defined by the equation (w-x}+b =10
(see Figure 2.1). A hyperplane is an affine subspace of dimension n — 1 which
divides the space into two half spaces which correspond to the inputs of the
two distinct classes. For example in Figure 2.1 the hyperplane is the dark line,
with the positive region above and the negative region below. The vector w
defines a direction perpendicular to the hyperplane, while varying the value of b
moves the hyperplane parallel to itself. It is therefore clear that a representation
involving n+ 1 free parameters is necessary, if one wants to represent all possible
hyperplanes in R".

Both statisticians and neural network researchers have frequently used this
simple kind of classifier, calling them respectively linear discriminants and percep-
trons. The theory of linear discriminants was developed by Fisher in 1936, while
neural network researchers studied perceptrons in the early 1960s, mainly due
to the work of Rosenblatt. We will refer to the quantities w and b as the weight
vector and bias, terms borrowed from the neural networks literature. Sometimes
—b is replaced by 6, a quantity known as the threshold.

As we are studying supervised learning from examples, we first introduce
some notation we will be using throughout the book to refer to inputs, outputs,
training sets, and so on.
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Definition 2.1 We typically use X to denote the input space and Y to denote
the output domain. Usually we will have X = R", while for binary classification
Y = {-1,1}, for m-class classification Y = {1,2,...,m}, and for regression
Y S R. A training set is a collection of training examples, which are also called
training data. It is usually denoted by

S =((Xt, 1) (X, ¥2)) S (X X Y)Y,

where ¢ is the number of examples. We refer to the x; as examples or instances
and the y; as their labels. The training set S is trivial if the labels of all the
examples are equal. Note that if X is a vector space, the input vectors are column
vectors as are the weight vectors. If we wish to form a row vector from x; we
can take the transpose x.

Several simple iterative algorithms optimising different cost functions were
introduced in the 1960s for separating points from two populations by means
of a hyperplane. In the following subsections we will review some of the best-
known, and will highlight some of their most interesting properties. The case of
the perceptron is particularly interesting not only for historical reasons, but also
because, even in such a simple system, we can already find most of the central
concepts that we will need for the theory of Support Vector Machines. Note
that some algorithms, such as least squares, have been used both for regression
and for classification. In order to avoid duplication, we will describe them in the
regression section.

2.1.1 Rosenblatt’s Perceptron

The first iterative algorithm for learning linear classifications is the procedure
proposed by Frank Rosenblatt in 1956 for the perceptron. The algorithm created
a great deal of interest when it was first introduced. It is an ‘on-line’ and
‘mistake-driven’ procedure, which starts with an initial weight vector wy (usually
wo = 0 the all zero vector) and adapts it each time a training point is misclassified
by the current weights. The algorithm is shown in Table 2.1. The algorithm
updates the weight vector and bias directly, something that we will refer to as
the primal form in contrast to an alternative dual representation which we will
introduce below.

This procedure is guaranteed to converge provided there exists a hyperplane
that correctly classifies the training data. In this case we say that the data
are linearly separable. If no such hyperplane exists the data are said to be
nonseparable. Below we will show that the number of iterations depends on a
quantity called the margin. This quantity will play a central role throughout the
book and so we will introduce a more formal definition here.

Definition 2.2 We define the (functional) margin of an example (X;, y;) with respect
to a hyperplane (w,b) to be the quantity

vi = yil{w - x;) + b).
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Given a linearly separable training set S and learning rate n € R*
wo«—0;bg—0;k—0
R «— max;qi</ 1%

repeat
fori=11to ¢
if yi({wg - x;) + b)) < 0 then
Wiy < Wi + nyiX;
bii1 < bk +nyiR?
ke—k+1
end if
end for

until no mistakes made within the for loop
return (wg, b;) where k is the number of mistakes

Table 2.1: ﬁhe Perceptron Algorithm (primal formﬂ

Note that y; > 0 implies correct classification of (x;, ;). The (functional ) margin
distribution of a hyperplane (w, b) with respect to a training set S is the distribution
of the margins of the examples in §. We sometimes refer to the minimum of
the margin distribution as the (functional) margin of a hyperplane (w,b) with
respect to a training set S. In both definitions if we replace functional margin
by geometric margin we obtain the equivalent quantity for the normalised linear
function (ﬁ;ﬁw,ﬁv—”b), which therefore measures the Euclidean distances of the
points from the decision boundary in the input space. Finally, the margin of
a training set S is the maximum geometric margin over all hyperplanes. A
hyperplane realising this maximum is known as a maximal margin hyperplane.
The size of its margin will be positive for a linearly separable training set.

