
2 Learning Algorithms

This chapter addresses the background knowledge about machine learning and deep
learning, which is used as a foundation for statistical speaker recognition. The paradigms
based on statistical inference and neural networks are presented. In particular, we
address the basics of expectation-maximization (EM) algorithms, variational EM algo-
rithms, and general approximate inference algorithms. Bayesian learning is presented
to deal with regularization in model-based speaker recognition.

2.1 Fundamentals of Statistical Learning

In general, the speech signal in speaker recognition is collected as a set of observation
vectors. The underlying factors including channels, noises, and environments, etc., are
unknown and treated as latent variables when training the speaker recognition model.
Hierarchical latent variables or features can be explored to characterize the structural
information in latent variable or feature space. In machine learning community, the
latent space models are constructed in different ways with different interpretations.
Machine learning provides a wide range of model-based approaches for speaker recog-
nition. A model-based approach aims to incorporate the physical phenomena, measure-
ments, uncertainties, and noises in the form of mathematical models. Such an approach
is developed in a unified manner through different algorithms, examples, applications,
and case studies. Mainstream methods are based on the statistical models. There are
two popular categories of statistical methods in modern machine learning literature.
One is the probabilistic models and the other is the neural network models that have
been developing widely in various speaker recognition systems. A brief introduction to
these two broad categories is addressed in what follows.

2.1.1 Probabilistic Models

The first category of statistical learning methods is grouped into probabilistic models or
latent variable models that aim to relate a set of observable variables X to a set of latent
variables Z based on a number of probability distributions [1]. Under a specification
of model structure, the model parameters � of probability functions are estimated by
maximizing the likelihood function with respect to model parameters �. Basically,
probabilistic model is configured as a top-down structure or representation. Starting

13

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

14 Learning Algorithms

Figure 2.1 A hierarchical Bayesian representation for a latent variable model with
hyperparameters �, parameters �, latent variablesZ, and observed variables X. Shaded
node means observations. Unshaded nodes means latent variables.

Figure 2.2 A supervised probabilistic model with parameters �, latent variablesZ, and observed
samples X and observed labels Y.

from the hyperparameters �, model parameters are drawn or represented by a prior
density p(�|�). Having the model parameters �, the speech training samples X are
generated by a likelihood function p(X|�), which is marginalized over discrete latent
variables by

p(X|�) =
∑
Z

p(X,Z|�) (2.1)

or over continuous latent variable by

p(X|�) =
∫

p(X,Z|�)dZ. (2.2)

Probabilistic representation of data generation is intuitive with the graphical repre-
sentation as shown in Figure 2.1. It is straightforward to build a supervised regression
or classification model by directly maximizing the conditional likelihood p(Y|X,�)
where the training samples consist of observation samples X as well as their regression
or class labels Y. Figure 2.2 illustrates a latent variable model for supervised training.
The conditional likelihood with discrete latent variables is expressed by

p(Y|X,�) =
∑
Z

p(Y,Z|X,�)

=
∑
Z

p(Y|X,�).p(Z|�)
(2.3)

The supervised, unsupervised, and semi-supervised models can be flexibly performed
and constructed by optimizing the corresponding likelihood functions in individual or
hybrid style. The uncertainties of observations, parameters, and hyperparameters are
easily incorporated in the resulting solution based on the probability functions. Domain

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.1 Fundamentals of Statistical Learning 15

knowledge can be represented as constraints in the likelihood function, which essentially
turns the maximum-likelihood problem into a constrained optimization problem.

For real-world applications, the probabilistic models are complicated with different
latent variables in various model structures. There are a number of approximate infer-
ence algorithms that are available for solving the optimization problems in probabilistic
models. However, the approximate inference or decoding algorithm is usually difficult
to derive. Direct optimization over a likelihood function is prone to be intractable. Alter-
natively, indirect optimization over a lower bound of the likelihood function (or called
the evidence lower bound [ELBO]) is implemented as an analytical solution. There
are many latent variable models in various information systems. The latent variable
models in speaker recognition, addressed in this book, include the Gaussian mixture
model (GMM), factor analysis (FA), probabilistic linear discriminant analysis (PLDA),
joint factor analysis (JFA), and mixture of PLDA, which will be addressed in Sections
3.1, 3.3, 3.5, 3.7, and 5.4.1, respectively.

2.1.2 Neural Networks

Deep neural networks (DNNs) have successfully boosted the performance of numerous
information processing systems in many domains. The key to the success of DNNs is
originated from the deep structured and hierarchical learning, which mimic the infor-
mation processing functions of human’s neural system. Multiple layers of nonlinear
processing units are introduced to represent very complicated mapping between input
samples and output targets. High-level abstraction is extracted to judge the target values
corresponding to raw input samples. For example, the deeper layers in Figure 2.3 are
capable of identifying the high-level semantic meaning of the input image and use the
meaning for predicting the type of action in the image.

Table 2.1 illustrates the conceptual differences between the paradigms of probabilistic
models and neural network models. Different from probabilistic models, neural net-
works are constructed as a bottom-up structure. The observed samples are received and
propagated in a layer-wise model that is known as the multilayer perceptron (MLP)
[20]. MLP is established as a distributed computer. The computation style in neural
networks is consistent in different layers. In general, a neural network is seen as a black
box and is basically hard to analyze and interpret. Neural networks can be considered

Run

Jump
Figure 2.3 A deep neural network is constructed to retrieve the semantic meaning from an input
image.

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

16 Learning Algorithms

Table 2.1 Probabilistic models versus neural networks from different machine learning perspectives.

Probabilistic model Neural network

Structure Top-down Bottom-up
Representation Intuitive Distributed
Interpretation Easier Harder

Supervised/unsupervised learning Easier Harder
Incorporation of domain knowledge Easy Hard
Incorporation of constraint Easy Hard
Incorporation of uncertainty Easy Hard

Learning algorithm Many algorithms Back-propagation
Inference/decode process Harder Easier
Evaluation on ELBO End performance

as deterministic learning machines where the uncertainty of model parameters is dis-
regarded. A fixed style of computation model is implemented so that it is difficult to
incorporate domain knowledge and constraint in the optimization procedure. However,
neural networks are easy to implement and infer. The learning objective is based on the
error backpropagation algorithm, which optimizes the end performance by propagating
the gradients from the output layer back to the input layer. Only the computations of
gradients and their propagations are required. Computation procedure is simple and
intuitive.

