4  Maximum a-posteriori approximation

Maximum a-posteriori (MAP) approximation is a well-known and widely used approx-
imation for Bayesian inference. The approximation covers all variables including
model parameters ©, latent variables Z, and classification categories C (word sequence
W in the automatic speech recognition case). For example, the Viterbi algorithm
(arg maxz p(Z]0)) in the continuous density hidden Markov model (CDHMM), as dis-
cussed in Section 3.3.2, corresponds to the MAP approximation of latent variables,
while the forward-backward algorithm, as discussed in Section 3.3.1, corresponds to
an exact inference of these variables. As another example, the MAP decision rule
(arg max¢ p(C|0)) in Eq. (3.2) also corresponds to the MAP approximation of inferring
the posterior distribution of classification categories. Since the final goal of auto-
matic speech recognition is to output the word sequence, the MAP approximation
of the word sequence matches the final goal.! Thus, the MAP approximation can be
applied to all probabilistic variables in speech and language processing as an essential
technique.

This chapter starts to discuss the MAP approximation of Bayesian inference in detail,
but limits the discussion only to model parameters ® in Section 4.1. In the MAP
approximation for model parameters, the prior distributions work as a regularization
of these parameters, which makes the estimation of the parameters more robust than
that of the maximum likelihood (ML) approach. Another interesting property of the
MAP approximation for model parameters is that we can easily involve the inference of
latent variables by extending the EM algorithm from ML to MAP estimation. Section
4.2 describes the general EM algorithm with the MAP approximation by following the
ML-based EM algorithm, as discussed in Section 3.4. Based on the general MAP-EM
algorithm, Section 4.3 provides MAP—EM solutions for CDHMM parameters, and intro-
duces the well-known applications based on speaker adaptation. Section 4.5 describes
the parameter smoothing method in discriminative training of the CDHMM, which actu-
ally corresponds to the MAP solution for discriminative parameter estimation. Section
4.6 focuses on the MAP estimation of GMM parameters, which is a subset of the MAP
estimation of CDHMM parameters. It is used to construct speaker GMMs that are used

I However, if we consider some other spoken language processing applications given automatic speech
recognition inputs (e.g., dialog, machine translation, and information retrieval), we need to consider how
to provide p(W|O) rather than W= arg maxwy p(W|O) to avoid propagating any speech recognition errors
to the post-processing applications.
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138 Maximum a-posteriori approximation

for speaker verification. Section 4.7 provides an MAP solution of n-gram parameters
that leads to one instance of interpolation smoothing, as discussed in Section 3.6.2.
Finally, Section 4.8 deals with the adaptive MAP estimation of latent topic model
parameters.

41 MAP criterion for model parameters

This section begins with a general discussion of the MAP approximation for model
parameters ©. For simplicity, we first review the posterior distribution of model param-
eters given observations O without latent variables Z. Instead of estimating posterior
distributions, the MAP estimation focuses on the following parameter estimation:

MAP _ arg m(slxp(@|0). “.1)

This corresponds to estimating the model parameter ®MAP given training data O. By
using the product and sum rules, as discussed in Section 2.1.1, we can rewrite the above

equation as follows:

Q@MAP — arg mgxp(@IO)

p(0|©)p(®)
/ p(0|®)p(®)dO
= argmax p(0|®) x p(®). “4.2)
C] —— ~—~—

= arg max
g C)

likelihood  prior

Since p(0) = f p(0|®)p(®)d® does not depend on ®, we can avoid computing
this integral directly.? Furthermore, if we use an exponential family distribution for a
likelihood function and a conjugate distribution for a prior distribution, as discussed
in Section 2.1.3, the MAP estimate is represented as the mode of the corresponding
conjugate posterior distribution, analytically. This is an advantage of using conjugate
distributions.?

Equation (4.2) also tells us that the posterior distribution is composed of the likelihood
function and the prior distribution, thus the estimation is based on the maximum likeli-
hood function with the additional contribution of the prior distribution. That is, the prior
distribution acts to regularize model parameters in the ML estimation, as we discussed
in Section 2.3.1 as the best-known Bayesian advantage over ML. For example, let us
consider the likelihood function p(0|®) = ], N(o/lu, 1) as a one-dimensional Gaus-
sian distribution with mean @ and precision as 1, and the prior distribution p(®) as a

2 This term is called the evidence, which is neglected in the MAP approximation. However, the importance
of the evidence is discussed in Chapter 5.

3 In other words, it is not simple to obtain the mode of the posterior distribution, if we do not use the
conjugate distribution, since we cannot obtain the posterior distribution analytically. For example, if we
use the Laplace distribution for the prior distribution, the mode of posterior distributions cannot be
obtained analytically, and we need some numerical computation.
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one-dimensional Gaussian distribution of the mean vector x” and the scale parameter r.
Then, the MAP estimation can be represented as follows:

arg max log p(0|®) + log p(®)
"

= arg max log <H N(o/|, 1)) +log N (il r~h
B t
=arg mﬁlx ;(ot — u)2 + r(u — Mo)z, 4.3)

where from the second to the third lines, we use the definition of a Gaussian distribution
(Appendix C.5) as follows:

P
M) . (4.4)

N, ™) 2 @m) 2(r)? exp (— .

Thus, the optimization problem of the MAP solution corresponds to solving the mini-
mum mean square error (MMSE) estimation with the /% regularization term around u°.
The scale parameter r behaves as a tuning parameter to balance the MMSE estima-
tion and the regularization term. These parameters are called regularization parameters,
which can be hyperparameters of the prior distribution. Equation (4.3) can be analyti-
cally solved by using the conjugate distribution rule, as discussed in Section 2.1.4, or by
using the following derivative method:

9 T T
3 20— 1 =) = =2 (or = )+ 2r(p = 1)
t=1

t=1

T
=2 (Z or+ ru°> +2T+nrp=0. 4.5)
=1

We obtain the MAP estimate of p analytically as:

T 0
MAP _ 2y Or+TH

H T+r
MML 4 % MO
= o . 4.6)
T
T
Thus, the regularization term sets a constraint for the ML estimate M- = % with a

regularization constant r.

Similarly, if we use a Laplace distribution as a prior distribution, the prior distribu-
tion works as an /! regularization term. The Laplace distribution is defined as follows
(Appendix C.10):

L a1 lx — pl
ap(x|u, B) = 55 P\~ Fi . 4.7)
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Therefore, using Lap(y4| 11, B) instead of A/ (ue|u®, 7~ 1), Eq. (4.3) is rewritten as follows:

arg max log p(O|®) + log p(®)
"
— 0
—argmﬁlxlog (l | N (o, 1)) + log Lap(u|u”, B)
t

=argmax } (o: — p)* + %m =l 4.8)
1

Thus, the prior distribution effect in the MAP parameter estimation is often regarded as
a regularization of parameters. Consequently, Eq. (4.3) can incorporate the prior knowl-
edge of parameters via hyperparameters u°, and the MAP approximation retains the
Bayesian advantage of use of prior knowledge, as discussed in Section 2.3.1. Note
that Eq. (4.8) is not differentiable with respect to u, and it does not have a well-
defined conjugate distribution. Therefore, the MAP estimation with the Laplace prior
(I' regularization) is often undertaken by a numerical method.

Now, we introduce a useful mathematical operation for the MAP approximation of
model parameters. To compute the expected values of the posterior distribution with
respect to model parameters ®, the MAP approximation can use the following posterior
distribution represented by a Dirac delta function:

p(©]0) = §(0 — OMAP), (4.9)

where the Dirac delta function has the following property:

/f(a)(S(a —a") =f(a"). (4.10)

This posterior distribution intuitively corresponds to having a location parameter with
the MAP estimate ®MAP and very small (0) variance. If the model parameters are rep-
resented by discrete variables, we can use the Kronecker delta function. Therefore, once
we obtain the MAP estimation of model parameters @MAP | we can compute the expected

value of function f(®) based on Eq. (4.9) as follows:

E@)[f(®)]0] = / F(©)P(®)de = / f(©)5(® — eMA"de
— F(OMAP). 4.11)

Here we use Eq. (4.10) to calculate the integral. Since this is equivalent to just plug-
ging in the MAP estimates to the f(®), this procedure is called plug-in MAP (Lee &
Huo 2000). For example, if we use the likelihood function of unseen data Q' for f(®),
Eq. (4.11) is rewritten as follows:

E()[p(0']©)|0] = p(0'|0MAP), (4.12)

That is, the likelihood function of unseen data can be obtained by simply replacing ®
with the MAP estimate ®MAP_ This can be used as a likelihood function to compute
likelihood values in prediction and classification steps. The Dirac delta-function-based
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posterior representation is very useful, since the representation connects the analyti-
cal relationship between the MAP-based point estimation and the Bayesian distribution
estimation.

Thus, the MAP approximation does not need to solve the marginalization explic-
itly in the training and prediction/classification steps. Although the approximation lacks
the Bayesian advantages of the model selection and marginalization, as discussed in
Section 2.3, it still has the most effective Bayesian advantage over ML, namely use of
prior knowledge. Equation (4.3) also shows that the effect of the prior distribution in the
MAP estimation works as a regularization. Therefore, the MAP approximation is widely
used in practical Bayesian applications. In addition, the MAP approximation is simply
extended to deal with latent variables based on the EM algorithm, which is a key tech-
nique in training statistical models in speech and language processing, as we discussed
in Chapter 3. The next section discusses the MAP version of the EM algorithm.

4.2 MAP extension of EM algorithm

As we discussed in Section 3.4, most statistical models used in speech and language
processing have to deal with latent variables Z, e.g., HMM states and mixture compo-
nents of the CDHMM in acoustic modeling, and latent topics in language modeling.
The maximum likelihood approach has an efficient solution based on the EM algorithm,
which optimizes the auxiliary function Q(®’|®) instead of a (log) likelihood function.
This section describes the EM extension of MAP parameter estimation in general.

4.21 Auxiliary function

Following the discussion in Section 3.4, we prove that the EM steps ultimately lead to
the local optimum value ®YAP in terms of the MAP criterion. First, since the logarith-
mic function is a monotonic function, the MAP criterion in Eq. (4.2) is represented as
follows:

OMA = argmax p(0|©)p(©)

= arg m(gx log (p(O|®O)p(®)) . 4.13)

By introducing latent variable Z, the above equation can be written as
OMAP _ ar max log (Z p(o,Z|®)p(®)) . (4.14)
z

As discussed in the ML-EM algorithm, the summation over latent variable Zz is com-
putationally very difficult since the latent variable in speech and language processing
is represented as a possible sequence, and the number of these variables is exponential.
Therefore, we need to avoid having to compute ), directly.
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Similarly to the ML-EM algorithm in Section 3.4, in M-step, we maximize the MAP
version of the auxiliary function with respect to the parameters ®, and estimate new
parameters by

OMAP — arg max OMAP(@/10). (4.15)

The updated parameters ©’ are then treated as the current parameters for the next itera-
tion of EM steps. The QMAP(®’|@) is defined as the expectation of the joint distribution
p(0,Z, ®) with respect to p(Z|0, ®) as follows:
QMA%(©'10) £ Ez)llogp(0,Z, 0|0, 0]
= Ez[logp(0,Z|0")p(©")]0, O]
= Ez)[logp(0,Z|©"|0, 6] +log p(®"), (4.16)

oM(©'10)

where log p(®’) does not depend on Z, and can be separated from the expectation oper-
ation. Compared with the ML auxiliary function QMM(®'|®) (Eq. (3.78)), we have an
additional term log p(®”), which comes from a prior distribution of model parameters.