Figure 2.2 shows the geometric margin at two points with respect to a
hyperplane in two dimensions. The geometric margin will equal the functional
margin if the weight vector is a unit vector. Figure 2.3 shows the margin of a
training set.

Theorem 2.3 (Novikoff) Let S be a non-trivial training set, and let

R = max ||x;] .
l<i<é

Suppose that there exists a vector Wop; such that |[Wopel| =1 and
yi((“’opt : Xi> + bopt) =y

Jor 1 < i < ¢£. Then the number of mistakes made by the on-line perceptron
algorithm on S is at most
(&)
)
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Figure 2.3: The margin of a training set
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Proof For the analysis we augment the input vectors by an extra coordinate
with value R. We denote the new vector by X; = (x, R)’, where x’ denotes the
transpose of x. Similarly we add an extra coordinate to the weight vector w by
incorporating the bias b, to form the augmented weight vector W= (w',b/R). The
algorithm starts with an augmented weight vector Wy = 0 and updates it at each
mistake. Let W,_; be the augmented weight vector prior to the tth mistake. The
tth update is performed when

VilWeot - Xi) = yil(We—g - Xi) + b)) <0

where (x;, y;) € S is the point incorrectly classified by w;—; = (w;_l,bl_l /R)'. The
update is the following:
W = (W;, bz/R)l = (W;—pbt—l/R)/ +nyi (X:w R)/ =W,y +nyiX;,
where we have used the fact that
bi/R = b,.1/R+nyR
be—t + nyiR%.

If

since b,
The derivation
(We - Wopt) = (Wit - Wopt) + 7i(Xi * Wopt) = (Wit - Wope) + 11y
implies (by induction) that
(We - Wopt) = 1.

Similarly, we have

IW? = Wl + 20pi(Fms - R + 1 (%]
< Wl + P 1%
< Rt P +? (Il + B
< Wil +2¢°R2,

which implies that
IWell* < 20’ R>.
The two inequalities combined give the ‘squeezing’ relations
[Woptll V2R 2= [Wopcll W2l = (e, Wope) > 77,

which together imply the bound

R\? _ 2R\?
t32<_> ”woptnzs (—) >
Y b

since by < R for a non-trivial separation of the data, and hence

[Woptll® < IWopt* + 1 = 2.
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Remark 2.4 The theorem is usually given for zero bias and the bound is a factor
4 better in this case. However, the bias is updated in the perceptron algorithm and
if the standard update is made (without the R? factor) the number of iterations
depends on the margin of the augmented (including bias) weight training set.
This margin is always less than or equal to y and can be very much smaller. It
will equal y when by, = 0, and so the bound using the augmented margin will
be a factor 4 better, though in this case the factor of 2 introduced in the last
line of our proof can be avoided, making our bound only a factor 2 worse. In
contrast, for cases where |boy| = O(R), with R > 1, the bound obtained with the
augmented training set will be a factor O(R?) worse than our bound.

Remark 2.5 The critical quantity in the bound is the square of the ratio of
the radius of the ball containing the data and the margin of the separating
hyperplane. This ratio is invariant under a positive rescaling of the data, and
it is clear that rescaling will not affect the number of iterations taken by the
algorithm, though it is at first counter-intuitive that this number does not
depend on the learning rate. The reason is that there is a degree of freedom in
the description of a thresholded linear function, as a positive rescaling of both
weights and bias does not change its classification. Later we will use this fact
to define the canonical maximal margin hyperplane with respect to a separable
training set by fixing the margin equal to 1 and minimising the norm of the
weight vector. The resulting value of the norm is inversely proportional to the
margin.

The theorem proves that the algorithm converges in a finite number of
iterations provided its margin is positive. Just iterating several times on the

2
same sequence S, after a number of mistakes bounded by (27R) the perceptron

algorithm will find a separating hyperplane and hence halt, provided one exists.

