
5 Availability Attack Case Study:
SpamBayes

Adversaries can also execute attacks designed to degrade the classifier’s ability to dis-
tinguish between allowed and disallowed events. These Causative Availability attacks
against learning algorithms cause the resulting classifiers to have unacceptably high
false-positive rates; i.e., a successfully poisoned classifier will misclassify benign input
as potential attacks, creating an unacceptable level of interruption in legitimate activity.
This chapter provides a case study of one such attack on the SpamBayes spam detection
system. We show that cleverly crafted attack messages—pernicious spam email that an
uninformed human user would likely identify and label as spam—can exploit Spam-
Bayes’ learning algorithm, causing the learned classifier to have an unreasonably high
false-positive rate. (Chapter 6 demonstrates Causative attacks that instead result in clas-
sifiers with an unreasonably high false-negative rate—these are Integrity attacks.) We
also show effective defenses against these attacks and discuss the tradeoffs required to
defend against them.

We examine several attacks against the SpamBayes spam filter, each of which embod-
ies a particular insight into the vulnerability of the underlying learning technique. In
doing so, we more broadly demonstrate attacks that could affect any system that uses
a similar learning algorithm. The attacks we present target the learning algorithm used
by the spam filter SpamBayes (spambayes.sourceforge.net), but several other filters also
use the same underlying learning algorithm, including BogoFilter (bogofilter.source-
forge.net), the spam filter in Mozilla’s Thunderbird email client (mozilla.org), and the
machine learning component of SpamAssassin (spamassassin.apache.org). The primary
difference between the learning elements of these three filters is in their tokenization
methods; i.e., the learning algorithm is fundamentally identical, but each filter uses a
different set of features. We demonstrate the vulnerability of the underlying algorithm
for SpamBayes because it uses a pure machine learning method, it is familiar to the
academic community (Meyer & Whateley 2004), and it is popular with over 700,000
downloads. Although here we only analyze SpamBayes, the fact that these other sys-
tems use the same learning algorithm suggests that other filters are also vulnerable to
similar attacks. However, the overall effectiveness of the attacks would depend on how
each of the other filters incorporates the learned classifier into the final filtering deci-
sion. For instance, filters such as Apache SpamAssassin (Apa n.d.), only use learning
as one of several components of a broader filtering engine (the others are handcrafted
non-adapting rules), so attacks against it would degrade the performance of the fil-
ter, but perhaps their overall impact would be lessened or muted entirely. In principle,

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

106 Availability Attack Case Study: SpamBayes

though, it should be possible to replicate these results in these other filters. Finally,
beyond spam filtering, we highlight the vulnerabilities in SpamBayes’ learner because
these same attacks could also be employed against similar learning algorithms in other
domains. While the feasibility of these attacks, the attacker’s motivation, or the contam-
ination mechanism presented in this chapter may not be appropriate in other domains,
it is nonetheless interesting to understand the vulnerability so that it can be similarly
assessed for other applications.

We organize our approach to studying the vulnerability of SpamBayes’ learning
algorithm based on the framework discussed in Chapter 3. Primarily, we investigated
Causative Availability attacks on the filter because this type of attack was an interesting
new facet that could actually be deployed in real-world settings. Here the adversary has
an additive contamination capability (i.e., the adversary has exclusive control of some
subset of the user’s training data), but is limited to only altering the positive (spam) class;
we deemed this contamination model to be the most appropriate for a crafty spammer.
Novel contributions of our research include a set of successful principled attacks against
SpamBayes, an empirical study validating the effectiveness of the attacks in a realistic
setting, and a principled defense that empirically succeeds against several of the attacks.
We finally discuss the implications of the attack and defense strategies and the role that
attacker information plays in the effectiveness of these attacks.

In this chapter, we discuss the background of the training model (see Section 5.1); we
present three new attacks on SpamBayes (see Section 5.3); we give experimental results
(see Section 5.5); and we present a defense against these attacks together with further
experimental results (see Section 5.4). This chapter builds on the work of Nelson et al.
(2008, 2009).

5.1 The SpamBayes Spam Filter

SpamBayes is a content-based statistical spam filter that classifies email using token
counts in a model proposed by Robinson (2003) as inspired by Graham (2002). Meyer
& Whateley (2004) describe the system in detail. SpamBayes computes a spam score
for each token in the training corpus based on its occurrence in spam and non-spam
emails; this score is motivated as a smoothed estimate of the posterior probability that
an email containing that token is spam. The filter computes a message’s overall spam
score based on the assumption that the token scores are independent, and then it applies
Fisher’s method (cf. Fisher 1948) for combining significance tests to determine whether
the email’s tokens are sufficiently indicative of one class or the other. The message
score is compared against two thresholds to select the label spam, ham (i.e., non-spam),
or unsure. In the remainder of this section, we detail the statistical method SpamBayes
uses to estimate and aggregate token scores.

5.1.1 SpamBayes’ Training Algorithm

SpamBayes is a content-based spam filter that classifies messages based on the tokens
(including header tokens) observed in an email. The spam classification model used by

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.1 The SpamBayes Spam Filter 107

SpamBayes was designed by Robinson (2003) and Meyer & Whateley (2004), based
on ideas by Graham (2002), together with Fisher’s method for combining independent
significance tests (Fisher 1948). Intuitively, SpamBayes learns how strongly each token
indicates ham or spam by counting the number of each type of email in which the
token appears. When classifying a new email, SpamBayes considers all the message’s
tokens as evidence of whether the message is spam or ham and uses a statistical test
to decide whether they indicate one label or the other with sufficient confidence; if not,
SpamBayes returns unsure.

SpamBayes tokenizes each email X based on words, URL components, header ele-
ments, and other character sequences that appear in X . Each is treated as a unique token
of the email independent of their order within the message, but for convenience, we
place an ordering on the tokens so that each unique token has a fixed position i among
the entire alphabet of tokens. Further, SpamBayes only records whether or not a token
occurs in the message, not how many times it occurs. Email X is thus represented as a
binary (potentially infinite length) vector x where

xi =
{

1, if the ith token occurs in X

0, otherwise
.

This message vector representation records which tokens occur in the message indepen-
dent of their order or multiplicity.

The training data used by SpamBayes is a dataset of message vector (representing
each training message) and label pairs: D(train)={(x(1), y(1)

)
,
(
x(2), y(2)

)
, . . . ,

(
x(N), y(N)

)}
where x(i) ∈ {0, 1}D and y(i) ∈ {ham, spam}. As in Section 2.2.1, this training data can
be represented as a training matrix X = [x(1) x(2) . . . x(N)

]� ∈ {0, 1}N×D along with
its label vector y = [y(1) y(2) . . . y(N)

] ∈ {0, 1}N , using 1 to represent spam and 0 for
ham. Using the training matrix, the token-counting statistics used by SpamBayes can
be expressed as

n(s) � X�y n(h) � X� (1 − y) n � n(s) + n(h)

which are vectors containing the cumulative token counts for each token in all, spam,
and ham messages, respectively. We also define N (s) � y�y as the total number of train-
ing spam messages and N (h) � (1 − y)� (1 − y) as the total number of training ham
messages (and, of course, N = N (s) + N (h)).

From these count statistics, SpamBayes computes a spam score for the ith

token by estimating the posterior Pr (X is spam|xi = 1). First, the likelihoods
Pr (xi = 1|X is spam) and Pr (xi = 1|X is ham) for observing the ith token in a
spam/ham message are estimated using the maximum likelihood estimators yielding
the likelihood vectors L(s)

i = 1
N (s) · n(s) and L(h)

i = 1
N (h) · n(h).

Second, using the likelihood estimates L(s) and L(h) and an estimate π (s) on the prior
distribution Pr (X is spam), Bayes’ Rule is used to estimate the posteriors as P(s) ∝ π (s)

N (s) ·
n(s) and P(h) ∝ 1−π (s)

N (h) · n(h) along with the constraints P(s) + P(h) = 1. However, instead

of using the usual naive Bayes maximum likelihood prior estimator π (s) = N (s)

N (s)+N (h) ,

SpamBayes uses the agnostic prior distribution π (s) = 1
2 , a choice that gives the learner

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

108 Availability Attack Case Study: SpamBayes

unusual properties that we further discuss in Appendix C.2.1. Based on this choice of
prior, SpamBayes then computes a spam score vector P(s) specified for the ith token as

P(s)
i = N (h)n(s)

i

N (h)n(s)
i + N (s)n(h)

i

; (5.1)

i.e., this score is an estimator of the posterior Pr (X is spam|xi = 1). An analogous token
ham score is given by P(h) = 1 − P(s).