Now we explain how optimization of the auxiliary function QMAP leads to the local
optimization of p(O|®)p(®) or p(®|0). For the explanation, we define the logarithmic
function of the joint distribution p(0, ®") = p(0|®")p(®’) as follows:

LMAP(@') 2 log (p(01©)p(®)) . (4.17)

This is similar to L(®) in Eq. (3.83), but LMAP(®’) has an additional factor from p(®).
Now, we represent p(O|®) in the above equation with the distributions of latent variable
Z based on the product rule of probabilistic variables, as follows:

(0,710
0|®)="—""""—1. 4.18
p(0|®) 2(Z|0.0) (4.18)
Therefore, by substituting Eq. (4.18) into Eq. (4.17), we obtain
IMAP(©') = log p(0, Z|®') — log p(Z|0, ®') + log p(®). (4.19)

Now we perform the expectation operation with respect to p(Z|0, ®) for both sides of
the equation, and obtain the following relationship:

MAY(@') = E(z)[log p(0, Z|©)|0, ©] — E(z)[log p(Z|0, ©)|0, O] + log p(®")
= Ellog p(0,Z|0")|0, 8] + log p(®") — Ez)[log p(Z|0, ©)|0, 8],

OMAP(@/|@) H(®'|0)

(4.20)

where LMAP(@) and log p(®’) are not changed since these do not depend on Z. Note
that the third term of Eq. (4.20) is represented as H(®'|®), which is exactly the same
definition as Eq. (3.85). Thus, we derive a similar equation to that of the ML auxiliary
function Eq. (3.86):

OMAP(©10) = LOMAP + H(©'|0). 4.21)
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Since H(®'|®) is the same as in Eq. (3.86) and has a bound based on the Jensen’s
inequality, we can apply the same discussion to OMAP(®'|®) to show that QMAP(©'|®)
is the auxiliary function of the MAP criterion.

Thus, we prove that the E-step performing the expectation and M-step maximizing
the auxiliary function with respect to the model parameters ®, always increase the joint
likelihood value as:

OMAP — arg max OMAP(©10) = p(0, OMAP) > (0, 0). (4.22)

This leads to a local optimization of the joint likelihood function p(O, ®), which cor-
responds to the MAP criterion in Eq. (4.13). We call this procedure the MAP-EM
algorithm.

422 A recipe

Based on the previous discussions, we summarize in the text box a general procedure
to obtain the MAP estimation of model parameters. The following section describes the
concrete form of MAP-EM solutions for CDHMM s similarly to Section 3.4.

1. Set a likelihood function for a statistical model (generative model) with model
parameters.

2. Set appropriate prior distributions for model parameters (possibly conjugate
distributions to obtain analytical results based on the conjugate distribution
discussion in Section 2.1.4).

3. Solve the parameter estimation by maximizing the MAP objective
function:

i. Solve posterior distributions for model parameters when we can use
conjugate priors;

ii. Solve the parameter estimation by getting the modes of posterior
distributions.

4.3 Continuous density hidden Markov model

This section describes the MAP estimation of HMM parameters based on the
MAP-EM algorithm (Lee et al. 1991, Gauvain & Lee 1994). Following the gen-
eral procedure for MAP estimation (as set out in Section 4.2.2), we first review a
likelihood function of the CDHMM, as discussed in Section 3.2.3. Then we pro-
vide a concrete form of the prior distribution p(®) for full and diagonal covari-
ance cases. Then, according to the derivation of the ML-EM algorithm in Section
3.4, we also derive the concrete form solutions of the MAP-EM algorithm of the
CDHMM.
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4.3.1 Likelihood function

We first provide the complete data likelihood function with speech feature sequence O =
{o, e RP|r=1,---,T}, HMM state sequence S = {s; € {1,--- ,J}|t=1,---,T}, and
GMM component sequence V = {v; € {1,--- ,K}|t = 1,---, T}, which is introduced
in Eq. (3.43) as follows:

T

p(O’ S,V|®) = TTsy a)slle(Ol |®Slv1) l_[ as,_ls,a)s,wp(ot|®stvt)- (4.23)
=2

Recall that a set of HMM parameters ® holds:

Initial state probability 7;;

State transition probability a;;;
Mixture weight wj;

Gaussian mean vector f;
Gaussian covariance matrix X .

The next section provides prior distribution p(®).

4.3.2 Conjugate priors (full covariance case)

The prior distribution is considered to be the following joint distribution form:

p(©) = p (=) by s o B ) - (424)

However, since it is difficult to handle this joint distribution, we usually factorize it by
assuming conditional independence for each HMM state and mixture component. Then,
the prior distribution is rewritten as follows:

p(®) = p(w)p(A)p(@)p(i, R)

J J
= p({mi_) (Hp({a,-j},{:p) [ [pdwntiz)

i=1

K
HP(Iij, i) |

J
=1 k=1

J=1 j
(4.25)

where we also assume that 7, a;j, wj, and {;ij, Xjx} are independent of each other,
although we keep the dependency of uj; and Zj.

Now we provide the concrete forms of the above prior distributions for the HMM
parameters based on the conjugate distribution discussion in Section 2.1.4. We first focus
on the prior distributions of the initial state probability 7, state transition probability a;;,
and Gaussian mixture weight wj. Note that these probabilistic variables have the same
constraint that 77; > 0,3, 7, = 1, a;; > 0, Zle aj=1,and wy > 0,38 | wp = 1.
In addition, these are represented by a multinomial distribution in the complete data like-
lihood function. Therefore, according to Table 2.1, these are represented by a Dirichlet
distribution with hyperparameters as follows:
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pUm)) = Dir(imb_, {67 1)),
P({aij}jzl) = Dlr({aij}j=1 |{¢ij}j=l)’
pUwjliy) = Dir(wi iz, iz, (4.26)

s a w
where ¢j >0, ¢>U > (0, and ¢jk > 0.
Next we consider the prior distribution of Gaussian mean vector uj and Gaussian
precision matrix X . For simplicity, we focus on the precision matrix R, which is the
inverse matrix of the covariance matrix X, i.e.,

R 2 ():jk)—l, 4.27)

According to Table 2.1, the joint prior distribution of Gaussian mean vector w; and
Gaussian precision matrix Rj; can be written as follows:

P, Rik) = p(pjx IRji)p(Rie)
= Nl (4R~ HW R IR, ¢, (4.28)

where W(-) is a Wishart distribution, which is defined in Appendix C.14. Note that the
prior distribution p(p;|Rjx) of the mean vector depends on covariance matrix R, and
cannot be factorized independently. Instead, these parameters are represented by the
Joint prior distribution p(p;i, Rjx) with the Gaussian—Wishart distribution (Appendix
C.15) or the product form in Eq. (4.28), as we discussed in Section 2.1.4. We can
also provide the prior distribution for the original covariance matrix X by using the
inverse-Wishart distribution instead of the Wishart distribution in Eq. (4.28). Both
representations yield the same result in the MAP estimation of HMM parameters.

Consequently, the conjugate prior distribution of a CDHMM is represented by the
following factorization form with each parameter:

p(©) = Dir({m}_ o7 }_))

J
x (]‘[ Dir({a}_, |{¢,-‘;},Ll>) [ [ Dir(oudi; Hopi)

i=1 j=1

J K
[ TTTV il i @GR HWRRIRG, 65) | - (4.29)

j=1k=1

Note that the prior distribution of a CDHMM is represented by three types of
distributions, i.e., Dirichlet, Gaussian, and Wishart distributions. The prior distribution
has five scalar hyperparameters ¢, ¢¢, ¢, p*, ¢>R, one vector hyperparameter u,o, and
one matrix hyperparameter R?. A set of these hyperparameters is written as ¥ in this
chapter, i.e.,

VAP B0 B B W RYli = 1, =1, Jk=1,-- K} (4.30)

In the following sections, we sometimes represent the prior distribution as p(®|W)
instead of p(®) to deal with the hyperparameter dependency on the prior distributions
explicitly.
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4.3.3 Conjugate priors (diagonal covariance case)

In practical use, the Gaussians in a CDHMM are often represented by a diagonal covari-
ance matrix, as we discussed in Section 3.2.3. To deal with a conjugate distribution of
a diagonal covariance matrix, we need to provide a specific distribution rather than the
Wishart distribution since the off-diagonal elements are always zero, and it is not suit-
able to represent these random variables as the Wishart distribution. Instead, we use the
gamma distribution for each diagonal component. We first define the d — d element of
the precision matrix as ry:

rg 2[Rl 4.31)

Then the joint prior distribution of Eq. (4.28) is factorized by a feature dimension, and
it is replaced with the gamma distribution as follows:

D
P(Rjr Rjx) = l_[ P(WjkalTikad)P(Tjka)

d=1
D

= [ [ NGyl Bfrika) ™) Gam(rinalrig, ¢30),  (4.32)
d=1

where a set of hyperparameters W is represented as
A r R 0 0, .
\II:{QSJJT’ iaj3 ;Z»quk’quk’ﬂjk’rjk“:19"'»J5J=15”"J»k=1"”’K}s (4'33)
where

20, T (4.34)

Similarly to the full covariance case, Eq. (4.32) can also be represented by a Gaussian-
gamma distribution (Appendix C.13).

The dependency of the hyperparameter ¢ is not unique and can be arranged by
considering applications due to the flexible parameterization of an exponential fam-
ily distribution, as discussed in Section 2.1.3. For example, ;Z and ¢},§ can be changed

depending on a dimension 4 (i.e., c/)},i 0 ¢jI,§d). These make the model more precise, but
need more effort to set ¢ ;,'; 9 ;,f , for all dimensions manually or automatically. Actually,

these values are often shared among all js and ks (i.e., ¢ ;,t — ¢t etc.).

434 Expectation step

Once we set the prior distributions and likelihood function, by following the recipe in
Section 4.2.2, we can perform the MAP-EM algorithm to estimate the model param-
eter ®. This section considers the concrete form of the MAP expectation step. This
procedure is very similar to Section 3.4 except for the additional consideration of
the prior distribution p(®). The auxiliary function used in the MAP-EM algorithm is
represented as

oMAP(@'|0) = QMH(@'10) + log p(@). (4.35)
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According to Section 3.4, the auxiliary function QMN(®’|®) is factorized by a sum of
four individual auxiliary functions as:

oMM (@) =) "> " p(s, Vo, @)[mg m,, +logw; , +logp(oi|py, . T} )
s Vv

T
+ Z (10g a;,,ls, + IOg a)fv,v, + 10gp(ol|ll‘;,vt’ E;,v,))i|
=2

= M’ |m) + OM(A'14) + M@ |w) + OME(/ R |1, R).
(4.36)

Similarly, from Eq. (4.29), the prior distribution of all model parameters p(®) can be
decomposed into the four individual prior distributions as

log p(©) = log (Dir((}_ 117 ) + log H (Dirctag )i 1(#51-0)

A
=p(r)
£p(A)

J
+log [ T (Dirttenlf_ 1161 )

i=1

Lp(@)

J K
+og [ T[T (Ml @R~ HWRIRS 68)) . 437)

j=1k=1

£p(u.R)

Therefore, by using the factorization forms of Eqs. (4.36) and (4.37), similarly to the
ML case, Eq. (4.36) is also represented as a sum of four individual auxiliary functions
defined as follows:

QMAP(®/|®) — QMAP(R'/|7[) + QMAP(A/ |A)
+ OMAP (' |w) + OMAP (', R, R), (4.38)

where

OMAP (' |) = QMM (' |m) + log p(rr)

J
=Y &) logx) +log (Dir(lmL (97 1_)) . 439)

j=1
OMAPA'1A) = QME(A'|A) + log p(A)

T J J J
=Y &tiplogay + Y log (Dir(layl 15H-)) .
t=1 i=1 j=1 i=1

(4.40)
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M (@' |0) = OME (o' |@) + log p(@)
T J K J ( 1)

=y 7. log ) + > log (Dir((w i, 931 )))

=1 j=1 k=1 j=1

OMAP (W R'|p,R) = QMLw’ R'|1,R) + log p(pt, R)
T

K
, k / ’
Z y’(’z )[ g IR | — (0 — W) TR (o, — u,-k)}

J: k=1

J K
+ 303 log (M (il @RI WRL RS )
j=1 k=1
(4.42)

where &1(j), &(i, ), and y;(j, k) are the posterior probabilities, which are introduced in
Egs. (3.99), (3.118), (3.119) as follows:

£1() = p(s1 =jl0, ©)
& (i, ]) p(s: =1, 5141 = j|O, 0)
vi(. k) £ p(s; = j,vi = k|0, ©). (4.43)

Note that © is estimated by using the MAP estimation ®MAP for ® instead of the ML
estimation, which is discussed in Section 4.3.6.

