Computer Vision

S IGHTED HUMANS GET MUCH OF THEIR INFORMATION THROUGH VISION. THAT PART
of AT called “computer vision” (or, sometimes, “machine vision”) deals with
giving computers this ability. Most computer vision work is based on processing two-
dimensional images gathered from a three-dimensional world — images gathered by
one or more television cameras, for example. Because the images are two-dimensional
projections of a three-dimensional scene, the imaging process loses information. That
is, different three-dimensional scenes might produce the same two-dimensional
image. Thus, the problem of reconstructing the scene faithfully from an image is
impossible in principle.

Yet, people and other animals manage very well in a three-dimensional world.
They seem to be able to interpret the two-dimensional images formed on their
retinas in a way that gives them reasonably accurate and useful information about
their environments.

Stereo vision, using two eyes, helps provide depth information. Computer vision
too can use “stereopsis” by employing two or more differently located cameras look-
ing at the same scene. (The same effect can be achieved by having one camera move
to different positions.) When two cameras are used, for example, the images formed
by them are slightly displaced with respect to each other, and this displacement can
be used to calculate distances to various parts of the scene. The computation involves
comparing the relative locations in the images that correspond to the objects in the
scene for which depth measurements are desired. This “correspondence problem”
has been solved in various ways, one of which is to seek high correlations between
small areas in one image with small areas in the other. Once the “disparity” of the
location of an image feature in the two images is known, the distance to that part of
the scene giving rise to this image feature can be calculated by using trigonometric
calculations (which I won’t go into here.)!

Perhaps surprisingly, a lot of depth information can be obtained from other cues
besides stereo vision. Some of these cues are inherent in a single image, and I'll be
describing these in later chapters. Even more importantly, background knowledge
about the kinds of objects one is likely to see accounts for much of our ability to
interpret images. Consider the image shown in Fig. 9.1 for example.

Most people would describe this image as being of two tables, one long and
narrow and the other more-or-less square. Yet, if you measure the actual table tops
in the image itself, you might be surprised to find that they are exactly the same
size and shape! (The illustration is based on an illusion called “turning the tables”
by the psychologist Roger Shepherd and is adapted from Michael Bach’s version
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Figure 9.1. Two tables. (Illustration courtesy of Michael Bach.)

of Shepherd’s diagram. If you visit Bach’s Web site, http://www.michaelbach.de/
ot/sze_shepardTables/, you can watch while one table top moves over to the other
without changing shape.)

Something apart from the image provides us with information that induces us to
make inferences about the shapes of the three-dimensional tables captured in the
two-dimensional image shown in Fig. 9.1. As we shall see, that extra information
consists of two things: knowledge about the image-forming process under various
lighting conditions and knowledge about the kinds of things and their surfaces that
occur in our three-dimensional world. If we could endow computers with this sort
of knowledge, perhaps they too would be able to see.

9.1 Hints from Biology

There has been a steady flow of information back and forth between scientists
attempting to understand how vision works in animals and engineers working on
computer vision. An early example of work at the intersection of these two interests
was described in an article titled “What the Frog’s Eye Tells the Frog’s Brain”? by
four scientists at MIT. Guided by previous biological work, the four, Jerome Lettvin,
H. R. Maturana, Warren McCulloch, and Walter Pitts, probed the parts of the frog’s
brain that processed images. They found that the frog’s visual system consisted of
“detectors” that responded only to certain kinds of things in its visual field. It had
detectors for small, moving convex objects (such as flies) and for a sudden darkening
of illumination (such as might be caused by a looming predator). These, together with
a couple of other simple detectors, gave the frog information about food and danger.
In particular, the frog’s visual system did not, apparently, construct a complete
three-dimensional model of its visual scene. As the authors wrote,

The frog does not seem to see or, at any rate, is not concerned with the detail of stationary
parts of the world around him. He will starve to death surrounded by food if it is not moving.
His choice of food is determined only by size and movement. He will leap to capture any
object the size of an insect or worm, providing it moves like one. He can be fooled easily not
only by a bit of dangled meat but by any moving small object. His sex life is conducted by
sound and touch. His choice of paths in escaping enemies does not seem to be governed by
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anything more devious than leaping to where it is darker. Since he is equally at home in water
and on land, why should it matter where he lights after jumping or what particular direction
he takes?