A desirable machine learning algorithm for speaker recognition should preserve good
properties from both paradigms. Our goal is to pursue modern machine learning models
and optimization procedures that are explainable and intuitive. The details of deep neural
networks will be discussed in Chapter 4. In what follows, we introduce the fundamentals
of model inference that will be used in the construction of probabilistic models for
speaker recognition.

2.2 Expectation-Maximization Algorithm

This subsection addresses the general principle of a maximum likelihood (ML)
estimation of probabilistic models and the detailed procedure of how the Jensen’s
inequality is used to derive the expectation-maximization (EM) algorithm [8]. The EM
algorithm provides an efficient approach to tackling the incomplete data problem in a
ML estimation; it also provides a general solution to the estimation of model parameters
based on the ML principle.

2.2.1 Maximum Likelihood

We assume that the spectral matrix of a speech signal X is observed, which is generated
by a distribution p(X|�) parameterized by � under a specialized model. The optimal

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.2 Expectation-Maximization Algorithm 17

ML parameters �ML of a speaker recognition model are estimated by maximizing the
accumulated likelihood function from T frames of signal spectra X = {xt }Tt=1, i.e.,

�ML = argmax
�

p(X|�). (2.4)

Basically, the missing data problem happens in the estimation in Eq. 2.4 owing to the
absence of latent variablesZ in the representation. We could not directly work on such
an optimization. To deal with this problem in model inference, the complete data {X,Z},
consisting of observation data X and latent variablesZ, are introduced in expression of
a ML estimation in a form of

�ML = argmax
�

∑
Z

p(X,Z|�). (2.5)

This optimization considers discrete latent variables Z, which are integrated by
summation.

2.2.2 Iterative Procedure

In general, the exact solution to global optimum in optimization problem of Eq. 2.4
is intractable because of an incomplete data problem. To cope with this problem, the
expectation-maximization (EM) algorithm [8] was developed to find an analytical solu-
tion to ML estimation. This algorithm is implemented by alternatively running the
expectation step (also called E-step) and the maximization step (M-step) and iteratively
finding the convergence to local optimum for ML estimate of model parameters �ML. In
this ML estimation, the first step (E-step) is performed by building an auxiliary function
Q(�|�(τ)) or calculating an expectation function of the log likelihood function with
new parameters � conditional on the parameters �(τ) at previous iteration τ

Q(�|�(τ)) = EZ[log p(X,Z|�)|X,�(τ)]

=
∑
Z

p(Z|X,�(τ)) log p(X,Z|�). (2.6)

The second step (M-step) is to estimate the updated parameters �(τ+1) at iteration τ+1
by maximizing the auxiliary function based on

�(τ+1) = argmax
�

Q(�|�(τ)). (2.7)

In this iterative procedure, new parameters �(τ+1) are then viewed as the old param-
eters when moving to next EM iteration τ + 2 for estimating the newly updated
parameters �(τ+2). Such an iterative estimation only assures a local optimum while
the global optimum solution is not guaranteed. Instead of directly maximizing the
likelihood in Eq. 2.5, the EM algorithm indirectly maximizes the auxiliary function
and theoretically proves a nondecreasing auxiliary function through a number of EM
iterations [8]. This property is attractive and useful in order to run debugging over

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

18 Learning Algorithms

the likelihood values in successive EM iterations in the implementation procedure.
Nevertheless, the increase of auxiliary function may be rapidly saturated in the EM
algorithm. But, a well-tuned setting of initialization of model parameters �(0) is helpful
to globally seek the optimal parameters.

It is important to investigate how the iterative optimization over auxiliary function
Q(�|�(τ)) is performed to continuously increase the log likelihood log p(X|�). Here,
Y � {X,Z} denotes the complete data. Log likelihood function is denoted by L(�) �
log p(X|�). We would like to investigate the increase of likelihood function p(X|�) by
means of evaluating the increase of log likelihood function L(�) since logarithm log is
a monotonically increasing function. To do so, we first have the equation

p(Y|X,�) = p(Y,X|�)

p(X|�)
= p(X|Y,�)p(Y|�)

p(X|�)
= p(Y|�)

p(X|�)
, (2.8)

which is obtained by using p(X|Y,�) = p(X|X,Z,�) = 1. Having this equation, we
manipulate it by taking logarithm and then taking expectation over both sides of Eq. 2.8
with respect to p(Y|X,�(τ)) to yield

L(�) = log p(Y|�) − log p(Y|X,�) (2.9a)

= EY [log p(Y|�)|X,�(τ)] − EY [log p(Y|X,�)|X,�(τ)] (2.9b)

= Q(�|�(τ)) −H (�|�(τ)) (2.9c)

where H (�|�(τ)) is defined by

H (�|�(τ)) � EY [log p(Y|X,�)|X,�(τ)]. (2.10)

Here, the RHS of Eq. 2.9c is equal to L(�) because

EY [L(�)] =
∫

p(Y|X,�(τ))L(�)dY = L(�). (2.11)

By considering the negative logarithm as a convex function, the Jensen’s inequality can
be applied to derive

H (�(τ)|�(τ)) −H (�|�(τ))

= EY

[
log

p(Y|X,�(τ))

p(Y|X,�)

∣∣∣∣∣X,�(τ)

]

=
∫

p(Y|X,�(τ))

(
− log

p(Y|X,�)

p(Y|X,�(τ))

)
dY

= DKL(p(Y|X,�(τ))‖p(Y|X,�))

≥ − log

(∫
p(Y|X,�(τ))

p(Y|X,�)

p(Y|X,�(τ))
dY

)
= 0

(2.12)

whereDKL(·‖·) means the Kullback–Leibler divergence [21]. Substituting Eq. 2.12 into
Eq. 2.9c yields

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.2 Expectation-Maximization Algorithm 19

L(�) = Q(�|�(τ)) −H (�|�(τ))

≥ Q(�(τ)|�(τ)) − H (�(τ)|�(τ)) = L(�(τ)),
(2.13)

which is derived by adopting the useful inequality

Q(�|�(τ)) ≥ Q(�(τ)|�(τ))

⇒ L(�) ≥ L(�(τ))

⇒ p(X|�) ≥ p(X|�(τ)).