In cases where the data are not linearly separable, the algorithm will not
converge: if executed iteratively on the sequence S it will continue to oscillate,
changing hypothesis w; every time it finds a misclassified point. However, a
theorem similar to Novikoff’s exists, bounding the number of errors made during
one iteration. It uses a different measure of the margin distribution, a measure
that will play an important role in later chapters. Intuitively, it generalises the
notion of margin to account for a more global property of the training sample,
using the margins achieved by training points other than those closest to the
hyperplane. This measure of the margin distribution can also be used to measure
the amount of ‘non-separability’ of the sample.

Definition 2.6 Fix a value y > 0, we can define the margin slack variable of an
example (x;,y;) with respect to the hyperplane (w,b) and target margin y as

é((xi,yi)’(w’ b),'})) = éi = max (0,')) —Ji ((W, Xi> + b)) .

Informally this quantity measures how much a point fails to have a margin of y
from the hyperplane. If ; > y, then x; is misclassified by (w, b). The norm ||£||,
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Figure 2.4: The slack variables for a classification problem

measures the amount by which the training set fails to have margin y, and takes
into account any misclassifications of the training data.

Figure 2.4 shows the size of the margin slack variables for two misclassified
points for a hyperplane with unit norm. All of the other points in the figure
have their slack variable equal to zero since they have a (positive) margin of
more than y.

Theorem 2.7 (Freund and Schapire) Let S be a non-trivial training set with no
duplicate examples, with ||X;|| < R. Let (w,b) be any hyperplane with ||w| = 1, let
y > 0 and define

14 4
D=3 & =D &(xay),(w b))
i=1

i=1

Then the number of mistakes in the first execution of the for loop of the perceptron
algorithm of Table 2.1 on S is bounded by

(2 (R+D) ) 2
; .
Proof The proof defines an extended input space parametrised by A in which

there is a hyperplane with margin y that has the same functionality as (W, b)'
on unseen data. We can then apply Theorem 2.3 in the extended space. Finally,
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optimising the choice of A will give the result. The extended input space has an
extra coordinate for each training example. The new entries for example x; are
all zero except for the value A in the ith additional coordinate. Let X; denote this
extended vector and S the corresponding training set. We now extend w with the
value y;&;/A in the ith additional entry to give the vector w. Observe that

yi((W-%)+b) =y ((W-x;) +b) +& >,

showing that (W, b)' has margin y on S. Note, however, that ||W|| = \/1+ D2/AZ,
so that the geometric margin 7 is reduced by this factor. Since the extended
training examples have non-zero entries in different coordinates, running the
perceptron algorithm for the first for loop on S has the same effect as running
it on S, and we can bound the number of mistakes by Theorem 2.3 by

2R\® 4(R2+A) (14 DY/M?)
vy y?

The bound is optimised by choosing A = /RD giving the required result. il

Remark 2.8 The reason we can only apply the theorem for the first iteration
of the for loop is that after a training example X; has been used to update the
weight vector in the extended space, the ith additional coordinate of the weight
vector will have a non-zero entry, which will affect the evaluation of X; when it
is processed in subsequent iterations. One could envisage an adaptation of the
perceptron algorithm that would include these additional coordinates, though
the value of A would have to either be a parameter or be estimated as part of
the computation.

Remark 2.9 Since D can be defined for any hyperplane, the bound of the
theorem does not rely on the data being linearly separable. The problem of
finding the linear separation of non-separable data with the smallest number of
misclassifications is NP-complete. A number of heuristics have been proposed for
this problem, for example the pocket algorithm outputs the w that survived for
the longest number of iterations. The extension suggested in the previous remark
could be used to derive a version of the perceptron algorithm for non-separable
data.

It is important to note that the perceptron algorithm works by adding
misclassified positive training examples or subtracting misclassified negative ones
to an initial arbitrary weight vector. Without loss of generality, we have assumed
that the initial weight vector is the zero vector, and so the final hypothesis will
be a linear combination of the training points:

¢
W= E 0 YiXi,
j=1

https://doi.org/10.1017/CBO9780511801389.004 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511801389.004
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Given training set §
x—0;b<0
R — maxig<, Xl
repeat
fori=1to ¢
if Yi (z;;l iy <Xj . Xi> + b) < 0 then
o —oa;+1
bbb + y,~R2
end if
end for
until no mistakes made within the for loop
return (e, b) to define function h(x) of equation (2.1)