We can also obtain the auxiliary function of diagonal covariance Gaussians instead of
Eq. (4.42) by using a Gaussian-gamma distribution as a prior distribution, as discussed
in Eq. (4.32) as follows:

OMAP(u/, R’m, R)
T D
.’ k)
Z Z > %02 [log 7 — (01 — //v]/'kd)zrj/'kd]
t=1 j=1 k=1 d=1
J

_I_

J

K D
2 tog (N (gl @™ Gama (g |6 rina)) - 444)

1 k=1 d=1

Here we use the gamma distribution Gama(y|¢, 9 described in Eq. (C.81) instead of
the original gamma distribution defined in Eq. (C.74), which provides a good relation-
ship with the Wishart distribution, i.e., if R is a scalar value (the number of dimension
D = 1), the hyperparameters of the Wishart distribution become the same as d and
rjk, as we discussed in Example 2.6. Note that the vector and matrix operatlons in
Eq. (4.42) are represented as scalar operations with the summation over the dimension.
This is a very good property for which to obtain the analytical solutions due to the
simplicity of the scalar calculations. In addition, this representation avoids vector and
matrix computations, which also makes implementation simple. This section provides

4 Wecanseta hyperparameter ¢ which depends on each element d, i.e., qb/!/t — }; ;- Considering the

compatibility with the Wishart distribution, this book uses ¢},§, which is independent of d.
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both full and diagonal covariance solutions, but the diagonal covariance solution is used
for most of our applications.

435 Maximization step

The maximization step in the ML-EM algorithm obtains the maximum values of param-
eters by using derivative techniques, as discussed in Section 3.4.3. In this section, we
provide other solutions for this problem which:

1. Calculate the posterior distributions;
2. Obtain the mode values of the posterior distributions, which are used as the MAP
estimates.

In general, it is difficult to analytically obtain the posterior distributions. However, since
we use the conjugate prior distributions of a CDHMM, as discussed in Section 2.1.3, we
can easily obtain the posterior distributions for these problems.

Initial weight
We first focus on QMAP(z’|r) in Eq. (4.39):

J
OMAP('|m) = ) " &1(j)log ] + log (Dir({nj/}jzl o7 b ) : (4.45)

j=1

Recall that the Dirichlet distribution (Appendix C.4) is represented as follows:

J
Dir({m}_ o7 V) = Con((g7 YD [ [ ~. (4.46)
j=1
Then, by substituting Eq. (4.46) into Eq. (4.45), Eq. (4.45) is re-written as

follows:
J
OMAP(x'|m) =) " &1()log ] + (¢7 — 1)log 7] + log Coir({¢] 1)
=1

=Y (&) + ¢ — Dlogn] + log Coi({$] }_))

~
M\
L

~
I

J
= log [ [x)*"*% ! + log Cou{e H_). (4.47)
j=1

Comparing the result with Eq. (4.46), it is the same function form with different
hyperparameters. Therefore, the auxiliary function QMAP(’|7) is represented by the
following Dirichlet distribution:

OMAP (' 12) = log (Dir({ﬂ]{}f=1 |{q§]¥f }f=1)> —log CDir({(z;f }]!=1)
+ log Cpir({g]' }j!:1)
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Cou({o] 1))

o log (Dir({nj/ Yo MY ) (4.48)
where
PT £ 47 +£1(). (4.49)

We finally omit the ratio of the normalization factor of the prior and posterior distribu-
tions, which do not depend on nj/ . Actually, this Dirichlet distribution corresponds to
the posterior distribution of 7 with new hyperparameter ¢3 This result is similar to that
of the conjugate prior and posterior distributions for multinomial likelihood function, as
we discussed in Example 2.8.

Once we obtain the analytical form of the posterior distribution, the MAP estimate
can be obtained as the mode of the Dirichlet distribution (Appendix C.4):

MAP ¢ +EM -1
T T NI ” :
i=1(¢y +&G) = 1)

MAP

(4.50)

Thus, we obtain the MAP estimate of the initial weight & , which is proportional to
the hyperparameter ¢” . We discuss the meaning of this solution in Section 4.3.7.

State transition
Similarly, the auxiliary function of state transition parameters A is obtained as follows:

MAP 4/ L I\ g hayd ! CD"({WJ}JLI)
OMAP'14) = log [ [ [ Dir(laj) L, 1)) | +log [ [ | =——=22—
i=1 i=1 CDir({(b,'j j:l)

J
« log (]’[ Dir({aj}_, {5, ) , (4.51)
i=1
where
. T-1
¢ = G+ > &), 4.52)
t=1

Therefore, the mode of the Dirichlet distribution is obtained as:
wap P X GG
Y YL@+ S s - )

The solution is similar to the initial weight in Eq. (4.50), and it is computed from the
statistics of the accumulated posterior values of the state transition ZtT:_ll &(i,j) and
prior parameter qb;

Again, the result indicates that the auxiliary function of the state transition is rep-
resented by the same Dirichlet distribution as that used in the prior distribution with
different hyperparameters. This result corresponds to the conjugate distribution analy-
sis for multinomial distribution, as we discussed in Section 2.8. Therefore, although we
need to handle the latent variables within a MAP-EM framework based on the iterative

a (4.53)
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calculation, the conjugate prior provides an analytic solution in the M-step, and it makes
the estimation process efficient.

Mixture weight
Similar to the state transition, the auxiliary function of the mixture weight parameters w
is as follows:

T J

K
M@ 'l@) =YY" il k) log )y + log 1‘[D1r<{ o o))

=1 j=1 k=1 j=1

! L Con{pYiz)
- Jl_!Dlr({ k}k ll{d)jk}k V)T ,l] CDir({dA)ng;}szl)
J
oc log | [ [ Dir({ej )i lidghip) | - (4.54)
J=1
where
T
¢% 2 b+ 1.k (4.55)

=1
Therefore, the mode of the Dirichlet distribution is obtained as:
T .
AP _ it X G-
! YEo1 @5+ 2 v k) = 1)

Again, it is computed from the statistics of the accumulated posterior values of the state
occupancy ZIT: 1 ¥:(j, k) and prior parameter ]",;

(4.56)

Mean vector and covariance matrix

Finally, we focus on the auxiliary function of the mean vector g and precision matrix
R. Recall that the multivariate Gaussian distribution (Appendix C.6) is represented as
follows:

1
N&lp, R = CyR Y exp (—5<x ~ WTR(x — u)) , (4.57)

and the Wishart distribution (Appendix C.14) is represented as follows:
-D- 1
WYIR, ¢) = Cou(R®, )Y 7 exp (—Etr [ROY]) . (4.58)

Then, QMAP(u’ R'|it, R) is represented by using Eqs. (4.42) with the normalization
constant, (4.57), and (4.58), as follows:

T J
k
QMAP([L R/|[L R) = Z Z Z yt(] ) (10g| | (0, — M’]k)TR k(ot IL]/k))
=1 j=1 k=1
J K
+ Z > log (N (el @R ™HWRG IR, ¢}’§)>
=1 k=

1 1

~.

T J
D BB PRALLE

=1 j=1 k=1

~
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T J K )/ . k)
=33 P (log IRy — (00 — ) R (or — )
t=1 j=1 k=1
1] J K
+ 5 Z Z(lOg ‘Rj/k (/ﬂk ﬂ]k)T¢MR/k(ﬂ}k - Ilfjok)

1

~
I

1

J

+ (@R =D - Dlog R} | —tr [R?kRj’-kD

J K
+ZZ< Zygk)Dlg(Zn)——log(zn)Jr log ¢

=1

~

+log Cy(RY s ¢]k)> (4.59)

where the final line includes the terms that do not depend on p and R. Then we rearrange
Eq. (4.59) so that we can write it in a probabilistic form. First, we omit j, k, and ’
Eq. (4.59) for simplicity, and consider the following function:

s v
g, R) = (Z vi (log IR| = (0; — w)TR(0; — 1))

=1
+log [R| — (. — pO)T¢"R(p — pu°)

T @R —D—1)log|R| —tr [RORD

% (Z yilog [R| + log |R| + (¢® — D — 1) log |R| — tr [RORD
=1
1
- (0 = ™R — ) — (1 = K)T$" R — 1)) (4.60)
2f(u,R)

Then, we focus on f(u,R) that has the terms in g(u,R) that depend on p. f(u,R) is
re-written as follows:

~2f (. R) = ((Z vi+ ¢“) R) p—2pT <R Y vior+ ¢"Ru°>
t

+ Z vio! Ro; + ()T ¢*Ru’. (4.61)

Since this is a quadratic form of u, it can be represented by a Gaussian distribution by
arranging Eq. (4.61) into the complete square form. Although it is complicated to deal
with the complete square form for vectors, we can use the following complete square
rules found in Egs. (B.16) and (B.17):

XTAX —2xTb+c=x—-—wW)TAX—u) +v, (4.62)
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where

u2A'p
vEc—bTA'D. (4.63)
Therefore, by using this rule (e.g.,x > p, A —> (3,7 +¢*)R, b > RY, 0, +

H*Ru®, and ¢ — > 0] Ro;+(1”)Tp#*Rpu®), Eq. (4.61) is rewritten with the complete
square form as follows:

~2f (. R) = uT <<Z vi+ ¢") R) w—2pT (R > w0+ ¢“RM°>
t t
+ Y 70 Ro; + (u))T¢* R’
t
= (= )" ($"R) (k= it) + v(R), (4.64)
where (IBIL, fr, and v(R) are defined as follows:

éﬂéd’ﬂ‘i‘z%,
t

(o)) (e

_ eHpd + D V0
¢IL + Zt yt

T
VR) £ ) " yi0 Ro, + (n*)T¢*Ru’ — (R Do+ ¢>"Ru°) [
1 t
= > 7o/ Ro, + (u")T¢" R’ — AT*RA. (4.65)
t
Note that ¢* and ji correspond to the mean and covariance hyperparameters of the

conjugate Gaussian distribution of u. Thus, f(p, R) is rewritten with the definition of
the Gaussian distribution in Eq. (4.57) as follows:

1 R A R 1
FR) = =3 (= &) ($"R) (1 — i) = 3(®)
N 1
= log N (plit, @*R)™ 1) —log CAr(R™H) — SV(R)

. D D ., 1 1
= log N(plft, (#"R)™) + 7 log(27) — Elogd) - EIOg IR — EV(R)’
(4.66)

where v(R) is used to obtain the analytic form of R with the rest of the R-dependent
terms in Eq. (4.60). That is, the auxiliary function (Eq. (4.60)) with Eq. (4.66) is
represented as follows:
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n D D ~
g(u,R) =log N (| ft, (9*R)™ ") + 5 log2m) — = log "

1
x 3 <—V(R) + (2[: i+ R —D— 1) log |R| — tr [ROR]) 467

£1(R)

Now we focus on A(R) that has the terms in the second line in Eq. (4.67). By using the
definition of v(R) in Eq. (4.65), we can rewrite 4(R) as follows:

h(R) = % (—v(R) + (Z yi+¢R —D— 1) log |R| — tr [ROR]>
t

(— > yioTRo, — (u")T* R + TG Rt — [ROR])
t

| =

1
+5 (Xt: vi+oR—D— 1) log |R|. (4.68)

Since Eq. (4.68) includes the trace operation, it is difficult to re-arrange this equation.
Therefore, by using the trace rule of a = tr[a] (Eq. (B.1)), we represent all terms except
for the log |R| term in Eq. (4.68) as follows:

h(R) = % (—tr [Z yi0,07 R] —tr [¢#n0uO)TR]
t
fu [éﬂ,mTR] . [ROR])

1
+5 (Xt: vi+oR—D— 1) log |R|. (4.69)

In addition, by using the trace rules of trfABC] = tr[BCA] and tr [A 4+ B] = tr[A] +
tr [B] (Eqgs. (B.2) and (B.3)), Eq. (4.69) is finally represented by comparing A(R) with
the definition of the Wishart distribution (Eq. (4.58)), as follows:

h(R) = —%tr[(Z yi0,0] + " ()T — " T + RO) R]
t

AA

=R
1
- 5((2 Vi +¢R) —D - 1) log R
L4R
=logW(R|R, $®) — log Cy(R, ¢®). (4.70)
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Thus, Eq. (4.70) can be represented as the Wishart distribution with the following
hyperparameters:

pR 2 ¢R + Z Vi,
t
R2D " yi00f +¢*u'(")T — p*RAT + RC. @71)
t

Note that these hyperparameters are almost equivalent to those of the conjugate dis-
tribution analysis discussed in Eq. (2.112). The only difference is that the statistics in
Eq. (4.71) are computed from the expectation value of the posterior distribution of a
latent variable ;.