Other experiments produced further information about how the brain processes
visual images. Neurophysiologists David Hubel (1926—) and Torsten Wiesel (1924-)
performed a series of experiments, beginning around 1958, which showed that certain
neurons in the mammalian visual cortex responded selectively to images and parts
of images of specific shapes. In 1959, they implanted microelectrodes in the primary
visual cortex of an anesthetized cat. They found that certain neurons fired rapidly
when the cat was shown images of small lines at one angle and that other neurons fired
rapidly in response to small lines at another angle. In fact, they could make a “map”
of this area of the cat’s brain, relating neuron location to line angle. They called
these neurons “simple cells” — to be distinguished from other cells, called “complex
cells,” that responded selectively to lines moving in a certain direction. Later work
revealed that other neurons were specialized to respond to images containing more
complex shapes such as corners, longer lines, and large edges.’ They found that
similar specialized neurons also existed in the brains of monkeys.* Hubel and Wiesel
were awarded the Nobel Prize in Physiology or Medicine in 1981 (jointly with Roger
Sperry for other work).>

As Tl describe in later sections, computer vision researchers were developing
methods for extracting lines (both large and small) from images. Hubel and Wiesel’s
work helped to confirm their view that finding lines in images was an important part
of the visual process. Yet, straight lines seldom occur in the natural environments in
which cats (and humans) evolved, so why do they (and we) have neurons specialized
for detecting them? In fact, in 1992 the neuroscientists Horace B. Barlow and David
J. Tolhurst wrote a paper titled “Why Do You Have Edge Detectors?”® As a possible
answer to this question, Anthony J. Bell and Terrence J. Sejnowski later showed
mathematically that natural scenes can be analyzed as a weighted summation of small
edges even though the scenes themselves do not have obvious edges.’

9.2 Recognizing Faces

In the early 1960s at his Palo Alto company, Panoramic Research, Woodrow (Woody)
W. Bledsoe (who later did work on automatic theorem proving at the University
of Texas), along with Charles Bisson and Helen Chan (later Helen Chan Wolf'),
developed techniques for face recognition supported by projects from the CIA.® Here
is a description of their approach taken from a memorial article:’

This [face-recognition] project was labeled man-machine because the human extracted the
coordinates of a set of features from the photographs, which were then used by the computer
for recognition. Using a GRAFACON, or RAND TABLET, the operator would extract the
coordinates of features such as the center of pupils, the inside corner of eyes, the outside corner
of eyes, point of widows peak, and so on. From these coordinates, a list of 20 distances, such
as width of mouth and width of eyes, pupil to pupil, were computed. These operators could
process about 40 pictures an hour. When building the database, the name of the person in the
photograph was associated with the list of computed distances and stored in the computer. In
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the recognition phase, the set of distances was compared with the corresponding distance for
each photograph, yielding a distance between the photograph and the database record. The
closest records are returned.

Bledsoe continued this work with Peter Hart at SRI after leaving Panoramic in
1966.1°

Then, in 1970, a Stanford Ph.D. student, Michael D. Kelly, wrote a computer
program that was able automatically to detect facial features in pictures and use them
to identify people.!! The task for his program was, as he put it,

to choose, from a collection of pictures of people taken by a TV camera, those pictures that
depict the same person. . . .

In brief| the program works by finding the location of features such as eyes, nose, or shoulders
in the pictures. . .. The interesting and difficult part of the work reported in this thesis is
the detection of these features in digital pictures. The nearest-neighbor method is used for
identification of individuals once a set of measurements has been obtained.

Another person who did pioneering work in face recognition was vision researcher
Takeo Kanade, now a professor at Carnegie Mellon University. In a 2007 speech at
the Eleventh IEEE International Conference on Computer Vision, he reflected on
his early work in this field:'? “I wrote my face recognition program in an assembler
language, and ran it on a machine with 10 microsecond cycle time and 20 kB of main
memory. It was with pride that I tested the program with 1000 face images, a rare
case at the time when testing with 10 images was called a ‘large-scale’ experiment.”
(By the way, Kanade has continued his face recognition work up to the present time.
His face-recognition Web page is at http://www.ri.cmu.edu/labs/lab_51.html.)

Face recognition programs of the 1960s and 1970s had several limitations. They
usually required that images be of faces of standard scale, pose, expression, and
illumination. Toward the end of the book, I’'ll describe research leading to much
more robust automatic face recognition.

