
5 Evidence approximation

In a maximum a-posteriori (MAP) approximation as addressed in Chapter 4, we treat
model parameters � of a target model M as unknown but deterministic variables which
are estimated by maximizing the posterior probability p(�|O) using some observation
data O. Prior distribution p(�|�) with heuristically determined hyperparameters � is
introduced. This is known as the point estimation of a target model. However, from a
full Bayesian perspective, we treat model parameters as random variables where the ran-
domness is represented by a prior distribution p(�|�). In contrast with point estimation
in a MAP approximation based on heuristic hyperparameters, the distribution estima-
tion is implemented for full Bayesian learning. According to the distribution estimation,
we find the whole prior distribution p(�|�), or equivalently estimate the corresponding
hyperparameters � from observations O in an empirical fashion. In this implementation,
the marginalization of likelihood function p(O|�) with respect to model parameters �

should be calculated for model construction, as follows:1

p(O|�) =
∫

p(O|�)p(�|�)d�. (5.1)

Rather than trusting the point estimate in MAP approximation, the resulting evidence
function p(O|�) in evidence framework considers all possible values of model parame-
ters when making a prediction of O as new observation data or training data depending
on the task. In cases of complicated model structure and coupled latent variables, this
evidence function is prone to be intractable and should be approximated to estimate the
optimal hyperparameters �. For the applications of speech and language processing, we
focus on acoustic modeling and language modeling in accordance with the distribution
estimation based on evidence approximation.

In what follows, Section 5.1 first presents the evidence framework and addresses
the type-2 maximum likelihood estimation for general pattern recognition. The optimal
hyperparameters are estimated based on this framework. The optimization of evidence
function or marginal likelihood is then extended to sparse Bayesian learning for acous-
tic modeling based on Bayesian sensing hidden Markov models (Saon & Chien 2012a)
in Section 5.2. In this section, the scheme of automatic relevance determination is
introduced and illustrated. In addition, evidence approximation to a hierarchical Dirich-
let language model (MacKay & Peto 1995) is detailed in Section 5.3. The optimal

1 This chapter regards model structure M and parameters of prior distribution � as the hyperparameters in a
broad sense. Equation (5.1) formulates the likelihood function given �, but the discussion can be applied
to the case of using M.
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5.1 Evidence framework 185

hyperparameters are obtained for the acoustic model as well as the language model.
These Bayesian models are beneficial for noise-robust speech recognition and large
vocabulary continuous speech recognition.

5.1 Evidence framework

This section begins with a general discussion of the evidence framework. We first review
the well-known Bayes theorem, as discussed in Section 2.1. The evidence function
p(O|�), given prior parameters �, is introduced in the Bayes theorem, which relates
posterior distribution p(�|O,�) to the likelihood function p(O|�), prior distribution
p(�|�), and the evidence function p(O|�) by

p(�|O,�) = p(O|�)p(�|�)

p(O|�)

= p(O|�)p(�|�)∫
p(O|�)p(�|�)d�

. (5.2)

In words:

Posterior = Likelihood× Prior

Evidence
. (5.3)

The evidence function is a marginal likelihood function which takes all values of model
parameters � into account. It is precisely the normalization term that appears in the
denominator in Bayes’ theorem as shown in Eq. (5.2).

Although the evidence function has appeared in the previous sections (e.g., the MAP
approximation in Eq. (4.2)), it has not been explicitly considered so far. However, the
evidence function p(O|�) can directly link the hyperparameters � and observations O
by marginalizing the model parameters �, and can be used to infer the hyperparameters
� in the Bayesian framework.

5.1.1 Bayesian model comparison

This section also considers the model structure M in the evidence framework. In
MacKay (1992a), the evidence framework was proposed to conduct a Bayesian model
comparison, where the best model or model structure M is selected according to the
posterior distribution of M as

M̂ = arg max
M

p(M|O) = arg max
M

p(O|M)p(M). (5.4)

Here p(M) is a prior distribution of the model structure M. In the case that each model
is equally probable or has uniform probability, i.e., p(M) = constant, different mod-
els M are ranked according to the evidence function p(O|M), which is obtained by
marginalizing the model parameters � based on the product and sum rules as

p(O|M) =
∫

p(O,�|M)d�

=
∫

p(O|�, M)p(�|M)d�. (5.5)
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186 Evidence approximation

Figure 5.1 Evidence approximation. Adapted from Bishop (2006).

