
4 Attacking a Hypersphere Learner

In the second part of this book, we elaborate on Causative attacks, in which an adversary
actively mistrains a learner by influencing the training data. We begin in this chapter by
considering a simple adversarial learning game that can be theoretically analyzed. In
particular, we examine the effect of malicious data in the learning task of anomaly (or
outlier) detection. Anomaly detectors are often employed for identifying novel mali-
cious activities such as sending virus-laden email or misusing network-based resources.
Because anomaly detectors often serve a role as a component of learning-based detec-
tion systems, they are a probable target for attacks. Here we analyze potential attacks
specifically against hypersphere-based anomaly detectors, for which a learned hyper-
sphere is used to define the region of normal data and all data that lies outside of this
hypersphere’s boundary are considered to be anomalous. Hypersphere detectors are used
for anomaly detection because they provide an intuitive notion for capturing a subspace
of normal points. These detectors are simple to train, and learning algorithms for hyper-
sphere detectors can be kernelized, that is implicitly extended into higher dimensional
spaces via a kernel function (Forrest et al. 1996; Rieck & Laskov 2006; Rieck & Laskov
2007; Wang & Stolfo 2004; Wang et al. 2006; Warrender et al. 1999). For our purposes
in this chapter, hypersphere models provide a theoretical basis for understanding the
types of attacks that can occur and their potential impact in a variety of different set-
tings. The results we present in this chapter provide intriguing insights into the threat of
causative attacks. Then, in Chapter 5 and 6, we proceed to describe practical studies of
causative attacks motivated by real-world applications of machine learning algorithms.

The topic of hypersphere poisoning first arose in designing virus and intrusion detec-
tion systems for which anomaly detectors (including hypersphere detectors) have been
used to identify abnormal emails or network packets, and therefor are targets for attacks.
This line of work sought to investigate the vulnerability of proposed learning algorithms
to adversarial contamination. The threat of an adversary systematically misleading an
outlier detector led to the construction of a theoretical model for analyzing the impact
of contamination. Nelson (2005) and Nelson & Joseph (2006) first analyzed a simple
algorithm for anomaly detection based on bounding the normal data in a mean-centered
hypersphere of fixed radius as depicted in Figure 4.1(a). We summarize the results of
that work in Sections 4.3 and 4.4. This analysis was then substantially extended by Kloft
& Laskov (2010, 2012), whose work we summarize in Sections 4.5 and 4.6.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

70 Attacking a Hypersphere Learner

c R

⊕

⊕⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕ ⊕
⊕

⊕ ⊕

⊕

⊕⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕

⊕

Benign

Outliers

(a) Hypersphere Outlier Detection

c(t)

xA

c(t 1)

Attack
Locations

⊗ ⊗

(b) Attack on a Hypersphere

Figure 4.1 Depictions of the concept of hypersphere outlier detection and the vulnerability of
naive approaches. (a) A bounding hypersphere centered at c of fixed radius R is used to
encapsulate the empirical support of a distribution by excluding outliers beyond its boundary.
Samples from the “normal” distribution are indicated by ⊕’s with three outliers on the exterior
of the hypersphere. (b) An attack against a hypersphere outlier detector that shifts the detector’s
“normal” region toward the attacker’s goal xA. It will take several iterations of attacks to
sufficiently shift the hypersphere before it encompasses xA and classifies it as benign.

The novelty detection learning algorithm considered throughout this chapter is a
mean-centered hypersphere of fixed radius R. For this basic model for novelty detec-
tion, we analyze a contamination scenario whereby the attacker poisons the learning
algorithm to subvert the learner’s ability to adapt to a tool the adversary uses to accom-
plish its objective. The specific scenario we consider is that the adversary wants the
novelty detector to misclassify a malicious target point, xA, as a normal instance. How-
ever, the initial detector would correctly classify xA as malicious so the adversary must
manipulate the learner to achieve its objective. Initially, the attacker’s target point, xA,
is located a distance DR radii from the side of the hypersphere (or a total distance of
R (DR + 1) from the initial center). Further, it is assumed that the initial hypersphere
was already trained using N initial benign data points, and the adversary has M total
attack points it can deploy during the attack, which takes place over the course of T
retraining iterations of the hypersphere model. Analyzing this simple attack scenario
yields a deeper understanding into the impact of data contamination on learning agents
and quantifies the relationship between the attacker’s effort (i.e., M , the number of attack
points used by the attacker) and the attacker’s impact (i.e., the number of radii, DR, by
which the hypersphere is shifted).

4.1 Causative Attacks on Hypersphere Detectors

Learning bounding hyperspheres is a basic technique for anomaly detection that can be
accomplished by learning a hypersphere centered at the empirical mean of a training set
or that encloses the (majority of the) training data (e.g., see Shawe-Taylor & Cristianini
2004, Chapter 5). These novelty detection models classify all data that lie within the

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.1 Causative Attacks on Hypersphere Detectors 71

bounding hypersphere as normal (''−'') and all other data as abnormal (''+''). A simple
version of this detector uses a mean-centered hypersphere of fixed radius R to bound the
support of the underlying distribution as depicted in Figure 4.1(a). Such a detector is
trained by averaging the training data,

{
x(�)
}
, to estimate the centroid as c =∑N

�=1 x(�),
and it classifies subsequent queries x as

fc,R (x) =
{

''+'' , if ‖x − c‖ > R

''−'' , otherwise
,

where we use fc,R to denote the classification function corresponding to the hypersphere
centered at c with a radius R. Because we are considering a sequence of detectors with
a fixed radius R but a changing centroid, we use the notation ft to denote the t th such
detector with centroid c(t).

One can imagine several situations in which a malicious user wants to attack such
an outlier detection algorithm. For example, an adversary may be searching for mali-
cious points that erroneously lie within the hypersphere, or it could try to mislead the
hypersphere by tampering with its training data. Here we consider a Targeted Causative
Integrity attack on the simple mean-centered hypersphere outlier detector described ear-
lier. This attack takes place over the course of T retraining iterations. In this attack, the
goal of the attacker is to cause the hypersphere to have a final centroid, c(T), that incor-
rectly classifies a specific attack point xA as normal, making this a Targeted Integrity
attack. We assume that, prior to the attack, the target xA is correctly classified by the
detector (i.e., f0

(
xA
) = ''+'') and that the attacker does not want to modify xA, but

rather wants to mistrain the learner so that, after the T retraining iterations, its objective
is fulfilled (i.e., fT

(
xA
) = ''−''). This is a Repeated Causative attack; see 3.6. To ana-

lyze this iterated game, we now specify the assumptions made about the learning pro-
cess and attacker and then analyze optimal attacks on the detector in several different
situations.

4.1.1 Learning Assumptions

This chapter focuses on iterated security games. As such, the learning algorithm dis-
cussed here is relatively simple: a novelty detector modeled as a mean-centered hyper-
sphere of fixed radius R (possibly in a kernel space as discussed in Section 4.6.3) that
contains most of the normal data. This outlier detector is trained from a corpus of data,
which is initially assumed to be predominantly benign (perhaps the initial training set
is vetted by human experts), and the initial (unattacked) centroid is c(0). The radius R
is typically selected to tightly bound the normal training data while having a low prob-
ability of false positives. Choosing the radius to meet these constraints is discussed in
Shawe-Taylor & Cristianini (2004, Chapter 5), but for this work we assume the radius
is specified a priori; i.e., it cannot be influenced by the adversary.

Importantly, as new data becomes available, it is used to periodically retrain the
detector. We assume this new data remains unlabeled and is susceptible to adver-
sarial contamination, but that the new data is filtered to limit this vulnerability by
retraining only on data points previously classified as normal. In particular, we assume

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

72 Attacking a Hypersphere Learner

the novelty detector uses bootstrapping retraining, in which the latest detector is used
to remove outliers from the newly received data, sanitizing the data before it is used
for retraining. Under this policy, data points classified as normal are always used in
subsequent retraining while any point classified as an outlier is immediately discarded.
Finally, we initially assume there is no replacement of data; i.e., new points are added
to the training set but no points are ever removed from it, regardless of how the model
subsequently changes. We relax this last assumption in Section 4.5 where we examine
the effect of different policies for data replacement. Regardless, as a result of retraining,
the hypersphere detector is described by a sequence of centroids

(
c(t)
)T

t=0
produced by

each retraining iteration.

4.1.2 Attacker Assumptions

We also make specific assumptions about the attacker’s knowledge and capabilities.
Throughout this chapter, we generally assume the attacker is omnipotent; that is, it
knows the learner’s feature representation, it knows the training data and current state
(parameters) of the learning algorithm (although in most of the attack variants it only
needs the state), it knows the learning algorithm and its retraining policy, and it can pre-
cisely predict the impact its attack has on the detector. We also assume that the attacker
has strong capabilities. We assume the attacker can insert arbitrary points in feature
space (i.e., it is not hindered by limitations of the measurement map ξ or feature map φ

discussed in Section 2.2.1) and that it can control all data once the attack commences,
but it cannot alter the representations of existing points (including the initial training
data and its target data point xA). We modify the assumption that the attacker can con-
trol all data in Sections 4.5 and 4.6.

Finally, we assume the attacker has the goal of causing the retrained classifier to
misclassify its target point xA as normal. We quantify the attacker’s task in terms of three
quantities: the distance DR that the attacker must displace the hypersphere to accomplish
its goal, the total number of points M that the attacker can use in the attack, and the
total number of retraining iterations T during which the attack is executed. The quantity
DR > 0 is expressed relative to the hypersphere radius R as

DR = ‖xA−c(0)‖
R − 1; (4.1)

that is, the total number of radii by which the hypersphere must be shifted (in the direc-
tion of the attack) to achieve the attacker’s goal.1 The remaining quantities M and T
are variables, and in this chapter, we explore bounds on them. First, in Section 4.3, we
consider an attacker that only wants to use as few attack points as possible, and we
investigate the minimum number of attack points M required to achieve its goal. Sec-
ond, in Section 4.4, we consider an attacker that wants to affect its attack quickly, and
we investigate both the minimum number of retraining iterations T required and the
minimum number of attack points M required in a fixed execution time T .

1 This displacement is nonpositive if the attack point xA is initially classified as normal, in which case no
attack is necessary.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.2 Hypersphere Attack Description 73

Under these assumptions, an intuitive sketch of an attack strategy emerges. Because
the outlier detector is only retraining on points falling within this hypersphere, this
attacker must displace its centroid by inserting attack points within the hypersphere.
Moreover, since the centroid is a linear combination of its training data, the attacker
can achieve an optimal displacement by judiciously inserting its attack points at the
intersection of the hypersphere’s boundary and the line segment from the mean of the
hypersphere to its goal xA. This attack strategy is depicted in Figure 4.1(b). As we
show in Section 4.2, this observation reduces the task of attack optimization to a one-
dimensional problem since it is assumed that the attacker has exact knowledge of the
desired direction. The only complexity in optimizing the attack remains in choosing the
number of points to place at each iteration of the attack; this task is addressed through-
out the remainder of this chapter.