9.3 Computer Vision of Three-Dimensional Solid Objects

9.3.1 An Early Vision System

Lawrence G. Roberts (1937— ), an MIT Ph.D. student working at Lincoln Labo-
ratory, was perhaps the first person to write a program that could identify objects
in black-and-white (gray-scale) photographs and determine their orientation and
position in space. (His program was also the first to use a “hidden-line” algorithm,
so important in subsequent work in computer graphics. As chief scientist and later
director of ARPA’s Information Processing Techniques Office, Roberts later played
an important role in the creation of the Arpanet, the forerunner of the Internet.)
In the introduction to his 1963 MIT Ph.D. dissertation,'® Roberts wrote

The problem of machine recognition of pictorial data has long been a challenging goal, but
has seldom been attempted with anything more complex than alphabetic characters. Many
people have felt that research on character recognition would be a first step, leading the way to
amore general pattern recognition system. However, the multitudinous attempts at character
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Figure 9.2. Detecting changes in intensity. (Photographs used with permission of Lawrence
Roberts.)

recognition, including my own, have not led very far. The reason, I feel, is that the study of
abstract, two-dimensional forms leads us away from, not toward, the techniques necessary
for the recognition of three-dimensional objects. The perception of solid objects is a process
which can be based on the properties of three-dimensional transformations and the laws of
nature. By carefully utilizing these properties, a procedure has been developed which not only
identifies objects, but also determines their orientation and position in space.

Roberts’s system first processed a photograph of a scene to produce a representa-
tion of a line drawing. It then transformed the line drawing into a three-dimensional
representation. Matching this representation against a stored list of representations
of solid objects allowed it to classify the object it was viewing. It could also pro-
duce a computer-graphics image of the object as it might be seen from any point of
view.

Our main interest here is in how Roberts processed the photographic image.
After scanning the photograph and representing it as an array of numbers (pixels)
representing intensity values, Roberts used a special calculation, later called the
“Roberts Cross,” to determine whether or not each small 2 x 2 square in the array
corresponded to a part of the image having an abrupt change in image intensity. (The
Roberts Cross was the first example of what were later called “gradient operators.”)
He then rerepresented the image “lighting up” only those parts of the image where
the intensity changed abruptly and leaving “dark” those parts of the image with
more-or-less uniform intensity. The result of this process is illustrated in Fig. 9.2
for a typical image used in Roberts’s dissertation. As can be seen in that figure, large
changes in image intensity are usually associated with the edges of objects. Thus,
gradient operators, such as the Roberts Cross, are often called “edge detectors.”

Further processing of the image on the right attempted to connect the dots
representing abrupt intensity changes by small straight-line segments, then by longer
line segments. Finally, a line drawing of the image was produced. This final step is
shown in Fig. 9.3.

Roberts’s program was able to analyze many different photographs of solid objects.
He commented that “The entire picture-to-line-drawing process is not optimal but
works for simple pictures.” Roberts’s success stimulated further work on programs
for finding lines in images and for assembling these lines into representations of
objects. Perhaps primed by Roberts’s choice of solid objects, much of the subsequent
work dealt with toy blocks (or “bricks” as they are called in Britain).
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Figure 9.3. Producing the final line drawing. (Photographs used with permission of Lawrence
Roberts.)

9.3.2 The “Summer Vision Project”

Interestingly, Larry Roberts was a student of MIT information theory professor
Peter Elias, not of Marvin Minsky. But Minsky’s group soon began to work on
computer vision also. In the summer of 1966, the mathematician and psychologist
Seymour Papert, a recent arrival at MI'T’s Artificial Intelligence Group, launched
a “summer vision project.” Its goal was to develop a suite of programs that would
analyze a picture from a “videsector” (a kind of scanner) to “actually name objects
[such as balls, cylinders, and blocks] by matching them with a vocabulary of known
objects.” One motivation for the project was “to use our summer workers effectively
in the construction of a significant part of a visual system.”!*

Of course, the problem of constructing “a significant part of a visual system” was
much more difficult than Papert expected. Nevertheless, the project was successful in
that it began a sustained effort in computer vision research at MIT, which continues
to this day.