Robinson’s method (Robinson 2003) smooths P(s)
i through a convex combination with

a prior distribution belief x (default value of x = 0.5), weighting the quantities by ni (the
number of training emails with the ith token) and s (chosen for the strength of the prior
with a default of s = 1), respectively:

qi = s

s + ni
x + ni

s + ni
P(s)

i . (5.2)

Smoothing mitigates overfitting for rare tokens. For instance, if the token “floccinaucini-
hilipilification” appears once in a spam and never in a ham in the training set, the poste-
rior estimate would be P(s)

i = 1, which would make any future occurrence of this word
dominate the overall spam score. However, occurrence of this word only in spam may
have only been an artifact of its overall rarity. In this case, smoothing is done by adding a
prior distribution that the posterior for every token is x = 1

2 (i.e., an agnostic score). For
rare tokens, the posterior estimate is dominated by this prior. However, when a token
is more frequently observed, its smoothed score approaches the empirical estimate of
the posterior in Equation (5.1) according to the strength given to the prior by s. An
analogous smoothed ham score is given by 1 − q.

5.1.2 SpamBayes’ Predictions

After training, the filter computes the overall spam score I (x̂) of a new message X̂
using Fisher’s method (Fisher 1948) for combining the scores of the tokens observed
in X̂ . SpamBayes uses at most 150 tokens from X̂ with scores furthest from 0.5 and
outside the interval (0.4, 0.6) (see Appendix C.2.2 for more details). Let Tx̂ be the set
of tokens that SpamBayes incorporates into its spam score, and let δ (x̂) be the indicator
function for this set. The token spam scores are combined into a message spam score
for X̂ by

S (x̂) = 1 − χ2
2τx̂

(−2(log q)�δ (x̂)
)
, (5.3)

where τx̂ � |Tx̂| is the number of tokens from X̂ used by SpamBayes and χ2
2τx̂

(·)
denotes the cumulative distribution function of the chi-square distribution with 2τx̂

degrees of freedom. A ham score H (x̂) is similarly defined by replacing q with 1 − q in
Equation (5.3). Finally, SpamBayes constructs an overall spam score for X̂ by averaging
S (x̂) and 1 − H (x̂) (both being indicators of whether X̂ is spam), giving the final score

I (x̂) = 1
2 (S (x̂) + 1 − H (x̂)) (5.4)

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.1 The SpamBayes Spam Filter 109

for a message: a quantity between 0 (strong evidence of ham) and 1 (strong evidence
of spam). SpamBayes predicts by thresholding I (x̂) against two user-tunable thresholds
θ (h) and θ (s), with defaults θ (h) = 0.15 and θ (s) = 0.9. SpamBayes predicts ham, unsure,
or spam if I (x̂) falls into the interval [0, θ (h)], (θ (h), θ (s)], or (θ (s), 1], respectively, and
filters the message accordingly.

The inclusion of an unsure label in addition to spam and ham prevents us from purely
using ham-as-spam and spam-as-ham misclassification rates (false positives and false
negatives, respectively) for evaluation. We must also consider spam-as-unsure and ham-
as-unsure misclassifications. Because of the practical effects on the user’s time and
effort discussed in Section 5.2.3, ham-as-unsure misclassifications are nearly as bad
for the user as ham-as-spam.

5.1.3 SpamBayes’ Model

Although the components of the SpamBayes algorithm (token spam scores, smoothing,
and chi-squared test) were separately motivated, the resulting system can be described
by a unified probability model for discriminating ham from spam messages. While
Robinson motivates the SpamBayes classifier as a smoothed estimator of the posterior
probability of spam, he never explicitly specifies the probabilistic model. We specify
a discriminative model and show that the resulting estimation can be re-derived using
empirical risk minimization. Doing so provides a better understanding of the modeling
assumptions of the SpamBayes classifier and its vulnerabilities.

In this model, there are three random variables of interest: the spam label yi of the
ith message, the indicator variable Xi, j of the jth token in the ith message, and the token
score qj of the jth token. We use the convention that a label is 1 to indicate spam or
0 to indicate ham. In the discriminative setting, given Xi,• as a representation of the
tokens in the ith message and the token scores q, the message’s label yi is conditionally
independent of all other random variables in the model. The conditional probability of
the message label given the occurrence of a single token Xi, j is specified by

Pr
(
yi|Xi, j, q j

) = ((q j)
yi · (1 − q j)

1−yi
)Xi, j

(
1
2

)1−Xi, j
, (5.5)

i.e., in the SpamBayes model, each token that occurs in the message is an indicator of
its label, whereas tokens absent from the message have no impact on its label. Because
SpamBayes’ scores only incorporate tokens that occur in the message, traditional gen-
erative spam models (e.g., Figure 5.1(b)) are awkward to construct, but the above dis-
criminative conditional probability captures this modeling nuance. Further, there is no
prior distribution for the token indicators Xi, j but there is a prior on the token scores.
Treating these as binomial parameters, each has a beta prior with common parameters
α and β, giving them a conditional probability of

Pr
(
q j|α, β

) = 1
B(α,β) · (q j)

α−1 · (1 − q j)
β−1, (5.6)

where B (α, β) is the beta function (see the Glossary). As earlier mentioned, Robin-
son instead used an equivalent parameterization with a strength parameter s and prior

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

110 Availability Attack Case Study: SpamBayes

parameter x for which α = s · x + 1 and β = s (1 − x) + 1. Using this parameterization,
x specifies the mode of the prior distribution distribution. In SpamBayes, these param-
eters are fixed a priori rather than treated as random hyper-parameters. Their default
values are π (s) = 1

2 , x = 1
2 , and s = 1.

Together, the label’s probability conditioned on the jth token and the prior distribu-
tion on the jth token score are used to derive a spam score for the message (based
only on the jth token). However, unlike a maximum likelihood derivation, SpamBayes’
parameter estimation for q j is not based on a joint probability model over all tokens.
Instead, the score for each token is computed separately by maximizing the labels’ like-
lihood within a per-token model as depicted in Figure 5.1(a); i.e., the model depicts a
sequence of labels based solely on the presence of the jth token. Based on the inde-
pendence assumption of Figure 5.1(a), the conditional distributions of Equation (5.5)
combine together to make the following joint log probability based on the jth token (for

Figure 5.1 Probabilistic graphical models for spam detection. (a) A probabilistic model that
depicts the dependency structure between random variables in SpamBayes for a single token
(SpamBayes models each token as a separate indicator of ham/spam and then combines them
together assuming each is an independent test). In this model, the label yi for the ith email
depends on the token score qj for the jth token if it occurs in the message; i.e., Xi, j = 1. The
parameters s and x parameterize a beta prior distribution on qj . (b) A more traditional generative
model for spam. The parameters π (s), α, and β parameterize the prior distributions for yi and qj .
Each label yi for the ith email is drawn independently from a Bernoulli distribution with π (s)as
the probability of spam. Each token score for the jth token is drawn independently from a beta
distribution with parameters α and β. Finally, given the label for a message and the token scores,
Xi, j is drawn independently from a Bernoulli. Based on the likelihood function for this model,
the token scores qj computed by SpamBayes can be viewed simply as the maximum likelihood
estimators for the corresponding parameter in the model.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.1 The SpamBayes Spam Filter 111

N messages):

log Pr
(
y, X•, j|α, β

) = log Pr
(
q j|α, β

)+ N∑
i=1

log Pr
(
yi|Xi, j, q j

)
= − log (B (α, β)) + (α − 1) log

(
qj

)+ (β − 1) log
(
1 − q j

)
+

N∑
i=1

[
yiXi, j log

(
q j

)+ (1 − yi) Xi, j log
(
1 − q j

)]
Maximizing this joint distribution (nearly) achieves the token scores specified by Spam-
Bayes. To solve for the maximum, differentiate the joint probability with respect to the
jth token score, q j, and set the derivative equal to 0. This yields

q j =
∑N

i=1 yiXi, j + α − 1∑N
i=1 Xi, j + α − 1 + β − 1

= α − 1

n j + α − 1 + β − 1
+ n(s)

j

n j + α − 1 + β − 1
,

where the summations in the first equation are simplified to token counts based on
the definitions of yi and Xi, j. Using the equivalent beta parameterization with x and s

and the usual posterior token score P(s)
i = n(s)

i

n(s)
i +n(h)

i

(which differs from the SpamBayes’

token score used in Equation (5.1) unless N (s) = N (h)), this equation for the maximum-
likelihood estimator of qj is equivalent to the SpamBayes’ estimator in Equation (5.2).