4.1.3 Analytic Methodology

Before delving into the details of the attacks, we sketch our analytic method. Namely,
in the subsequent sections, we provide bounds on the number of attack points M
 or
the number of retraining iterations T
 required by an adversary to achieve a desired
displacement DR. To do so, we find attacks that optimally displace the hypersphere
toward xA and upper bound the displacement such an attack can achieve under a given
size M and duration T . We then invert this upper bounds to create lower bounds on M
and T based on the following lemma.

lemma 4.1 For any functions f : X → Y and g : X → Y mapping X ⊆ � to Y ⊆
� such that g is strictly monotonically increasing on X (and hence invertible) with
g everywhere upper bounding f (i.e., ∀ x ∈ X, f (x) ≤ g (x)), if, for any y ∈ Y, z ∈
f −1 (y) = {x ∈ X | f (x) = y}, then we have

z ≥ g−1 (y) .

It follows that, when f is invertible, f −1 (y) ≥ g−1 (y).

Proof [due to Matthias Bussas] By the contrapositive, suppose z < g−1 (y). Then, it
follows that f (z) ≤ g (z) < g(g−1 (y)) = y where the strict inequality is due to the
strict monotonicity of g. Thus, z �∈ f −1 (y). �

We use this result throughout this chapter to invert bounds on the maximum distance
attainable by an optimal attack to bound M
 or T
. We now proceed with a formal
description of attacks against these iteratively retrained hyperspheres.

4.2 Hypersphere Attack Description

As discussed earlier, the attacker’s objective is to manipulate the retraining process
and induce a sequence of hypersphere centroids

(
c(t)
)T

t=0
such that for some T ∈ N0

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

74 Attacking a Hypersphere Learner

it achieves its objective fT

(
xA
) = ''−'', or rather

∥∥xA − c(T)
∥∥ ≤ R, (4.2)

for which we assume T is the first such iteration satisfying this condition. Alternatively,
we can frame this problem as minimizing the squared distance between xA and c(T)

relative to the squared radius of the hypersphere, allowing us to formulate the attacker’s
objective as

min
c(T)

‖xA−c(T)‖2

R2 . (4.3)

Clearly, this objective is minimized by c(T) = xA, but the attacker cannot select c(T)

directly. Instead, it must choose a sequence of attack points that yield a sequence of
centroids to ultimately achieve the desired effect as we detail below. However, first we
further decompose the attacker’s objective into a more convenient form.

To quantify the attack’s progress, we introduce the total relative displacement
achieved by an attack of t iterations. This vector is defined as the relative displacement
of the centroid from its initial state to its position after t th retraining iterations:

Dt = c(t)−c(0)

R . (4.4)

Using Dt , we can rewrite the vector used in the adversary’s optimization objective in
Equation (4.3) as xA−c(t)

R = xA−c(0)

R − Dt , which gives the following alternative optimiza-
tion objective:

∥∥xA − c(t)
∥∥2

R2
=
∥∥xA − c(0)

∥∥2

R2
+ ‖Dt‖2 − 2

∥∥xA − c(0)
∥∥

R
·
(

D�
t

xA − c(0)∥∥xA − c(0)
∥∥
)

.

The first term ‖xA−c(0)‖2

R2 is constant with respect to the attack and can be discarded.
The remaining two terms express that the displacement Dt should align with the vector
xA − c(0) (i.e., the desired displacement vector) while not becoming too large. This latter
constraint reflects the fact that if the displacement vector were too large, the shifted
hypersphere would overshoot the target point xA and subsequently still classify it as
an outlier. However, overshooting the target is an implementation detail that can be
easily avoided by halting the attack once the objective is achieved. It is not necessary
to explicitly model this behavior as part of the optimization because it is not a practical
concern. Further, in this chapter, we study attacks that use the minimal effort to achieve
their effort and do not overshoot the target.

Moreover, as suggested by the above expression, the final term is expressed as two

factors. The first, 2‖xA−c(0)‖
R , is again constant with respect to c(t). However, the sec-

ond represents a particular geometric quantity. It is the length of the projection of Dt

onto the desired attack direction xA − c(0); i.e., projxA−c(0) (Dt) = D�
t

xA−c(0)

‖xA−c(0)‖ . By the

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.2 Hypersphere Attack Description 75

Cauchy-Schwarz inequality, we obtain the following pair of results:

‖Dt‖ ≥
∣∣∣∣∣D�

t

xA − c(0)∥∥xA − c(0)
∥∥
∣∣∣∣∣∥∥xA − c(t)

∥∥
R

≥
∥∥xA − c(0)

∥∥
R

− D�
t

xA − c(0)∥∥xA − c(0)
∥∥ .

This confirms that accomplishing projxA−c(0) (Dt) ≥ DR is necessary for the attack to
achieve the original objective in Equation (4.2). Further, maximizing this projection for
a fixed attack budget will generally find attacks that best align with the desired attack
direction and have maximum magnitude. Hence, to simplify the results of this chapter,
we consider the following alternative objective, which seeks the largest possible align-
ment to the desired displacement vector without regard to the possibility of overshoot-
ing. This notion of the attack’s progress was originally introduced by Kloft & Laskov
(2012), but there was called the relative displacement.

definition 4.2 Optimal Displacement: An attack achieves an optimal displacement
at the t th retraining iteration if its relative displacement vector Dt has the highest align-
ment with the desired displacement vector xA−c(0)

R . The attack objective is given by the
displacement alignment

ρ (Dt) = D�
t

xA − c(0)∥∥xA − c(0)
∥∥ . (4.5)

The attacker seeks to find a Dt that maximizes ρ (Dt).

Optimizing this objective achieves the same optimal sequences as those from
Equation 4.3 until the target is reached. In the remainder of this chapter, we study attacks
that seek maximal displacement alignment.

Remark 4.3 When the t th displacement vector perfectly aligns with the attack direction
(i.e., it has no residual), then the displacement vector is given by Dt = κ xA−c(0)

‖xA−c(0)‖ for

some κ ∈ [0, DR] and ‖Dt‖ = κ . The progress of such an attack is given precisely in
terms of κ as ∥∥xA − c(t)

∥∥
R

=
∥∥xA − c(0)

∥∥
R

− κ.

This exact connection between the original goal and alignment objective is, in fact,
attained in several of the attack scenarios discussed later.

4.2.1 Displacing the Centroid

Here we discuss the behavior of c(t) and how the attacker can manipulate it to optimize
Equation (4.3). By the bootstrap retraining policy, when an attacker adds a point, a(t),
to the t th training set, the t th centroid will be affected if the point is within a distance
R of the current centroid; i.e.,

∥∥a(t) − c(t−1)
∥∥ ≤ R. When that occurs, assuming that the

attacker is the only source of new data during the attack, the attack point causes the

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

76 Attacking a Hypersphere Learner

hypersphere to shift in the next iteration to a new centroid given by

c(t) = μt−1

μt−1 + 1
c(t−1) + 1

μt−1 + 1
a(t), (4.6)

which is a convex combination of the prior centroid c(t−1) and newly introduced attack
point a(t). This combination is defined by coefficients computed in terms of μt−1, the
total number of training points used to train c(t−1). This term μt−1 is analogous to the
mass that supports the prior hypersphere since it determines how difficult that hyper-
sphere is to shift. Under the assumptions that data points are never removed and that,
during the attack, the attacker is solely responsible for new data points, μt = μt−1 + 1
with an initial mass μ0 = N given by the number of benign data points that were present
before the attack began.

More generally, during the t th retraining iteration, the attacker attacks the hypersphere
with a set A(t) = (a(t,�)

)αt

�=1
consisting of αt attack points all of which are within R of the

current centroid. Again, we assume the attacker is the only source of new data during
the attack. The number of data points in the t th retraining iteration is now given by
μt = μt−1 + αt or more generally as the cumulative sum of mass:

μt = N +
t∑

�=1

α�. (4.7)

Further, the new centroid is now given by the convex combination

c(t) = μt−1

μt−1 + αt
c(t−1) + 1

μt−1 + αt

αt∑
�=1

a(t,�)

= c(t−1) + 1

μt

αt∑
�=1

(
a(t,�) − c(t−1)

)
, (4.8)

which leads to a natural notion of the relative displacement at the t th iteration.

definition 4.4 The relative displacement at the t th retraining iteration is defined as
the displacement vector of the hypersphere centroid from the (t − 1)th to the t th iteration
relative to the fixed radius R of the hypersphere. This vector is given by

rt �
c(t) − c(t−1)

R
= 1

R · μt

αt∑
�=1

(
a(t,�) − c(t−1)

)
.

Further, the total relative displacement can be expressed as the sum of the attack’s rela-
tive displacements: DT =∑T

t=1 rt .

Remark 4.5 A deeper insight into the nature of this problem is revealed by Equa-
tion (4.8). In particular, it shows that the change in the mean after T iterations of the
attack relative to the radius of hypersphere R is a sum of “cumulatively penalized gains.”
That is, the contribution of the t th iteration of the attack is weighed down by the sum of
the mass used in all iterations up to and including the current iteration.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.2 Hypersphere Attack Description 77

From the fact that
∥∥a(t,�) − c(t)

∥∥ ≤ R for all attack points, we can use the generalized
triangle inequality to obtain our first bound:

‖rt‖ = 1

R · μt

∥∥∥∥∥
αt∑

�=1

(
a(t,�) − c(t−1)

)∥∥∥∥∥ ≤ αt

μt
≤ 1,

since αt ≤ μt . This leads to the following theorem and a general (albeit, weak) bound
on the effort required by the adversary:

theorem 4.6 The total relative displacement between c(T) and c(0) in T retraining
iterations has a norm of at most T (i.e., ‖DT ‖ ≤ T) and a displacement alignment
of ρ (DT) ≤ T . Therefor, to achieve the desired total relative displacement of DR, a
successful attack must have at least T ≥ DR attack iterations.

Proof. The bound on the norm follows from the generalized triangle inequality and the
fact that for all t, ‖rt‖ ≤ 1. Similarly, the bound on ρ (·) follows from the following
application of the Cauchy-Schwarz inequality:

ρ (DT) = D�
T

xA − c(0)∥∥xA − c(0)
∥∥ = 1∥∥xA − c(0)

∥∥
T∑

t=1

r�
t

(
xA − c(0)

)

≤ 1∥∥xA − c(0)
∥∥

T∑
t=1

‖rt‖
∥∥xA − c(0)

∥∥ ≤ T

�

Ultimately, the attacker’s goal is create a sequence of attack points (i.e., a set of attack
points A(t) = (a(t,�)

)αt

�=1
at each attack iteration) such that the attacker’s goal is satisfied.

The following theorem states that the attacker can accomplish this in a greedy fash-
ion by placing all its attack points at the point where the current hypersphere boundary
intersects the line segment between the current centroid c(t−1) and its goal point xA. Fur-
ther, it shows that, when this greedy strategy is executed at every iteration, the resulting
centroid at the t th iteration follows the line segment between the initial centroid c(t−1)

and the attacker’s goal point xA, gradually shifting toward its goal.

theorem 4.7 For every attack sequence α = (αt ∈ N0) and for all t ∈ N, at the tth

iteration the set of attack vectors A(t) that optimize ρ (·) according to Equation (4.5)
consists of αt copies of the vector c(t−1) + R · xA−c(0)

‖xA−c(0)‖ and

c(t) = c(0) + R · xA − c(0)∥∥xA − c(0)
∥∥ ·

t∑
�=1

α�

μ�

(4.9)

where μt is the cumulative sum of mass for the attack given by Equation (4.7).