After these early forays at MIT (and similar ones at Stanford and SRI to be
described shortly), computer vision research focused on two areas. The first was
what might be called “low-level” vision — those first stages of image processing that
were aimed at constructing a representation of the image as a line drawing, given
an image that was of a scene containing rather simple objects. The second area was
concerned with how to analyze the line drawing as an assemblage of separate objects
that could be located and identified. An important part of low-level vision was “image
filtering,” to be described next.

9.3.3 Image Filtering

The idea of filtering an image to simplify it, to correct for noise, and to enhance cer-
tain image features had been around for a decade or more. I have already mentioned,
for example, that in 1955 Gerald P. Dinneen processed images to remove noise and
enhance edges. Russell Kirsch and colleagues had also experimented with image
processing.'> (Readers who have manipulated their digital photography pictures on
a computer have used some of these image filters.) Filtering two-dimensional images
is not so very different from filtering one-dimensional electronic signals —a common-
place operation. Perhaps the simplest operation to describe is “averaging,” which
blurs fine detail and removes random noise specks. As in all averaging operations,
image averaging takes into account adjacent values and combines them. Consider,
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Figure 9.4. An array of image intensity values
and an averaging window. 0 0 (0 JO |0 (1010101010
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for example, the image array of intensity values shown in Fig. 9.4 containing a
3 x 3 “averaging window” outlined in bold. These intensity values correspond to
an image whose right side is bright and whose left side is dark with a sharp edge
between. (I adopt the convention that large numbers, such as 10 correspond to
brightly illuminated parts of the image, and the number 0 corresponds to black.)

The averaging operation moves the averaging window over the entire image so
that its center lies over each pixel in turn. For each placement of the window, the
value of the intensity at its center is replaced (in the filtered version) by the average
intensity of the values within the window. (The process of moving a window around
the image and doing calculations based on the numbers in the window is called
convolution.) In this example, the 0 at the center of the window would be replaced
by 3.33 (perhaps rounded down to 3). One can see that averaging blurs the sharp
edge — with the 10 fading to (a rounded) 7 fading to 3 fading to 0 as one moves from
right to left. However, intensities well within evenly illuminated regions are not
changed.

I have already mentioned another important filtering operation, the Roberts Cross,
for detecting abrupt brightness changes in an image. Another one was developed
in 1968 by a Ph.D. student at Stanford, Irwin Sobel. It was dubbed the “Sobel
Operator” by Raj Reddy who described it in a Computer Vision course at Stan-
ford.'® The operator uses two filtering windows — one sensitive to large gradients
(intensity changes) in the vertical direction and one to large gradients in the hori-
zontal direction. These are shown in Fig. 9.5.

Each of the Sobel filters works the same way as the averaging filter, except that
the image intensity at each point is multiplied by the number in the corresponding
cell of the filtering window before adding all of the numbers. The sum would be 0

-1 0| +1 +1 | +2 | +1
Figure 9.5. Sobel’s vertical (left) and hori-
zontal (right) filters. 2 | 0 |+2 0 0 0
-1 0 | +1 1 -2 11
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Figure 9.6. Finding abrupt changes in image brightness with the Sobel Operator. (Pho-
tographs taken by George Miller. Used under the terms of the GNU Free Documentation
License.)

inside regions of uniform illumination. If the vertical filter is centered over a vertical
edge (with the right side brighter than the left), the sum would be positive. (I’ll let
you think about the other possibilities.) Results from the two filtering windows are
combined mathematically to detect abrupt changes in any direction.

The images in Fig. 9.6 illustrate the Sobel Operator. The image on the right is
the result of applying the Sobel Operator to the image on the left.

A number of other more complex and robust image processing operations have
been proposed and used for finding edges, lines, and vertices of objects in images.'” A
particularly interesting one for finding edges was proposed by the British neurosci-
entist and psychologist David Marr (1945-1980) and Ellen Hildreth.'® The Marr—
Hildreth edge detector uses a filtering window called a “Laplacian of Gaussian
(LoG).” (The name arises because a mathematical operator called a “Laplacian”
is used on a bell-shaped curve called a “Gaussian,” commemorating two famous
mathematicians, namely, Pierre-Simon Laplace and Carl Friedrich Gauss.) In
Fig. 9.7, I show an example of LLoG numbers in a 9 x 9 filtering window. This
window is moved around an image, multiplying image numbers and adding them
up, in the same way as the other filtering windows I have already mentioned.