The above per-token optimizations can also be viewed as a joint maximization proce-
dure by considering the overall spam and ham scores S (·) and H (·) for the messages
in the training set (see Equation 5.3). These overall scores are based on Fisher’s method
for combining independent p-values and assume that each token score is independent. In
fact, S (·) and H (·) are tests for the aggregated scores sq (·) and hq (·) defined by
Equations (C.1) and (C.2)—tests that monotonically increase with sq (·) and hq (·),
respectively. Thus, from the overall spam score I (·) defined by Equation (5.4), max-
imizing sq (·) for all spam and hq (·) for all ham is a surrogate for minimizing the
prediction error of I (·); i.e., minimizing some loss for I (·). Hence, combining the
individual tokens’ conditional distributions (Equation 5.5) together to form

Q (yi, Xi,•, q) = − log
D∏

j=1

(
(q j)

yi · (1 − q j)
1−yi
)Xi, j

,

can be viewed as the loss function for the score I (·), and the sum of the nega-
tive logarithm of the token score priors given by Equation 5.6 can be viewed as its
regularizer.1 Moreover, minimizing this regularized empirical loss again yields the

1 This interpretation ignores the censoring function T in which SpamBayes only uses the scores of the most
informative tokens when computing I (·) for a message. As discussed in Appendix C.1 this censoring
action makes I (·) non-monotonic in the token scores q j . Computing the token scores without considering
T can be viewed as a tractable relaxation of the true objective.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

112 Availability Attack Case Study: SpamBayes

SpamBayes’ token scores from Equation (5.2). In this way, SpamBayes can be viewed
as a regularized empirical risk minimization technique.

Unfortunately, the loss function Q is not a negative log-likelihood because the product
of the scores is unnormalized. When the proper normalizer is added to Q, the resulting
parameter estimates for q j no longer are equivalent to SpamBayes’ estimators. In fact,
SpamBayes’ parameter estimation procedure and its subsequent prediction rule do not
appear to be compatible with a traditional joint probability distribution over all labels,
tokens, and scores (or at least we were unable to derive a joint probability model that
would yield these estimates). Nonetheless, through the loss function Q, SpamBayes
can be viewed as a regularized empirical risk minimization procedure as discussed in
Section 2.2.

By analyzing this model of SpamBayes, we now identify its potential vulnerabilities.
First, by incorporating a prior distribution on the token scores for smoothing, Robin-
son prevented a simple attack. Without any smoothing on the token scores, all tokens
that only appear in ham would have token scores of 0. Since the overall score I (·)
is computed with products of the individual token scores, including any of these ham-
only tokens would cause spam to be misclassified as ham (and vice versa for spam-only
tokens), which the adversary could clearly exploit. Similarly, using the censor function
T helps prevent attacks in which the adversary pads a spam with many hammy tokens
to negate the effect of spammy tokens. However, despite these design considerations,
SpamBayes is still vulnerable to attacks. The first vulnerability of SpamBayes comes
from its assumption that the data and tokens are independent, for which each token
score is estimated based solely on the presence of that token in ham and spam mes-
sages. The second vulnerability comes from its assumption that only tokens that occur
in a message contribute to its label. While there is some intuition behind this assump-
tion, in this model, it causes rare tokens to have little support so that their scores can be
easily changed. Ultimately, these two vulnerabilities lead to a family of attacks that we
call dictionary attacks that we present and evaluate in the rest of this chapter.

5.2 Threat Model for SpamBayes

In analyzing the vulnerabilities of SpamBayes, we were motivated by the taxonomy of
attacks (see Section 3.3). Known real-world attacks that spammers use against deployed
spam filters tend to be Exploratory Integrity attacks: either the spammer obfuscates the
especially spam-like content of a spam email, or it includes content not indicative of
spam. Both tactics aim to get the modified message into the victim’s inbox. This cate-
gory of attack has been studied in detail in the literature (e.g., see Lowd & Meek 2005a,
2005b, Wittel & Wu 2004; Dalvi et al. 2004). However, in this chapter we investigate
the compelling threat of Causative attacks against spam filters, which are unique to
machine learning systems and potentially more harmful since they alter the filter.

In particular, a Causative Availability attack can create a powerful denial of service.
For example, if a spammer causes enough legitimate messages to be filtered by the
user’s spam filter, the user is likely to disable the filter and therefore see the spammer’s

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.2 Threat Model for SpamBayes 113

unwanted messages. Alternatively, an unscrupulous business owner may wish to use
spam filter denial of service to prevent a competitor from receiving email orders from
potential customers. In this chapter, we present two novel Causative Availability attacks
against SpamBayes: the dictionary attack is Indiscriminate and the focused attack is
Targeted.

5.2.1 Attacker Goals

We consider an attacker with one of two goals: expose the victim to an advertisement or
prevent the victim from seeing a legitimate message. The motivation for the first objec-
tive is obviously the potential revenue gain for the spammer if its marketing campaign
is widely viewed. For the second objective, there are at least two motives for the attacker
to cause legitimate emails to be filtered as spam. First, a large number of misclassifi-
cations will make the spam filter unreliable, causing users to abandon filtering and see
more spam. Second, causing legitimate messages to be mislabeled can cause users to
miss important messages. For example, an organization competing for a contract wants
to prevent competing bids from reaching the intended recipient and so gain a competi-
tive advantage. An unscrupulous company can achieve this by causing its competitors’
messages to be filtered as spam.

Based on these considerations, we can further divide the attacker’s goals into four
categories:

1 Cause the victim to disable the spam filter, thus letting all spam into the inbox.
2 Cause the victim to miss a particular ham email filtered away as spam.
3 Cause a particular spam to be delivered to the victim’s inbox.
4 Cause any spam to be delivered into the victim’s inbox.

These objectives are used to construct the attacks described next.

5.2.2 Attacker Knowledge

The knowledge the attacker has about a user’s messages may vary in different scenarios
and thus lead to different attack strategies. An attacker may have detailed knowledge of
a specific email the victim is likely to receive in the future, or the attacker may know
particular words or general information about the victim’s word distribution. In many
cases, the attacker may know nothing beyond which language the emails are likely to
use.

When an attacker wants the victim to see spam emails, a broad dictionary attack
can render the spam filter unusable, causing the victim to disable the filter (see
Section 5.3.1.1). With more information about the email distribution, the attacker can
select a smaller dictionary of high-value features that are still effective. When an
attacker wants to prevent a victim from seeing particular emails and has some infor-
mation about those emails, the attacker can target them with a focused attack (see Sec-
tion 5.3.1.2). Furthermore, if an attacker can send email messages that the user will train

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

114 Availability Attack Case Study: SpamBayes

as non-spam, a pseudospam attack can cause the filter to accept spam messages into the
user’s inbox (see Section 5.3.2).

Experimental results confirm that this class of attacks presents a serious concern for
statistical spam filters. A dictionary attack makes the spam filter unusable when con-
trolling just 1% of the messages in the training set, and a well-informed focused attack
removes the target email from the victim’s inbox over 90% of the time. The pseudospam
attack causes the victim to see almost 90% of the target spam messages with control of
less than 10% of the training data.

We demonstrate the potency of these attacks and present a potential defense. The
reject on negative impact (RONI) defense tests the impact of each email on training and
does not train on messages that have a large negative impact. We show that this defense
is effective in preventing some attacks from succeeding.

5.2.3 Training Model

SpamBayes produces a classifier from a training set of labeled examples of spam and
non-spam messages. This classifier (or filter) is subsequently used to label future email
messages as spam (bad, unsolicited email) or ham (good, legitimate email). SpamBayes
also has a third label. When it is not confident one way or the other, the classifier returns
unsure. We use the following terminology: the true class of an email can be ham or
spam, and a classifier produces the labels ham, spam, and unsure.

There are three natural choices for how to treat unsure-labeled messages: they can be
placed in the spam folder, they can be left in the user’s inbox, or they can be put into a
third folder for separate review. Each choice can be problematic because the unsure label
is likely to appear on both ham and spam messages. If unsure messages are placed in
the spam folder, users must sift through all spam periodically or risk missing legitimate
messages. If they remain in the inbox, users will encounter an increased amount of
spam messages in the inbox. If they have their own “Unsure” folder, they still must sift
through an increased number of unsure-labeled spam messages to locate unsure-labeled
ham messages. Too much unsure email is therefore almost as troublesome as too many
false positives (ham labeled as spam) or false negatives (spam labeled as ham). In the
extreme case, if every email is labeled unsure then the user must sift through every spam
email to find the ham emails and thus obtains no advantage from using the filter.

Consider an organization that uses SpamBayes to filter incoming email for multiple
users and periodically retrains on all received email, or an individual who uses Spam-
Bayes as a personal email filter and regularly retrains it with the latest spam and ham.
These scenarios serve as canonical usage examples. We use the terms user and victim
interchangeably for either the organization or individual who is the target of the attack;
the meaning will be clear from the context.