Here, g(u, R) in the original Q function, Eq. (4.59), is represented by Eqgs. (4.67) and
(4.70) as follows:

R D D N
g1, R) = log N'(|ft, (9*R)™") + 5 log2m) — — log ¢*
+ log W(RIR, %) — log C)y (R, $®). (4.72)

Thus, we have found that QMAP(u/, R’|i, R) can be represented with the same distri-
bution form as the prior distributions, which is represented by Gaussian and Wishart
distributions as follows:

OMAP(u/ R'|u, R)
J K

> tog (M)l G RI™IWVRG IR 9))
j=1 k=1
J K n
7G.bD | o Cw (R, o% ))
+ og(2m )+—logA—+ og ———1~
; ; < t:zl ¢]k CW(Rjk’ ¢jk)
J K R .
o 30> log (M) litzs G RI™IWVRLIR 8)) 4.73)

j=1 k=1

where we recover the indexes j, k, and’. By using the definition of the Gaussian—Wishart
distribution in Appendix C.15, QMAP(u/, R’| i, R) can also be represented as:

J K
OMAP (W R R) o Y 3 log (MW Rilies &l Ries 80)) . 4.74)

j=1 k=1

By summarizing the result of Eqs. (4.65) and (4.71), the hyperparameters of these
distributions are defined as:

S £ O+ DG b,
t

]ku %+ 2 v ko,
jk + Z[ Vt(l, k)

)

M’jk -
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Bt =9k + 2.0,
t
Ric £ ) 1. boro] + @fmi(ui)T — f it + R (4.75)
t

The MAP estimates of these values are obtained by considering the modes of the
Gaussian—Wishart distribution in Appendix C.15. The modes of [Lj/-k and E}k are
represented as:

wit =
TP = (RMAP) — @R -D— 1) 'Ry (4.76)
Note that ZMAP cannot be obtained when qu — 1 < 0. Thus, we can analytically

obtain the M step solutions of CDHMM parameters (i.e., initial weight, state transition,
mixture weight, mean vector and covariance matrix) in the MAP sense, thanks to the
conjugate prior distributions. We summarize the solutions below. The hyperparameters
of the posterior distributions are represented with Gaussian sufficient statistics and the
prior hyperparameters as:

N +sl(f>

Ph L P+ Zsto )

t=1

P% £ 0% + Z V(s k)

n .
= oL + > v(. k),
Jk 21: ' 4.77)
A9 u,k+Z,T:1 i, K)oy
Mje = >

T
P LR+ > ik,

=1

1ijk = Z (. k)OtO;r + 45 ﬂ]k(ﬂjk) ¢]k’l’jkﬂj Rj(')k-
=1

A set of hyperparameters U is defined as follows:

U 24T, b5, b, Bl Bl o Rili = 1, S j =1, L k=1,--- ,K}. (4.78)
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Then, the MAP solutions of HMM parameters are represented with the posterior
hyperparameters as follows:

T
MAP _ ]
BV EIC A
I
MAP _ i
D SRS w9)
. .
WMAP — ik — 1
T .
’ Zk/=l( ]{;}c’ - D
IL%AP = ﬁjk,
ENAP = @R —D— 1) 'Ry

Compared with the ML M-step of CDHMM parameters in Eq. (3.151), these solutions
are more complicated, and actually incur more computational cost than that of the ML
solution. However, the computational cost of the M-step is much smaller than that of the
E-step, and the additional computational cost of the MAP estimate can be disregarded
in practical use.

Mean vector and diagonal covariance matrix

In practise, we often use the diagonal covariance matrix for a multivariate Gaussian
distribution for HMMs, as we discussed in Section 3.2.3. This section provides the
MAP solution for the diagonal covariance case (Gauvain & Lee 1991). Since the
one-dimensional solution of the full-covariance Gaussian posterior distribution in the
previous discussion corresponds to that of the diagonal covariance Gaussian posterior
distribution of a diagonal element, we can obtain the hyperparameters of the posterior
distribution of the CDHMM parameters by using D — 1 for each diagonal component.
We also summarize the solution of the MAP estimates of HMM parameters of the diag-
onal covariance Gaussian case below. The hyperparameters of the posterior distributions
are represented with Gaussian sufficient statistics and the prior hyperparameters as:

¢T LT &),
SR S (W)}
. .

;l]; é ;‘]; + Zt:l yl‘(h k),

ST D RSN (4.80)

i 2 PRRG ATy Vi ko
ik SR+ Gk

(i’./l/E < 4’/113 + Zthl v1(j, k),

~ T . n A
P = Y imy Vi R0 + B (15 — D (Lka) + 1y
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In this case, a set of hyperparameters U is defined as follows:
lil £ {qgjﬂsé;l(;s A;Z’é;;;;sé}]ts i’ljkaf‘jk“ = 13 e ’]aj = 15 e 7J7k = 1, e 7K}’ (4'81)
where
2 [P, L PplT. (4.82)

Then, the MAP solutions of HMM parameters can be represented with the posterior
hyperparameters as follows:

MAP _ ¢]?r —1
L e ’
er=1(¢j/ -1
ra
MAP _ ¢ —1
D DAY
Jo 4.83
¥AP B G — 1 (4.83)
jk T K 4 ’
Zk’:[( ;Z/ - 1)
MAP __ &
Ri " = Rjks
Fikd
Bl =
j ¢}/§ )

Thus, we obtain the MAP estimates of HMM parameters in both diagonal and full
covariance matrix cases.

4.3.6 Sufficient statistics

As we discussed in Eq. (4.43), the posterior probabilities of the state transition &(i, ),
and mixture occupation y;(j, k) can be computed by plugging the MAP estimates @MAP
obtained by using Eqgs. (4.79) or (4.83) into the variables in Sections 3.3 and 3.4.2. Note
that the analytical results here are exactly the same as those in the ML-EM algorithm
(except for the MAP estimates @MAP): we list these for convenience.

First, the MAP forward variable o,(j) is computed by using the following equation:

e Initialization

a1(j) = p(oy, 51 = j|OMAP)
= gMAPRMAP Gy 1 <j<J. (4.84)

e Induction

a:(j) = p(o1, - - - , 0,5 = j|OMAP)

! MAP MAP 2<t<I1
.
= E o a.: b 0 4.85
<i 7 ! 1(1) ) ) J ( t)’ 1 <] <J. ( )
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e Termination

J
pOIOM") =3 " ar()). (4.86)
j=1

Here, b]MAP(o,) is a GMM emission probability distribution with the MAP estimate
parameters defined as:

bMAP(O ) £ ZQ)MAPN(Ot“L AP ZMAP) (487)
k=1

The MAP backward variable B;(j) is computed by using the following equations:

e Initialization

Bri) =1, 1=<j=J. (4.88)
e Induction
Bili) = P(0t+1, - orls, =i, OMAP)
= Z ay A5 (0,41)Br41 (), (4.89)
t=T-1,T-2,---,1, 1<i</.

e Termination

Bo £ p(O|@MAP)

aMAPBMAP (01)B1(j). (4.90)

I
~.
i M“

Therefore, based on the MAP forward and backward variables, we can compute the
posterior probabilities as follows:

(DA (| oY APA (o iyAP, ENAP)) B4 )

St Ther anl)alf? (S oM N ol ZNAP)) i)
MAP MAP yMAP
. (DBG) N o™ Z5™)
Vi) = = — (4.92)

Z/ 12 GDBG) Zk/ 1 @ N(OtlﬂMAP EJM,(/AP)

Once we have computed the posterior probabilities, we can compute the following
sufficient statistics:

P (N) 2 &,

Zthl 7:(, k) £ Yik»

Y ivGe 2y, (4.93)
Yo v kool £ 1"/(;3),

AT
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The superscripts (V' and ? denote the 1st and 2nd order statistics.

This total EM algorithm for iteratively estimating the HMM parameters based on the
MAP estimate is set out in Algorithm 8. Compared with the ML Baum—Welch algo-
rithm, Algorithm 4, it requires the hyperparameters W of the CDHMM:s. Section 7.3
also introduces a variant of the Baum—Welch algorithm based on variational Bayes. Note

Algorithm 8 MAP Baum—Welch algorithm

Require: W and @MAP  @init
1: repeat
Compute the forward variable «;(j) from the forward algorithm
Compute the backward variable S;(j) from the backward algorithm
Compute the occupation probabilities yi(j), y:(j, k), and &:(i, )

Accumulate the sufficient statistics £(i, ), y (j, k), y},l), and I'J(.,f) (or ngczd))

Estimate the new HMM parameters (@MAP)’
Update the HMM parameters @MAP  (@MAPy

2
3
4
5
6:  Estimate the new hyperparameters U
7
8
9: until Convergence

again that the MAP E-step (computing forward variables, occupation probabilities, and
accumulation) is exactly the same as that of the ML E-step, and retains the nice property
of the parallelization and data scalability. In addition, since the E-step computation is
dominant in the algorithm, the computational costs of the ML and MAP Baum—Welch
algorithms are almost same.

4.3.7 Meaning of the MAP solution

This section discusses the meaning of the MAP solution obtained by Egs. (4.79) and
(4.83). We consider the two extreme case of the MAP solution, where the amount of
data is small and large. That is, we consider the small data limit as &;;, yjx — 0. On the
other hand, the large data limit corresponds to &, yjx — 0.

e Mixture weight
We first focus on the MAP estimate of the mixture weight w, but the discussion can
be applied to the state transition a.

Large sample:
The MAP estimate of the mixture weight is represented as follows:

MAP Pk + vk — 1
wjk = K w
Zk’:l(d’j}g + vk — D
9y
Vik ( J)/jk + 1) -1
= . (4.94)

K ¢ =1
Zk’:l yjk, ( jyjk/ +1)-1
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()

. o1
Since -’;k — 0 in the large sample case, the MAP estimate a)MAP approaches the
J

ML estimate wjk L when yj is sufficiently larger than ¢jk —1:

MAP . Vi ML
O N gx =0k > o= D (4.95)
2k—1 ViK'
Small sample:
Similarly, the MAP estimate w},fAP approaches the following value when yj is

sufficiently smaller than ¢;§’< -1

[0}

ik —

wjl\]é[AP J!
Zk’ 1( /k’_ )

The weight is only computed from the prior hyperparameter ‘15;12- Thus, the mix-
ture weight approaches the ML estimate when the amount of data is large, while it
approaches the weight obtained only from the prior hyperparameters when the amount
is small. Hyperparameter ¢;1i can be regarded as a scale.

e Mean
By using Eqgs. (4.93) and (4.79), the MAP estimate of the mean vector can be rewritten
as follows:

(v < ¢ — D). (4.96)

MAP _ ujk + 22 v k)or

"
" E+ Y Gk
1
¢ ﬂjk + }’;k)
(b] + Vik
¢l’/
_ ok T TR e (4.97)
I .
Yik

This equation means that the MAP estimate [LMAP is linearly interpolated by the ML
"
estimate p ik L and the hyperparameter u!) k> A8 shown in Figure 4.1. ﬁk is an interpola-

tion ratio, and it has a specific meaning when the amount of data is sufﬁ01ently large
(vjk > @) or small (v < ¢3).