IfLoG numbers are plotted as “heights” above (and below) a plane, an interesting-
looking surface results. An example is shown in Fig. 9.8. This LoG function is often
called, not surprisingly, a Mexican hat or sombrero function.
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Figure 9.8. A Laplacian of Gaussian surface.

Marr and Hildreth used the LoG filtering window on several example images.
One example, taken from their paper, is shown in Fig 9.9. Notice that the image
on the right has whitish bands surrounding darker parts of the image. The Marr—
Hildreth edge detector employs a second image-processing operation that looks for
the transitions from light to dark (and vice versa) in the LLoG-processed image to
produce a final “line drawing,” as shown in Fig. 9.10.

Further advances have been made in edge detection since Marr and Hildreth’s
work. Among the currently best detectors are those related to one proposed by John
Canny called the Canny edge detector."”

As a neurophysiologist, Marr was particularly interested in how the human brain
processes images. In a 1976 paper,?’ he proposed that the first stage of processing
produces what he called a “primal sketch.” As he puts it in his summary of that

paper,

It is argued that the first step of consequence is to compute a primitive but rich description
of the grey-level changes present in an image. The description is expressed in a vocabulary of
kinds of intensity change (EDGE, SHADING-EDGE, EXTENDED-EDGE, LINE, BLOB
etc.). ... This description is obtained from the intensity array by fixed techniques, and it is
called the primal sketch.

Marr and Hildreth put forward their edge detector as one of the operations the
brain uses in producing a primal sketch. They stated that their theory “explains

Figure 9.9. Animage (left) and its LoG-processed version (right). (Images taken from David
Marr and E. Hildreth, “Theory of Edge Detection,” Proceedings of the Royal Society of London,
Series B, Biological Sciences, Vol. 207, No. 1167, p. 198, February 1980.)
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Figure 9.10. The final result of a Marr—Hildreth
edge-detecting operation. (From David Marr and
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several basic psychophysical findings, and. .. forms the basis for a physiological
model of simple [nerve] cells.”

Marr’s promising career in vision research ended when he succumbed to cancer
in 1980. During the last years of his life he completed an important book detailing
his theories of human vision.?! I’ll describe some of Marr’s ideas about other visual
processing steps in a subsequent chapter.

9.3.4 Processing Line Drawings

Assuming, maybe somewhat prematurely, that low-level vision routines could pro-
duce a line-drawing version of an image, many investigators moved on to develop
methods for analyzing line drawings to find objects in images.

Adolfo Guzman-Arenas (1943- ), a student in Minsky’s AI Group, focused on
how to segment a line drawing of a scene containing blocks into its constituents,
which Guzman called “bodies.” His LISP program for accomplishing this separation
was called SEE and ran on the MIT AI Group’s PDP-6 computer.”? The input to
SEE was a line-drawing representation of a scene in terms of its surfaces, lines (where
two surfaces came together), and vertices (where lines came together).

SEE’s analysis of a scene began by sorting its vertices into a number of different
types. For each vertex, depending on its type, SEE connected adjacent planar surfaces
with “links.” The links between surfaces provide evidence that those surfaces belong
to the same body. For example, some links for a scene analyzed by SEE are shown in
Fig. 9.11.

SEE performed rather well on a wide variety of line drawings. For example, it
correctly found all of the bodies in the scene shown in Fig. 9.12.

For most of his work, Guzman assumed that somehow other programs would
produce his needed line drawings from actual images. As he wrote in a paper
describing his research,?’

The scene itself is not obtained from a visual input device, or from an array of intensities of
brightness. Rather, it is assumed that a preprocessing of some sort has taken place, and the
scene to be analyzed is available in a symbolic format. .. in terms of points (vertices), lines
(edges), and surfaces (regions).”
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Figure 9.11. Links established by SEE for a
sample scene. (Illustration used with permis-
sion of Adolpho Guzman.)

Additionally, Guzman did not concern himself with what might be done after the
scene had been separated into bodies:

... it cannot find “cubes” or “houses” in a scene, since it does not know what a “house” is.
Once SEE has partitioned a scene into bodies, some other program will work on them and
decide which of those bodies are “houses.”