We assume that the user retrains SpamBayes periodically (e.g., weekly); updating the
filter in this way is necessary to keep up with changing trends in the statistical character-
istics of both legitimate and spam email. These attacks are not limited to any particular
retraining process; they only require the following assumption about the attacker’s con-
trol of data.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.3 Causative Attacks against SpamBayes’ Learner 115

5.2.4 The Contamination Assumption

We assume that the attacker can send emails that the victim will use for training—the
contamination assumption. It is common practice in security research to assume the
attacker has as much power as possible, since a determined adversary may find unan-
ticipated methods of attack—if a vulnerability exists, we assume it may be exploited.
Since the attacker has limited control of the training data or a portion of it, our contam-
ination assumption is reasonable, but we incorporate two significant restrictions: 1) the
attacker may specify arbitrary email bodies, but cannot alter email headers; and 2) attack
emails will always be trained as spam, not ham. We discuss realistic scenarios where the
contamination assumption is justified; in the later sections, we examine its implications.

Adaptive spam filters must be retrained periodically to cope with the changing nature
of both ham and spam. Many users simply train on all email received, using all spam-
labeled messages as spam training data and all ham-labeled messages as ham training
data. Generally the user will manually provide true labels for messages labeled unsure
by the filter, as well as for messages filtered incorrectly as ham (false negatives) or
spam (false positives). In this case, it is trivial for the attacker to control training data:
any emails sent to the user are used in training.

The fact that users may manually label emails does not protect against these attacks:
the attack messages are unsolicited emails from unknown sources and may contain nor-
mal spam marketing content. The spam labels manually given to attack emails are cor-
rect and yet allow the attack to proceed. When the attack emails can be trained as ham, a
different attack is possible. In this pseudospam attack, we remove the second restriction
on the attacker’s abilities and explore the case where attack emails are trained as ham
(see Section 5.3.2).

5.3 Causative Attacks against SpamBayes’ Learner

We present three novel Causative attacks against SpamBayes’ learning algorithm in
the context of the attack taxonomy from Section 5.2.1: an Indiscriminate Availability
attack, a Targeted Availability attack, and a Targeted Integrity attack. These attacks are
generally structured according to the following steps:

1 The attacker determines its goal for the attack.
2 The attacker sends attack messages to include in the victim’s training set.
3 The victim (re-)trains the spam filter, resulting in a contaminated filter.
4 The filter’s classification performance degrades on incoming messages in accordance

with the attacker’s goal.

In the remainder of this section, we describe attacks that achieve the objectives out-
lined earlier in Section 5.2. Each of the attacks consists of inserting emails into the
training set that are drawn from a particular distribution (i.e., according to the attacker’s
knowledge discussed in Section 5.2.2). The properties of these distributions, along with
other parameters, determine the nature of the attack. The dictionary attack sends email

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

116 Availability Attack Case Study: SpamBayes

messages with tokens drawn from a broad distribution, essentially including every token
with equal probability. The focused attack focuses the distribution specifically on a sin-
gle message or a narrow class of messages. If the attacker has the additional ability to
send messages that will be trained as ham, a pseudospam attack can cause spam mes-
sages to reach the user’s inbox.

5.3.1 Causative Availability Attacks

We first focus on Causative Availability attacks, which manipulate the filter’s training
data to increase the number of ham messages misclassified. We consider both Indiscrim-
inate and Targeted attacks. In Indiscriminate attacks, too many false positives force the
victim to disable the filter or frequently search in spam/unsure folders for legitimate
messages that have been erroneously filtered away. Hence, the victim is forced to view
more spam. In a Targeted attack, the attack is not designed to disable the filter, but
instead it surreptitiously prevents the victim from receiving certain messages.

Without loss of generality, consider the construction of a single attack message A. The
victim adds it to the training set, (re-)trains on the contaminated data, and subsequently
uses the tainted model to classify a new message X̂ . The attacker also has some (perhaps
limited) knowledge of the next email the victim will receive. This knowledge can be
represented as a distribution p—the vector of probabilities that each token will appear
in the next message.

The goal of the attacker is to choose the tokens for the attack message a to maximize
the expected spam score:

max
a

Ex̂∼p [Ia (x̂)] ; (5.7)

that is, the attack’s goal is to maximize the expectation of Ia (x̂) (Equation (5.4) with the
attack message a added to the spam training set of the next legitimate email x̂ drawn
from distribution p. However, in analyzing this objective, it is shown in Appendix C.2
that the attacker can generally maximize the expected spam score of any future message
by including all possible tokens (words, symbols, misspellings, etc.) in attack emails,
causing SpamBayes to learn that all tokens are indicative of spam—we call this an
Optimal attack.2

To describe the optimal attack under this criterion, we make two observations, which
we detail in Appendix C.2. First, for most tokens, Ia (·) is monotonically nondecreas-
ing in qi. Therefore, increasing the score of any token in the attack message will gen-
erally increase Ia (x̂). Second, the token scores of distinct tokens do not interact; that is,
adding the ith token to the attack does not change the score q j of some different token
j �= i. Hence, the attacker can simply choose which tokens will be most beneficial for
its purpose. From this, we motivate two attacks, the dictionary and focused attacks, as
instances of a common attack in which the attacker has different amounts of knowledge
about the victim’s email.

2 As discussed in Appendix C.2 these attacks are optimal for a relaxed version of the optimization problem.
Generally, optimizing the problem given by Equation 5.7 requires exact knowledge about future messages
x̂ and is a difficult combinatorial problem to solve.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.3 Causative Attacks against SpamBayes’ Learner 117

For this, let us consider specific choices for the distribution p. First, if the attacker
has little knowledge about the tokens in target emails, we give equal probability to each
token in p. In this case, one can optimize the expected message spam score by including
all possible tokens in the attack email. Second, if the attacker has specific knowledge of
a target email, we can represent this by setting pi to 1 if and only if the ith token is in
the target email. This attack is also optimal with respect to the target message, but it is
much more compact.

In practice, the optimal attack requires intractably large attack messages, but the
attacker can exploit its knowledge about the victim (captured by p) to approximate the
effect of an optimal attack by instead using a large set of common words that the victim
is likely to use in the future such as a dictionary—hence these are dictionary attacks. If
the attacker has relatively little knowledge, such as knowledge that the victim’s primary
language is English, the attack can include all words in an English dictionary. This rea-
soning yields the dictionary attack (see Section 5.3.1.1). On the other hand, the attacker
may know some of the particular words to appear in a target email, though not all of the
words. This scenario is the focused attack (see Section 5.3.1.2). Between these levels of
knowledge, an attacker could use information about the distribution of words in English
text to make the attack more efficient, such as characteristic vocabulary or jargon typical
of emails the victim receives. Any of these cases result in a distribution p over tokens in
the victim’s email that is more specific than an equal distribution over all tokens but less
informative than the true distribution of tokens in the next message. Below, we explore
the details of the dictionary and focused attacks, with some exploration of using an
additional corpus of common tokens to improve the dictionary attack.

5.3.1.1 Dictionary Attack
The dictionary attack, an Indiscriminate attack, makes the spam filter unusable by caus-
ing it to misclassify a significant portion of ham emails (i.e., causing false positives)
so that the victim loses confidence in the filter. As a consequence either the victim dis-
ables the spam filter, or at least must frequently search through spam/unsure folders to
find legitimate messages that were incorrectly classified. In either case, the victim loses
confidence in the filter and is forced to view more spam, achieving the ultimate goal of
the spammer: the victim views desired spams while searching for legitimate mail. The
result of this attack is denial of service; i.e., a higher rate of ham misclassified as spam.

The dictionary attack is an approximation of the optimal attack suggested in
Section 5.3.1, in which the attacker maximizes the expected score by including all possi-
ble tokens. Creating messages with every possible token is infeasible in practice. Never-
theless, when the attacker lacks knowledge about the victim’s email, this optimal attack
can be approximated by the set of all tokens that the victim is likely to use such as a
dictionary of the victim’s native language—we call this a dictionary attack. The dictio-
nary attack increases the score of every token in a dictionary; i.e., it makes them more
indicative of spam.

The central idea that underlies the dictionary attack is to send attack messages con-
taining a large set of tokens—the attacker’s dictionary. The dictionary is selected as
the set of tokens whose scores maximally increase the expected value of Ia (x̂) as in

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

118 Availability Attack Case Study: SpamBayes

Equation (5.7). Since the score of a token typically increases when included in an attack
message (except in unusual circumstances as described in Appendix C), the attacker
can simply include any tokens that are likely to occur in future legitimate messages
according to the attacker’s knowledge from the distribution p. In particular, if the vic-
tim’s language is known by the attacker, it can use that language’s entire lexicon (or at
least a large subset of it) as the attack dictionary. After training on a set of dictionary
messages, the victim’s spam filter will have a higher spam score for every token in the
dictionary, an effect that is amplified for rare tokens. As a result, future legitimate email
is more likely to be marked as spam since it will contain many tokens from that lexicon.