(2.14)

In summary, we increase the auxiliary function Q(�|�(τ)), which equivalently increase
the log likelihood function L(�) or the likelihood function p(X|�). Auxiliary func-
tion is maximized to increase the likelihood function given by the updated parameters
�(τ) → �(τ+1). However, we don’t directly optimize the original likelihood function.
Indirectly optimizing the auxiliary function will result in a local optimum in estimation
of ML parameters.

2.2.3 Alternative Perspective

An alternative view of the EM algorithm is addressed by introducing a variational
distribution q(Z) for latent variables Z. No matter what distribution q(Z) is chosen,
we can derive a general formula for decomposition of log likelihood in a form of

log p(X|�) = DKL(q‖p) + L(q,�). (2.15)

This formula is obtained because

DKL(q‖p) = −
∑
Z

q(Z) log

{
p(Z|X,�)

q(Z)

}
= −Eq [log p(Z|X,�)] −Hq [Z]

(2.16)

and

L(q,�) =
∑
Z

q(Z) log

{
p(X,Z|�)

q(Z)

}
= Eq [log p(X,Z|�)] +Hq [Z],

(2.17)

where the entropy of q(Z) is defined by

Hq [Z] � −
∑
Z

q(Z) log q(Z). (2.18)

We have the following interpretation. The log likelihood log p(X|�) is decomposed
as a KL divergence between q(Z) and posterior distribution p(Z|X,�) and a lower
bound L(q,�) of the log likelihood function log p(X|�). We call L(q,�) as the lower
bound since KL term in Eq. 2.15 meets the property DKL(q‖p) ≥ 0. This property
was also shown in Eq. 2.12. Figure 2.4(a) illustrates the relation among log likelihood
function, KL divergence, and lower bound. ML estimation of model parameters �

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

20 Learning Algorithms

(a)

(b)

(c)

Figure 2.4 Illustration for (a) decomposing a log likelihood log p(X|�) into a KL divergence
DKL(q‖q) and a lower bound L(q,�), (b) updating the lower bound by setting KL divergence
to zero with new distribution q(Z) = p(Z|X,�(τ)), and (c) updating lower bound again by
using new parameters �(τ+1) [1]. [Based on Pattern Recognition and Machine Learning
(Figure. 9.11–Figure. 9.13), by C. M. Bishop, 2006, Springer.]

turns out as an indirect optimization via finding a variational distribution q(Z). This
indirect optimization is carried out by alternatively executing two steps to estimate the
distribution of latent variables q(Z) and the model parameters �. The first step is to use
the current estimate �(τ) to estimate the approximate distribution q(Z) by

q(Z) = p(Z|X,�(τ)), (2.19)

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.2 Expectation-Maximization Algorithm 21

which is obtained by imposing DKL(q‖p) = 0. Namely, the variational distribution is
derived as the posterior distribution given by the old parameters �(τ) at iteration τ. As
seen in Figure 2.4(b), the variational lower bound is improved accordingly. Then, in the
second step, shown in Figure 2.4(c), we fix q(Z) and maximize again the lower bound
L(q,�) with respect to � to estimate new model parameters �(τ+1) at iteration τ + 1.
It is noted that this lower bound with variational distribution q(Z) in Eq. 2.19 is exactly
the same as the auxiliary function for the E-step in EM algorithm as shown below1

L(q,�) = Eq [log p(X|Z,�) + log p(Z|�)] + const

= EZ[log p(X,Z|�)|X,�(τ)] + const

= Q(�|�(τ)) + const.

(2.20)

Here, the terms independent of � are merged in a constant. Given the parameters
�(τ+1), the distribution of latent variables is further updated at the next EM iteration as
�(τ+2) ← �(τ+1). A series of parameter updating are obtained by

�(0) → �(1) → �(2) → · · · (2.21)

This updating assures that the lower bound L(q,�) is sequentially elevated and the
log likelihood function log p(X|�) is accordingly improved. Therefore, finding q(Z)
in Eq. 2.19 is equivalent to calculating the auxiliary function in E-step. Maximizing
the lower bound L(q,�) with respect to model parameters � corresponds to fulfill
the M-step in EM iterative updating. Originally, the log likelihood log p(X|�) under
latent variable model with Z is seen a non-convex or non-concave function. However,
the inference based on the lower bound or expectation function in Eqs. 2.6 and 2.20
under Gaussian observation distribution becomes a concave optimization as illustrated
in Figure 2.5. In this figure, the continuously maximizing the lower bound or the iterative
updating of model parameters from �(τ) to �(τ+1) via EM steps assures the optimum in
a ML estimate �ML. Owing to a nondecreasing lower bound or auxiliary function, we
guarantee the convergence of model parameters within a few EM steps.

2.2.4 Maximum A Posteriori

From a Bayesian perspective, it is meaningful to extend the optimization over the pos-
terior distribution p(�|X) and address how to seek the MAP estimate �MAP by maxi-
mizing the posterior distribution of model parameters � by giving observations X. The
discrete latent variables Z are introduced in the following MAP estimation to estimate
the mode �MAP of posterior distribution from the collection of training data X

�MAP = argmax
�

p(�|X)

= argmax
�

∑
Z

p(X,Z|�)p(�).
(2.22)

1 Note that in Eq. 2.9c, we take the expectation with respect to the posterior p(Y|X,�(r)), which is
equivalent to taking expectation with respect to p(Z|X,�(r)) as Y = {X,Z}.

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

22 Learning Algorithms

Figure 2.5 Illustration of updating the lower bound of log likelihood function L(q,�) in EM
iteration from τ to τ + 1. Lower bound is seen as an iterative log Gaussian approximation to the
original log likelihood function log p(X|�). [Based on Pattern Recognition and Machine
Learning (Figure. 9.14), by C. M. Bishop, 2006, Springer.]

Figure 2.6 Bayes rule for illustrating the relation among the posterior distribution, likelihood
function, prior distribution, and evidence function.