Later extensions to SEE, reported in the final version of his thesis, involved some
procedures for image capture. But the images were of specially prepared scenes, as
he recently elaborated:?*

Originally SEE worked on hand-drawn scenes, “perfect scenes” (drawings of lines). . .

Later, I constructed a bunch of wooden polyhedra (mostly irregular), painted them black,
carefully painted their edges white, piled several of them together, and took pictures of the
scenes. The pictures were scanned, edges found, and given to SEE. It worked quite well on
them.

Although SEE was capable of finding bodies in rather complex scenes, it also could
make mistakes, and it could not identify blocks that had holes in them.

The next person to work on the problem of scene articulation was David Huffman
(1925-1999), a professor of Electrical Engineering at MI'T. (Huffman was famous for

Figure 9.12. A scene analyzed by SEE.
(Illustration used with permission of Adolpho
Guzman.)
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Figure 9.13. The four different kinds of vertices that can occur in trihedral solids.

his invention, while a graduate student at MIT, of what came to be called “Huffman
coding,” an efficient scheme that is used today in many applications involving the
compression and transmission of digital data.) Huffman was bothered by what he
considered Guzman’s incomplete analysis of what kinds of objects could correspond
to what kinds of line drawings. After leaving MIT in 1967 to become a professor of
Information and Computer Science at the University of California at Santa Cruz, he
completed a theory for assigning labels to the lines in drawings of trihedral solids —
objects in which exactly three planar surfaces join at each vertex of the object. The
labels depended on the ways in which planes could come together at a vertex. (I got
to know Huffman well at that time because he consulted frequently at the Stanford
Research Institute.)

Huffman pointed out that there are only four ways in which three plane surfaces
can come together at a vertex.?’ These are shown in Fig. 9.13. In addition to these
four kinds of vertices, a scene might contain what Huffman called “T-nodes” — line
intersection types caused by one object in a scene occluding another. These all give
rise to a number of different kinds of labels for the lines in the scene; these labels
specify whether the lines correspond to convex, concave, or occluding edges.

Huffman noted that the labels of the lines in a drawing might be locally consistent
(around some vertices) but still be globally inconsistent (around all of the vertices).
Consider, for example, Roger Penrose’s famous line drawing of an “impossible
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Figure 9.14. An impossible object.

object” shown in Fig. 9.14.% (It is impossible because no three-dimensional object,
viewed in “general position,” could produce this image.) No “real scene” can have
a line with two different labels.

Max Clowes (circa 1944-1981) of Sussex University in Britain developed similar
ideas independently,?” and the labeling scheme is now generally known as Huffman—
Clowes labeling.

Next comes David Waltz (1943— ). In his 1972 MIT Ph.D. thesis, he extended
the Huffman—Clowes line-labeling scheme to allow for line drawings of scenes with
shadows and possible “cracks” between two adjoining objects.”® Waltz’s important
contribution was to propose and implement an efficient computational method for
satisfying the constraint that all of the lines must be assigned one and only one label.
(For example, an edge can’t be concave at one end and convex at the other.) In
Fig. 9.15, I show an example of a line drawing that Waltz’s program could correctly
segment into its constituents.

Summarizing some of the work on processing line drawings at MIT, Patrick
Winston says that “Guzman was the experimentalist, Huffman the theoretician, and
Waltz the encyclopedist (because Waltz had to catalog thousands of junctions, in
order to deal with cracks and shadows).”%

Meanwhile, similar work for finding, identifying, and describing objects in three-
dimensional scenes was being done at Stanford. By 1972 Electrical Engineering
Ph.D. student Gilbert Falk could segment scenes of line drawings into separate
objects using techniques that were extensions of those of Guzman.*® And by 1973,
Computer Science Ph.D. student Gunnar Grape performed segmentation of scenes
containing parallelepipeds and wedges using models of those objects.’!