Table 2.2: ﬁ he Perceptron Algorithm (dual form)J

where, since the sign of the coefficient of x; is given by the classification y;, the
o; are positive values proportional to the number of times misclassification of
x; has caused the weight to be updated. Points that have caused fewer mistakes
will have smaller «;, whereas difficult points will have large values. This quantity
is sometimes referred to as the embedding strength of the pattern x;, and will
play an important role in later chapters. Once a sample S has been fixed,
one can think of the vector « as alternative representation of the hypothesis in
different or dual coordinates. This expansion is however not unique: different
a can correspond to the same hypothesis w. Intuitively, one can also regard o;
as an indication of the information content of the example x;. In the case of
non-separable data, the coefficients of misclassified points grow indefinitely.
The decision function can be rewritten in dual coordinates as follows:

h(x) = sgn((w-x)+b)

sgn <Zajijj-x> +b (2.1)

il

i=1
¢

= sgn Zajyj(xj~x)+b ,
j=1

and the perceptron algorithm can also be expressed entirely in this dual form as
shown in Table 2.2. Note that the learning rate only changes the scaling of the
hyperplanes, it does not affect the algorithm with a zero starting vector and so
we have no longer included it.

This alternative formulation of the perceptron algorithm and its decision
function has many interesting properties. For example, the fact that the points
that are harder to learn have larger o; can be used to rank the data according
to their information content. Indeed, in the analysis of the simple perceptron
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algorithm we have already found many of the important concepts that will
be used in the theory of Support Vector Machines: the margin, the margin
distribution, and the dual representation.

Remark 2.10 Since the number of updates equals the number of mistakes and
each update causes 1 to be added to exactly one of its components, the 1-norm

the bound on the number of mistakes given in Theorem 2.3. We can therefore
view the 1-norm of & as a measure of the complexity of the target concept in the
dual representation.

Remark 2.11 The training data only enter the algorithm through the entries of
the matrix G = ((x;" xj))f:j=1, known as the Gram matrix, whose properties
are briefly discussed in Appendix B and which will be related to other similar
matrices in later chapters. This observation will have important consequences in

Chapter 3.

2.1.2 Other Linear Classifiers

The problem of learning a hyperplane that separates two (separable) sets of points
is an ill-posed one, in the sense that in general several different solutions exist.
For example the perceptron algorithm may give a different solution depending
on the order in which the examples are processed. The danger with ill-posed
problems is that not all solutions may be equally useful. One way to render it
well-posed is to try to optimise a different cost function, which ensures that if
a solution exists it is always unique. For example we can choose not simply
to learn any rule that correctly separates the two classes, but to choose from
among these rules the one that is a maximum distance from the data. This is
the hyperplane that realises the maximal margin. It is also said to have maximal
stability. An iterative algorithm similar to the perceptron algorithm exists that is
guaranteed to converge to the maximal margin solution. We will briefly analyse
this algorithm in Chapter 7.

The perceptron algorithm is guaranteed to converge only if the data are
linearly separable. A procedure that does not suffer from this limitation is
Fisher’s discriminant, which is aimed at finding the hyperplane (w,b) on which
the projection of the data is maximally separated. The cost function to be
optimised is the following:

_(my—m_y)?
o +02,
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where m; and g; are respectively the mean and standard deviation of the function
output values

{w-x;) +b:y; =i}

for the two classes, i =1, —1.

The hyperplane that optimises this criterion can be found by solving a system
of linear equations with a symmetric matrix formed from the training data and
right hand side the difference between the two class means.

2.1.3 Multi-class Discrimination

The problem of two-class discrimination we have studied so far can also be
solved by defining a weight vector w; and a bias b; for each class. Each time a
new instance has to be classified, both functions are evaluated, and the point x
is assigned to class 1 if (wy - x) + by > (w_y - X) +b_y, to class —1 otherwise. This
approach is equivalent to discrimination using the single hyperplane (w, b), with
the substitutions w = w; —w_;, b= b; — b_;.

For a multi-class classification problem the output domainis Y = {1,2,... ,m}.
The generalisation of linear learning machines to the m-class case is straightfor-
ward: to each of the m classes are associated a weight vector and a bias, (w;, b;),
ie{l,...,m}, and the decision function is given by

c(x) = arg max ((wi-x) +b;).

Geometrically this is equivalent to associating a hyperplane to each class,
and to assigning a new point x to the class whose hyperplane is furthest from it.
The input space is split into m simply connected and convex regions.