Proof. The proof appears in Appendix B.1. �

This theorem shows that the optimal centroid at the t th iteration can be computed in a
greedy fashion only from the supplied parameters c(0), R, xA, and α.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

78 Attacking a Hypersphere Learner

corollary 4.8 For every attack sequence α = (αt ∈ N0) and for all T ∈ N, the
total relative displacement achieved by an optimal attack following the attack sequence
α after T iterations is DT = xA−c(0)

‖xA−c(0)‖ ·∑T
�=1

α�

μ�
, which achieves a displacement align-

ment (Equation 4.5) of

ρ (DT) =
T∑

�=1

α�

μ�

(4.10)

where μt is the cumulative sum of mass for the attack given by Equation (4.7) and DR

is a parameter of the attack given by Equation (4.1).

Proof. The result for DT follows directly from substituting the optimal centroid given
by Equation (4.9) into Equation (4.4). The resulting displacement alignment follows
from

∥∥xA − c(0)
∥∥2 = (xA − c(0)

)� (
xA − c(0)

)
and Equation 4.1. �

Importantly, under our assumptions, this theorem shows that the attacker’s objective
depends solely on the sequence α = (αt)

T
t=1; the actual attack vectors follow directly

from its specification. The attacker can choose the elements of α; i.e., the number of
attack points to employ at each iteration. Hence, we have reduced a multidimensional
optimization problem to an optimization over a single sequence. In the next section,
we formalize how the attacker can optimize this sequence based on the attack objective
given in Equation (4.10).

However, before continuing, note that Equation (4.10) shows that the success of an
attack at time t can be described solely as a function of this attack sequence. More-
over, since the optimal displacement vector DT is a scalar multiple of the desired attack
direction, xA − c(0), its projection onto that direction has no residual component, and
Remark 4.3 shows us that the progress of this attack is given by∥∥xA − c(t)

∥∥
R

=
∥∥xA − c(0)

∥∥
R

−
T∑

�=1

α�

μ�

.

The success of this attack in minimizing ‖xA−c(t)‖
R is determined completely by the

attacker’s choice of α, which it chooses so as to maximize
∑T

�=1
α�

μ�
. We now proceed to

formalize this setting by describing these attack sequences.

Remark 4.9 (Nontrivial Initial Attack) The astute reader will have noticed that the above
results, including all derivations from Equation (4.8) onward, rely on the assumption
that ∀t ∈ {1, . . . , T } , μt > 0. Equivalently, this requires that α1 > 0, which we assume
throughout the remainder of this chapter—the nontrivial initial attack assumption. In
fact, if the first nonzero attack occurs at the kth iteration (i.e., αt = 0 for t < k and
αk > 0), the first k − 1 iterations can be discarded from the attack, since there is no
adversarial impact on the classifier during this period. Further, the attack sequence of
all zeros, α = 0, is the trivial attack sequence and need not be considered.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.2 Hypersphere Attack Description 79

4.2.2 Formal Description of the Attack

Having described the problem and the assumptions made under it, a formal analysis can
be conducted to reveal optimal attack strategies. This formal analysis begins with a for-
malization of the problem setting and of the objective. We refer to the number of attack
points used at the t th retraining iteration as αt and the optimal (under prescribed condi-
tions) number of attack points to be used at the t th iteration as α

t . We use N to denote
the natural numbers 1, 2, 3, . . ., N0 to denote the non-negative integers 0, 1, 2, 3, . . .,
and �0+ to denote the non-negative reals. Unless specifically mentioned otherwise,
αt , α

t ∈ N0 although later in the text we consider sequences in the non-negative reals,

which we differentiate notationally by using βt, β

t ∈ �0+, respectively.

Along with αt and βt , we also define the space of possible attack sequences. Formally,
we define A to be the space of all legitimate sequence of attack points; that is, A ={

(αt)t=1

∣∣ ∀t αt ∈ N0
}

(in this space, any attack of a finite span is repre-
sented by concatenating an infinite trailing sequence of zeros). Similarly, we
define the space of attacks of finite duration and limited size as A(M,T) ={

(αt)
T
t=1

∣∣∣ ∀t αt ∈ N0 ∧ ∑T
t=1 αt ≤ M

}
; the space of attacks of a finite duration, T ,

but unlimited size as A(∞,T); and the space of attacks of a limited total size, M , but
unlimited duration as A(M,∞). Finally, the analogous continuous versions of these spaces
are denoted by B , B(∞,T), B(M,∞), and B(M,T) and defined by replacing αt with βt ∈ �0+
in the corresponding definitions of A.

With the notion of an attack sequence, we now formalize the notion of optimal strate-
gies by reexamining the objective of the attacker. The attacker wishes to maximize
the displacement alignment ρ (·) as described in Definition 4.2, which was shown in
Corollary 4.8 to depend solely on the attack sequence. The objective function is defined
with respect to a given attack sequence α ∈ A according to Equation (4.10) as

D (α) =
∑
t=1

αt

μt
=
∑
t=1

δt (α) (4.11)

δt (α) = αt

μt
, (4.12)

where μt = N +∑t
�=1 α� from Equation (4.7) and the function δt (·) assesses the con-

tribution due to the t th iteration of the attack, which depends on only the first t elements
of the attack sequence. The goal of the attacker is to maximize this objective function
D (·) with respect to constraints on the size and duration of the attack.

definition 4.10 Optimality: An attack sequence α
 ∈ A(M,∞) against a hypersphere
with N initial non-attack points is an optimal strategy that uses a total of M attack points
if ∀α ∈ A(M,∞), D (α) ≤ D (α
). The optimal distance achieved by such a sequence
is denoted by D

N (M,∞), where ∞ here represents the infinite attack duration. This
optimality can be achieved for the attacker by solving the following program for α
:

α
 ∈ argmaxα D (α) (4.13)

s.t. α ∈ A(M,∞)

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

80 Attacking a Hypersphere Learner

Thus, D

N (M,∞), the optimal distance achievable for any sequence in the space

A(M,∞), is expressed in terms of the problem’s parameters M and N ; i.e., if α
 is an opti-
mal strategy in A(M,∞), then D (α
) = D

N (M,∞). Similarly for attacks constrained to
a finite duration T in the space of sequences A(M,T), we define the optimal achievable
distance to be D

N (M, T), which we return to in Section 4.4.

4.2.3 Characteristics of Attack Sequences

To better understand our problem, we characterize its properties and those of (optimal)
attack sequences. These properties provide the foundation for the further analysis of the
problem.

4.2.3.1 Invariance to Empty Attack Iterations
We discuss the behavior of the attack distance D (·) from Equation 4.11 with respect
to zero elements in the attack sequence. First we show that the attack distance D (·)
is invariant to the insertion of a zero at the kth position in the sequence (with k > 1
following Remark 4.9).

lemma 4.11 For any k > 1, every sequence α ∈ A(M,∞) achieves an identical distance
as the sequence α′ defined as

α′
t =

⎧⎪⎪⎨
⎪⎪⎩

αt , if t < k

0, if t = k

αt−1, if t > k

;

i.e., D (α) = D (α′).

Proof. First, δt (α′) = δt (α) for t < k since δt (·) depends only on the first t elements
of the sequence (see Equation 4.12). Second, δk (α′) = 0 from Equation (4.12). Third,
δt (α′) = δt−1 (α) for t > k since inserting a 0 at the kth position does not affect the
denominator μt in the definition of δt (·) (see Equations (4.7) and (4.12)) and the
numerators are shifted, accordingly. The distance achieved by the sequence α′ is

D
(
α′) =

k−1∑
t=1

δt

(
α′)+ δk

(
α′)+ ∑

t=k+1

δt

(
α′)

=
k−1∑
t=1

δt (α) +
∑

t=k+1

δt−1 (α) = D (α) .

�
From this lemma, it follows that the insertion (or deletion) of zero elements (αt =

0) is irrelevant to the sequence’s distance, and therefore all zeros can be removed in
considering our notion of optimality. Intuitively, the distance achieved by an attack is
not affected by the retraining iterations in which no adversarial data is used since, in this
scenario, the adversarial data is the sole source of new data. This notion is captured by
the following theorem:

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.2 Hypersphere Attack Description 81

theorem 4.12 Every pair of sequences α,α′ ∈ A(M,∞) with identical subsequences
of nonzero elements—i.e., (αt | αt > 0) = (α′

t

∣∣ α′
t > 0

)
—achieve the same distance:

D (α) = D (α′); that is, the distance achieved by a sequence is independent of the num-
ber of zeros in the sequence and their placement. D (α) only depends on the subsequence
of nonzero elements of α. As a consequence, any finite sequence can be reordered as its
positive subsequence followed by a subsequence of all zeros, and the two achieve iden-
tical distances.

Proof. Since the sequences α and α′ contain the same nonzero elements in the same
order, one can transform α to α′ by repeated applications of Lemma 4.11 to insert and
delete zeros at the necessary positions in the sequence. Thus α, α′, and all intermediate
sequences used in this transformation have identical distances. �

It follows that zero elements can be arbitrarily inserted into or removed from any
optimal attack sequence to form an equivalent optimal attack sequence with the same
distance since zero elements neither add distance nor “weight” to the subsequent denom-
inators. Theorem 4.12 allows us to disregard all zero elements in a sequence since they
do not contribute to the effectiveness of the attack. Moreover, moving all zero elements
to the end of the sequence corresponds to the notion that the attacker wants to mini-
mize the time required for the attack since it does not benefit our attacker to prolong the
attack. Finally, the fact that zero elements can be disregarded suggests the possibility of
redefining αt ∈ N rather than N0.

4.2.3.2 Characteristics of Optimal Attack Sequences
Having shown that zero elements are irrelevant to our analysis, we now describe the
properties of the nonzero elements in optimal attacks. To begin, in this attack formu-
lation, there are no initial points supporting the hypersphere, so no matter how many
points the attacker places in the first iteration, the same displacement is achieved. This
is captured by the following lemma:

lemma 4.13 For N = 0, the optimal initial attack iteration is given by α

1 = 1.

Proof. The contribution of the first attack iteration is given by δ1 (α) = α1
μ1

= α1
α1

=
1. Hence, for α1 ∈ N (we exclude the possibility that α1 = 0 in accordance with
Remark 4.9), we have δ1 (α) = 1 , and since δt (α) = αt

α1+
∑

�=2 α�
is strictly decreas-

ing in α1 for t > 1, the optimal integer solution for this first iteration is given by
α

1 = 1. �

Additionally, if the total attack capacity is greater than one attack point and the
attacker has the ability to distribute its attack over more than one retraining iteration,
it is beneficial for it to do so; i.e., attacks that concentrate all their attack points in
a single attack iteration are nonoptimal. This is captured by Lemma B.2 provided in
Appendix B.3.