Other work on analysis of scenes containing polyhedra was done by Yoshiaki Shirai
while he was visiting MI'T’s AI Lab*? and by Alan Mackworth at the Laboratory of
Experimental Psychology of the University of Sussex.*

Figure 9.15. A scene with shadows analyzed
by Waltz’s program. (Illustration used with
permission of David Waltz.)
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Notes

. For a thorough treatment, see David Forsyth and Jean Ponce, Computer Vision: A Modern

Approach, Chapter 13, Upper Saddle River, NJ: Prentice Hall, 2003. [125]

. Lettvin et al., “What the Frog’s Eye Tells the Frog’s Brain,” Proceedings of the IRE,

Vol. 47, No. 11, pp. 1940-1951, 1959. [Reprinted as Chapter 7 in William C. Corning
and Martin Balaban (eds.), The Mind: Biological Approaches to Its Functions, pp. 233-258,
1968.]1[126]

. David H. Hubel and Torsten N. Wiesel, “Receptive Fields, Binocular Interaction and

Functional Architecture in the Cat’s Visual Cortex,” Journal of Physiology, Vol. 160,
pp- 106-154, 1962. [127]

. David H. Hubel and Torsten N. Wiesel, “Receptive Fields and Functional Architecture

of Monkey Striate Cortex,” Fournal of Physiology, Vol. 195, pp. 215-243, 1968. [127]

. An interesting account of Hubel’s and Wiesel’s work and descriptions about how the

brain processes visual images can be found in Hubel’s online book Eye, Brain, and Vision
at http://neuro.med.harvard.edu/site/dh/index.html. [127]

. Horace B. Barlow and D. J. Tolhurst, “Why Do You Have Edge Detectors?,” in Pro-

ceedings of the 1992 Optical Society of America Annual Meeting, Technical Digest Series,
Vol. 23, pp. 172, Albuquerque, NM, Washington: Optical Society of America, 1992.
[127]

. Anthony J. Bell and Terrence J. Sejnowski, “Edges Are the ‘Independent Components’ of

Natural Scenes,” Advances in Neural Information Processing Systems, Vol. 9, Cambridge,
MA: MIT Press, 1996. Available online at ftp://ftp.cnl.salk.edu/pub/tony/edge.ps.Z.
[127]

. Woodrow W. Bledsoe and Helen Chan, “A Man—Machine Facial Recognition System:

Some Preliminary Results,” Technical Report PRI 19A, Panoramic Research, Inc., Palo
Alto, CA, 1965. [127]

. Michael Ballantyne, Robert S. Boyer, and Larry Hines, “Woody Bledsoe: His Life and

Legacy,” AI Magazine, Vol. 17, No. 1, pp. 7-20, 1996. Also available online at http://
www.utexas.edu/faculty/ council/1998-1999/memorials/Bledsoe/bledsoe.html. [127]
Woodrow W. Bledsoe, “Semiautomatic Facial Recognition,” Technical Report SRI
Project 6693, Stanford Research Institute, Menlo Park, CA, 1968. [128]

Michael D. Kelly, “Visual Identification of People by Computer,” Stanford Al Project,
Stanford, CA, Technical Report AI-130, 1970. [128]

http://iccv2007.rutgers.edu/ TakeoKanadeResponse.htm. [128]

Lawrence G. Roberts, “Machine Perception of Three-Dimensional Solids,” MIT Ph.D.
thesis, 1963; published as Lincoln Laboratory Technical Report #315, May 22, 1963;
appears in J. T. Tippett et al. (eds.), Optical and Electro-Optical Information Processing,
pp- 159-197, Cambridge, MA: MIT Press, 1965. Available online at http://www.packet.
cc/files/mach-per-3D-solids.html. [128]

The project is described in MIT’s Artificial Intelligence Group Vision Memo No. 100
available at ftp://publications.ai.mit.edu/ai-publications/pdf/ AIM-100.pdf. [130]
Russell A. Kirsch ez al., “Experiments in Processing Pictorial Information with a Digital
Computer,” Proceedings of the Eastern Joint Computer Conference, pp. 221-229, Institute
of Radio Engineers and Association Association for Computing Machinery, December
1957.[130]

According to Sobel, he and a fellow student, Gary Feldman,Feldman, Gary first pre-
sented the operator in a Stanford Al seminar in 1968. It was later described in Karl K.
Pingle,Pingle, Karl “Visual Perception by a Computer,” in A. Grasselli (ed.), Automatic

https://doi.org/10.1017/CBO9780511819346.012 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.012

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.
30.

31.