Algorithms for learning the m hyperplanes simultaneously from data exist,
and are extensions of the basic procedures outlined above.

2.2 Linear Regression
The problem of linear regression consists in finding a linear function
fx)=(w-x)+b

that best interpolates a given set S of training points labelled from Y < R.
Geometrically this corresponds to a hyperplane fitting the given points. Figure 2.5
shows a one dimensional linear regression function. The distance shown as ¢ in
the figure is the error for the particular training example.

This problem has been studied since the 18th century, and the best-known
solution is that proposed independently by Gauss and Legendre of choosing the
line that minimises the sum of the squares of the distances from the training
points. This technique is known as least squares, and is known to be optimal in
the case of linear targets corrupted by Gaussian noise.
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Figure 2.5: A one dimensional linear regression function

Numerical stability and generalisation considerations motivated the intro-
duction of a variation of this technique, which is analogous to the maximal
margin hyperplane in the classification case: choosing a function that minimises
a combination of square loss and norm of the w vector. This solution, proposed
by Hoerl and Kennard, is known as ridge regression. Both these algorithms
require the inversion of a matrix, though a simple iterative procedure also exists
(the Adaline algorithm developed by Widrow and Hoff in the 1960s). Note that
these regression techniques can also be used for classification problems, with a
careful choice of the target values associated with the classes.

2.2.1 Least Squares

Given a training set S, with x; € X = R", y; € Y < R, the problem of linear
regression is to find a (linear) function f that models the data
y=f(x)=(w-x)+b.
The least squares approach prescribes choosing the parameters (w, b) to minimise
the sum of the squared deviations of the data,
¢

L(w,b) = Z (yi —(w-x;) —b)z.

i=1
The function L is known as the square loss function as it measures the amount of
loss associated with the particular choice of parameters by a sum of squares. The
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loss can also be measured using other loss functions. The use of the symbol L
should not be confused with its use for the Lagrangian introduced in Chapter 5.
We can minimise L by differentiating with respect to the parameters (w,b), and
setting the resulting n + 1 linear expressions to zero. This is best expressed in
matrix notation by setting W = (w’,b)/, and

»
It

, where X; = (x,1).

With this notation the vector of output discrepancies becomes
y— Xw
with y a column vector. Hence, the loss function can be written as
L(W) = (y — X#)'(y — X#).
Taking derivatives of the loss and setting them equal to zero,

oL o PPN
— = 2X'y+2X'Xw =
Fr X'y + w=20,

yields the well-known ‘normal equations’
X'Xw =Xy,
and, if the inverse of X'X exists, the solution of the least squares problem is
w=(X'X)"'Xy.

If X'X is singular, the pseudo-inverse can be used, or else the technique of ridge
regression described below can be applied.

In the 1960s attention was paid to the construction of simple iterative pro-
cedures for training linear learning machines. The Widrow—Hoff algorithm (also
known as Adaline) converges to this least squares solution and has a similar
flavour to the perceptron algorithm but implements a simple gradient descent
strategy. The algorithm is shown in Table 2.3.

2.2.2 Ridge Regression

If the matrix X'X in the least squares problem is not of full rank, or in other
situations where numerical stability problems occur, one can use the following
solution:

W = (ili + /{In)_li,y
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Given training set S and learning rate n € Rt
wo—0;b<0
repeat
fori=1t ¢
(W,b) - (W, b) -n ((W : xi) + b— yl) (Xia 1)
end for
until convergence criterion satisfied
return (w,b)

Table 2.3: |The Widrow—Hoff Algorithm (primal form)l

obtained by adding a multiple 1 € R* of the diagonal matrix I, to the matrix
X’X, where 1, is the identity matrix with the (n+ 1,n + 1) entry set to zero. This
solution is called ridge regression, and was ongmally motivated by statistical as
well as numerical considerations.

The ridge regression algorithm minimises the penalised loss function

£
L(w,b) = W)+ > ((woxi) +b— y)’ (22)
i=1

so that the parameter 1 controls a trade-off between low square loss and low
norm of the solution.

Remark 2.12 This algorithm is analogous to the maximal margin algorithm
in the classification case, presenting a complex cost function that is made of
two parts, one controlling the ‘complexity’ of the hypothesis, and the other its
accuracy on the training data. In Chapter 4 we will present a systematic study of
this kind of cost function, and of the generalisation properties of linear learning
machines motivated by it.