A refinement of this attack instead uses a token source with a distribution closer to
the victim’s true email distribution. For example, a large pool of Usenet newsgroup
postings may have colloquialisms, misspellings, and other words not found in a proper
dictionary. Furthermore, using the most frequent tokens in such a corpus may allow the
attacker to send smaller emails without losing much effectiveness. However, there is
an inherent tradeoff in choosing tokens. Rare tokens are the most vulnerable to attack
since their scores will shift more toward spam (a spam score of 1.0 given by the score in
Equation (5.4)) with fewer attack emails. However, the rare vulnerable tokens also are
less likely to appear in future messages, diluting their usefulness. Thus the attack must
balance these effects in selecting a set of tokens for the attack messages.

In our experiments (Section 5.5.2), we evaluate two variants of the dictionary attacks:
the first is based on the Aspell dictionary and the second on a dictionary compiled from
the most common tokens observed in a Usenet corpus. We refer to these as the Aspell
and Usenet dictionary attacks, respectively.

5.3.1.2 Focused Attack
The second Causative Availability attack is a Targeted attack—the attacker has some
knowledge of a specific legitimate email it targets to be incorrectly filtered. If the
attacker has exact knowledge of the target email, placing all of its tokens in attack
emails produces an optimal targeted attack. Realistically, though, the attacker only has
partial knowledge about the target email and can guess only some of its tokens to include
in attack emails. We model this knowledge by letting the attacker know a certain frac-
tion of tokens from the target email, which are included in the attack message. The
attacker constructs attack email that contain words likely to occur in the target email;
i.e., the tokens known by the attacker. The attack email may also include additional
tokens added by the attacker to obfuscate the attack message’s intent since extraneous
tokens do not influence the attack’s effect on the targeted tokens. When SpamBayes
trains on the resulting attack email, the spam scores of the targeted tokens generally
increase (see Appendix C), so the target message is more likely to be filtered as spam.
This is the focused attack.

For example, an unscrupulous company may wish to prevent its competitors from
receiving email about a competitive bidding process, and it knows specific words that
will appear in the target email, obviating the need to include the entire dictionary in
their attacks. It attacks by sending spam emails to the victim with tokens such as the
names of competing companies, their products, and their employees. In addition, if the
bid messages follow a common template known to the malicious company, this further

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.4 The Reject on Negative Impact (RONI) Defense 119

facilitates the attack. As a result of the attack, legitimate bid emails may be filtered away
as spam, causing the victim not to see them.

The focused attack is more concise than the dictionary attack because the attacker
has detailed knowledge of the target email and no reason to affect other messages. This
conciseness makes the attack both more efficient for the attacker and more difficult to
detect for the defender. Further, the focused attack can be more effective because the
attacker may know proper nouns and other nonword tokens common in the victim’s
email that are otherwise uncommon in typical English text.

An interesting side effect of the focused attack is that repeatedly sending similar
emails tends to not only increase the spam score of tokens in the attack but also to reduce
the spam score of tokens not in the attack. To understand why, recall the estimate of the
token posterior in Equation (5.1), and suppose that the jth token does not occur in the
attack email. Then N (s) increases with the addition of the attack email but n(s)

j does not,

so P(S)
j decreases and therefore so does q j. In Section 5.5.3, we observe empirically that

the focused attack can indeed reduce the spam score of tokens not included in the attack
emails.

5.3.2 Causative Integrity Attacks—Pseudospam

We also study Causative Integrity attacks, which manipulate the filter’s training data to
increase the number of false negatives; that is, spam messages misclassified as ham. In
contrast to the previous attacks, the pseudospam attack directly attempts to make the
filter misclassify spam messages. If the attacker can choose messages arbitrarily that
are trained as ham, the attack is similar to a focused attack with knowledge of 100%
of the target email’s tokens. However, there is no reason to believe a user would train
on arbitrary messages as ham. We introduce the concept of a pseudospam email—an
email that does not look like spam but that has characteristics (such as headers) that
are typical of true spam emails. Not all users consider benign-looking, noncommercial
emails offensive enough to mark them as spam.

To create pseudospam emails, we take the message body text from newspaper articles,
journals, books, or a corpus of legitimate email. The idea is that in some cases, users
may mistake these messages as ham for training, or may not be diligent about correcting
false negatives before retraining, if the messages do not have marketing content. In this
way, an attacker might be able to gain control of ham training data. This motivation is
less compelling than the motivation for the dictionary and focused attacks, but in the
cases where it applies, the headers in the pseudospam messages will gain significant
weight indicating ham, so when future spam is sent with similar headers (i.e., by the
same spammer) it will arrive in the user’s inbox.

5.4 The Reject on Negative Impact (RONI) Defense

Saini (2008) studied two defense strategies for countering Causative Availability
attacks on SpamBayes. The first was a mechanism to adapt SpamBayes’ threshold

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

120 Availability Attack Case Study: SpamBayes

parameters to mitigate the impact of an Availability attack called the threshold defense.
This defense did reduce the false-positive rate of dictionary attacks but at a cost of
a higher false-negative rate. He also discussed a preliminary version of the reject on
negative impact defense, which we describe here and evaluate in detail.

In Section 3.5.4.1, we summarized the reject on negative impact defense. As stated in
that section, (RONI) is a defense against Causative attacks, which measures the empir-
ical effect that each training instance has when training a classifier with it, identifies all
instances that had a substantial negative impact on that classifier’s accuracy, and removes
the offending instances from the training set, D(train), before training the final classifier.
To determine whether a candidate training instance is deemed to be deleterious or not,
the defender trains a classifier on a base training set, then adds the candidate instance to
that training set, and trains a second classifier with the candidate instance included. The
defender applies both classifiers to a quiz set of instances with known labels, measuring
the difference in accuracy between the two. If adding the candidate instance to the train-
ing set causes the second classifier to produce substantially more classification errors
than were produced by the first classifier trained without it, that candidate instance is
rejected from the training set due to its detrimental effect.

More formally, we assume there is an initial training set D(train) and a set D(suspect)

of additional candidate training points to be added to the training set. The points in
D(suspect) are assessed as follows: first a calibration set C, which is a randomly cho-
sen subset of D(train), is set aside. Then several independent and potentially overlap-
ping training/quiz set pairs (Ti, Qi) are sampled from the remaining portion of D(train),
where the points within a pair of sets are sampled without replacement. To assess the
impact (empirical effect) of a data point (x, y) ∈ D(suspect), for each pair of sets (Ti, Qi)
one constructs a before classifier fi trained on Ti and an after classifier f̂ i trained on
Ti + (x, y); i.e., the sampled training set with (x, y) concatenated. The reject on nega-
tive impact defense then compares the classification accuracy of fi and f̂ i on the quiz
set Qi, using the change in true positives and true negatives caused by adding (x, y)
to Ti. If either change is significantly negative when averaged over training/quiz set
pairs, (x, y) is considered to be too detrimental, and it is excluded from D(train). To
determine the significance of a change, the shift in accuracy of the detector is com-
pared to the average shift caused by points in the calibration set C. Each point in C

is evaluated in a way analogous to evaluation of the points in D(suspect). The median
and standard deviation of their true positive and true negative changes are computed,
and the significance threshold is chosen to be the third standard deviation below the
median.

5.5 Experiments with SpamBayes

5.5.1 Experimental Method

Here we present an empirical evaluation of the impact of Causative Availability attacks
on SpamBayes’ spam classification accuracy.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.5 Experiments with SpamBayes 121

5.5.1.1 Datasets
In these experiments, we use the Text Retrieval Conference (TREC) 2005 spam corpus
as described by Cormack & Lynam (2005), which is based on the Enron email cor-
pus (Klimt & Yang 2004) and contains 92,189 emails (52,790 spam and 39,399 ham).
By sampling from this dataset, we construct sample inboxes and measure the effect of
injecting attacks into them. This corpus has several strengths: it comes from a real-world
source, it has a large number of emails, and its creators took care that the added spam
does not have obvious artifacts to differentiate it from the ham.

We use two sources of tokens for attacks. First, we use the GNU Aspell English dic-
tionary version 6.0-0, containing 98,568 words. We also use a corpus of English Usenet
postings to generate tokens for the attacks. This corpus is a subset of a Usenet corpus
of 140,179 postings compiled by the University of Alberta’s Westbury Lab (Shaoul &
Westbury 2007). An attacker can download such data and build a language model to use
in attacks, and we explore how effective this technique is. We build a primary Usenet
dictionary by taking the most frequent 90,000 tokens in the corpus (Usenet-90k),
and we also experiment with a smaller dictionary of the most frequent 25,000 tokens
(Usenet-25k).