In Eq. 2.22, the summation is taken due to the discrete latent variables Z. Figure 2.6
shows the relation among posterior distribution, likelihood function, prior distribution,
and evidence function, which is obtained by the Bayes theorem. We don’t really need
to compute the integral in evidence function for the MAP estimation because the evi-
dence function p(X) = ∫

p(X|�)p(�)d� is independent of �. The MAP estimation
is an extension of the ML estimation by additionally considering the prior distribution
that acted as a regularization term to reshape the estimation of model parameters. It
is obvious that MAP provides advantage over ML for a richer parameter estimation.
Importantly, if a conjugate prior distribution is chosen and combined with the likelihood
function in a form of exponential distribution, a MAP estimation comparably searches
the mode of the corresponding posterior distribution, which is formulated as the same
distribution but with different parameters as the prior distribution. Conjugate prior is
crucial in a MAP estimation. If we don’t adopt the conjugate prior, the analytical poste-
rior distribution does not exist for finding the mode or optimum of posterior distribution.

Here, we address an EM algorithm for the MAP estimation, which is an extension
from EM based on a ML estimation. The incomplete data problem in a MAP estimation
is tackled via EM steps to derive an analytical solution to local optimum �MAP. The
resulting MAP-EM algorithm is formulated as E-step and M-step in an iterative learning
procedure that updates new estimate � from the old parameters �(τ) at iteration τ. In the
first step (E-step), we calculate the posterior auxiliary function, which is an expectation
over posterior distribution

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.2 Expectation-Maximization Algorithm 23

R(�|�(τ)) = EZ[log p(X,Z,�)|X,�(τ)]

= EZ[log p(X,Z|�)|X,�(τ)]︸ ︷︷ ︸
Q(�|�(τ))

+ log p(�). (2.23)

In Eq. 2.23, the prior term log p(�) is independent of Z and is accordingly outside the
expectation function. Obviously, different from the ML estimation, there is an additional
factor log p(�) in the MAP estimation due to the prior density of model parameters. In
the second step (M-step), we maximize the posterior expectation function to estimate
the new model parameters �(τ) → �(τ+1) according to

�(τ+1) = argmax
�

R(�|�(τ)). (2.24)

The parameters are updated by �(τ) → �(τ+1) at iteration τ + 1 and then treated as
the old parameters for estimation of new parameters at iteration τ + 2 in the next EM
iteration.

We may further investigate the optimization of expectation function R(�|�(τ)),
which can result in local optimum of p(�|X) or p(X|�)p(�). To do so, we first have
the definition of logarithm of joint distribution LMAP(�) � log (p(X|�)p(�)) and use
the relation

p(X|�) = p(X,Z|�)

p(Z|X,�)
, (2.25)

to rewrite the expression as

LMAP(�) = log p(X,Z|�) − log p(Z|X,�) + log p(�). (2.26)

By referring Eq. 2.9c and taking expectation of both sides of Eq. 2.26 with respect to
posterior distribution p(Z|X,�(τ)), we yield

LMAP(�) = EZ[log p(X,Z|�)|X,�(τ)]

− EZ[log p(Z|X,�)|X,�(τ)] + log p(�)

= EZ[log p(X,Z|�)|X,�(τ)] + log p(�)︸ ︷︷ ︸
=R(�|�(τ))

− EZ[log p(Z|X,�)|X,�(τ)]︸ ︷︷ ︸
�H (�|�(τ))

.

(2.27)

The terms LMAP(�) and log p(�) are independent ofZ and are unchanged in Eq. 2.27.
The posterior auxiliary function is decomposed as

R(�|�(τ)) = LMAP(�) + H (�|�(τ)). (2.28)

Because it has been shown in Eq. 2.12 that H (�|�(τ)) is continuously decreasing, i.e.,

H (�|�(τ)) ≤ H (�(τ)|�(τ)), (2.29)

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

24 Learning Algorithms

we can derive

R(�|�(τ)) ≥ R(�(τ)|�(τ))

⇒ LMAP(�) ≥ LMAP(�(τ))

⇒ p(�|X) ≥ p(�(τ)|X).

(2.30)

Namely, the increasing posterior auxiliary function R(�|�(τ)) will lead to an increasing
logarithm of posterior distribution L(�) or equivalently an increasing posterior distri-
bution p(�|X). An EM algorithm is completed for a MAP estimation, which attains a
converged local optimum for MAP parameters.

2.3 Approximate Inference

Variational Bayesian (VB) inference has been originated in machine learning literature
since the late 1990s [22, 23]. VB theory has become a popular tool for approximate
Bayesian inference in the presence of a latent variable model by implementing the EM-
like algorithm. This section would like to construct a general latent variable model from
a set of training data X = {xt }Tt=1 based on the set of variables including latent variables
Z, parameters �, and hyperparameters �. All such variables are used to build an
assumed topology T in learning representation. In this learning process, a fundamental
issue in VB algorithm is to infer the joint posterior distribution

p(Z|X) whereZ = {Zj }Jj=1, (2.31)

where all variables are included in the inference problem. Given the posterior distri-
bution p(Z|X), the auxiliary functions in Eq. 2.23 are calculated to fulfill the E-step
of an EM algorithm for both a ML and a MAP estimation procedures, respectively.
Nevertheless, a number of latent variables do exist in probabilistic speaker recognition
systems. These variables are coupled each other in calculation of posterior distribution.
For instance, in a joint factor analysis model shown in Eq. 3.165, the speaker factor y(s)
and the channel factor xh(s) are correlated in their posterior distributions.

However, the analytical solution to exact calculation of posterior distribution p(Z|X)
does not exist. The variational method is applied to carry out an approximate inference to
handle this issue. Using the variational inference, an approximate or variational posterior
distribution q(Z) is factorized and viewed as a proxy to the original true distribution
p(Z|X). Figure 2.7 illustrates the idea of approximate inference that analytically uses
the variational distribution q(Z) to approximate true posterior p(Z|X).

In the sequel, the underlying concept of approximating true posterior p(Z|X) using
variational distribution q(Z) is addressed. We formulate the variational Bayesian
expectation-maximization VB-EM algorithm to implement a ML or MAP estimation
where multiple latent variables are coupled in original posterior distribution. For
notation simplicity, we formulate the approximation in the presence of continuous latent
variables. The marginalization of probabilistic distribution is performed by integrating
latent variables

∫
dZ instead of summing latent variables

∑
Z .

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.3 Approximate Inference 25

Figure 2.7 Illustration of finding an approximate Gaussian distribution q(Z) that is factorizable
and optimally close to the true posterior p(Z|X).