Further, the notion of cumulatively penalized gains from Remark 4.5 is crucial. There
are two forces at work here. On the one hand, placing many points (large αt) during
iteration t improves the contribution of the term δt (α) to the overall distance D (α). On

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

82 Attacking a Hypersphere Learner

the other hand, a large αt will be detrimental to subsequent terms since it will increase
the size of the denominator μτ in the contributions δτ (α) for τ > t. This effect can be
likened to having the mean of the points becoming heavier (harder to move) as more
points are utilized. Intuitively, one does not want to place too much weight too quickly
as it will cause the mean to become too heavy toward the end of the attack, making the
latter efforts less effective. This suggests that any optimal attack sequence should be
monotonically nondecreasing, which we prove in the following theorem:

theorem 4.14 For any optimal sequence of attack points, α
 ∈ A(M,∞), every sub-
sequence of nonzero elements of α
 must be monotonically nondecreasing; that is, if
I(nz) = {i1, i2, . . .

∣∣ ∀ k α

ik > 0

}
is a set of indexes corresponding to nonzero elements

of α
, then ∀ i, j ∈ I(nz) i ≤ j ⇔ α

i ≤ α

j .

Proof. The proof appears in Appendix B.2. �

Note that Theorem 4.14 does not require strict monotonicity, which makes it consis-
tent with Theorem 4.12.

While it has been shown that any optimal attack sequence should be monotonically
nondecreasing in magnitude, the intuition that the mean becomes heavier as more points
are utilized suggests more than just monotonicity. In fact, this notion will lead us to an
optimal solution in Section 4.3.1.

4.2.3.3 Behavior of Optimal Attack Distances
While it can be difficult to describe optimal attacks, we can generally describe the
behavior of the optimal displacement alignment (over all possible attacks) as functions
of M and T . In particular, we would expect that as the number attack points avail-
able to the attacker, M , increases, the resulting optimal displacement alignment should
increase. Similarly, as the attack duration T increases, we also expect the resulting opti-
mal displacement alignment to increase. The following theorem shows that the function
D

N (M, T) does, in fact, monotonically increase with respect to both M and T for any
fixed N ≥ 0.

theorem 4.15 For all N ∈ N0, the functions D

N (M,∞) and D

N (M, T) (for any fixed
T > 0) are strictly monotonically increasing with respect to M ∈ N0 unless N = 0 and
T = 1 in which case D

0 (M, 1) = 1 for all M ∈ N0. Further, for any fixed M > 0, the
function D

N (M, T) is strictly monotonically increasing with respect to T ≤ M and is
constant for T > M; i.e., D

N (M, T) = D

N (M,∞) for any T ≥ M.

Proof. The proof appears in Appendix B.3. �

Note that, with respect to T , the function D

N (M, T) is constant for T ≥ M because

the attacker must use at least one attack point in every gainful retraining iteration (see
Section 4.2.3.1). The attacker gains no additional benefit from attacks that exceed M in
duration.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.3 Optimal Unconstrained Attacks 83

4.3 Optimal Unconstrained Attacks

We now present solutions to different variations of the hypersphere attack problem and
find optimal attack strategies, as defined earlier. In this section, we explore attacks with-
out any constraints on the attacker, and, in the following sections, we consider dif-
ferent constraints that make the attacks more realistic. For an unconstrained attacker,
the strict monotonicity properties demonstrated in Theorem 4.15 suggest that an opti-
mal sequence should use all M available attack points and space its points as uni-
formly as possible to maximally extend the attack duration, T , after discarding zero
elements. Indeed, this is an optimal integer strategy for the optimization problem in
Definition 4.10, which is proven in the following theorem:

theorem 4.16 For N ∈ N, any optimal attack sequence, α
 ∈ A(M,∞), must satisfy
α

t ∈ {0, 1} and
∑

t α

t = M; i.e., α
 must have exactly M ones. In particular, one such

optimal sequence is 1M , which is a sequence of M ones followed by zeros. Moreover, the
optimal displacement achieved by any α
 ∈ A(M,∞) is D

N (M,∞) = hM+N − hN where
hk =∑k

�=1
1
�

is the kth harmonic number.

Proof. The proof appears in Appendix B.4. �

As a result of this theorem, we have a tight upper bound on the effect of any attack that
uses M attack points. While the harmonic numbers are computable, there is no closed-
form formula to express them. However, using the fact that hM+N − hN =∑M

k=1
1

k+N

is a series of a decreasing function in k, it is upper bounded by
∫ M

0
dx

x+N = ln
(

M+N
N

)
when N > 0 (Cormen, Leiserson, Rivest, & Stein 2001, Appendix A.2). Similarly, when
N = 0, Cormen et al. (2001, Appendix A.2) show that hk ≤ ln (k) + 1. Together, we
have the following upper bound on the optimal displacement achieved by an attack with
M points and no time limitations:

D

N (M,∞) ≤

{
ln (M) + 1, if N = 0

ln
(

M+N
N

)
, if N > 0

.

Since these upper bounds are strictly increasing functions in M , we apply Lemma 4.1
to invert the bounds and obtain the following lower bounds on the the number of attack
points required to execute an attack that displaces the hypersphere by the desired relative
displacement, DR. These bounds are simply

M
 ≥
{

exp (DR − 1) , if N = 0

N (exp (DR) − 1) , if N > 0
;

i.e., the effort required by the attacker to achieve its goal grows exponentially in DR.

4.3.1 Optimal Unconstrained Attack: Stacking Blocks

The optimal strategy given by α
 = 1M can alternatively be derived by transforming
this problem into a center-of-mass problem. Recall that, in Remark 4.5, the distance

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

84 Attacking a Hypersphere Learner

achieved by the attack was likened to a sum of cumulatively penalized gains. We can
think of this as a sequence of contributions attributable to each iteration of the attack;
that is, the t th iteration of the attack contributes δt (α) = αt∑t

�=1 α�
which is the “amount of

weight” used at time t relative to the total weight used up to that time. This is analogous
to a center-of-mass problem. In particular, if we model the attack points αt as units of
mass that are placed at a distance of R from the current center of mass c(t−1), δt (α) given
by Equation (4.12) is the amount by which the center of mass c(t) is shifted relative to
R. Since viable attack points cannot be placed beyond distance R, this is analogous to
placing a set of identical blocks below the current stack of blocks that was created at
time t − 1 such that the stack does not topple (the structure being stable corresponds to
the constraint that viable attack points cannot be beyond the radius R). Since the attack
is constrained to only place points at the boundary, this analogy only holds when the
stacking is done optimally or some of the blocks are vertically grouped (corresponding
to placing several attack points in a single iteration, a notion that will be revisited in
Section 4.4). Figure 4.2 depicts the correspondence between attacks on mean-centered
hyperspheres and the stacking of blocks extending beyond the edge of a table.

Having likened the attack strategy to a classical physics problem, the optimal strategy
reemerges from the latter’s solution. As is discussed in (Johnson 1955), the blocks can be
optimally stacked by extending the first by 1

2 , the second by 1
4 , and the t th by 1

2t . The opti-
mal integer strategy is given by placing a single point per iteration. Moreover, as is men-
tioned in Figure 4.2, since the blocks are of length 2R, this optimal strategy achieves a
displacement determined by the harmonic series D

0 (M,∞) = hM =∑M
t=1

1
t . We arrive

at a physical representation for the hypersphere attack and the corresponding optimal
strategy that we derived in Theorem 4.16. (In fact, the single-block stacking strategy is
not optimal if one allows more than one block per vertical layer, as per the multi-wide
stacking problem (Hall 2005; Hohm, Egli, Gaehwiler, Bleuler, Feller, Frick, Huber,
Karlsson, Lingenhag, Ruetimann, Sasse, Steiner, Stocker, & Zitzler 2007). However,
due to the constraints of our problem, such stacking strategies do not correspond to
realistic attacks as they would imply adding attack points outside of the hypersphere.

4.4 Imposing Time Constraints on the Attack

In the previous section, we showed that optimality was achieved by attacks that use at
most one attack point at each retraining iteration. While this strategy achieves maxi-
mal possible displacement toward the attacker’s target for any fixed attack budget M ,
it fails to capture the entire objective of the attacker. Namely, the goal of an attack
is to achieve an objective (displace the mean a desired amount), but to do so within
a minimal total attack duration T or with minimal effort (fewest possible points M).
As the preceding analysis shows, the prescribed attack achieves maximal distance of
≈ log M but does so in time T = M , and thus, such an attack only achieves a logarithmic
effect in the time required to mount the attack, whereas Theorem 4.6 bounds the total
displacement achieved linearly in T . This discrepancy between this upper bound and the
actual effect achieved suggests that such an attack does not fully utilize the attacker’s
available resources; i.e., its attack budget, M . As such, we consider the case of an

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.4 Imposing Time Constraints on the Attack 85

Figure 4.2 A figure depicting the physics analogy between the attack sequence
α = (α1 = 3, α2 = 4) and the concept of optimally stacking blocks on the edge of a table to
extend beyond the edge of the table. From top to bottom, the original effect of the attack α on the
naive hypersphere outlier detector is transformed into the equivalent balancing problem. In this
analogy, blocks of length 2R with a starting edge at c(t) are equivalent to placing an attack point
at the t retraining iteration of a hypersphere with mean c(t) and radius R. This strange
equivalence encapsulates the idea of a point of unit mass being placed at a distance R from the
former mean. Vertical stacks can be interpreted as placing several points at time t, and time
(oddly enough) flows down the blocks to the table. Also depicted are the contributions δ1 (α) and
δ2 (α) along with their overall effect D (α1, α2).

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

86 Attacking a Hypersphere Learner

attacker, who must execute its attack within T retraining iterations for some T ∈ N0,
with the more realistic assumption that T � M ; i.e., the attack must occur in a small
time window relative to the total size of the attack. This leads to the following notion of
constrained optimality:

definition 4.17 Constrained Optimality An attack sequence α
 ∈ A(M,T) is consid-
ered optimal with respect to M total available attack points and a given duration T if
∀α ∈ A(M,T) D (α) ≤ D (α
) and the optimal distance achieved by such a sequence is
denoted by D

0 (M, T). This optimality can be achieved by the attacker by solving the
following program to find an optimal attack sequence α
:

α
 ∈ argmaxα D (α) (4.14)

s.t. α ∈ A(M,T)

An equivalent formulation of constrained optimality would take a desired relative
displacement DR as an input and attempt to minimize the duration T required to achieve
the desired distance with a total of M attack points. Similarly, another alternative would
be to minimize M with respect to a fixed DR and T . However, Equation (4.14) is a natural
way to think about this optimization in terms of the attacker’s goal. In the remainder of
this section, we derive bounds that can be achieved for this constrained problem.

Before we continue, note that, when M ≥ T , the constrained problem is equivalent to
the original unconstrained problem. Further, by Theorem 4.15, the optimal displacement
achieved strictly increases as the attack duration T increases, and using T = M achieves
the maximum extension distance for any fixed attack size M ∈ N0. It is worth noting
that all the results of Section 4.2 remain valid in this constrained domain; We need only
rework the results obtained in the last section.