The overlap between the Aspell dictionary and the most frequent 90,000 tokens in
the Usenet corpus is approximately 26,800 tokens. The overlap between the Aspell dic-
tionary and the TREC corpus is about 16,100 tokens, and the intersection of the TREC
corpus and Usenet-90k is around 26,600 tokens.

5.5.1.2 Constructing Message Sets for Experiments
In constructing an experiment, we often require several nonrepeating sequences of
emails in the form of mailboxes. When we require a mailbox, we sample messages
without replacement from the TREC corpus, stratifying the sampling to ensure the nec-
essary proportions of ham and spam. For subsequent messages needed in any part of the
experiment (target messages, headers for attack messages, and so on), we again sample
emails without replacement from the messages remaining in the TREC corpus. In this
way, we ensure that no message is repeated within the experiment.

We construct attack messages by splicing elements of several emails together to make
messages that are realistic under a particular model of the adversary’s control. We con-
struct the attack email bodies according to the specifications of the attack. We select the
header for each attack email by choosing a random spam email from TREC and using
its headers, taking care to ensure that the content-type and other Multipurpose Internet
Mail Extensions (MIME) headers correctly reflect the composition of the attack mes-
sage body. Specifically, we discard the entire existing multi- or single-part body and we
set relevant headers (such as Content-Type and Content-Transfer-Encoding) to indicate
a single plain-text body.

The tokens used in each attack message are selected from the datasets according to
the attack method. For the dictionary attack, we use all tokens from the attack dictio-
nary in every attack message (98,568 tokens for the Aspell dictionary and 90,000 or
25,000 tokens for the Usenet dictionary). For the focused and the pseudospam attacks,
we select tokens for each attack message based on a fresh message sampled from the

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

122 Availability Attack Case Study: SpamBayes

Table 5.1 Parameters used in the Experiments on Attacking SpamBayes

Parameter Focused Attack PseudoSpam Attack RONI Defense

Training set size 2,000, 10,000 2,000, 10,000 2,000, 10,000
Test set size 200, 1,000 200, 1,000 N/A
Spam prevalence 0.50, 0.75, 0.90 0.50, 0.75, 0.90 0.50
Attack fraction 0.001, 0.005, 0.01, 0.001, 0.005, 0.01, 0.10

0.02, 0.05, 0.10 0.02, 0.05, 0.10
Folds of validation 10 10 N/A
Target Emails 20 N/A N/A

TREC dataset. The number of tokens in attack messages for the focused and pseu-
dospam attacks varies, but all such messages are comparable in size to the messages in
the TREC dataset.

Finally, to evaluate an attack, we create a control model by training SpamBayes once
on the base training set. We incrementally add attack emails to the training set and
train new models at each step, yielding a sequence of models tainted with increasing
numbers of attack messages. (Because SpamBayes is order-independent in its training,
it arrives at the same model whether training on all messages in one batch or training
incrementally on each email in any order.) We evaluate the performance of these models
on a fresh set of test messages.

5.5.1.3 Attack Assessment Method
We measure the effect of each attack by randomly choosing an inbox according to the
parameters in Table 5.1 and comparing classification performance of the control and
compromised filters using 10-fold cross-validation. In cross-validation, we partition the
data into 10 subsets and perform 10 train-test epochs. During the kth epoch, the kth

subset is set aside as a test set, and the remaining subsets are combined into a training
set. In this way, each email from the sample inbox functions independently as both
training and test data.

In the sequel, we demonstrate the effectiveness of attacks on test sets of held-out
messages. Because the dictionary and focused attacks are designed to cause ham to be
misclassified, we only show their effect on ham messages; we found that their effect on
spam is marginal. Likewise, for the pseudospam attack, we concentrate on the results
for spam messages. Most of our graphs do not include error bars since we observed
that the variation in the tests was small compared to the effect of the attacks (see
Figure 5.2(b) and (d)). See Table 5.1 for the parameters used in the experiments. We
found that varying the size of the training set and spam prevalence in the training set had
minimal impact on the performance of the attacks (for comparison, see Figure 5.2(a)
and (c)), so we primarily present the results of 10,000-message training sets at 50%
spam prevalence.

5.5.2 Dictionary Attack Results

We examine dictionary attacks as a function of the percent of attack messages in the
training set. Figure 5.2 shows the misclassification rates of three dictionary attack

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.5 Experiments with SpamBayes 123

x0 x2 x4 x6 x8
distx

di
st

y

Optimal Usenet90k Usenet25k Aspell

10
0

10

20

30

40

50

60

70

80

90

100

(a) Training on 10,000 messages (50% spam)

x0 x2 x4 x6 x8
distx

di
st

y

Optimal Usenet90k Usenet25k Aspell

10
0

10

20

30

40

50

60

70

80

90

100

(b) Attacks (with error bars)

x0 x2 x4 x6 x8
distx

di
st

y

Optimal Usenet90k Usenet25k Aspell

10
0

10

20

30

40

50

60

70

80

90

100

(c) Training on 2,000 messages (75% spam)

x0 x2 x4 x6 x8
distx

di
st

y

Optimal Usenet90k Usenet25k Aspell

10
0

10

20

30

40

50

60

70

80

90

100

(d) Attacks (with error bars)

Figure 5.2 Effect of three dictionary attacks on SpamBayes in two settings. (a) and (b) have an
initial training set of 10,000 messages (50% spam), while (c) and (d) have an initial training set
of 2,000 messages (75% spam). (b) and (d) also depict the standard errors in the experiments for
both of the settings. We plot percent of ham classified as spam (dashed lines) and as spam or
unsure (solid lines) against the attack as percent of the training set. We show the optimal attack
(�), the Usenet-90k dictionary attack (♦), the Usenet-25k dictionary attack (�), and the Aspell
dictionary attack (©). Each attack renders the filter unusable with adversarial control over as
little as 1% of the messages (101 messages).

variants averaging over 10-fold cross-validation in two settings ((a) and (b) have an
initial training set of 10,000 messages with 50% spam while (c) and (d) have an initial
training set of 2,000 messages with 75% spam). First, we analyze the optimal dictionary
attack discussed in Section 5.3.1 by simulating the effect of including every possible
token in our attack emails. As shown in the figure, this optimal attack quickly causes
the filter to mislabel all ham emails with only a minute fraction of control of the training
set.

Dictionary attacks using tokens from the Aspell dictionary are also successful, though
not as successful as the optimal attack. Both the Usenet-90k and Usenet-25k dictionary
attacks cause more ham emails to be misclassified than the Aspell dictionary attack,

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

124 Availability Attack Case Study: SpamBayes

since they contain common misspellings and slang terms that are not present in the
Aspell dictionary. All of these variations of the attack require relatively few attack
emails to significantly degrade SpamBayes’ accuracy. After 101 attack emails (1% of
10,000), the accuracy of the filter falls significantly for each attack variation. Overall
misclassification rates are 96% for optimal, 37% for Usenet-90k, 19% for Usenet-25k,
and 18% for Aspell—at this point most users will gain no advantage from continued
use of the filter so the attack has succeeded.

It is of significant interest that so few attack messages can degrade a common fil-
tering algorithm to such a degree. However, while the attack emails make up a small
percentage of the number of messages in a contaminated inbox, they make up a large
percentage of the number of tokens. For example, at 204 attack emails (2% of the train-
ing messages), the Usenet-25k attack uses approximately 1.8 times as many tokens as
the entire pre-attack training dataset, and the Aspell attack includes 7 times as many
tokens.

While it seems trivial to prevent dictionary attacks by filtering large messages out
of the training set, such strategies fail to completely address this vulnerability of Spam-
Bayes. First, while ham messages in TREC are relatively small (fewer than 1% exceeded
5,000 tokens and fewer than 0.01% of messages exceeded 25,000 tokens), this dataset
has been redacted to remove many attachments and hence may not be representative
of actual messages. Second, an attacker can circumvent size-based thresholds. By frag-
menting the dictionary, an attack can have a similar impact using more messages with
fewer tokens per message. Additionally, informed token selection methods can yield
more effective dictionaries as we demonstrate with the two Usenet dictionaries. Thus,
size-based defenses lead to a tradeoff between vulnerability to dictionary attacks and the
effectiveness of training the filter. In the next section, we present a defense that instead
filters messages based directly on their impact on the spam filter’s accuracy.

5.5.3 Focused Attack Results

In this section, we discuss experiments examining how accurate the attacker needs to be
at guessing target tokens, how many attack emails are required for the focused attack
to be effective, and what effect the focused attack has on the token scores of a targeted
message. For the focused attack, we randomly select 20 ham emails from the TREC
corpus to serve as the target emails before creating the clean training set. During each
fold of cross-validation, we executed 20 focused attacks, one for each email, so the
results average over 200 different trials.