Large sample:
pAP ~ it (4.98)

Similarly to the discussion of the mixture weight, the MAP estimate of the mean
vector theoretically converges to the ML estimate.

Small sample:
pAP & g (4.99)

This is a good property of the MAP estimate. Although the ML estimate with a
small amount of data incorrectly estimates the mean vector, which degrades the
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Figure 4.1

Maximum a-posteriori approximation

"

oA
Pjk ,,0 ML
MAP _ Yiktik + Wik
k4
Vjk
1
0
ik
MAP i
Hijk ¢5Lk
Vik
= ML
e,

Geometric meaning of the MAP estimate of the Gaussian mean vector. It is represented as the
linear interpolation of the prior mean vector [L?k and the ML estimate of the mean vector [L%L.

The interpolation ratio depends on the hyperparameter ¢ ;Z and the amount of data yj assigned to
the Gaussian.

performance drastically, the MAP estimate can smooth the incorrect estimation based
on the hyperparameter p,j(}(. In the practical situation, we also often have a zero count
problem (i.e., yjx = 0), which makes the ML estimate singular due to the zero divide.
However, the MAP solution of the mean vector avoids this problem and provides a
reasonable estimate obtained from the hyperparameter ;Ljok.
e Covariance matrix
By using Eqgs. (4.93) and (4.79), the MAP estimate of the covariance matrix can be
rewritten as follows:
ENMAP = (@R + v —D — 1)
2 “,.0.0 N 0

< (T30 + )T — B, + RY). (4.100)

Large sample:
- 2
EYP (™ (TR = ety
=z (4.101)

The result is the same when we use the diagonal covariance.

Small sample (full covariance):
TP & @R = D= 7 (SRR — Bnb )T + RY)
= (¢j‘,§ -D-— 1)—1R]0k. (4.102)

Unlike the mean vector case, the covariance matrix of the small sample limit is rep-
resented by the two hyperparameters R]Qk and ¢>].I,f. To make the solution meaningful,

we need to set q)},t > D + 1 to avoid a negative or zero value of the variance.
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e Small sample (diagonal covariance):
By using Eq. (4.83), we can also obtain the variance parameter for dimension d as

follows:
0

I
RMAP o, _jkd (4.103)
jkd R : :
by —2

Similarly to the diagonal case, we need to set d)}; > 2 to avoid a negative or zero

value of the variance.

In summary, the MAP solutions can smooth the estimation values with the hyperparam-
eters when the amount of data is small, and the solutions approach the ML estimates
when the amount of data is large. A similar discussion has already been presented in
Section 2.1.4, as a general property of the Bayesian approach.

The MAP estimation of the CDHMM parameters can be applied to general CDHMM
training. However, since CDHMM is usually trained with a sufficient amount of training
data, we do not have to use MAP estimation, and ML estimation is enough in most cases,
which corresponds to the case of the large sample limitation in the above discussion.
However, we often face the case when the amount of data is small at an adaptation
scenario. The following section introduces one of the most successful applications of
the MAP estimation for speaker adaptation.

44 Speaker adaptation

Speaker adaptation is one of the most important techniques in speech recognition,
mainly to deal with speaker variations in speech (Lee & Huo 2000, Shinoda 2010). The
speech features of a speaker are different from those of another speaker, which degrades
the performance of speech recognition. A straightforward solution for this problem is to
build a speaker-dependent acoustic model for a specific person. However, it is difficult
to collect sufficient training data with labels.

Speaker adaptation aims to solve the problem by first building a speaker-independent
(SI) acoustic model ®S! by using many speakers’ data, and updates the model as a
speaker-dependent (SD) acoustic model ®SP with a small amount of data of the target
speaker, as shown in Figure 4.2. The speaker-independent acoustic model is usually
made by the conventional maximum likelihood procedure, as we discussed in Chapter
3, or discriminative training. It is also obtained by using so-called speaker adaptive
training (Anastasakos, McDonough, Schwartz et al. 1996) or cluster adaptive training
(Gales, Center & Heights 2000), which normalizes the speaker characteristics (or some
other characteristics (e.g., noises, speaking styles) obtained from clustering of speech
utterances) by using a variant of the maximum likelihood linear regression (MLLR)
technique, which is discussed in Section 3.5.1.

441 Speaker adaptation by a transformation of CDHMM

Once we have SI model parameters @1, the problem is how to estimate the SD model
parameters ©SP without over-training. Basically, the number of SI model parameters
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Speaker independent model R

Speaker dependent model SR

Figure 4.2 Speaker adaptation of HMM parameters. The initial HMMs are trained with many speakers, and
then the HMM s are adapted to the target speaker’s model with a small amount of adaptation data.

is very large. For example, in the famous speech recognition task using read speech of
Wall Street Journal (WSJ) sentences, the number of CDHMM parameters amounts to
several millions or more. On the other hand, the amount of speech data for the target
speaker with text labels would be a few minutes at most, and the number of frames
corresponds to the order of tens of thousands, and is even smaller than the number of
standard CDHMM parameters. The following ML estimate with the EM algorithm, as
we discussed in Section 3.4, causes serious over-training:

OSPML — arg max oML @5 |e%P). (4.104)
e

There are several approaches to overcoming the problem by using the maximum like-
lihood linear regression (MLLR) (Digalakis et al. 1995, Leggetter & Woodland 1995,
Gales & Woodland 1996), as discussed in Section 3.5, eigenvoice approaches (Kuhn,
Junqua, Ngyuen et al. 2000), and so on. These approaches set a parametric constraint
of fewer CDHMM parameters, and estimate these parameters (A) instead of CDHMM
parameters with ML indirectly, that is:

AME = arg max OME(A'|A; ©5). (4.105)
A/
Detailed discussions of these adaptation techniques can be found in Lee & Huo (2000)

and Shinoda (2010). We can also consider the Bayesian treatment of this indirect
estimation of transformation parameters A, which is discussed in Section 7.4.
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44.2 MAP-based speaker adaptation

In speaker adaptation using the MAP estimation (MAP adaptation), we directly esti-
mate the SD CDHMM parameters ©5P, unlike the MLLR and eigenvoice techniques.’
The MAP estimation can avoid the over-training problem. Then, we use SI CDHMM
parameters ©5! as hyperparameters of the prior distributions, i.e.,

©SD-MAP _ 410 max QMAP(®SD/|®SD; w(e%y), (4.1006)
®Sp’

= arg max QME(@5P'|5P) + log p(@SP'|w (@), (4.107)
@SD’

where p(G)SD/|\II(®SI)) is a prior distribution with hyperparameters of the prior distribu-
tion, and it is set as a conjugate distribution of CDHMM, as discussed in Section 4.3.3.
We discuss below how to set ®3! to hyperparameters W in detail.

Let anI, aisjl, a)js;cl, pLjSkI, and Z]ild be the SI CDHMM parameters with diagonal
covariance. Although there are several ways to determine hyperparameters from the
speaker-independent HMM parameters, we can set the following relationship between
hyperparameters and SI parameters by using Egs. (4.96), (4.99), and (4.103):

o7 —1
. J _ — 7T-SI,
j/:1(¢j’_1) J
i1
J L a :aiS.I’
j’:l(¢zj’7l) Y
i1 SI
J! —
—=t— =ow), 4.108
Yoo @1 Jk ( )
0 N (
H;j = Hje-
0
! jkd — 3l
¢>j1,§72 Jk

This equation is obtained based on the constraint that we can obtain the SI performance
when the amount of adaptation data for the target speaker is zero. To satisfy the above
equations, we can use the following hyperparameter setting:

¢F  =aimdl 41,
; = Aalsjl +1,
®  — 241,
¢J,’; s Tk (4.109)
Jko T
0 _ 4951
1
Tika = i@ —2)

5 There are several approaches combining indirect adaptation via the estimation of transformation
parameters and MAP-based direct estimation of CDHMM parameters (Digalakis & Neumeyer 1996,
Takahashi & Sagayama 1997).
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Note that the above hyperparameter setting has two additional parameters ¢ and A. These
are often set with fixed values (e.g., ¢ = 10, A = 1). Thus, by substituting Eq. (4.109)
into Eq. (4.80) and (4.83), the MAP estimates of SD HMM parameters are obtained as:

SD, MAP o7 —1
T; =7 e
J > @7-1)
a0
Y 01
SD-MAP $ji—1
v )@ -D

Y EG)
Y Ga YL )
ot

SD,MAP __ i
Jk Yoo @D

e+ YL nGh
YR 00+ k)’

(4.110)

SD,MAP
M = Kk
R ik
P+t 11Gk)
5 SD.MAP Pikd
- =
Jkd PR—2

Y G0k AW P =@+ v hy M P+ 25 ¢—2)

B P+ nGh—2 '

Gauvain & Lee (1994) compare speaker adaptation performance by employing ML and
MAP estimations of acoustic model parameters using the DARPA Naval Resources
Management (RM) task (Price, Fisher, Bernstein e al. 1988). With 2 minutes of adap-
tation data, the ML word error rate was 31.5 % and was worse than the speaker
independent word error rate (13.9 %) due to the over-training effect. However, the MAP
word error rate was 8.7 %, clearly showing the effectiveness of the MAP approach. MAP
estimation has also been used in speaker verification based on universal background
models (Reynolds, Quatieri & Dunn 2000), which is described in Section 4.6, and in
the discriminative training of acoustic models in speech recognition as a parameter
smoothing technique (Povey 2003), which is described in the next section.

4.5 Regularization in discriminative parameter estimation

This section describes another well-known application of MAP estimation in discrimi-
native training of CDHMM parameters. Discriminative training is based on discrimina-
tive criteria, which minimizes the ASR errors directly rather than maximizing likelihood
values (Juang & Katagiri 1992), and improves the performance further from the ML-
based CDHMM. However, discriminative training of CDHMM parameters always has a
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problem of over-estimation, and the regularization effect of the MAP estimation helps to
avoid this problem. Discriminative training has been studied by many researchers, and
there are many approaches to realize it for ASR based on different discriminative criteria
and optimization techniques (e.g., maximum mutual information (MMI) criterion (Bahl,
Brown, de Souza et al. 1986), MMI with extended Baum—Welch algorithm (Normandin
1992), minimum classification error (MCE) criterion (Juang & Katagiri 1992), MCE
with various gradient methods (McDermott, Hazen, Le Roux et al. 2007), minimum
phone error (MPE) criterion (Povey & Woodland 2002), and the unified interpretation
of these techniques (Schliiter, Macherey, Miiller ef al. 2001, Nakamura, McDermott,
Watanabe et al. 2009)).

This section explains the regularization effect of the MMI estimation of HMM param-
eters with the extended Baum—Welch algorithm (Povey & Woodland 2002). In this
section, we limit the discussion of discriminative training to focus on introducing the
application of MAP estimation.