Note that ridge regression also admits a dual representation. The solu-
tion needs to satisfy g—fv = 0, which gives the following expression for the
hypothesis: Aw = —> .({w - x;) b — y;)x;, which implies that there exist scalars
o= —% ((w “x;) b— yi), such that the solution can be written as w = >, a;x;.

Once we know that the solution can be expressed in dual form we can derive
conditions that « must satisfy. We can express the duality condition in vector
form by expressing the weight vector in terms of the vector a:

w=Xa,

where X is the matrix X with the last column (of 1s) removed. We can rewrite
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equation (2.2) as follows, where we have set b to zero for simplicity:

¢
Liw) = iXXa+ Z (' Xx; — y,~)2

i=1

¢
= id'Ga+ Z (Ga); — yi)?
i=1
(' Ga 4+ (G —y) (Ga —y)
ol Ga + & GGa — 2y Ga +y'y,

where G = XX’ = G’. Taking derivatives with respect to « and setting to zero
we obtain the equation

2G (la+ Ga—y) =0.
This equation will be satisfied if
A+ Gla=Yy,
giving a predictive function of
fx)=y (I+G) g,

where z; = (x - x;). Note how this dual equation depends on the Gram matrix of
inner products of the training examples, G = XX'.

2.3 Dual Representation of Linear Machines

In the previous sections we have stressed that for most of the linear machines
described there exists a dual description. This representation will be used in
subsequent chapters, and will be shown to be a general property of a wide class
of algorithms. Duality will be one of the crucial concepts in developing Support
Vector Machines.

An important property of the dual representation is that the data only appear
through entries in the Gram matrix and never through their individual attributes.
Similarly in the dual representation of the decision function, it is only the inner
products of the data with the new test point that are needed. This fact will have
far reaching consequences in the rest of the book.

Finally note that in Chapter 5 we will provide a systematic view of many
of the issues concerning duality that we have touched on ‘empirically’ in this
chapter. Many of the problems and algorithms discussed here will be shown to
be special cases of optimisation problems, for which a mathematical framework
exists that naturally encompasses duality.
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2.4 Exercises

1. Write the Widrow—Hoff algorithm in dual form.
2. Write an iterative algorithm for linear regression in primal and dual form.

3. Develop a version of the perceptron algorithm for non-separable data using
the approach described in Remarks 2.8 and 2.9.

2.5 Further Reading and Advanced Topics

The theory of linear discriminants dates back to the 1930s, when Fisher [40]
proposed a procedure for classification. In the field of artificial intelligence
attention was drawn to this problem by the work of Frank Rosenblatt [122],
who starting from 1956 introduced the perceptron learning rule. Minsky and
Papert’s famous book Perceptrons [98] analysed the computational limitations
of linear learning machines. The famous book by Duda and Hart [35] provides
a complete survey of the state of the art up to 1973. For more recent results,
see also [16] which includes a description of a class of generalised learning
machines.

The extension of Novikoff’s theorem [104] to the non-separable case is due to
[43]; the pocket algorithm was proposed by Gallant [47]; a simple description of
Fisher’s discriminant is in [35]. For discussions of the computational complexity
of learning linear separations in the non-separable case, see [64] and {8]. The
idea of a maximal margin hyperplane has been rediscovered several times. It
is discussed by Vapnik and Lerner in [166], by Duda and Hart [35], and an
iterative algorithm known as Adatron for learning maximal margin hyperplanes
was proposed in the statistical mechanics literature by [4], and will be further
discussed in Chapter 7.

The problem of linear regression is much older than the classification one.
Least squares linear interpolation was first used by Gauss in the 18th century
for astronomical problems. The ridge regression algorithm was published by
Hoerl and Kennard [63], and subsequently discovered to be a special case of the
regularisation theory of Tikhonov [153] for the solution of ill-posed problems.
The dual form of ridge regression including the derivations of Subsection 2.2.2
was studied by Saunders et al. [125] and [144]. An equivalent heuristic was
widely used in the neural networks literature under the name of weight decay.
The Widrow—Hoff algorithm is described in [179].

Finally note that the representation of linear machines in the dual form, using
the training data, is intimately related to the optimisation technique of Lagrange
multipliers, and will be further discussed in Chapter 5. Guyon and Stork [56]
compare the primal and dual representation of linear learning machines in an
analogous way to that adopted in this chapter.

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.
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