2.3.1 Variational Distribution

Approximate inference needs to approximate the true posterior distribution p(Z|X) by
using a variational distribution q(Z) based on a distance metric for two distributions.
In Section 2.2.3, a Kullback–Leibler (KL) divergence [21] was adopted as a measure of
distance between two distance in a ML–EM algorithm. In this section, a KL divergence
is used to estimate the variational distribution. A KL divergence between q(Z) and
p(Z|X) is defined and decomposed by

DKL(q(Z)‖p(Z|X)) �
∫

q(Z) log
q(Z)

p(Z|X)
dZ

= −Eq [log p(Z|X)] −Hq [Z]

=
∫

q(Z) log
q(Z)
p(X,Z)
p(X)

dZ

= log p(X) −
∫

q(Z) log
p(X,Z)

q(Z)
dZ︸ ︷︷ ︸

�L(q(Z))

,

(2.32)

where

L(q(Z)) �
∫

q(Z) log
p(X,Z)

q(Z)
dZ

= Eq [log p(X,Z)] +Hq [Z].
(2.33)

Here, L(q(Z)) is seen as the the variational lower bound of log p(X), which is also
known as the evidence lower bound (ELBO) L(q(Z)). It is because KL divergence is
nonnegative so as to obtain log p(X) ≥ L(q(Z)). This result is similar to what we have
addressed in Eqs. 2.15–2.17. The variational distribution q(Z), which is closest to the
original posterior distribution p(Z|X), is obtained by minimizing the KL divergence
between them or equivalently maximizing the variational lower bound L(q(Z|X)). This
is because the evidence function log p(X) is independent ofZ. Therefore, we have

q̂(Z) = argmax
q(Z)

L(q(Z)). (2.34)

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

26 Learning Algorithms

In the implementation, an analytical solution to Eq. 2.34 is derived under the constraint
that the variational posterior distribution q(Z) is factorizable. We therefore derive the
variational inference procedure where a surrogate of original posterior p(Z|X), here an
alternative posterior based on the variational distribution q(Z), is estimated to find a
ML �ML or a MAP model parameters �MAP. The resulting variational Bayesian (VB)
inference is also known as the factorized variational inference, since the approximate
inference is realized by the constraint of factorization.

2.3.2 Factorized Distribution

According to the factorized variational inference, the variational distribution is assumed
to be conditionally independent over J latent variables

q(Z) =
J∏

j=1

q(Zj). (2.35)

Notably, the factorization is not imposed in true posterior p(Z|X). We preserve the
original posterior and arrange the posterior of a target latent variable p(Zi |X) in a form
of marginal distribution of p(Z|X) over all Zj except Zi

p(Zi |X) =
∫

· · ·
∫

p(Z|X)
J∏

j �=i

dZj

�
∫

p(Z|X)dZ\i .

(2.36)

Here, Z\i is defined as the complementary set of Zi . Eq. 2.36 is then used to calculate
the following KL divergence between q(Zi) and p(Zi |X)

DKL(q(Zi)‖p(Zi |X)) =
∫

q(Zi) log
q(Zi)∫

p(Z|X)dZ\i
dZi

=
∫

q(Zi) log
q(Zi)∫ p(X,Z)

p(X) dZ\i
dZi

= log p(X) −
∫

q(Zi) log

∫
p(X,Z)dZ\i

q(Zi)
dZi . (2.37)

By considering the negative logarithm in the second term of Eq. 2.37 as a convex
function, similar to Eq. 2.12, the Jensen’s inequality is applied to yield∫

q(Zi) log

(∫
p(X,Z)dZ\i

q(Zi)

)
dZi

=
∫

q(Zi) log

(∫
q(Z\i)

p(X,Z)

q(Z)
dZ\i

)
dZi

≥
∫

q(Zi)
∫

q(Z\i) log

(
p(X,Z)

q(Z)

)
dZ\idZi

=
∫

q(Z) log

(
p(X,Z)

q(Z)

)
dZ = L(q(Z)).

(2.38)

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.3 Approximate Inference 27

Figure 2.8 Illustration of minimizing KL divergence DKL(q‖p) via maximization of variational
lower bound L(q) where log p(X) is fixed.

We therefore obtain the inequality

DKL(q(Zi)‖p(Zi |X)) ≤ log p(X) − L(q(Z)). (2.39)

Correspondingly, we minimize the KL divergence DKL(q(Zi)‖p(Zi |X)) or maximize
the variational lower bound to derive the variational distribution for individual latent
variable q(Zi) as follows:

q̂(Zi) = argmax
q(Zi)

L(q(Z)). (2.40)

The joint posterior distribution q̂(Z) is then obtained by Eq. 2.35 by using J vari-
ational posterior distributions {̂q(Zi)}Ji=1 found by Eq. 2.40. An illustration of max-
imizing the variational lower bound L(q(Z)) or minimizing the KL divergence
DKL(q(Z)‖p(Z|X)) for estimation of variational distribution q(X) is shown in
Figure 2.8.

We can formulate the optimization problem in a form of

max
q(Zi)

Eq [log p(X,Z)] +Hq [Z]

subject to
∫
Z

q(dZ) = 1.
(2.41)

In this optimization, we may arrange the variational lower bound in Eq. 2.33 as

L(q(Z)) =
∫ ∏

j

qj

{
log p(X,Z) −

∑
j

log qj

}
dZ (2.42a)

=
∫

qi

∫
log p(X,Z)

∏
j �=i

qj dZj︸ ︷︷ ︸
�log p̃(X,Zi)

dZi −
∫

qi log qidZi + const (2.42b)

= −DKL(q(Zi)‖p̃(X,Zi)) + const. (2.42c)

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

28 Learning Algorithms

In Eq. 2.42, we simply denote q(Zi) as qi and define the term

log p̃(X,Zi) = EZ\i [log p(X,Z)] + const. (2.43)

The second term of Eq. 2.42(b) is obtained by noting that∫ ∏
j
qj

(∑
j

log qj

)
dZ

=
∫ (∏

j
qj

) (
log qi +

∑
j �=i

log qj

)
dZ

=
∫ (∏

j
qj

)
log qidZ +

∫ (∏
j
qj

) (∑
j �=i

log qj

)
dZ

=
(∏

j �=i

∫
qjdZj

)∫
qi log qidZi +

∫ (∏
j �=i

qj

)
qi

(∑
j �=i

log qj

)
dZ

=
∫

qi log qidZi +
∫ (∏

j �=i
qj

) (∑
j �=i

log qj

)
dZ\i

∫
qidZi

=
∫

qi log qidZi + const independent of qi, (2.44)

where we have used the property of distribution
∫

qidZi = 1. The factorized variational
distribution is finally obtained by

q̂(Zi) ∝ exp
(
EZ\i

[
log p(X,Z)