451 Extended Baum—Welch algorithm

The MMI estimation of HMM parameters can be performed by the extended Baum—
Welch algorithm or variants of gradient based methods. The MMI estimation starts
from the following objective function based on the posterior distribution of the word

sequence:

R

FYM(©) = " log p(W,|0,; ©)
r=1
R Y sy, (P (01, 5w,10)) pr(Wy)
= Zl K (4.111)
Zw > sw @ (Or, Sw|©))* pL(W)’

where O, = {o/]t = 1,---,T,} is the rth utterance’s acoustic feature sequence whose

length is T,. The total number of the utterances is R. W, is a correct word sequence of
the utterance r, and Sy, is a set of all possible state sequences given W,.% Similarly,
W is a word sequence hypothesis, and the summation over W is performed among all
possible word sequences. « is the acoustic score scale, and p (Or, SW,|®) is an acoustic
likelihood, and py, is the language model probability. ® is a set of all acoustic model
(CDHMM) parameters for all context-dependent phonemes, unlike the definition of the
CDHMM parameters for single context-dependent phonemes in Section 4.2. The MMI
estimate of ® can be obtained by optimizing this objective function as follows:

6 The summation over state sequences Sy, in the numerator in Eq. (4.111) is often approximated by the
Viterbi sequence without the summation obtained by the Viterbi algorithm in Section 3.3.2, i.e.,

> (0. Sw,10) ~ Inaxp (Or,5w,19) . (4.112)
Sw,

Similarly, the exact summation over W in the denominator is almost impossible in the large-scale ASR,
and it is also approximated by the summation over pruned word sequences in a lattice, which is obtained
after the ASR decoding process.
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OPT = arg max FMMI(@), (4.113)

When we only consider the numerator of Eq. (4.111) in this optimization, that
corresponds to the maximum likelihood estimation of the CDHMM parameters.

By using the extended Baum—Welch algorithm, a new mean vector and variance at
dimension d are iteratively updated from the previously estimated ,u}ﬁ[t] and X 123[1]7
at the t iteration step, as follows:

(1),num (1),den DT
Yik — Vi +DI‘«jk [7]
yjlllum _ yjzen +D

2
(2),num (2),den DT DT
ygmm e 4 p <2jkd 71+ (kB31e1) )

yjr]zum _ J/J%en +D

pplr+ 1] =

k)

2
Rl + 1] = - (M}E[r + 1])

(4.114)
The derivation of the extended Baum—Welch algorithm can also be found in Section
5.2.8. Here, y3"", yj(.ll)’num, and ngczd)’“um are the Gaussian sufficient statistics defined

in Eq. (4.93), but these are obtained from the numerator of the lattice. Similarly, yjie“,

y},l)’den, and ngczd)’de“ are obtained from the denominator of the lattice. D is a smoothing

parameter used with the previous estimated parameters.
By comparison with the ML estimates of g and X in Eq. (3.151), which is only
computed from the Gaussian sufficient statistics, the MMI estimates are computed from

[LJI-?(T['L’] and E/%ir[r], and the numerator and denominator statistics. This is the main

difference between ML and MMI estimation methods. However, by setting D, y]%e“,

y};)’den, and ng{zd),den to 0, Eq. (4.114) is close to the ML estimates if we consider that the

numerator statistics can be regarded as the statistics used in the ML-EM, i.e.,

(1),num
. ik ML
lim pwPTe+11="L— ~ uM,
Dydensg’ Vi i
(2),num (1),num 2
. jkd Jjkd ML
lim =PTr+1]1= - - ~ oML (4.115)
Dy den_y. ) ‘jkd yj xllum ]// I];um ‘jkd

Therefore, the MMI estimate can also involve the ML-like solution in a specific
limitation.

We can further provide an interesting interpretation of the MMI estimate. First we
focus on the following difference statistics between the numerator and denominator

statistics:
d
8]‘ éyjrlium_yjken’
1) a _ (1),num (1),den
8 =V Vi o
2 & _ (2),num (2),den
5]‘1«1* ikd —Vikd - (4.116)

7 Note again that ¥ means the diagonal component of the covariance matrix, and does not mean the
standard deviation o.
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Then, we can rewrite Eq. (4.114) with these difference statistics as follows:
1
8% + Dple]
Sjk +D

2 2
82 + D (z;z}[r] + (1R5Ee1)

ik + D

T

ppr + 1] =

2

=R+ 1] = — (MjDkE[f + 1]) (4.117)
Therefore, Eq. (4.117) means that the MMI estimates are represented by the linear inter-
polation between the difference-based Gaussian statistics and the previously estimated
parameters. D plays a role of tuning the linear interpolation ratio.

Note that the MMI estimates are based on the difference statistics, and if the denomi-
nator statistics are large, the difference statistics become small, and the MMI estimates
would meet an over-training problem. The smoothing based on the D with the previous
estimated parameters could mitigate the over-training problem, and the combination of
the MMI estimation with the MAP estimation can further mitigate it.

452 MAP interpretation of i-smoothing

In MMI and MPE training (Povey & Woodland 2002), the following smoothing terms
are introduced for the numerator statistics in Eq. (4.114):

yj’knum — ijllum +1,
’(1),num (1),num 0
Yk =V + Nk
"), 2,
ij(d) = ngcd) "t ((M,(')kd)2 + Eﬁcd) , (4.118)

where 7 is called the i-smoothing factor. This section reviews this statistics update,
which can be interpreted as the MAP estimation where n behaves as a hyperparame-
ter in the MAP estimation. /,L](-)kd and 219{ 4 are obtained from the maximum likelihood
estimation (i.e., ,uJQk i = ujl\,g and 22( i=Z }}g‘), or estimation based on discriminative
training.

To derive the above smoothing factor, we first consider the conjugate distribution of
the diagonal-covariance Gaussian distribution, which is based on the Gaussian—gamma
distribution, as shown in Table 2.1. The Gaussian—gamma distribution is defined in
Appendix C.13 as follows:

NGam(u, r|p®, pH, 10, ¢")
oo ( rr ¢“r(u—uo)2>
exp| ———"—"7-7—).

= CNGam(@", 7%, ") 2 5 5 (4.119)

where we omit state index j, mixture component k, and dimension index d for simplicity.
By setting hyperparameters 1, ¢, 0, and ¢” with the following variables:
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" =,
0 =x%, (4.120)
" =n+2,

the prior distribution is represented as follows:

p(i, £) = NGam(u, r|1°, 0, %, +2)

3 20 pr(u — pO)?
xrZ exp|— 5~ 5 .

4.121)

By using this prior distribution similarly to the MAP auxiliary function in Section 4.2,
the MMI objective function with the prior distribution can be obtained as follows:

FMMI, 5 + log p(i, X). (4.122)

Based on the extended Baum—Welch calculation with the additional prior distribution,
we can obtain the following update equation (Povey & Woodland 2002):

J/(1),num + nMO _ y(l),den —{-D[LDT[‘L']
pum g yden +D
2
y(Z),num +7 ((/’LO)Z + EO) _ y(Z),den +D (EDT[‘L’] 4 (MDT[‘E]) )
J/num +n— yden +D
2
— (P +11)". (4.123)

uPTr +1]=

5

sPTr+11=

This equation is based on Eq. (4.117), with the effect of prior distribution p(u, ¥)
through Eq. (4.118).

Below, we discuss this update equation with the MAP solution by following the sim-
ilar discussion in the previous section based on the ML-EM conversion. By setting D,
yde“, y(l)’den, and y(z)’de“ to 0, Eq. (4.123) is represented as follows:

(1),num 0
lim uPTr+11= w, (4.124)
D,yden 0 yhum 4 g
(2),num + 042 + EO
lim =PTr41y=" ()" + 20)
D,yden 0 ymm 4+

2
J/(1),1'1um + HMO
o ynum +7 !

(4.125)

By comparing the MAP solutions for u and X in Eq. (4.83), we find that Egs. (4.124) and
(4.125) correspond to the MAP solutions. Thus, we have found that the i-smoothing in
the MMI and MPE solutions can be interpreted as MAP. From Eq. (4.123), the smooth-
ing terms that come from D can also be similarly interpreted as MAP, when we consider
the following Gaussian—gamma prior distribution:

p(i, $) = NGam(u, r|uPT[71, D, =PT[71D, D + 2). (4.126)
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Therefore, we could also provide the MAP interpretation of the D-related terms in
the extended Baum—Welch algorithm. However, how to provide this prior distribution in
the objective function is not trivial, and the theoretical analysis of this interpretation in
the discriminative training framework is an interesting open question.

Povey & Woodland (2002) use this i-smoothing technique with MMI and MPE esti-
mation methods, and report 1% absolute WER improvement from the MMI estimation
method without the i-smoothing technique. In addition, using the speaker independent
HMM parameters as prior hyperparameters (Povey, Gales, Kim et al. 2003, Povey,
Woodland & Gales 2003) also realizes discriminative acoustic model adaptation based
on the MAP estimation. There are several studies of using Bayesian approaches to
discriminative training of acoustic models (e.g., based on minimum relative entropy
discrimination (Kubo, Watanabe, Nakamura et al. 2010)), and Section 5.2 also intro-
duces the Bayesian sensing HMM with discriminative training based on the evidence
framework.

4.6 Speaker recognition/verification

In this section we focus on text-independent speaker recognition or speaker verifica-
tion systems, and show how MAP estimation is used. Speaker recognition is a similar
problem to automatic speech recognition. Let O € R be a sequence of D dimensional
speech feature vectors. Usually O is one utterance by a specific speaker. Similarly to
speech recognition, MFCC is usually used as a feature. The speaker recognition task is
to estimate speaker label ¢ among a speaker set C by using the maximum a-posteriori
estimation for the posterior distribution:

¢ = arg max p(c|O), (4.127)
ceC

where p(c|O) is obtained from a statistical speaker model, and is discussed later. This is
similar to a speech recognition problem, as shown in Eq. (3.2) by replacing the estima-
tion target from the word sequence W with the speaker index c. Since the output is not
structured compared with W, speaker recognition can be realized by relatively simple
models compared with ASR.

Speaker verification is to determine whether O is spoken by a target speaker s, which
is regarded as single-speaker detection. This is reformulated as a basic test between two
hypotheses:

e Hp : O is from the hypothesized speaker s;
e Hj : O is not from the hypothesized speaker s.

And the verification is performed by comparing the posterior distributions of Hy and H
as follows:

Hy|O > t H,
p(Ho| ){ >e accept Ho “18)

p(H110) | <€ reject Hy
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where € is a decision threshold. By using the Bayes rule, we can rewrite Eq. (4.128)
with a likelihood ratio as follows:

p(Ho|O) _ p(OlHo)p(Ho)  p(OlHo)

p(H1|0)  p(O|H)p(H1)  p(OlH})’
where we disregard the contribution of the prior distributions of each hypothesis. Thus,
by using the generative model of the Hy and H|, we can compare the two hypotheses.
We use GMM as these generative models. Hence, p(O|Hp) and p(O|H) are represented
from p(O|®y,) and p(O|By, ), where Oy, and O, are sets of GMM parameters.

(4.129)

4.6.1 Universal background model

The generative model of H; must consider the characteristics of many speakers. That
can be achieved by training the GMM parameters ®p, from many speakers. The GMM
of Hy is called the universal background model (UBM), and ®YBM denotes its GMM
parameters. Therefore, the likelihood for test data O can be computed by:
T K
p(OIH) = p(O1O"M) =TT~ o ®MN (o, M, =BV, (4.130)
=1 k=1

where ®VBM are computed from many training data ( in advance, uttered by various
speakers to train @UBM with the ML training as follows:

OUBM — ¢ max p(0]0), (4.131)

which can be performed efficiently by using the EM algorithm, as we discussed in
Section 3.4.