4.4.1 Stacking Blocks of Variable Mass

As was shown in Section 4.3.1, the original problem is equivalent to the problem of
optimally extending a stack of identical blocks over the edge of a table—a reduction to
a solved problem. Not surprisingly, the time-limited version of the attack on the hyper-
sphere is also analogous to a constrained version of the stacking blocks problem. In this
version, we have M points corresponding to M identical blocks. These points must be
arranged into T vertical stacks such that all points in a given stack are bound together
at the same (horizontal) location, which corresponds to placing points at a single time
iteration. Thus, the t th vertical stack contains αt ∈ N0 blocks of unit weight and has a
combined mass of αt . Additionally, to incorporate the initial supporting mass, there is
an initial unmovable mass of α0 = N , which rests at the outer edge of the topmost block.
The attacker must optimize the grouping of the M blocks such that the resulting T stacks
achieve a maximal extension beyond the edge of the table; Figure 4.2 depicts this prob-
lem with three stacks. However, this constrained form of the stacking blocks problem
is more difficult than the original one since it adds this vertical stacking constraint and,
since the size of each stack is integral, this is an integer program.

To the best of our knowledge, there is no generally known (integer) solution for this
problem. However, for our purpose of bounding the optimal progress an attacker can

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.4 Imposing Time Constraints on the Attack 87

achieve, we are not required to find a provably optimal feasible strategy. Instead, if by
relaxing the limitations on our adversary (i.e., giving it strictly more power than the
problem allows), we can derive an optimal strategy, then the displacement achieved by
this optimal relaxed strategy will bound the optimal strategy of the true (limited) adver-
sary. One such intuitive relaxation is to remove the constraint that the vertical stacks
contain an integer number of elements; instead, we allow them to be real-valued (but
still non-negative). This leads to a new formulation: the attacker has T blocks of equal
length but variable mass, and it wants to optimally allocate mass to those blocks so that
their total mass is M and they achieve an optimal horizontal displacement beyond the
table. This is the continuous variant of the problem: the variable-mass block-stacking
problem.

By moving into the continuous realm, we consider continuous sequences β ∈ B(M,T)

where βt ∈ �0+. For a given T and M , the (relaxed) attacker wants to find an β
 such
that for all β ∈ B(M,T) it achieves D (β
) ≥ D (β). The optimization problems presented
in Equations (4.13) and (4.14) naturally extend to the continuous context, and most of
the observations of the original problem carry over to the continuous realm. In par-
ticular, it is clear that the location of zero-elements is still irrelevant as was shown in
Theorem 4.12, and the zero-elements can again be discarded without affecting optimal-
ity. Moreover, the proof of Theorem 4.14 made no use of the fact that αt were integers;
only that αt ≥ 0. The same line of reasoning can be applied to βt ∈ �0+ and any optimal
continuous solution is monotonically increasing. In fact, the only result of Section 4.2
invalidated by this relaxation is Lemma 4.13—in the continuous domain, it is no longer
generally optimal to have β1 = 1 because any β1 = ε > 0 achieves the optimal initial
contribution δ1 (β) = 1.

4.4.2 An Alternate Formulation

In the continuous mass setting, it is not straightforward to find an optimal strategy
β

T = (βt ∈ �0+) for the program given in Equation (4.14). While the original stacking-
blocks problem is a well-known example of a center-of-mass problem with a published
solution, we are not aware of research addressing a block-stacking problem in which
mass can be redistributed among the blocks. In the sections that follow, we provide a
solution to this problem and bound the effort required by the attacker to achieve its goal
in the analogous setting.

To solve this problem we return to the intuition given in Remark 4.5 that the attacker
must balance current gains against past actions, and we rewrite the problem in terms
of the mass accumulated in the t th retraining iteration. In particular, by considering
that the relaxed cumulative sum of mass of Equation (4.7) is given by μt =∑t

�=1 β�

with μ0 = N and μT = M , each element of the attack sequence can be rewritten as
βt = μt − μt−1. This allows us to rewrite the entire objective function in terms of the
cumulative mass sequence, μ, which results in

D (μ) = T −
T∑

t=1

μt−1

μt
, (4.15)

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

88 Attacking a Hypersphere Learner

with μ0 = N . From the definition of μt as a cumulative mass, it follows that μ0 ≤
μ1 ≤ μ2 ≤ . . . ≤ μT = M + N . Finally, in the T th iteration, the mass must total M + N
since, from Theorem 4.15, we have that attacks using less than M total points are nonop-
timal, and hence, are excluded from consideration. Thus, optimality can be achieved for
the attacker by solving the following program for μ
 = (μ

t

)
:

μ
 ∈ argmaxμ D (μ) = T −
T∑

t=1

μt−1

μt
(4.16)

s.t.
μ

0 ≤ μ

1 ≤ . . . ≤ μ

T

μ

0 = N, μ

t ∈ �+, μ

T = M + N

In this reformulation, the total mass constraints still capture every aspect of the relaxed
problem, and it is easier to optimize this reformulated version of the problem. This leads
to our desired bounds on the optimal progress of an attacker in the time-constrained
problem variant.

4.4.3 The Optimal Relaxed Solution

Using the alternative formulation of Program (4.16), we can calculate the optimal
relaxed strategy for T < M (for T ≥ M , Theorem 4.16 applies). The results of this
optimization are summarized by the following theorem:

theorem 4.18 For any N > 0 and T < M, the sequence of masses described by the

total mass sequence μ

t = N

(
M+N

N

)(t
T) for t ∈ 1 . . . T is the unique solution of Pro-

gram (4.16). Moreover, this total mass sequence provides the following bound on the
optimal displacement alignment

D

N (M, T) ≤ D (μ
) = T

(
1 −

(
N

M + N

)1/T
)

. (4.17)

Finally, the actual optimal sequence of mass placements β
 can be described by

β

t =

⎧⎨
⎩N, if t = 0

N
(

M+N
N

) t−1
T

((
M+N

N

) 1
T − 1

)
, if t ∈ 1 . . . T

. (4.18)

Also note that, as required this solution meets the conditions μ0 = N,
∑T

t=1 β

t = μT =

M + N, and for all t > 0, μt−1 ≤ μt .

Proof. See Appendix B.5. �

In general, the optimal relaxed strategy of Equation (4.18) does not produce integer

strategies except in the case when
(

M+N
N

) 1
T ∈ N. Thus, these strategies are not generally

optimal according to the program given in Equation (4.14). Moreover, it is nontrivial
to convert an optimal relaxed strategy to an optimal integer-valued one (rounding can
produce good strategies but is not necessarily optimal). However, we need not explicitly
compute the optimal integer-valued strategy to quantify its impact.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.4 Imposing Time Constraints on the Attack 89

The utility of this result is that it allows us to bound the optimal displacement
achieved by the optimal integer-valued attack sequence and subsequently invert these

bounds using Lemma 4.1 since the function T
(

1 − (N
M+N

)1/T
)

is monotonically

increasing in both M and T . Also, in agreement with Theorem 4.6, this function is
upper bounded by T and has an upper limit (as T → ∞) of log

(
M+N

N

)
. For any fixed

T and M , the displacement achieved is at most min
[
T, log

(
M+N

N

)]
. The result is as

follows:

M
 ≥
⎧⎨
⎩N

(
T

T−DR

)T
− N ≥ N (exp (DR) − 1) , if DR < T

∞, if DR ≥ T
, (4.19)

where the second case of this bound reflects the restriction that the total relative dis-
placement cannot exceed the attack duration T , regardless of how many attack points
are used (see Theorem 4.6). Similarly, the minimum number of retraining iterations
required to achieve the displacement DR for a given N, M > 0 can be determined as
solutions to the following inequality(

DR
T − 1

)T ≥ N
M+N ,

which is computable using the Lambert-W function (i.e., the inverse of the function
f (w) = w exp (w)), but cannot be expressed in terms of elementary functions and does
not contribute to our intuition about the problem except to say that the bound can be
computed (see Figure 4.3).

We have now provided strong bounds on the effort required of the adversary to
achieve its desired goal. However, before we conclude this section, note that the result

Figure 4.3 Plots depicting the lower bound on the number of retraining iterations T required to
make the goal displacement DR attainable. Each curve shows the lower bound for a particular
fixed ratio N

M+N . As one expects, when M � N the requirement is lessened, but in each case,
there is a turning point in the curve where the bound sharply increases; e.g., it is practically
impossible to achieve DR > 1 when N

M+N = 0.5 because it would require an unreasonable attack
duration to do so. The reader should note that, additionally, these lower bounds are loose unless
M � T .

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

90 Attacking a Hypersphere Learner

in Equation (4.19) is only applicable when N ≥ 1. Briefly, we address this special case
and then consider additional scenarios for attacks against hypersphere detectors.

4.4.3.1 Attacks against a Nonsupported Initial Hypersphere
As noted earlier, unlike Theorem 4.16, Theorem 4.18 and the subsequent bounds that
result from it do not apply when N = 0. This is because, without an initial constraint
on the sequence, increasingly large displacements can be obtained by starting with an
ever-diminishing initial point, μ1 > 0. The problem is that for N = 0, the initial hyper-
sphere centered at c(0) is assumed to have no initial mass. Thus, the first mass placed by
the attacker on the boundary displaces the mean to c(1) = R regardless of its size. In the
integer-valued case, this assumption has little effect on the outcome due to Lemma 4.13,
but in the continuous case, this leads to an attack that places minuscule (but exponen-
tially increasing) masses in the initial phase of the attack and then adds the overwhelm-
ing majority of the total mass in the final stages.

In the continuous domain, we can examine the sequence of optimal attacks given by
Theorem 4.18 in the limit as N → 0. In doing so, we derive that the optimal distance
achieved by Equation (4.17) approaches T ; i.e., limN→0 D

N (M, T) = T . As shown in
Theorem 4.6, this is, if fact, the maximal possible displacement alignment attainable by
any sequence of T duration. However, such attack sequences do not correspond well to
the feasible integer-valued attacks and do not improve our bounds.

To provide better bounds for the case of N = 0, we reintroduce the constraint
μ1 = β1 = 1 from the original integer-valued problem. That is, we now assume that
the result of Lemma 4.13 hold; this constrains the continuous-valued sequences to more
closely match the integer-valued ones. This is a reasonable assumption to make since
the attack does not begin until the attacker uses at least one attack point as discussed in
Remark 4.9.

This new constraint for the problem leads to a similar problem as was analyzed earlier
in Equation (4.16) using μ1 = 1 instead of μ0 = N , and the subsequent results mirror
those presented in Theorem 4.18 and its proof. In particular, we have that the total mass
sequence given by μ

t = M
t−1
T−1 for t ∈ 1 . . . T is the unique solution and achieves an opti-

mal displacement alignment of D

0 (M, T) ≤ T − (T − 1) · M

−1
T−1 . Again, this bounding

function is monotonically increasing in both M and T , which leads to the following
bound on the adversary’s effort when N = 0:

M
 ≥
⎧⎨
⎩
(

T
T−DR

)T
≥ exp (DR − 1) , if DR < T

∞, if DR ≥ T
,

where the second case again reflects the restriction that the total relative displacement
cannot exceed the attack duration T . Also, a bound on the minimum number of retrain-
ing iterations, T
, required to achieve the displacement DR for a given M > 0 can be
computed from the above bound on D

0 (M, T), but it cannot be expressed in terms of
elementary functions and does not contribute further insight.