])
. (2.45)

More specifically, the exact solution to general form of the factorized distribution is
expressed by

q̂(Zi) =
exp

(
EZ\i

[
log p(X,Z)

])∫
exp

(
EZ\i

[
log p(X,Z)

])
dZi

(2.46)

where the normalization constant is included. From Eq. 2.45, we can see that the approx-
imate posterior distribution of a target latent variable Zi is inferred through calculating
the joint distribution of training data X and all latent variables Z. The logarithm of
the derived variational distribution of a target variable Zi is obtained by calculating the
logarithm of the joint distribution over all visible and hidden variables and taking the
expectation over all the other hidden variablesZ\i . Although the variational distribution
is assumed to be factorizable, the learned target posterior distribution q̂(Zi) and the other
posterior distributions q(Z\i) =

∏J
j �=i q(Zj) are correlated each other. This finding can

be seen from Eq. 2.45. As a result, starting from the initial variational distributions, we
iteratively perform optimization for factorized distributions of all q(Zi).

2.3.3 EM versus VB-EM Algorithms

In general, we may follow the alternative perspective of the EM algorithm, as addressed
in Section 2.2.3, to carry out the estimation of factorized posterior distributions
{̂q(Zj)}Jj=1. This is comparable to fulfill an expectation step (E-step) similar to
Eq. 2.19 in the standard EM algorithm. The key difference of VB-EM algorithm
compared to EM algorithm is an additional factorization step due to the coupling of

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.4 Sampling Methods 29

various latent variables in true posterior distribution p(Z|X,�(τ)). Using the VB-
EM algorithm, the factorized distribution q(Zi) = p̃(X,Zi) does not lead to the
result DKL(q(Z)‖p(Z|X)) = 0 in Eq. 2.32. But, using EM algorithm, the variational
distribution q(Z) = p(Z|X,�(τ)) is imposed to force DKL(q(Z)‖p(Z|X)) = 0 in
Eq. 2.15. Figures 2.8 and 2.4(a)–(b) also show the difference between the EM and VB-
EM algorithms. Such a difference is mainly because of the factorization of variational
distribution that is required in VB-EM algorithm in the presence of various latent
variables.

In addition to inferring the factorized variational distribution, it is crucial to address
the general formula of VB-EM algorithm for a ML or MAP estimation. In this case, the
model parameters in a latent variable model are merged in the variational lower bound
L̃(q(Z),�) which is similar to Eq. 2.17 in the EM algorithm. Obviously, the variational
lower bound of a VB-EM algorithm L̃(q,�) is different from that of an EM algorithm
L(q,�). To tell the difference, we denote the variational lower bound of a VB-EM
inference as L̃(·) while the bound of an EM inference is denoted by L(·). Similar to an
EM algorithm, there are also two steps in a VB-EM algorithm. The first step (called the
VB-E step) is to estimate the variational distribution of each individual latent variable
Zi at new iteration τ + 1 by maximizing the variational lower bound

q(τ+1)(Zi) = argmax
q(Zi)

L̃(q(Z),�(τ)), (2.47)

where {Zi}Ji=1. Given the updated variational distribution

q(τ+1)(Z) =
J∏

j=1

q(τ+1)(Zj), (2.48)

the second step (also called the VB-M step) is to estimate the ML or MAP parameters
by maximizing the new lower bound

�(τ+1) = argmax
�

L̃(q(τ+1)(Z),�). (2.49)

The updating of the ML or MAP parameters �(0) → �(1) → �(2) · · · based on the
VB-EM steps does improve the variational lower bound L̃(q(Z),�) or increase the
corresponding likelihood function p(X|�) or posterior distribution p(�|X). Without
loss of generality, the learning process using the VB-EM algorithm is here named as the
variational Bayesian learning.

2.4 Sampling Methods

Exact inference in most latent variable models is intractable. As a result, it is neces-
sary to approximate the posterior distribution of the latent variables in these models.
In addition to variational Bayesian inference, Markov chain Monte Carlo [24, 25] is
an alternative implementation of the full Bayesian treatment for practical solutions.

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

30 Learning Algorithms

MCMC is popular as a stochastic approximation, which is different from the deter-
ministic approximation based on variational Bayesian (VB) as addressed in Section
2.3. It is interesting to make a comparison between VB inference and MCMC infer-
ence. In general, the approximate inference using VB theory aims to approximate the
true posterior distribution based on the factorized variational distribution over a set of
latent variables. VB inference is easy to scale up for large systems. However, on the
other hand, MCMC inference involves the numerical computation for sampling process,
which is computationally demanding. This is different from finding analytical solutions
to solving the integrals and expectations in VB inference. Moreover, MCMC can freely
use any distributions in mind, which provides an avenue to highly flexible models for a
wide range of applications. The advanced speaker recognition systems are seen as the
complicated probabilistic models with a number of latent variables.

A basic issue in MCMC inference is to calculate the expectation for a latent variable
function f (Z) by taking into account the probability distribution p(Z). The individual
latent variables in Z may be discrete or continuous and may contain some factors or
parameters that are estimated for the construction of a probabilistic speaker recognition
model. In case of continuous latent variables inZ, the expectation function is evaluated
by taking an integral

EZ[f (Z)] =
∫

f (Z)p(Z)dZ. (2.50)

If Z’s are discrete, the integral is replaced by a summation. The reason of resorting to
sampling methods is that such expectations are too complicated to be evaluated analyti-
cally. That is, the sampling methods avoid the requirement of an analytical solution for
Eq. 2.50. Instead, what we need is to obtain a set of samples {Z(l),l = 1, . . . ,L} that
are drawn independently from the distribution p(Z). The integral is then approximated
by finding an ensemble mean of function f (�) given by these samplesZ(l)

f̂ = 1

L

L∑
l=1

f (Z(l)). (2.51)

Because the samplesZ(l) are collected from the distribution p(Z), the estimator f̂ acts
as a good approximation to the true expectation in Eq. 2.50. Roughly speaking, 10–20
independent samples are sufficient to approximate the expectation function. However,
in real implementation, we may not draw the samples {Z(l)}Ll=1 independently. The
number of effective samples may be much less than the number of total samples L. This
implies that a larger sample size L′ > L is needed to ensure a good approximation of
the true expectation.