These results differ from the focused attack experiments conducted in Nelson et al.
(2008) in two important ways. First, here we randomly select a fixed percentage of
tokens known by the attacker from each message instead of selecting each token with
a fixed probability. The latter approach causes the percentage of tokens known by the
attacker to fluctuate from message to message. Second, we only select messages with
more than 100 tokens to use as target emails. With these changes, these results more
accurately represent the behavior of a focused attack. Furthermore, in this more accurate
setting, the focused attack is even more effective.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.5 Experiments with SpamBayes 125

Percent of tokens known

Pe
rc

en
ta

tta
ck

su
cc

es
s

HAM

SPAM
UNSURE

0

20

40

60

80

100

10 30 50 10090

Figure 5.3 Effect of the focused attack as a function of the percentage of target tokens known by
the attacker. Each bar depicts the fraction of target emails classified as spam, ham, and unsure
after the attack. The initial inbox contains 10,000 emails (50% spam).

Figure 5.3 shows the effectiveness of the attack when the attacker has increasing
knowledge of the target email by simulating the process by which the attacker guesses
tokens from the target email. We assume that the attacker knows a fixed fraction F of the
actual tokens in the target email, with F ∈ {0.1, 0.3, 0.5, 0.9}—the x-axis of Figure 5.3.
The y-axis shows the percent of the 20 targets classified as ham, unsure, and spam. As
expected, the attack is increasingly effective as F increases. If the attacker knows 50%
of the tokens in the target, classification changes to spam or unsure on all of the target
emails, with a 75% rate of classifying as spam.

Figure 5.4 shows the attack’s effect on misclassifications of the target emails as the
number of attack messages increases with the fraction of known tokens fixed at 50%.
The x-axis shows the number of messages in the attack as a fraction of the training
set, and the y-axis shows the fraction of target messages misclassified. With 101 attack
emails inserted into an initial mailbox size of 10,000 (1%), the target email is misclas-
sified as spam or unsure over 90% of the time.

Figure 5.5 shows the attack’s effect on three representative emails. Each of the graphs
in the figure represents a single target email from each of three attack results: ham
misclassified as spam (a), ham misclassified as unsure (b), and ham correctly classified
as ham (c). Each point represents a token in the email. The x-axis is the token’s spam
score (from Equation (5.2)) before the attack, and the y-axis is the token’s score after
the attack (0 indicates ham and 1 indicates spam). The ×’s are tokens included in the
attack (known by the attacker) and the ©’s are tokens not in the attack. The histograms
show the distribution of token scores before the attack (at bottom) and after the attack
(at right).

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

126 Availability Attack Case Study: SpamBayes

Percent control of training set

Pe
rc

en
tt

ar
ge

th
am

m
is

cl
as

si
fie

d

0 21 3 54 6 87 9 10
0

10

20

30

40

50

60

70

80

90

100

Figure 5.4 Effect of the focused attack as a function of the number of attack emails with a fixed
fraction (F = 0.5) of tokens known by the attacker. The dashed line shows the percentage of
target ham messages classified as spam after the attack, and the solid line the percentage of
targets that are spam or unsure after the attack. The initial inbox contains 10,000 emails (50%
spam).

Any point above the line y = x is a token whose score increased due to the attack,
and any point below is a decrease. These graphs demonstrate that the scores of the
tokens included in the attack typically increase significantly while those not included
decrease slightly. Since the increase in score is more significant for included tokens than
the decrease in score for excluded tokens, the attack has substantial impact even when
the attacker has a low probability of guessing tokens, as seen in Figure 5.3. Further, the
before/after histograms in Figure 5.5 provide a direct indication of the attack’s success.
In shifting most token scores toward 1, the attack causes more misclassifications.

5.5.4 Pseudospam Attack Experiments

In contrast to the previous attacks, for the pseudospam attack, we created attack emails
that may be labeled as ham by a human as the emails are added into the training set.
We set up the experiment for the pseudospam attack by first randomly selecting a target
spam header to be used as the base header for the attack. We then create the set of attack
emails that look similar to ham emails (see Section 5.3.2). To create attack messages,
we combine each ham email with the target spam header. This is done so that the attack
email has contents similar to other legitimate email messages. Header fields that may
modify the interpretation of the body are taken from the ham email to make the attack
realistic.

Figure 5.6 demonstrates the effectiveness of the pseudospam attack by plotting the
percent of attack messages in the training set (x-axis) against the misclassification rates

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.5 Experiments with SpamBayes 127

Token score before attack

To
ke

n
sc

or
e

af
te

r
at

ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) Misclassified as spam

Token score before attack

To
ke

n
sc

or
e

af
te

r
at

ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Misclassified as unsure

Token score before attack

To
ke

n
sc

or
e

af
te

r
at

ta
ck

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Correctly classified as ham

Figure 5.5 Effect of the focused attack on three representative emails—one graph for each target.
Each point is a token in the email. The x-axis is the token’s spam score in Equation (5.2) before
the attack (0 indicates ham and 1 indicates spam). The y-axis is the token’s spam score after the
attack. The ×’s are tokens that were included in the attack, and the ©’s are tokens that were not in
the attack. The histograms show the distribution of spam scores before the attack (at bottom) and
after the attack (at right).

on the test spam email (y-axis). The solid line shows the fraction of target spam classi-
fied as ham or unsure spam, while the dashed line shows the fraction of spam classified
as ham. In the absence of attack, SpamBayes only misclassifies about 10% of the target
spam emails (including those labeled unsure). If the attacker can insert a few hundred
attack emails (1% of the training set), then SpamBayes misclassifies more than 80% of
the target spam emails.

Further, the attack has a minimal effect on regular ham and spam messages. Other
spam email messages are still correctly classified since they do not generally have the

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

128 Availability Attack Case Study: SpamBayes

Percent control of training set

Pe
rc

en
tt

ar
ge

ts
pa

m
m

is
cl

as
si

fie
d

0 1 32 4 8765 109
0

10

20

30

40

50

60

70

80

90

100

Figure 5.6 Effect of the pseudospam attack when trained as ham as a function of the number of
attack emails. The dashed line shows the percentage of the adversary’s messages classified as
ham after the attack, and the solid line the percentage that are ham or unsure after the attack. The
initial inbox contains 10,000 emails (50% spam).

same header fields as the adversary’s messages. In fact, ham messages may have lower
spam scores since they may contain tokens similar to those in the attack emails.

We also explore the scenario in which the pseudospam attack emails are labeled by
the user as spam to better understand the effect of these attacks if the pseudospam mes-
sages fail to fool the user. The result is that, in general, SpamBayes classifies more
spam messages incorrectly. As Figure 5.7 indicates, this variant causes an increase in
spams mislabeled as either unsure or ham to nearly 15% as the number of attack emails
increases. Further, this version of the attack does not cause a substantial impact on nor-
mal ham messages.

5.5.5 RONI Results

Again to empirically evaluate the reject on negative impact defense, we sample inboxes
from the TREC 2005 spam corpus. In this assessment, we use 20-fold cross validation
to get an initial training inbox D(train) of about 1,000 messages (50% spam) and a test set
D(eval) of about 50 messages. We also sample a separate set D(suspect) of 1,000 additional
messages from the TREC corpus to test as a baseline. In each fold of cross-validation,
we run five separate trials of RONI. For each trial, we use a calibration set of 25 ham and
25 spam messages and sample three training/quiz set pairs of 100 training and 100 quiz
messages from the remaining 950 messages. We train two classifiers on each training
set for each message in D(suspect), one with and one without the message, measuring

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.5 Experiments with SpamBayes 129

Percent control of training set

Pe
rc

en
tt

es
ts

pa
m

m
is

cl
as

si
fie

d

0 1 32 4 8765 109
0

10

20

5

15

25

Figure 5.7 Effect of the pseudospam attack when trained as spam as a function of the number
of attack emails. The dashed line shows the percentage of the normal spam messages classified
as ham after the attack, and the solid line the percentage that are unsure after the attack.
Surprisingly, training the attack emails as ham causes an increase in misclassification of normal
spam messages. The initial inbox contains 10,000 emails (50% spam).

performance on the corresponding quiz set and comparing it to the magnitude of change
measured from the calibration set.

We perform RONI evaluation for each message in D(suspect) as just described to see the
effect on non-attack emails. We find that the reject on negative impact defense (incor-
rectly) rejects an average of 2.8% of the ham and 3.1% of the spam from D(suspect). To
evaluate the performance of the post-RONI filter, we train a classifier on all messages
in D(suspect) and a second classifier on the messages in D(suspect) not rejected by RONI.
When trained on all 1,000 messages, the resulting filter correctly classifies 98% of ham
and 80% of the spam. After removing the messages rejected by RONI and training from
scratch, the resulting filter still correctly classifies 95% of ham and 87% of the spam.
The overall effect of the reject on negative impact defense on classification accuracy is
shown in Figure 5.8.