This concludes our results for attacks against the hypersphere model described in
Section 4.1. In all cases we have thus far examined, the impact of the attacker on the

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.5 Attacks against Retraining with Data Replacement 91

model was extremely limited, and the number of attack points required to attain a desired
displacement DR was minimally exponential in DR. These results provide a strong guar-
antee on the hypersphere’s security, but, as discussed in the next section, the retraining
model used is overly rigid. We now proceed by examining alternative retraining models.

4.5 Attacks against Retraining with Data Replacement

Now we consider an alternative learning scenario, in which new data replaces old data,
allowing the hypersphere detector to adapt more agilely. This scenario was explored
by Kloft & Laskov (2012), and here we summarize their results. We assume that each
new point is introduced by the attacker and replaces exactly one existing point that was
previously used to train the hypersphere in the last retraining iteration. This alters the
centroid update formula given in Equation (4.6) to

c(t) = c(t−1) + 1

N

(
a(t) − x(t)

rep

)
, (4.20)

where x(t)
rep is the point to be replaced by a(t). Notice that, unlike in Section 4.2, the mass

supporting the new hypersphere’s centroid does not change since we have both added
and removed a point. As we show below, in this scenario, the attacker is no longer
inhibited by past attack points, which makes its attack considerably more effective than
in previous attack scenarios.

One can generalize this setting to again allow the attacker to use αt attack points in
each iteration (generally with αt ∈ {0, . . . , N}). However, doing so considerably compli-
cates the subsequent analysis both in terms of choosing the set of optimal attack vectors
A(t) and optimally apportioning the attack points into an overall strategy α. Moreover,
as we saw in Section 4.3, the strategy of placing a single attack point at each iteration
(αt = 1) is the optimal strategy for placing M points without any time constraints and
strictly dominates all time-constrained strategies. Hence, in this section, to simplify our
presentation, we focus only on single-point attack strategies (assuming that T = M) and
comment on the effects of this assumption.

Under this single-point replacement scenario, the relative displacement and total rel-
ative displacement are given, respectively, by

rt = 1
R·N
(

a(t) − x(t)
rep

)
and DT = 1

R·N

T∑
t=1

(
a(t) − x(t)

rep

)
.

Unlike the results derived in Section 4.2 and their subsequent consequences, we require
more information about the specific replacement policy used by the hypersphere to opti-
mize or analyze the impact of attacks in this scenario. Next we discuss various replace-
ment policies for choosing x(t)

rep and their effect on the attack’s success. However, from
the expression of DT given above, it is obvious that the attacks will generally be more
successful than those analyzed in previous sections. In fact, note that if for all t we

have
(

a(t) − x(t)
rep

)� (
xA − c(0)

) ≥ κ for some fixed constant κ > 0, then the attacker

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

92 Attacking a Hypersphere Learner

can achieve a displacement alignment of at least

ρ (DT) ≥ κ

RN
∥∥xA − c(0)

∥∥ T.

This suggests that, under replacement, attacks may potentially achieve a linear displace-
ment alignment that linearly increases with the attack duration T using only a single
attack point at each iteration (hence a total of M = T attack points). This would be an
astounding success for the attacker, especially compared to the exponential results that
were demonstrated for retraining without replacement.

Below we discuss a number of potential replacement policies and how they affact
the attacker’s success. In this discussion, we will consider policies and effects that are
random. To do so, we analyze attacks that are optimal for each step of the attack, but
are not necessarily optimal with respect to the entire attack strategy. For this purpose,
we consider the following notion of greedy optimal attacks.

definition 4.19 At the t th iteration of the attack, given the current centroid c(t−1), an
attack using attack point a(t) is a greedy optimal attack if it optimizes

E
[
ρ (Dt)

∣∣ c(t−1)
]

(4.21)

subject to the constraint that
∥∥a(t) − c(t−1)

∥∥ ≤ R.

4.5.1 Average-out and Random-out Replacement Policy

First, we examine two simple replacement policies: removing a copy of the previ-
ous centroid (average-out replacement) and removing a random point from the data
(random-out replacement). These policies have a predictable impact on the displace-
ment alignment, which allows the attacker to achieve its objective using relatively few
attack points.

In average-out replacement, the point that is replaced by any new data point is always
a copy of the current centroid; i.e., in the t th iteration, x(t)

rep = c(t−1). Thus, from Equa-
tion (4.20), the t th centroid is given by c(t) = c(t−1) + 1

N

(
a(t,�) − c(t−1)

)
, which yields

a result similar to Theorem 4.7; namely, the optimal attack point at every iteration is
a(t) = c(t−1) + R · xA−c(0)

‖xA−c(0)‖ and the optimal T th centroid is c(T) = c(0) + RT
N · xA−c(0)

‖xA−c(0)‖ .

This yields the following optimal attack parameters:

rt = 1

N
· xA − c(0)∥∥xA − c(0)

∥∥ ∀ t ∈ {1, . . . , T }

DT = T

N
· xA − c(0)∥∥xA − c(0)

∥∥ .

Further, the resulting displacement alignment is thus ρ (DT) = T
N . In accordance with

our discussion above, the relative displacement achieved under this policy at each itera-

tion achieves a fixed inner product with the desired direction xA − c(0) of κ = ‖xA−c(0)‖
N .

Each attack point contributes 1
N of a unit step in the desired direction, and the desired

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.5 Attacks against Retraining with Data Replacement 93

displacement can be achieved with M
 = T
 = N · DR; i.e., the goal only requires lin-
early many points in the desired relative displacement DR.

Remark 4.20 Above, the attacker can optimally displace the hypersphere by using one
attack point per iteration. However, note that the impact achieved on the centroid by each
attack point is the same regardless of how many attack points are used in any iteration.
The per-point impact is the same regardless of how many points are used in each itera-
tion. In fact, if N attack points are used in each iteration, the displacement alignment is
ρ (DT) = T , the maximum possible displacement alignment when replacement was not
permitted (see Theorem 4.6). The attacker’s goal can be achieved using only T
 = DR

iterations, although the number of points required remains as M
 = N · DR. As such,
it is more appropriate to write ρ (DT) = M , which holds for average-out replacement
regardless of the allocation strategy.

For the random-out replacement policy, x(t)
rep is a randomly selected element of the

hypersphere’s current training set. As such, it is no longer possible to compute the

attack parameters precisely—namely, the terms
(

a(t) − x(t)
rep

)
that are used to recur-

sively compute the hypersphere’s centroid depend on a random variable. However, we
can consider greedy optimal attacks that locally optimize the expected displacement
alignment at each iteration t with respect to the centroid c(t−1) obtained from the previ-
ous iteration. In particular, the expected value of ρ (·) can be simplified by noting that

E
[
Dt

∣∣ c(t−1)
] = E[c(t) | c(t−1)]−c(0)

R . By the linearity of expectations and the definition of
displacement alignment in Equation (4.5) we have

E
[
ρ (Dt)

∣∣ c(t−1)
] = E

[
c(t)
∣∣ c(t−1)

]� (
xA − c(0)

)
R
∥∥xA − c(0)

∥∥ −
(
c(0)
)� (

xA − c(0)
)

R
∥∥xA − c(0)

∥∥ ,

where the second term is a constant determined by the parameters of the problem.
Thus, we seek to maximize the numerator of the first term, for which E

[
c(t)
∣∣ c(t−1)

] =
c(t−1) + 1

N

(
a(t) − E

[
x(t)

rep

∣∣∣ c(t−1)
])

since a(t) is not considered a random variable.

In general, the attacker does not know the distribution of the candidate replacement
data points

{
x(�)
}
, which consist of a mixture of benign and adversarial points. However,

it does know that they have an empirical mean of c(t−1), since these data points are the
sample used to center the hypersphere. Since the replacement point is selected randomly

from this set (with equal probability), the required expectation is E
[
x(t)

rep

∣∣∣ c(t−1)
]

=
c(t−1). Thus, as with average-out replacement, the optimal greedy attack point is a(t) =
c(t−1) + R · xA−c(0)

‖xA−c(0)‖ and the expected displacement achieved is

E
[
rt

∣∣ c(t−1)
] = 1

N
· xA − c(0)∥∥xA − c(0)

∥∥ ∀ t ∈ {1, . . . , T }

E
[
DT

∣∣ c(t−1)
] =

T∑
t=1

E
[
rt

∣∣ c(t−1)
] = T

N
· xA − c(0)∥∥xA − c(0)

∥∥ .

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

94 Attacking a Hypersphere Learner

Naturally, the expected displacement alignment is again E
[
ρ (DT)

∣∣ c(t−1)
] = T

N .
Thus, randomly selecting the point to be replaced does not deter the attacker’s expected
progress compared to the average-out policy.

4.5.2 Nearest-out Replacement Policy

Here we consider a replacement rule that is intended to diminish the success of poi-
soning when old data is replaced by new data. In particular, we consider nearest-out
replacement, in which each new datum replaces the old data point that lies closest to
it. This policy is designed to reduce the effectiveness of attacks because it limits the
total displacement caused by any attack point. However, under the assumption that the
adversary knows all training data, Kloft & Laskov (2012) showed that an adversary can
use a greedy optimization procedure to find the optimal point to insert conditioned on
the current training data—in this case, such a strategy is greedy since it does not factor
future gains when selecting the next best point to insert.

To counter nearest-out replacement, the strategy employed by the adversary is to find
the best point to replace the jth point in the dataset; i.e., the point a(t, j) that (i) lies
within the t th hypersphere, (ii) will replace x(j), and (iii) has the largest displacement
alignment of any such point . To find this point, consider that the N data points divide
X into N regions called Voronoi cells; the jth Voronoi cell is the set of points that are
closer to x(j) than any other data point in the dataset. As such, the sought-after point a(t, j)

must lie within the jth Voronoi region and thus can be found by solving the following
optimization problem:

a(t, j) = argmaxx
1

RN

(
x − x(j)

)� (xA − c(t)
)∥∥xA − c(t)
∥∥ (4.22)

s.t.
∀ k ∈ 1, . . . , N

∥∥x − x(j)
∥∥ ≤ ∥∥x − x(k)

∥∥∥∥x − c(t)
∥∥ ≤ R.

The objective of this program maximizes the displacement alignment for replacing the
jth point, the first constraint requires that the new point lie within the jth Voronoi cell,
and the second constraint requires it to lie within the t th hypersphere. The attacker can
thus solve for the best points relative to each of the N data points and select the one that
achieves the largest displacement alignment as the t th attack point, a(t), as depicted in
Figure 4.4. This process is repeated at each attack iteration.

The program of Equation (4.22) is a quadratically constrained linear program, for
which the quadratic constraints on a(t, j) can be expressed in terms of a positive definite
matrix. Thus, the programs are convex and have a unique optimum (Boyd & Vanden-
berghe 2004). They can generally be solved by convex optimizers, but current solvers
do not scale well when N is large. However, an alternative approach is presented in
Algorithm 4.1, which utilizes a quadratic program instead. This optimization problem
minimizes the radius of the point within the neighborhood of the kth data point, but is
constrained to obtain a minimum displacement alignment, ρ̂. If such a point is feasi-
ble and lies within the radius R of c(t), then ρ̂ is a lower bound on the displacement

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.5 Attacks against Retraining with Data Replacement 95

Figure 4.4 A depiction of an iteration of the optimal greedy attack against a hypersphere retrained
using nearest-out replacement. The attacker wants to shift the current centroid c toward the
target point xA, and the desired displacement direction is shown with a gray vector between
them. Each training point is indicated with a ⊕. These points induce a Voronoi decomposition
of the space depicted by the black grid within the hypersphere. Each such Voronoi cell is the set
of points that would replace the enclosed training point. Finally, the optimal attack point is
represented by a ⊗—it replaces the indicated training point and thereby yields the maximum
possible displacement alignment according to Program (4.22).

alignment that can be achieved by replacing the kth point; otherwise, it is an upper
bound. Thus, we can perform a binary search for the maximum attainable displacement
alignment that can be achieved relative to each point. Further, since we are searching
for the maximum possible displacement alignment, we can initialize the initial lower
bound of the kth point to the maximum displacement alignment thus far achieved for
the previous (k − 1) points. This overall procedure is captured in Algorithm 4.1.