While we use many data O to train , the hypothesis speaker model Hy with
model parameters ©HYP can be trained by using only a small amount of data O (e.g., one
utterance). Although ML has an over-training problem in this setting, MAP estimation
can avoid the problem, and estimate OHYP 45 follows:

@UBM

efYP — arg m(a)ixp(®|0)

= argmax p(0|O)p(O|W(OVEM)). (4.132)

where p(®|\ll(®UBM)) is a prior distribution and W(OUBM) are hyperparameters of
GMM parameters. Note that some of the hyperparameters are obtained from the UBM
parameters ®VBM, This is a very similar technique to MAP adaptation of CDHMM
parameters, as we discussed in Section 4.4.2, where the target model is based on a
speaker-dependent CDHMM while the prior model is based on a speaker-independent
CDHMM. Equation (4.132) is a subset solution of CDHMM, as we discussed in Section
4.3, and the @HYP ig obtained as follows:

HYP p—1

w = g,
k Y19 —1)

ukHYP =iy, (4.133)
HYP _ 7w

Xd = R
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where
‘fA’/L{U £ ¢;{U + Zthl vi(k),

o 2o+ YL ),

~ 2 ¢;‘(LI‘~2+Z[T=1 v1(k)o; (4.134)
i RS0

PR 2 PR+ k),

Ma 20 vikod, + e (ud ) — S (i) + 1,

Reynolds et al. (2000) suggest using specific hyperparameter settings for ¢;’, ¢,’: , [Lg,
r,?d to obtain the following forms:

SHYP _ v/ T+ o )wlBM
k B 9
P apvi/T + (1 — o)y

1
piYP = oty V 4 (1 — B,

2
ST = v + = D™ + TP — (i

(4.135)

where o}, o}, and o) are hyperparameters, and can be controlled by a tuning parameter
B, as follows:

wmy Yk

k Ye+ B

(4.136)

Note that this solution also has the MAP property of avoiding sparse data problems.
The hypothesis test in Eq. (4.128) can be performed by considering the likelihood
ratio test of UBM and HYP GMMs as

p(O|OHYP) >¢€ accept Hp

e (4.137)
p(O|OUBM) | ¢ reject  H.

Thus, we have shown that MAP estimation plays an important role in speaker verifica-
tion based on UBM, especially in estimating the hypothesis speaker model.

4.6.2 Gaussian super vector

The MAP estimation of speaker models is further developed by using the Gaussian
super vector technique (Campbell, Sturim & Reynolds 2006). The idea of this approach
is to consider the MAP estimated GMM parameters as a feature of speaker verifi-
cation or speaker recognition. The verification/recognition is performed by using a
multi-class Support Vector Machine (SVM) (Vapnik 1995), cosine similarity scoring,
or other simple classifier. Suppose we have O,, features, the GMM-UBM process
can create the following super vector by concatenating the Gaussian mean vector
{[LEZP% =1,---,K}, estimated from O:
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HYP
ILln

HYP
n 2,n

T— ) (4.138)

HYP
I'LK n

The super vector is also obtained by using the vectorized form of the transformation
matrix estimated by using the MLLR algorithm (Stolcke et al. 2005). The technique is
widely used for speaker and language recognition tasks (Kinnunen & Li 2010), and
it can usually be used with factor analysis techniques (Kenny 2010, Dehak, Kenny,
Dehak et al. 2011) by representing the super vector with the speaker-specific and other
(channel) factors:

= p+ Uixy +Uzxop, +€y, (4.139)
~——— N —

speaker  channel

where the speaker and channel specific factors are also represented by the linear model
with the transformation matrices U; and Uj. u is a bias vector, and €, is a noise vector.
The approach is also applied to video processing (Shinoda & Inoue 2013). Thus, MAP
estimation is still used as an important component of speaker verification tasks, but the
techniques have been developed further based on the above factor analysis. Section 7.5
describes a VB solution of this factor analysis.

4.7 n-gram adaptation

MAP estimation is also used to obtain the n-gram language model (Federico 1996,
Masataki, Sagisaka, Hisaki et al. 1997). In the n-gram language model, the genera-

tive probability of the word sequence wllv = {w; € V|i = 1,---,N} with vocabulary V
can be basically represented as a product of multinomial distributions, as discussed in
Section 3.6:

powi) = ]"[p(w,|w1 >~1'[p(wl|w, )

N
~T] Mult(wil6,, -1 ). (4.140)

i=1
where ©® = {0, wiml } denotes the n-gram parameters. As discussed in Eq. (3.197), the
ML estimate of O is obtalned by using the number of occurrences c(wl ny1) Of word

sequence wi_n 41 in training corpus D:

oM -1 = argﬁ max p(D|6

i—1
Wilw;—n+] )

1
w,lwl n+1

_ v ) (4.141)

Zw, C(Wz n+1)
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Note that we do not consider the smoothing techniques in this section to make the
discussion simple.

471 MAP estimation of n-gram parameters

The MAP extension from the above ML framework can be performed by considering
the posterior distribution and introducing the prior distribution as follows:

MAP _
wilwi =) = arg max p(9w i ”H|D)
W"”l n+l
_arg max p(D|9W Wil )p(@w Wizl ]). (4.142)
W"WI IIH»I
Since p(D|9W i ) is a multinomial distribution, as discussed in Section 2.1.4, we use
—n+1

the following Dirichlet distribution for p(6

wilw

i~1 ) in Appendix C.4:
i—n+1

PO, it )= Dir(O, it (9,1 ). (4.143)
Thus, we can analytically solve Eq. (4.142) as follows:

_ _ i
MAP Puipwich,, — 1 eWimng)

wl|W, n-H Zw,- ¢Wi|W§:,l1+1 -1+ C(w;—n+l)

(4.144)

This is a similar result to the MAP solutions of mixture weights or transition proba-
bilities in Section 4.3.5. Since the n-gram parameter estimation in this setting does not
include the latent variables, we can obtain the solution without using the EM algorithm.
Therefore, the difference between Eq. (4.144) and those in Section 4.3.5 is between
using discrete counts c(wl _nt1) or EM-based expected counts y and &, which are con-
tinuous values. Note that the parameters represented by a Dirichlet distribution always
satisfy the sum-to-one condition required for n-gram language modeling.

4.7.2 Adaptation method

Similarly to MAP estimation based speaker adaptation for HMM parameters, MAP esti-
mation of n-gram parameters can be used for speaker/task adaptations (Federico 1996,
Masataki e al. 1997). Let DS be the speaker (or task) independent corpus, and D3P be
the speaker (or task) dependent corpus. The following hyperparameter setting is often

used:
i~ —aZ Stwl )00+ 1 (4.145)
i—n Wint1
Here QSI‘ ]\fﬂ‘l is obtained from the ML estimation in Eq. (4.141) by using DS!. Simi-
wi Wl n+1
larly, Sl(wl _n41) 1s @ word count obtained from DSL. Then, the numerator of the MAP

estimation in Eq. (4.144) is rewritten as:
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MAP 2 : ST SI ML i
9w |Wl 1 Xa (Wz n+1) wil + C(WifnJrl)
U i—n+41 W —n+1
1

SI SI, ML SD, i SD, ML
ocaZc (w, n+1)9 e 1+ +Zc (wi._,H_l)@ A
wi

wil“’;—rllJrl
SI
¢ ZW: Wi_pyr) SIL ML
Ol Z l n+1) + ZWI' CS (W;—H—Q—I) WilWi:,IH_]
SD, i
Zwi e o (4.146)
o Zwi CSI(W;7n+1) + Zwi CSD(W ) W’lwt n+1
Note that
CSD(WZ n+1)

o Zw,- CSI( i—n+l) + Zw cs (Wi n+l) (4.147)

n @y, Swi_ n+l) _
o Zwi CSI(W;,,H»]) + Zw; ¢ (W;7n+1)

Therefore, Eq. (4.146) can be regarded as a well-known linear interpolation of two n-

gram language model parameters 655 ML and 9SP-ML j e |
MAP _a(wi:_n+l)951 ML
W,|Wl n+1 Wlwl n+1
i SP- ML
(1=t )) 605 (4.148)

n+1
where oe(wf_n 1) 1s a linear interpolation ratio defined as:
Sy, i
o ZW,‘ C (Wi—n+l)
STyt SD (i :
o Zwi ¢ (Wifn+l) + ZW,‘ ¢ (Wifn+l)

The linear interpolation ratio depends on the count of each corpus and hyperparameter «.

aWw_, ) = (4.149)

This linear interpolation based MAP solution can be regarded as an instance of
well-known interpolation smoothing techniques in n-gram language modeling (Chen
& Goodman 1999, Rosenfeld 2000), as discussed in Section 3.6.2. The analytical result
shows that the linear interpolation technique can be viewed as the MAP estimation of
n-gram parameters in a Bayesian sense.

Adaptive topic model

We are facing the era of big data. The volume of data collections grows vastly. Statis-
tical document modeling becomes increasingly important in language processing areas.
As addressed in Section 3.7.3, probabilistic latent semantic analysis (PLSA) has been
developed to represent a set of documents according to the maximum likelihood (ML)
principle. The semantics and statistics can be effectively captured for document repre-
sentation. However, PLSA is highly sensitive to the target domain, which is continuously
changing in real-world applications. Similarly to the adaptation of hidden Markov mod-
els to a new speaker in Section 4.3 and the adaptation of n-gram models to a new
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recognition task in Section 4.7, we are interested in adapting the topic-based docu-
ment model using PLSA to a new application domain from a set of application-specific
documents.

A Bayesian PLSA framework (Chien & Wu 2008) is presented to establish an adap-
tive topic model to improve document representation by incrementally extracting the
up-to-date latent semantic information to match the changing domains at run time. The
Dirichlet distribution is introduced to serve as the conjugate priors for PLSA param-
eters, which are multinomial distributed. The reproducible prior/posterior distributions
facilitate two kinds of adaptation applications. One is corrective training while the other
is incremental learning. An incremental PLSA is constructed to accomplish the param-
eter estimation as well as the hyperparameter updating. Differently from standard PLSA
using an ML estimate, the Bayesian PLDA is capable of performing dynamic document
indexing and modeling. The mechanism of adapting a topic model based on Bayesian
PLSA is similar to the mechanisms of folding-in (Berry ef al. 1995) and SVD updating
(Bellegarda 2002) based on latent semantic analysis (LSA)(Berry et al. 1995, Bellegarda
2000), which is known as a nonparametric approach. The updating and downdating in
an SVD-based LSA framework could not be directly applied for an ML-based PLSA
framework. To add up-to-date or remove out-of-date knowledge, the adaptive PLSA is
developed for document modeling. The goal of adaptive PLSA aims to use the newly
collected documents, called adaptation documents, to adapt an existing PLSA model
to match the domains of new queries or documents in information retrieval systems. In
Chien & Wu (2008), adaptive PLSA is shown to be superior to adaptive LSA in informa-
tion retrieval tasks. In what follows, we address the methods of maximum a-posteriori
estimation and quasi-Bayes estimation designed for corrective training and incremental
learning, respectively.