To apply Eq. 2.51, we need to sample from p(Z). If p(Z) is not a simple standard
distribution, drawing samples from such a distribution is usually difficult. Therefore,
we may use the technique of importance sampling in which the samples are drawn
from a proposal distribution q(Z) instead of original distribution p(Z). The idea is that
sampling from proposal distribution q(Z) is much easier than sampling from original

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.4 Sampling Methods 31

distribution p(Z). The expectation in Eq. 2.50 is accordingly calculated by means of a
finite sum over samples {Z(l)}Ll=1 drawn from q(Z)

EZ[f (Z)] =
∫

f (Z)
p(Z)

q(Z)
q(Z)dZ

� 1

L

L∑
l=1

p(Z(l))

q(Z(l))
f (Z(l))

= 1

L

L∑
l=1

r (l)f (Z(l)), (2.52)

where r (l) = p(Z(l))/q(Z(l)) is the so-called importance weight. This importance
weight is seen as the correction for the bias due to sampling based on the approximate
proposal distribution rather than the original true distribution.

2.4.1 Markov Chain Monte Carlo

The strategy of importance sampling suffers from the severe limitation of high dimen-
sional space when evaluating the expectation function. In this subsection, we discuss a
sampling framework called the Markov chain Monte Carlo (MCMC) that not only is
able to sample from a large class of distributions but also has the desirable property of
scaling well with the dimension of the sample space for large applications.

In the context of latent variable models, a first-order Markov chain is employed
to express the probability function in the presence of a series of latent variables
Z(1), . . . ,Z(τ) in different states, iterations, or learning epochs τ such that the
conditional independence

p(Z(τ+1)|Z(1), . . . ,Z(τ)) = p(Z(τ+1)|Z(τ)) (2.53)

holds for different states τ ∈ {1, . . . ,T − 1}. Starting from the initial sample or state
p(Z(0)), the Markov chain is applied and operated with the transition probability

T (Z(τ),Z(τ+1)) � p(Z(τ+1)|Z(τ)). (2.54)

If the transition probabilities T (Z(τ),Z(τ+1)) are unchanged for all τ, a homogeneous
Markov chain is implemented. This means that the evolution of Markov chain depends
on the current state and a fixed transition matrix. For a homogeneous Markov chain with
transition probability T (Z′,Z), a sufficient condition for the distribution p�(Z) to be
invariant is that the following reversibility condition is met:

p�(Z′)T (Z′,Z) = p�(Z)T (Z,Z′).

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

32 Learning Algorithms

Summing over allZ′ on both size of this equation, we have∑
Z′

p�(Z′)p(Z|Z′) =
∑
Z′

p�(Z)p(Z′|Z)

= p�(Z)
∑
Z′

p(Z′|Z)

= p�(Z),

which enables us to write the marginal probability ofZ(τ+1) at epoch τ+ 1 as follows:

p(Z(τ+1)) =
∑
Z(τ)

p(Z(τ+1)|Z(τ))p(Z(τ)). (2.55)

The idea of MCMC is to construct a Markov chain so that samples obtained through
the chain mimic the samples drawn from the target distribution p(Z). The chain is
constructed such that it spends more time on the important regions in the sample space
and that the desired distribution p�(Z) is invariant. It is also necessary for the distri-
bution p(Z(τ)) to converge to the required invariant distribution p�(Z) when τ → ∞,
irrespective of the choice of initial distribution p(Z(0)). Such an invariant distribution is
also called the equilibrium distribution.

In Section 2.2.2, we outline the general EM algorithm without stating how to evaluate
the posterior distribution p(Z|X,�). In case the posterior cannot be written in an ana-
lytical form, we may use MCMC to draw samples through a Markov chain and replace
log p(Z|X,�) with the average log-probability obtained from the drawn samples [26,
Figure. 13].

2.4.2 Gibbs Sampling

Gibbs sampling [25, 27] is a realization of MCMC algorithm that has been widely
applied for generating a sequence of observations that follow a specified distribution.
This realization is seen as a special variant of Metropolis–Hastings algorithm [28].
Suppose we are given the distribution of a set of latent variables p(Z) = p(Z1, . . . ,ZJ)
and the distribution of initial state of a Markov chain p(Z(0)). In each step of sampling
procedure, an arbitrary latent variable, say Zi , has a value drawn from p(Zi |Z\i), where
Z\i = {Z1, . . . ,Zi−1,Zi+1, . . . ,ZJ }. We repeat the sampling procedure where different
variables in Z are cycled in random or in a specific order. The distribution p(Z) is
sampled in a Gibbs sampling procedure. This distribution is invariant at each learning
epoch or in the whole Markov chain. Correspondingly, the marginal distribution p(Z\i)
is invariant and the conditional distribution p(Zi |Z\i) is corrected at each sampling step
i. The Gibbs sampling for a latent variable model with J variables running by T steps
is performed according to the following algorithm

• Initialize {Z(1)
i : i = 1, . . . ,J }

• For τ = 1, . . . ,T :

– Sample Z
(τ+1)
1 ∼ p(Z1|Z(τ)

2 ,Z
(τ)
3 , . . . ,Z

(τ)
J).

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.5 Bayesian Learning 33

– Sample Z
(τ+1)
2 ∼ p(Z2|Z(τ+1)

1 ,Z
(τ)
3 , . . . ,Z

(τ)
J).

...
– Sample Z

(τ+1)
i ∼ p(Zi |Z(τ+1)

1 , . . . ,Z
(τ+1)
i−1 ,Z

(τ)
i+1, . . . ,Z

(τ)
J).

...
– Sample Z

(τ+1)
J ∼ p(ZJ |Z(τ+1)

1 ,Z
(τ+1)
2 , . . . ,Z

(τ+1)
J−1).