However, there remains one aspect of this problem we have not yet addressed. Until
now, we implicitly assumed that the Voronoi region of each point has a non-empty inter-
section with the hypersphere, but this assumption may be violated after many iterations
of greedy optimal attacks. Such points are abandoned and act as a drag on the attack
since they are no longer replaceable and lie far from the desired target xA. However, the
attacker can prevent points from being abandoned by finding the optimal attack point,
determining (through simulation) if the attack would cause any points to be abandoned,
and, if so, finding the optimal attack point for the abandoned point. By ensuring that no
points are abandoned, the attacker loses gain in that iteration, but prevents a long-term

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

96 Attacking a Hypersphere Learner

algorithm 4.1 Nearest-out Greedy Attack

Nout − Opt
(
xA, c(0), R, c(t),

{
x(j)
}
, ε
)

Let ρ− ← −2 · R
for all j ∈ 1, . . . , N do begin

Let ρ+ ← 2 · R
while ρ+ − ρ− > ε do begin

Solve for

a(t, j) = argminx

∥∥x − c(t)
∥∥ (4.23)

s.t.
∀ k ∈ 1, . . . , N 2

(
x(k) − x(j)

)�
x ≤ ∥∥x(k)

∥∥2 − ∥∥x(j)
∥∥2

1
RN

(
x − x(j)

)� (xA−c(0))
‖xA−c(0)‖ ≥ ρ+−ρ−

2

if Program 4.23 is feasible and
∥∥a(t, j) − c(t)

∥∥ ≤ R then ρ− ← ρ+−ρ−
2 and

a(t) ← a(t, j)

else ρ+ ← ρ+−ρ−
2

end while
end for
return: a(t)

drag on its attack. This makes the attack more globally optimal, but more difficult to
analyze precisely.

Because of this problem, there is no known exact result for this attack’s total displace-
ment alignment over T attack iterations. However, we can approximate it. Namely, in
the worst case for the attacker, all training points would be co-linear along the direc-
tion xA − c(t). As such, we can analyze the one-dimensional case. Here, assuming that
no points will be abandoned, the displacement achieved by a single attack is at least
R

2N since, at worst, the N points are spread evenly between the centroid and the radius
R. Thus, the total displacement is at least 1

2N2 times the number of iterations in which
no points are abandoned. However, in practice, the gains are much greater in high-
dimensional problems and are approximately linear in T

N . To see this, we followed the
experimental procedure of Kloft & Laskov (2012) using N = 100 initial data points
drawn from a standard normal distribution in D ∈ {2, 4, 8, 16, 32, 64, 100} dimensions
with a radius R selected to have a false-negative rate of 0.001. From this initial set-
ting, we constructed over T = 5 · N = 500 iterations of greedy attacks. The experiments
were repeated 10 times, and the results are shown in Figure 4.5. As can be seen in these
plots, the effects are approximately linear for D > 4 with a slope that approaches and
even can perform slightly better than DR = T

N .

4.6 Constrained Attackers

Reiterating our results thus far, in Sections 4.3 and 4.4, we showed that a hypersphere
detector, which uses bootstrap retraining without any data replacement, is resilient to

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.6 Constrained Attackers 97

0

1

2

3

4

5

0 1 2 3 4 5 6

DR

T
N

D 8
D 16
D 32
D 64
D 100
DR
exp (DR) 1

(a) Greedy Attack on Nearest-out Policy: High Dimensional

0

1

2

3

4

5

0 1

DR

T
N

(b) Greedy Attack on Nearest-out Policy:
Low Dimensional

0

1

2

3

4

5

100 101 102
DR

T
N

(c) Slope as a Function of Dimension

Figure 4.5 These plots show the empirical effect of iterative greedy attacks against a hypersphere
using nearest-out replacement. (a) In high dimensions, the required duration of the attack
increases approximately linearly as a function of DR, with a slope that decreases as dimension
increases. (b) In small dimensions, the required duration can exceed the exponential bound due
to the dense clustering of the data in the hypersphere. (c) When approximated as a linear
function, the slope of the fit line decreases as the dimension of the hypersphere increases. For
D ≈ N , the slope can be slightly less than one.

attacks in the sense that an attacker must use exponentially many attack points in terms
of its desired displacement, DR. However, without any data replacement, the hyper-
sphere becomes unadaptable as more data is received and retraining quickly becomes
futile. However, as we saw in the last section, when data replacement is incorporated,
an attacker can achieve its desired displacement, DR, of the hypersphere detector using
only linearly many attack points to do so under several possible replacement policies.
These results suggest that having an adaptive hypersphere detector may be incompatible

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

98 Attacking a Hypersphere Learner

with having a model that is difficult for an attacker to coerce; i.e., iterative relearning
and security are not simultaneously possible for hypersphere learning. However, to this
point, we have been exceedingly pessimistic in assuming that the attacker can control
all data points once the attack commences. In this section, we examine more realistic
assumptions on the attacker’s capabilities and show that in some settings, iteratively
retrained hyperspheres are more resilient to poisoning attacks than indicated by the pre-
vious worst-case analysis. As with the last section, here we summarize results presented
by Kloft & Laskov (2012).

To simplify the analysis, here we only consider average-out replacement, and we
restrict ourselves to the scenario in which the hypersphere is retrained whenever it
receives a new point; i.e., αt = 1 for all t. Through this restriction, we need only con-
sider how the attacker designs a single optimal point a(t) at the t th iteration, and we
assume it does so greedily (i.e., only considering the current hypersphere).

In contrast to previous sections, we now assume that there are two sources of new
data: attack data generated by the attacker and benign data generated by other users of
the system. We assume that the benign data (i) comes from a natural distribution Px that
is neither advantageous nor detrimental to the adversary, (ii) is drawn independently and
identically from that distribution, (iii) is randomly interleaved with the adversarial data,
and most importantly, (iv) is always accepted for retraining regardless of the current state
of the classifier (i.e., bootstrap retraining is relaxed for benign data).2 In particular, we
assume that each new data point given to the classifier is randomly selected to be either
adversarial or benign according to a Bernoulli random variable with fixed parameter
ν ∈ [0, 1]; i.e., when the t th new data point is introduced, it is either the point a(t) selected
by the adversary with probability ν or it is a point x(t) ∼ Px with probability 1 − ν and
the attacker cannot alter the probability ν of its point being selected. Equivalently, we
can model the new point x(t)

new with a random variable B(t) ∼ Bern(ν) such that

x(t)
new = B(t)a(t) + (1 − B(t)

)
x(t) (4.24)

where x(t) ∼ Px and B(t) ∈ {0, 1}. Importantly, in selecting a(t), we assume the adversary
does not know B(t) or x(t) but can still observe c(t) that results and thus can compute x(t)

new

after retraining occurs. As before, the adversary must also choose a(t) to be accepted
for retraining, but here we assume that when B(t) = 0, the benign x(t)

new will always be
accepted. Next, we discuss how the attacker can select a(t) and analyze its impact under
several constraints.

4.6.1 Greedy Optimal Attacks

In the scenario discussed above, new training data is a mixture of attack and benign
data, but the attacker cannot alter the mixing ratio between them. Under this setting,
we assume that the attacker produces an attack point at each iteration to optimize the
expected displacement alignment according to Equation (4.21), and either this point

2 This assumption is removed in alternative models studied by Kloft & Laskov (2012) that are not discussed
here.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.6 Constrained Attackers 99

or a benign point x(t) ∼ Px will be used in retraining the hypersphere to obtain the t th

centroid. Under average-out replacement (see Section 4.5.1), the outcome of this attack
can be described by the resulting centroid and displacement vector, which are computed
from x(t)

new as

c(t) = c(t−1) + 1

N

(
x(t)

new − c(t−1)
)

= c(t−1) + 1

N

(
B(t)
(
a(t) − c(t−1)

)+ (1 − B(t)
) (

x(t) − c(t−1)
))

DT = 1

R · N

T∑
t=1

(
x(t)

new − c(t−1)
)

= 1

R · N

T∑
t=1

(
B(t)
(
a(t) − c(t−1)

)+ (1 − B(t)
) (

x(t) − c(t−1)
))

Due to the structure of these recursive expressions, it is difficult to optimize DT over
the entire attack sequence. However, given the centroid c(t−1) from the last iteration,
we can derive greedy optimal actions for the adversary under the assumption that all
points

{
x(t)
}

are drawn independently from the distribution Px. The result is given by
the following lemma.

lemma 4.21 Under average-out replacement, at the tth attack iteration, the greedy
optimal attack point is given by

a(t) = c(t−1) + R · xA − c(0)∥∥xA − c(0)
∥∥ .

Proof. From Equation (4.21), the greedy optimal strategy optimizes E
[
ρ (Dt)

∣∣ c(t−1)
]

but since E
[
ρ (Dt−1)

∣∣ c(t−1)
] = ρ (Dt−1)—a fixed quantity relative to the

attacker’s actions in the t th step—the former is equivalent to optimizing
E
[
ρ (Dt) − ρ (Dt−1)

∣∣ c(t−1)
]
; i.e., to optimizing the dot product of rt with

the desired direction xA − c(0). This relative displacement is given by rt =
B(t)

R·N · (a(t) − c(t−1)
)+ (1−B(t))

R·N · (x(t) − c(t−1)
)
. Computing the required expected value

thus becomes

E
[
ρ (Dt) − ρ (Dt−1)

∣∣ c(t−1)
] =E

[
rt

∣∣ c(t−1)
]� xA − c(0)∥∥xA − c(0)

∥∥
= ν

R · N

(
a(t) − c(t−1)

)� xA − c(0)∥∥xA − c(0)
∥∥

+ 1 − ν

R · N

(
E
[
x(t)
∣∣ c(t−1)

]− c(t−1)
)� xA − c(0)∥∥xA − c(0)

∥∥ ,

where E
[
x(t)
∣∣ c(t−1)

]
is a fixed quantity since x(t) is drawn independently from Px. By

linearity, maximizing this quantity is equivalent to maximizing
(
a(t) − c(t−1)

)� xA−c(0)

‖xA−c(0)‖
with respect to

∥∥a(t) − c(t−1)
∥∥ ≤ R. As we saw in Section 4.5.1, this yields the claimed

form for optimal a(t). �

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

100 Attacking a Hypersphere Learner

4.6.2 Attacks with Mixed Data

Here we analyze the expected net effect of applying the optimal greedy attack of
Lemma 4.21 over T iterations and thus provide an analysis for the mixed data scenario
described in Equation (4.24). To do so, we require an additional assumption about the
benign data’s distribution—namely we assume (i) that all benign data is drawn inde-
pendently from Px, (ii) that the benign data has a stationary mean, Ex∼Px [x] = c(0), and
(iii) that benign data is never rejected. These are strong assumptions about the benign
data, but, in assuming that the benign data has a stationary mean and is always accepted,
these are conservative assumptions on the attacker and yield the following theorem.3

theorem 4.22 (Paraphrased from Kloft & Laskov 2012) Given a fixed mixture prob-
ability ν, applying the greedy optimal attack strategy (given by Lemma 4.21) at each
iteration yields an expected displacement alignment of

E [ρ (DT)] = ν

1 − ν
·
(

1 −
(

1 − (1 − ν)

N

)T
)

≤ ν

1 − ν

after T iterations.