48.1 MAP estimation for corrective training

Corrective training is intended to use batch collection data to correct the ML-based
PLSA parameters @M to fit new domain knowledge via the MAP estimation. In a topic
model based on PLSA, two sets of multinomial parameters ® = {p(w,)|k), p(k|d;,)}
have been estimated in the training phase subject to the constraints of multinomial distri-
butions as given in Eq. (3.304). The first one is the topic-dependent unigram probability
pWeylk) of a vocabulary word w(,), and the second one is the posterior probability
p(k|d,,) of topic k given an observed document d,,. According to MAP estimation, we
adapt PLSA parameters ® = {p(w(,|k), p(k|d,)} by maximizing the a-posteriori prob-
ability or the sum of logarithms of likelihood function p(D|®) of adaptation words and
documents D = {w(,),dpulv=1,---,|V|,m=1,--- ,M} and prior distribution p(®):

Q@MAP — arg mgx p(®|D)
= arg mgx log p(D|®) + log p(®). (4.150)

Here, prior distribution p(®) represents the randomness of multinomial parameters
{p(wylk)} and {p(kld,,)}. Again, it is mathematically attractive to select the conjugate

https://doi.org/10.1017/CB0O9781107295360.005 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107295360.005

178 Maximum a-posteriori approximation

prior as the candidate for Bayesian inference. The Dirichlet distribution is known as the
conjugate prior for multinomial parameters. Owing to the selection of conjugate prior,
two properties of Bayesian learning could be obtained: 1) a closed-form solution for
rapid adaptation; and 2) a reproducible prior/posterior distribution pair for incremen-
tal learning. Assuming parameters {p(w,|k)} and {p(k|d,,)} are independent, the prior
distribution of the entire parameter set based on Dirichlet density is expressed by

K 4 M
p@W) o [ T| [ [pwallo® " [T ptkldmPr=" |, (4.151)
k=1 | v=1 m=1

where ¥ = {o,k, Bim} denote the hyperparameters of Dirichlet densities. Following the
EM algorithm, we implement Eq. (4.151) by calculating the posterior auxiliary function

OMAY(©'10) = Ezllog p(D, Z|©")|D, ©] + log p(®'| ). (4.152)

By imposing the constraints of multinomial parameters in Eq. (3.304) into the con-
strained optimization, we form the extended auxiliary function as

MP©'0)

K VI M
O( Z ZI:(Z C(W(V)’ dM)p(ZW(V) = klw(v)’ dp) + (ayk — 1))

k=1 v=1" \m=1
V|
x 1ogp’<w<v>|k>] +me [ 1= P vlb)
v=1

K M V|
+ Z Z|: Z C(W(V)’ dm)p(ZW(v) = klw(v)a dp) + (,Bkm -1
k=1 m=1 v=1
K
x 1ogp/(k|dm)] + 14 (1 = p’(k|dm)> , (4.153)
k=1

which is manipulated and extended from the ML auxiliary function QM (@’|®) given
in Eq. (3.295). In Eq. (4.153), n,, and n4 denote the Lagrange multipliers for two con-
straints of multinomial parameters. Then we differentiate Eq. (4.153) with respect to
individual multinomial parameters p’(w,|k) and set it to zero:

IOMAP(Q/|@) iy cOW)s APy, = KWy, din) + (g — 1)

= —nyw =0,
0p' (w6 P w1k "
(4.154)
and obtain
M
, 1
p (W(V)|k) = T]_ |:Z C(W(V)7 dm)p(ZW(\,) = k|W(V),dm) + (Olvk - ])} (4155)
m=1
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By substituting this result into the constraint Z‘vzll P'(wwylk) = 1, we find the Lagrange
parameter

VI m
M=) [Z W), dm)P () = kW), dim) + (k — 1)] : (4.156)

v=1 Lm=1

Accordingly, we derive the MAP estimates of two PLSA parameters in closed form:

S Wy dnP (g, = kW, din) + (@ — 1)

PMAP (k) = ST . (4.157)

21 [Zm:1 cW(j)> dmp(zw; = kIw(j), dm) + (i — 1)]

AP ) SV vy, D@, = KWy, di) + Bion — 1)
m) —

S [ et dmpng, = 100, dm) + B — 1]

W vy dudpGagy = KWy i) + (B — 1) wiss
c(dm) + Y11 (Bim — 1) ’

where the posterior probability Paw, = klww), dp) is calculated according to

Eq. (3.311) by using adaptation documents D based on the current estimates ® =
{p(wylk), p(kld,)}. MAP estimates in Eq. (4.158) are seen as an extension of ML
estimates of Eq. (3.308) and Eq. (3.309) by interpolating with the prior statistics
{oyi} and {Bn}, respectively. If prior density is non-informative or adaptation data
D are abundant, MAP estimates are reduced to ML estimates. The MAP PLSA algo-
rithm is developed for corrective training or batch adaptation, and adapts the existing
parameters to @MAP in a single epoch. In MAP PLSA, the Dirichlet priors and their
hyperparameters ¥ = {oy, B} are adopted to characterize the variations of topic-
dependent document and word probabilities. These priors are used to express the
environmental variations. MAP PLSA involves both word-level p(w(,)|k) and document-
level p(k|d,,) parameters. In general, MAP parameters @MAP perform better than
ML parameters @M" when classifying future documents with new terms, topics, and
domains.

4.8.2 Quasi-Bayes estimation for incremental learning

Using MAP estimation, only a single learning epoch is performed to correct PLSA
parameters. Batch learning is performed. However, batch learning cannot catch the
continuously changing domain knowledge or deal with the non-stationary documents
collected from real-world applications. An adaptive information system should con-
tinuously update system parameters with new words and topics. Out-of-date words or
documents should fade away from the system as time moves on. Accordingly, we tackle
the updating and downdating problems simultaneously for latent semantic indexing.
MAP PLSA could not incrementally accumulate statistics for adaptive topic modeling.
It is more interesting to develop an incremental learning algorithm to track the changing
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topics and domains in test documents. A learning procedure is executed repeatedly in
different epochs. Incremental learning is also known as sequential learning or online
learning, which is important for speaker adaptation in automatic speech recognition
systems where speaker characteristics gradually change with time (Huo & Lee 1997,
Chien 1999).

To implement incremental learning for adaptive topic modeling, we continuously
estimate PLSA parameters in different learning epochs using the incrementally observed
adaptation documents. At the n learning epoch, we estimate PLSA parameters by
maximizing the posterior distribution using a sequence of adaptation documents
D" ={Dy,--- . Dy}

(O@M)B — 4o max p(@D")

= argmax p(D,|©)p(©]D" ")

~ argmax p(D,|©)p(OW" D), (4.159)

where the posterior distribution p(®|©"~!) is approximated by the closest tractable
prior distribution p(®|W "~ D) with sufficient statistics or hyperparameters ¥ "~1 which
are evolved from history documents ©"~!. This estimation method is also called the
quasi-Bayes (QB) estimation (Huo & Lee 1997, Chien 1999). QB estimation provides
recursive learning of PLSA parameters,

O 5 @@ ... @, (4.160)

from incrementally observed documents,

D] e d D2 —> s —> Dn. (4161)
At each epoch, we only use the current block of documents D, = {WE:)) ,df,’,')lv =
1,---,|V|,m = 1,--- ,M,} and the accumulated statistics =D o update PLSA

parameters from "1 to @™, Current block data D, are released after accumulat-
ing statistics from W~ to W Memory and computation requirements are reduced at
each epoch. The key technique in QB PLSA comes from the introduction of incremental
hyperparameters. If we substitute the hyperparameters W1 = {aiz_l), ﬂ,&"m_l) } into
Eq. (4.157) and Eq. (4.158), the QB estimates (©)2® = {pQB k), pQB (k|djy)} are
obtained. This QB PLSA method is geared with the updating mechanism of hyperpa-
rameters, which is derived by the E-step for QB estimation in Eq. (4.159). By referring
to the auxiliary function of MAP PLSA in Eq. (4.152) and Eq. (4.153), the QB auxil-

iary function of new estimates (™) = {p/ (WE}:; k), p'(k|d™)} given current estimates
O = {p(w)|k). p(kldy)} is defined by
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0B (™Y 1e™M)
K V|

M,
) ) [(Z cwiy, i pkiwgy), d)

k=1v=1"- "m=1
1
+ ey " 1)) logp/(wﬁﬁﬁk)}

K M, V|
4 Z Z C(W(n) (Yl)) (k|W(n) (n))
) D k1w,

+ (B ) - 1)) logp’<k|df,2>)]. (4.162)

It is important that the exponential of the QB auxiliary function in Eq. (4.162) can be
arranged as a new Dirichlet distribution:

exp {QQB((@)(”))/I@(”))}

oc]_[ Hp( 0 i ! ]_[ P kIdDYn 1 || (4.163)
m=1

with the updated hyperparameters ¥ = {a (") ,8(”)} derived thus:

My
-1
al) =3 cwl). dipkiw). d) + oy " (4.164)
m=1
VI |
Bl = D vy dip(kiw(y) i) + B, (4.165)
v=1

where the posterior probability

(n) (n)

(k|W(n) d(n)) _ p(W(v)|k)p(k|dm )
p W) %m ) = ZK - 'd(")
=1 Py DPGldm”)

(4.166)

is obtained by using the current block of adaptation data D, = {WE:)) ,df,',’ )} based on

current QB estimates @ = {p(wgz)) k), p(k|d,(,?))}. Importantly, a reproducible dis-

tribution pair of a prior in Eq. (4.151) and a posterior in Eq. (4.163) is established.
This property is crucial to activate the updating mechanism of hyperparameters for
incremental learning. New hyperparameters W = {a(”) ﬂ(")} are estimated by com-
bining the previous hyperparameters W~ = {4~ ) ,3,?;1 1)} with the accumulated

statistics from adaptation documents D, = {WE:;, ds,;z )} at learning epoch n.
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Table 4.1 Numbers of training, adaptation, and test documents for five populous classes in the
Reuters-21578 dataset.

Acquisitions Crude Earn Money-fx Trade
Number of
training documents 825 196 1447 284 189
Number of added
documents per epoch 275 65 475 85 60
Number of
test documents 719 189 1087 180 117

Basically, QB estimation finds the point estimate for adaptive topic modeling. This
estimation is seen as an extended realization of MAP estimation by activating the
mechanism of hyperparameter updating so that incremental learning is established to
compensate the non-stationary variations in observation data which may be speech
signals, word sequences, or text documents. Incremental learning based on QB esti-
mation is helpful for speech and language applications including speech recognition,
information retrieval, and others.

4.8.3 System performance

The performance of the adaptive topic model was evaluated through the tasks of correc-
tive training and incremental learning. The evaluation was performed for the application
of document categorization. Table 4.1 shows the set-up of experimental data of the
Reuters-21578 dataset. We collected training, adaptation, and test documents from
the five most populous categories in the Reuters-21578 dataset for system evaluation.
Preprocessing stages of stemming and stop word removal were done. In the task of
incremental learning, we used one-third of the adaptation documents at each epoch and
investigated the effect of incremental learning in three learning epochs. The performance
of corrective training and incremental learning was compared. Training samples of each
category were roughly partitioned into half for training and the other half for adapta-
tion. A fivefold cross validation over training and adaptation sets was performed. In the
implementation, we determined PLSA probability for each test document. The cosine
similarity of feature vectors between a test document and a given class model was calcu-
lated for pattern classification. The class feature vector consisted of PLSA probabilities
averaging over all documents corresponding to a class. The classification error rate was
computed over all test documents in five populous classes. We obtained the classification
error rates for PLSA (Hofmann 19995, 2001) (3.47%), SVD updating (Bellegarda 2002)
(3.39%), MAP PLSA (Chien & Wu 2008) (3.04%), QB PLSA (Chien & Wu 2008) at
1st learning epoch (3.13%), QB PLSA at 2nd learning epoch (3.04%), and QB PLSA
at 3rd learning epoch (3%). Corrective training using SVD updating and MAP PLSA
and incremental learning using QB PLSA at different epochs decrease the classifica-
tion error rates. SVD updating is worse than MAP PLSA and QB PLSA. Incremental
learning using QB PLSA performs slightly better than batch learning using MAP PLSA.
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4.9 Summary

This chapter introduced various applications of MAP approximation for model
parameter posteriors. Since the approach can be easily realized from the existing ML
based approaches by simply considering the regularization term based on model param-
eter priors, it is widely used for speech and language processing including acoustic and
language modeling in ASR, speaker verification, and document processing. Although
the MAP approximation can utilize the most famous Bayesian advantage of “use of prior
knowledge,” it does not deal with probabilistic variables explicitly with the marginaliza-
tion, and it does not fully utilize the Bayesian concept. The following chapters consider
more strict Bayesian approaches for speech and language processing.
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