The marginalization of likelihood function over model parameters � or model structure
is calculated to come out with a meaningful objective for model selection. However,
we may obtain some insight into the model evidence by making a simple approxima-
tion to the integral over parameters � (MacKay 1992a, Bishop 2006). Consider the
case of a model with a posterior distribution which is sharply peaked around the most
probable value �MAP, with the width ��posterior. Then the posterior distribution is rep-
resented as p(�|O) = 1

��posterior
. Similarly, we also assume that the prior is flat with

width ��prior, and we have p(�) = 1
��prior

. Therefore, by using the Bayes theorem, the
evidence function in Eq. (5.5) can be approximated without solving the integral as:

p(O) =
∫

p(O|�)p(�)d� = p(O|�)p(�)

p(�|O)

≈ p(O|�MAP)
��posterior

��prior
, (5.6)

where we omit the model structure index M for simplicity. The approximation to model
evidence is illustrated by Figure 5.1. Without loss of generality, the notation � in
Eq. (5.6) is treated as a single parameter. Taking the logarithm, we obtain

log p(O) ≈ log p(O|�MAP)+ log

(��posterior

��prior

)
︸ ︷︷ ︸

Occam factor

. (5.7)

In this approximation, the first term represents the goodness-of-fit to the data O given
the most probable parameter value �MAP. The second term is known as the Occam factor
(MacKay 1992a) which penalizes the model according to its complexity. Theoretically,
we have the property��posterior < ��prior. The Occam factor is negative and it increases

in magnitude as the ratio
��posterior
��prior

gets smaller. Thus, if parameters are finely tuned to
the data in posterior distribution, then the penalty term is large. In practice, the model
complexity or the Occam factor is multiplied by the number of adaptive parameters N
in �. The optimal model complexity, as determined by the maximum evidence, is given
by a trade-off between these two competing terms. A refined version of this evidence
approximation could be further derived as:
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5.1 Evidence framework 187

log p(O) ≈ log p(O|�MAP)+ log p(�MAP)+ N

2
log(2π )− 1

2
log |H|︸ ︷︷ ︸

Occam factor

, (5.8)

by using the Laplace approximation, which is detailed in Section 6.1. In Eq. (5.8), H is
the Hessian matrix:

H = −∇∇ log p(O|�MAP)p(�MAP) = −∇∇ log p(�MAP|O), (5.9)

which is the second derivative of the negative log posterior. The determinant of
this matrix plays an important role in the Occam factor, which penalizes the model
complexity.

We can attain further insight into Bayesian model comparison and understand how
the marginal likelihood is favorable to the models with intermediate complexity by
considering Figure 5.2 (Bishop 2006). Here, the horizontal axis is a one-dimensional
representation of the data space O. We consider three models M1, M2, and M3 in which
M1 is the simplest and M3 is the most complex. When generating a particular data set
from a specific model, we first choose the values of the parameters from their prior dis-
tribution p(�). Then, given these parameter values, we sample the data from p(O|�). A
simple or shallow model has little variability and so will generate data sets using p(O),
which is confined to a relatively small region in space O. In contrast, a complex or deep
model can generate a variety of data sets, and so its distribution p(O) is spread over a
large region of the data space O. In this example, for the particular observed data set
OM , the model M2 with intermediate complexity has the largest evidence.

5.1.2 Type-2 maximum likelihood estimation

The complexity of a model M is generally defined by the scope of data set O that model
M could predict. This scope is not only determined by the model size (e.g., model
structure, model order, or number of parameters N), but is also affected by the hyperpa-
rameters � of the parameters � which are used to generate the observations O. Instead
of point estimation of model parameters � in MAP approximation based on heuristically
determined hyperparameters, the evidence approximation conducts distribution estima-
tion which determines the optimal prior distribution p̂(�|�) as a whole, or equivalently

Figure 5.2 Model comparison based on the maximum evidence. Adapted from Bishop (2006).
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188 Evidence approximation

infers the optimal hyperparameters �̂ corresponding to the prior distribution according
to

�̂ = �ML2 = arg max
�

p(O|�)

= arg max
�

∫
p(O|�,�)p(�|�)d�. (5.10)

Differently from conventional ML estimation for model parameters �, the type-2 max-
imum likelihood (ML2) estimation aims to search the optimal hyperparameters �ML2

from the observation data O. In the literature, a point estimation based on ML or MAP
conducts the so-called level-1 inference, while the distribution estimation based on ML2
undertakes the level-2 inference (MacKay 1995, Kwok 2000). The level-3 inference is
performed to rank different models M according to the posterior probability p(M|O) or
the evidence function p(O|M) with equally probable model M. Three levels of inference
can be iterated.