Proof. Under the optimal attack strategy of Lemma 4.21 the centroid becomes

c(t) = c(t−1) + 1

N

(
B(t)R · xA − c(0)∥∥xA − c(0)

∥∥ + (1 − B(t)
) (

x(t) − c(t−1)
))

= c(t−1) + B(t)R

N

xA − c(0)∥∥xA − c(0)
∥∥ + 1

N

(
1 − B(t)

) (
x(t) − c(0)

)
− 1

N

(
1 − B(t)

) (
c(t−1) − c(0)

)
,

where the summation has been conveniently reorganized for later. Now, using the def-
inition of Dt = c(t)−c(0)

R from Equation (4.4), we substitute this form of c(t) and use the
linearity of ρ (·) to obtain

Dt =
(

1 − 1 − B(t)

N

)
Dt−1 + xA − c(0)∥∥xA − c(0)

∥∥ B(t)

N
+
(
1 − B(t)

)
N

(
x(t) − c(0)

)
R

,

ρ (Dt) =
(

1 − 1 − B(t)

N

)
ρ (Dt−1) + B(t)

N
+
(
1 − B(t)

)
N

(
x(t) − c(0)

)� (
xA − c(0)

)
R
∥∥xA − c(0)

∥∥ .

Next we use the linearity of E [·] and the mutual independence of the random
variables B(t) and x(t) to compute the expectation of ρ (Dt). Importantly, Dt−1 is
also mutually independent of B(t) and x(t) from the t th iteration. Finally, using the
fact that E

[
B(t)
] = ν and E

[
x(t)
] = c(0), we arrive at the following recursive formula

E [ρ (Dt)] =
(

1 − (1−ν)
N

)
E [ρ (Dt−1)] + 1

N ν. Unwrapping this recursion and using the

3 In a more realistic model, benign data would not always be accepted, particularly once the attack had
significantly shifted the detector. This would motivate the attacker to concentrate its attack mass in the early
iterations. Amenable models for this scenario are further explored in Kloft & Laskov (2012).

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.6 Constrained Attackers 101

facts that D0 = 0 and thus ρ (D0) = 0 yield the following geometric series:

E [ρ (Dt)] = ν

N
·

T∑
t=1

(
1 − (1 − ν)

N

)T−t

= ν

N
·

1 −
(

1 − (1−ν)
N

)T

1 −
(

1 − (1−ν)
N

)
= ν

1 − ν

(
1 −

(
1 − (1 − ν)

N

)T
)

.

The upper bound of ν
1−ν

on this quantity is derived from the fact that, for all T , the
last factor in the above expression is less than or equal to one. �

In addition to the above result, Kloft & Laskov (2012) also bound the variance of
ρ (Dt) and show that it vanishes as T, N → ∞. Thus, for sufficiently large N , the above
formula for E [ρ (Dt)] should accurately predict ρ (Dt) as an attack progresses. Accord-
ing to this result, Figure 4.6 depicts the number of iterations T relative to N that are
predicted for mixed-data attacks as a function of the desired relative displacement DR

for various values of ν. As suggested by the bound in Theorem 4.22, for ν < 1, dis-
placements that exceed DR > ν

1−ν
are not achievable regardless of the attack’s duration

T or the initial number of points, N . Further, since this bound strictly increases in ν

we can invert it using Lemma 4.1, which suggests the adversary must control a fraction
ν ≥ DR

1+DR
of the new data to expect to be able to achieve its goal.

These results are analogous to those of Section 4.4 where 1 − ν plays a similar role
to N

N+M (see Figure 4.3). The absolute upper bounds are obtained under replacement by

Figure 4.6 This plot show the theoretically predicted expected effect of the greedy optimal attacks
of Theorem 4.22 for various values of the traffic mixture parameter: ν ∈ {0.1, 0.33, 0.67, 0.8}.
The plot shows the expected number of iterations T (relative to N) that are predicted for the
mixed-data attacks as a function of the desired relative displacement DR. The dotted lines depict
the asymptotic maximum displacement that can be achieved for each ν.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

102 Attacking a Hypersphere Learner

limiting the fraction of data controlled by the adversary, rather than limiting the attack
duration. However, the results here just give the expected behavior rather than a strict
bound on attack performance. In fact, in the worst case, all adversarial points could be
accepted, resulting in the linear behavior of Section 4.5.1. Nonetheless, these results
show that such results are generally overly pessimistic about the adversary’s power.
However, they also relied on assumptions about the benign data’s distribution. Alter-
natively, Kloft & Laskov (2012) also examined a scenario in which the hypersphere
would be manually reset if its false-positive rate becomes too high. In this alternative
scenario, we no longer need to assume that benign data is always accepted for retraining,
and under it, Kloft & Laskov (2012) derive a result similar to Theorem 4.22; however,
for the sake of brevity, we will not explore that scenario here.

4.6.3 Extensions

There are several straightforward extensions of this work. The first extends the results
to a hyper-ellipsoid detector defined by the Mahalanobis norm ‖x‖� = x��−1x for a
fixed positive-definite structure matrix �. Under this norm, the hyper-ellipsoid detector
is defined as fc,�,R (x) = ''+'' if ‖x − c‖� > R and ''−'' otherwise. By transforming the
problem into the space defined by x′ ← �− 1

2 x (which is possible since � is positive
definite), all of the results of this chapter can be directly applied. The only caveat is that
� distorts the space—hence the hardness of the task (given by DR) depends on where
the target point xA is relative to the principal axes of �.

A second extension involves hypersphere-based detection in an implicit feature
space defined by a kernel function, which computes the inner product for data points
implicitly projected into a Hilbert space H. In particular, if k : X × X → � is a
kernel function and φ : X → H is its corresponding projection function satisfying
k
(
x(1), x(2)

) = φ
(
x(1)
)�

φ
(
x(1)
)
, then the centroid of the projected dataset is given by

φC = 1
N

∑N
i=1 φ

(
x(i)
)

and the distance of the projected data point φ (x) from this cen-
troid is

‖φ (x) − φC‖k =
⎛
⎝k (x, x) − 2

N

N∑
i=1

k
(
x(i), x

)+ 1

N2

N∑
i, j=1

k
(
x(i), x(j)

)⎞⎠
1
2

,

which, as with all kernel algorithms, can be computed implicitly only using the ker-
nel function. The corresponding classification function labels the point x as ''+'' if
‖φ (x)‖k > R and as ''−'' otherwise.

Attacks against these kernel-based hypersphere detectors are a straightforward exten-
sion of the work presented above if we assume the attacker can insert arbitrary attack
points directly in the feature space H. However, a true adversary is restricted to insert-
ing data points in the space X , for which there is not generally a one-to-one mapping
to H. It is generally nontrivial for the adversary to find a point a(t) ∈ X whose image in
feature space maximizes the displacement alignment according to Definition (4.2)—this
is the well-known pre-image problem (Fogla & Lee 2006), which we also revisit in this
book in other contexts (for example, see Section 8.4.3). Nonetheless, Kloft & Laskov

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

4.7 Summary 103

(2010) examined attacks against kernel-based hypersphere detectors empirically under
the stronger assumption that the attacker could create its attack points in feature space—
a conservative security assumption.

4.7 Summary

In this chapter, we analyzed Causative Integrity attacks against a hypersphere learner,
which iteratively retrains its centroid based on new data. This analysis provides, under a
variety of different assumptions, a deep understanding of the impact an attack can have
on a simple learning model. We showed how optimal attacks can be constructed when
assuming different powers for the adversary using several models for retraining and the
outcomes demonstrate that the adversary’s success critically depends on the scenario’s
assumptions. First, in Sections 4.3 and 4.4 we proved that, without any data replacement
or time constraints, the attacker requires at least M
 ≥ exp (DR − 1) attack points when
N = 0 or M
 ≥ N (exp (DR) − 1) when N > 0 to achieve the desired relative displace-
ment of DR. Similarly, if the attack has a maximum duration of T , these bounds increase

to M
 ≥
(

T
T−DR

)T
when N = 0 or M
 ≥ N

(
T

T−DR

)T
− N when N > 0 (assuming, in

both cases, that T > DR because otherwise the desired displacement is unachievable).
In all of these cases, the attacker requires exponentially many attack points in the size
of its objective; i.e., the relative displacement, DR.

However, bootstrap retraining without any data replacement severely limits the
model’s ability to adapt to data drift over time—eventually the model will become
rigidly fixed even without an attack. Thus, in Sections 4.5 and 4.6, we revisit the data
replacement settings analyzed by Kloft & Laskov (2012), in which each new data point
replaces an old data point. These results show that under average-out and random-out
replacement, the attacker only requires linearly many attack points (relative to the num-
ber of initial points, N) to achieve the desired goal, DR. Even the nearest-out replace-
ment policy, which was selected to limit the adversary’s influence, empirically also
exhibited linear-like behavior (except in low-dimensional spaces). These results showed
that when the attacker controls all the new data in this scenario, it can successfully exe-
cute its attack with relatively little effort. Be that as it may, in many circumstances it is
too conservative to assume that the attacker controls all new training data. Thus, in the
final part of this chapter, we explored the work of Kloft & Laskov (2012) in examining
a mixed-data scenario, in which the new data is drawn both from benign and malicious
sources. Under the assumption that each new data point is malicious with probability ν

and otherwise benign (and that all benign data is always used for retraining), the attacker
must control a fraction ν ≥ DR

1+DR
of the new data to expect to be able to achieve its goal.

Further, the expected displacement of the attacker no longer increases linearly with the
number of attack points; thus, under this more realistic setting, we see that the attacker
cannot easily achieve its objective.

The analyses presented in this chapter demonstrate that the success of a poisoning
attack against a iteratively retrained learner depends on several factors including how

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

104 Attacking a Hypersphere Learner

the learner restricts new training data and how much control the attacker has. However,
the exact analysis provided in this chapter requires some assumptions that are not easily
justified in practical settings and only apply to a relatively simple learning algorithm
with bootstrap retraining. Nonetheless, these exact analyses provide interesting insights
into the abstract problem of data poisoning and serve as a guide for less theoretical anal-
ysis of more complicated learning problems. This early work on contamination models
heavily influenced our subsequent approach to the adversarial learning framework that
we describe in the remainder of this book and was one of the first attempts to treat this
problem as an adversarial game between a learner and an adversary.

https://doi.org/10.1017/9781107338548.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.004