Since the RONI technique removes non-attack emails in this test, and therefore
removing potentially useful information from the training data, SpamBayes’ classifi-
cation accuracy suffers. It is interesting to see that test performance on spam actually
improves after removing some emails from the training set. This result seems to indi-
cate that some non-attack emails confuse the filter more than they help when used in
training, perhaps because they happen to naturally fit some of the characteristics that
attackers use in emails.

Next we evaluate the performance of RONI where D(suspect) instead consists of attack
emails from the attacks described earlier in Sections 5.3. RONI rejects every single

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

130 Availability Attack Case Study: SpamBayes

Before RONI

Predicted Label
ham spam unsure

Tr
ut

h ham 97% 0.0% 2.5%
spam 2.6% 80% 18%

After RONI

Predicted Label
ham spam unsure

Tr
ut

h ham 95% 0.3% 4.6%
spam 2.0% 87% 11%

Figure 5.8 Effect of the RONI defense on the accuracy of SpamBayes in the absence of attacks.
Each confusion matrix shows the breakdown of SpamBayes’s predicted labels for both ham and
spam messages. Left: The average performance of SpamBayes on training inboxes of about
1,000 message (50% spam). Right: The average performance of SpamBayes after the training
inbox is censored using RONI. On average, RONI removes 2.8% of ham and 3.1% of spam from
the training sets. (Numbers may not add up to 100% because of rounding error.)

dictionary attack from any of the dictionaries (optimal, Aspell, and Usenet). In fact,
the degree of change in misclassification rates for each dictionary message is greater
than five standard deviations from the median, suggesting that these attacks are easily
eliminated with only minor impact on the performance of the filter (see Figure 5.9).

A similar experiment with attack emails from the focused attack shows that the RONI
defense is much less effective against focused attack messages. The likely explanation
is simple: Indiscriminate dictionary attacks broadly affect many different messages with
their wide scope of tokens, so its consequences are likely to be seen in the quiz sets. The
focused attack is instead targeted at a single future email, which may not bear any signif-
icant similarity to the messages in the quiz sets. However, as the fraction of tokens cor-
rectly guessed by the attacker increases, the RONI defense identifies increasingly many
attack messages: Only 7% are removed when the attacker guesses 10% of the tokens,
but 25% of the attacks are removed when the attacker guesses 100% of the tokens. This

Dictionary Attacks
(Before RONI)

Predicted Label
ham spam unsure

Optimal

True Label
ham 4.6% 83% 12%

spam 0.0% 100% 0.0%
Aspell

True Label
ham 66% 12% 23%

spam 0.0% 98% 1.6%
Usenet

True Label
ham 47% 24% 29%

spam 0.0% 99% 0.9%

Dictionary Attacks
(After RONI)

Predicted Label
ham spam unsure

Optimal

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%
Aspell

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%
Usenet

True Label
ham 95% 0.3% 4.6%

spam 2.0% 87% 11%

Figure 5.9 We apply the RONI defense to dictionary attacks with 1% contamination of training
inboxes of about 1,000 messages (50% spam) each. Left: The average effect of optimal, Usenet,
and Aspell attacks on the SpamBayes filter’s classification accuracy. The confusion matrix shows
the breakdown of SpamBayes’s predicted labels for both ham and spam messages after the filter
is contaminated by each dictionary attack. Right: The average effect of the dictionary attacks on
their targets after application of the RONI defense. By using RONI, all of these dictionary
attacks are caught and removed from the training set, which dramatically improves the accuracy
of the filter.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.6 Summary 131

Focused Attacks
(Before RONI)

Target Prediction
ham spam unsure

10% guessed 78% 0.0% 22%
30% guessed 30% 5.2% 65%
50% guessed 5.8% 23% 71%
90% guessed 0.0% 79% 21%
100% guessed 0.0% 86% 14%

Focused Attacks
(After RONI)

Target Prediction
ham spam unsure

10% guessed 79% 2.7% 21%
30% guessed 36% 4.8% 59%
50% guessed 19% 20% 61%
90% guessed 20% 62% 19%
100% guessed 21% 66% 13%

Figure 5.10 The effectiveness of the RONI defense on focused attacks with 1% contamination of
training inboxes of about 1,000 messages (50% spam) each. Left: The average effect of 35
focused attacks on their targets when the attacker correctly guesses 10, 30, 50, 90, and 100% of
the target’s tokens. Right: The average effect of the focused attacks on their targets after
application of RONI. By using RONI, more of the target messages are correctly classified as
ham, but the focused attacks largely still succeed at misclassifying most targeted messages.

is likely due to the fact that with more correctly guessed tokens, the overlap with other
messages increases sufficiently to trigger RONI more frequently. However, the attack is
still successful in spite of the increased number of detections (see Figure 5.10).

5.6 Summary

Motivated by the taxonomy of attacks against learners, we designed real-world
Causative attacks against SpamBayes’ learner and demonstrated the effectiveness of
these attacks using realistic adversarial control over the training process of SpamBayes.
Optimal attacks against SpamBayes caused unusably high false-positive rates using only
a small amount of control of the training process (more than 95% misclassification of
ham messages when only 1% of the training data is contaminated). Usenet dictionary
attacks also effectively use a more realistically limited attack message to cause misclas-
sification of 19% of ham messages with only 1% control over the training messages,
rendering SpamBayes unusable in practice. We also show that an informed adversary
can successfully target messages. The focused attack changes the classification of the
target message virtually 100% of the time with knowledge of only 30% of the target’s
tokens. Similarly, the pseudospam attack is able to cause nearly 90% of the target spam
messages to be labeled as either unsure or ham with control of less than 10% of the
training data.

To combat attacks against SpamBayes, we designed a data sanitization technique
called the reject on negative impact (RONI) defense that expunges any message from
the training set if it has an undue negative impact on a calibrated test filter. RONI is a
successful mechanism that thwarts a broad range of dictionary attacks—or more gen-
erally Indiscriminate Causative Availability attacks. However, the RONI defense also
has costs. First, this defense yields a slight decrease in ham classification (from 98% to
95%). Second, RONI requires a substantial amount of computation—testing each mes-
sage in D(suspect) requires us to train and compare the performance of several classifiers.
Finally, RONI may slow the learning process. For instance, when a user correctly labels

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

132 Availability Attack Case Study: SpamBayes

Figure 5.11 Real email messages that are suspiciously similar to dictionary or focused attacks.
Messages (a), (b), and (c) all contain many unique rare words, and training on these messages
would probably make these words into spam tokens. As with the other three emails, message (d)
contains no spam payload, but has fewer rare words and more repeated words. Perhaps repetition
of words is used to circumvent rules that filter messages with too many unique words (e.g., the
UNIQUE_WORDS rule of Apache SpamAssassin (Apa n.d.)).

a new type of spam for training, RONI may reject those instances because the new spam
may be very different from spam previously seen and more similar to some non-spam
messages in the training set.

In presenting attacks against token-based spam filtering, there is a danger that spam-
mers may use these attacks against real-world spam filters. Indeed, there is strong
evidence that some emails sent to our colleagues may be attacks on their filter. Examples
of the contents of such messages are included in Figure 5.11 (all personal information
in these messages has been removed to protect the privacy of the message recipients).

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

5.6 Summary 133

However, these messages were not observed at the scale required to poison a large com-
mercial spam filter such as GMail, Hotmail, or Yahoo! Mail. It is unclear what, if any,
steps are being taken to prevent poisoning attacks against common spam filters, but we
hope that, in exposing the vulnerability of existing techniques, designers of spam filters
will harden their systems against attacks. It is imperative to design the next generation
of spam filters to anticipate attacks against them, and we believe that the work presented
here will inform and guide these designs.

Although this work investigated so-called Bayesian approaches to spam detection,
there are other approaches that we would like to consider. One of the more popular open-
source filters, Apache SpamAssassin (Apa n.d.), incorporates a set of hand-crafted rules
in addition to its token-based learning component. It assigns a score to each rule and
tallies them into a combined spam score for a message. Other approaches rely exclu-
sively on envelope-based aspects of an email to detect spam. For instance, the IP-based
approach of Ramachandran, Feamster, & Vempala (2007) uses a technique they call
behavioral blacklisting to identify (and blacklist) likely sources of spam. This diverse
range of detection techniques require further study to identify their vulnerabilities and
how spammers exploit multifaceted approaches to spam detection. Further, there is
a potential for developing advanced spam filtering methods that combine these dis-
parate detection techniques together; the online expert aggregation setting discussed in
Section 3.6 seems particularly well suited for this task.

https://doi.org/10.1017/9781107338548.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.005