Computer Vision 139

Interpretation and Classification of Images, pp. 277-284, New York: Academic Press, 1969.
It was also mentioned in Richard O. Duda and Hart@Hart, Peter Peter E. Hart, Pattern
Classification and Scene Analysis, pp. 271-272, New York: John Wiley & Sons, 1973.[131]
See, for example, M. H. Hueckel, “An Operator Which Locates Edges in Digitized
Pictures,” Journal of the ACM, Vol. 18, No. 1, pp. 113-125, January 1971, and Berthold
K. P. Horn, “The Binford—Horn Line Finder,” MIT AI Memo 285, MIT, July 1971
(revised December 1973 and available online at http://people.csail.mit.edu/bkph/AIM/
AIM-285-OPT .pdf). [132]

David Marr and Ellen Hildreth, “Theory of Edge Detection,” Proceedings of the Royal
Society of London, Series B, Biological Sciences, Vol. 207, No. 1167, pp. 187-217, Febru-
ary 1980. [132]

John E. Canny, “A Computational Approach to Edge Detection,” IEEE Transactions
Pattern Analysis and Machine Intelligence, Vol. 8, pp. 679-714, 1986. [133]

David Marr, “Early Processing of Visual Information,” Philosophical Transactions of the
Royal Society of London, Series B, Biological Sciences, Vol. 275, No. 942, pp. 483-519,
October 1976. [133]

David Marr, Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information, San Francisco: W.H. Freeman and Co., 1982. [134]
Guzman’s 1968 Ph.D. thesis is titled “Computer Recognition of Three Dimen-
sional Objects in a Visual Scene” and is available online at http://www.lcs.mit.edu/
publications/pubs/pdf/ MIT-LCS-TR-059.pdf. [134]

Adolfo Guzman, “Decomposition of a Visual Scene into Three-Dimensional Bodies,”
AFIPS, Vol. 33, pp. 291-304, Washington, DC: Thompson Book Co., 1968. Available
online as an MIT AI Group memo at ftp://publications.ai.mit.edu/ai-publications/ pdf/
AIM-171.pdf. [134]

Personal communication, September 14, 2006. [135]

David A. Huffman, “Impossible Objects as Nonsense Sentences,” in B. Meltzer and D.
Michie (eds.), Machine Intelligence 6, pp. 195-234, Edinburgh: Edinburgh University
Press, 1971, and David A. Huffman, “Realizable Configurations of Lines in Pictures of
Polyhedra,” in E. W. Elcock and D. Michie (eds.), Machine Intelligence 8, pp. 493-509,
Chicester: Ellis Horwood, 1977. [136]

According to Wikipedia, this impossible object was first drawn by the Swedish artist
Oscar Reutersvird in 1934. [137]

Max B. Clowes, “On Seeing Things,” Artificial Intelligence, Vol. 2, pp. 79-116, 1971.
[137]

David L. Waltz, “Generating Semantic Descriptions from Drawings of Scenes with
Shadows,” MIT AI Lab Technical Report No. AITR-271, November 1, 1972. Available
online at https://dspace.mit.edu/handle/1721.1/6911. A condensed version appears
in Patrick Winston (ed.), The Psychology of Computer Vision, pp. 19-91, New York:
McGraw-Hill, 1975. [137]

Personal communication, September 20, 2006. [137]

Gilbert Falk, “Computer Interpretation of Imperfect Line Data as a Three-Dimensional
Scene,” Ph.D. thesis in Electrical Engineering, Stanford University, Artificial Intelligence
Memo AIM-132; and Computer Science Report No. CS180, August 1970. Also see
Gilbert Falk, “Interpretation of Imperfect Line Data as a Three-Dimensional Scene,”
Artificial Intelligence, Vol. 3, pp. 101-144, 1972. [137]

Gunnar Rutger Grape, “Model Based (Intermediate Level) Computer Vision,” Stanford
Computer Science Ph.D. thesis, Artificial Intelligence Memo AIM-204, and Computer
Science Report No. 266, May 1973. [137]

https://doi.org/10.1017/CBO9780511819346.012 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.012

140 The Quest for Artificial Intelligence

32. Yoshiaki Shirai, “A Heterarchical Program for Recognition of Polyhedra,” MIT AI Memo

No. 263, June 1972. Available online at ftp://publications.ai.mit.edu/ai-publications/
pdf/ AIM-263.pdf. [137]

33. Alan K. Mackworth, “Interpreting Pictures of Polyhedral Scenes,” Artificial Intelligence,
Vol. 4, No. 2, pp. 121-137, June 1973. [137]

https://doi.org/10.1017/CBO9780511819346.012 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9780511819346.012