We can adopt the Metropolis–Hastings algorithm to sample a target variable Zi by fixing
the rest of variablesZ\i and adopting the transition probability fromZ toZ� in Gibbs
sampling, which is obtained by

qi(Z�|Z) = p(Z�
i |Z\i). (2.56)

It is because that the rest of variables is unchanged by a sampling step, then (Z�)\i =
Z\i . According to the property p(Z) = p(Zi |Z\i)p(Z\i), we can determine the accep-
tance probability in Metropolis–Hastings algorithm obtained by

Ai(Z�,Z) = p(Z�)qi(Z|Z�)

p(Z)qi(Z�|Z)

= p(Z�
i |(Z�)\i)p((Z�)\i)p(Zi |(Z�)\i)
p(Zi |Z\i)p(Z\i)p(Z�

i |Z\i)
= 1,

(2.57)

which means that we can always accept the steps of the Gibbs sampling in the
Metropolis–Hastings algorithm. Eq. 2.57 is obtained by applying (Z�)\i = Z\i .

2.5 Bayesian Learning

A challenge in machine learning and big data analytics is that data are collected from
heterogeneous environments or under adverse conditions. The collected data are usually
noisy, non-labeled, non-aligned, mismatched, and ill-posed. Bayesian inference and
statistics play an essential role in dealing with uncertainty modeling and probabilis-
tic representation in machine learning, including classification, regression, supervised
learning, and unsupervised learning, to name a few. However, probabilistic models may
be improperly assumed, overestimated, or underestimated. It is important to address the
issue of model regularization in construction of speaker recognition system. Bayesian
solutions to model regularization in different information systems have been popular in
the last decade. Sections 2.3 and 2.4 have surveyed the approximate Bayesian inference
and learning based on variational inference and sampling methods, respectively. This
section started with a general description of model regularization (Section 2.5.1) and
then presented how Bayesian learning is developed to tackle the regularization issue
in speaker recognition (Section 2.5.2). In general, model regularization is known as a
process that incorporates additional information to reflect model uncertainty or ran-
domness that can deal with the ill-posed or overfitting problem. The uncertainty or
randomness can be characterized by a prior distribution p(�) or even a prior process for
finding a drawing process for prior distributions [29]. The prior process can be Dirichlet

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

34 Learning Algorithms

process, beta process, Gaussian process, etc., which is the distribution over distribution
functions [30].

2.5.1 Model Regularization

Speaker recognition models based on GMM, PLDA, SVM, and DNN are basically
learned or adapted from a collection of training utterances or an online test utterance
with learning strategy either in supervised mode or in unsupervised or semi-supervised
mode. The goal of building a learning machine for speaker recognition is to learn a
regularized model that is robust and can sufficiently generalize to recognize an unheard
speaker utterance. Our ultimate goal is to achieve a desirable prediction performance
under a learning machine. It is inevitable that the overfitting or underfitting problem
may happen because the assumed model may not faithfully reflect the conditions in
speaker utterances. The number of training utterances may be too large or too small. It
is important to characterize the stochastic property in speaker utterances X, in model
assumption, and in parameter estimation during the construction of speaker model.

We therefore need a tool or framework to sufficiently represent or factorize speech
signal, and faithfully characterize the mapping between collected data and assumed
model. This tool should be flexible to probe speech signals and understand the pro-
duction of real-world speaker utterances in the presence of various scenarios and envi-
ronments. Using this tool, a scalable model topology can be learned or adapted with
different size of training utterances. The learned representation can be robust under the
mismatched or ill-posed conditions in training and test utterances. The noise interfer-
ence and channel mismatch can be accommodated in the model to implement a noise-
robust and channel-aware speaker recognition system. We need a general tool or theory
to analyze, represent, and understand the speaker utterances in adverse environments.
This tool can handle the issue of model selection and provide an efficient calculation
or selection for optimal hyperparameter or regularization parameters for an assumed
model without requirement of additional validation data. The optimization does not
only consider the likelihood function or the goodness-of-fit measure but also the reg-
ularization term for model penalty. Accordingly, the modeling tool based on Bayesian
learning is adopted. Occam’s razor [31] is taken into account for model construction and
hyperparameter selection. Bayesian theory provides a complete solution, platform, tool,
or infrastructure to cope with various issues in model regularization. In what follows,
we summarize how Bayesian learning can work for speaker recognition [30]

• tackle the overfitting or underfitting problem

• characterize the randomness for probabilistic model construction

• achieve the robust model under mismatched and ill-posed environments

• choose the model topology and hyperparameters

• be insensitive to noise contamination and microphone variations

• be scalable for large systems or applications

• be adaptive, flexible, and autonomous

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

2.5 Bayesian Learning 35

Figure 2.9 Illustration of a Bayesian speaker model where the model complexity is scalable by
the amount of training utterances.

Figure 2.9 shows the concept that the Bayesian speaker model is flexible and scalable in
the presence of changing amounts of speaker utterances.

2.5.2 Bayesian Speaker Recognition

The real-world speaker recognition encounters a number of challenging issues that could
be tackled by Bayesian approaches. First, the learning processes for speaker recognition
are usually operated in an unsupervised fashion. The target information is basically none
or very little during the training phase. The prediction performance under unsupervised
learning for unknown test utterances is sometimes unreliable and difficult. Second,
the number of factors or Gaussian components is unknown in factor analysis models
or Gaussian mixture models. Determining the model size is an unsupervised learning
problem, and the ability to determine the model size from heterogeneous data is crucial
because a suitable model structure provides meaningful and reliable predictions for
future data. Too complicated models will be unstable or over-expressive with weak
generalization. Third, how to build a balanced solution or how to tune a tradeoff between
overdetermined and under-determined systems is a critical issue in speaker recognition.
Fourth, the enrollment utterances in speaker recognition system are usually very short.
It is challenging to verify the right speaker using limited data. In addition, speaker
recognition performance is substantially affected by the inter- and intra-speaker variabil-
ities. The robustness to these variabilities is essential to achieve desirable performance.
Finally, the variabilities in channels and noise are also severe in real-world speaker
recognition. How to build a representative model for these variabilities is important.

To deal with the abovementioned issues, Bayesian perspectives and Bayesian
methods are introduced and implemented. From this perspective, we need to explore
the latent space containing latent variables to characterize speaker identities. Bayesian
learning plays a natural role to carry out latent variable models for speaker recognition.
Based on Bayesian approaches, the model regularization issue is handled and the
uncertainty modeling is performed. Approximate Bayesian inference methods are
feasible to realize these ideas. Using these ideas, the prediction performance on future
data will be improved. The robustness of the resulting model will be enhanced.

https://doi.org/10.1017/9781108552332.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.003