The evidence framework or the ML2 estimation has been developed for different
learning machines including linear regression/classification networks (MacKay 1992b,
Bishop 2006), feed-forward neural network (NN) (MacKay 1992c), support vector
machine (SVM) (Kwok 2000), and hidden Markov model (Zhang, Liu, Chien et al.
2009). For the cases of linear regression and neural network regression models, the
optimal hyperparameters of weight parameters and modeling errors are estimated by
maximizing the evidence function of training data which is marginalized with respect to
the weight parameters. In Zhang et al. (2009), the optimal hyperparameters were derived
for the mixture model of exponential family distributions and then realized to build the
robust HMMs for noisy speech recognition. Practically, these hyperparameters � are
interpreted as the regularization parameter λ, which plays a crucial role in the regular-
ized regression models. The regularized models are developed to prevent the over-fitting
problem in conventional models based on ML estimation or least-squares regression.
In what follows, the evidence framework is illustrated to be closely connected to the
regularization theory, which has been developed to regularize model structure and deal
with the over-fitting problem when building generative models for speech recognition
and other information systems.

5.1.3 Regularization in regression model

Model regularization is a fundamental issue in pattern recognition. It aims to estimate
the smoothed parameters or construct a generalized model which has good prediction
capability for future unseen data. The gap or mismatch between training data and test
data can be compensated by tackling this issue. The over-fitting problem or the ill-
posed problem is also resolved by following the regularization theory. In the regularized
least-squares (RLS) model f (·), the over-fitting problem is avoided by incorporating a
regularization term Ew(w) into the training objective, and this penalizes too complex a
model. Here, model parameters � are rewritten by an N-dimensional weight vector w.
The regularization term is determined by the weight parameters w and the corresponding
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5.1 Evidence framework 189

model structure M. The simplest form of this regularizer is given by a sum-of-squares
of the parameter elements:

Ew(w) = 1

2
wᵀw = 1

2
‖w‖2 = 1

2

N−1∑
j=0

w2
j . (5.11)

The sum-of-squares error function is calculated by introducing training samples O =
{ot|t = 1, · · · , T} given by model parameters w, i.e.

Eo(w) = 1

2

T∑
t=1

(f (ot, w)− yt)
2, (5.12)

where yt is the target value of the observation ot at time t. Accordingly, the training
objective for RLS parameters wRLS is yielded as a regularized least-squares function
which is formed by

wRLS = arg min
w
{Eo(w)+ λEw(w)}. (5.13)

Notably, a regularization parameter λ is introduced in Eq. (5.13) to balance the trade-
off between the sum-of-squares error function Eo(w) and the model complexity penalty
function Ew(w). Minimization of the training objective in Eq. (5.13) eventually obtains a
set of parameters w which works simultaneously towards the goals of fitting the data and
reducing the norm of the solution. Regularization theory is beneficial for model selec-
tion. Regularization parameter λ is generally selected by applying the cross validation
method using a small set of validation data which is outside the training data O.

Nevertheless, it is more attractive to pursue Bayesian interpretation of model reg-
ularization. Considering the same regression problem, but now under a probabilistic
framework, we assume that the modeling error f (ot, w)− yt has a Gaussian distribution:

p(yt|ot, w,β) = N (f (ot, w)− yt)|0,β−1), (5.14)

and the parameter vector w comes from a Gaussian distribution

p(w|α) = N (w|0,α−1I), (5.15)

where I is the N × N identity matrix and β and α are the precision parameters for mod-
eling error and parameter vector, respectively. Here, the hyperparameters � = {α,β}
consist of α and β. The MAP estimate of model parameters wMAP is obtained by
maximizing the posterior distribution

p(w|ot, yt,α,β) ∝ p(yt|ot, w,β)p(w|α), (5.16)

or equivalently minimizing the negative log posterior distribution,

β

2

T∑
t=1

{f (ot, w)− yt}2 + α

2
wᵀw, (5.17)

by using training samples O = {ot|t = 1, · · · , T}. It is interesting to see that maximiz-
ing the posterior distribution in Eq. (5.17) is equivalent to minimizing the regularized
least-squares error function in Eq. (5.13) with a regularization parameter λ = α/β.
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Readers may refer to MacKay (1992c) and Bishop (2006) for detailed solution to opti-
mal hyperparameters �ML2 = {αML2,βML2} of a linear regression model with regression
function

f (ot, w) = w0 +
N−1∑
j=1

wjφj(ot) = wᵀφ(ot). (5.18)

A linear combination of fixed non-linear functions of the input variable ot is considered.
Here, φ = [φ0, · · · ,φN−1]ᵀ denotes the basis functions and φ0(ot) = 1 is assigned. For
the case of a neural network regression model, ML2 estimation of hyperparameters is
addressed in Section 6.4.

The comparison among RLS estimation, MAP estimation, and ML2 estimation is fur-
ther investigated below. According to RLS estimation, level-1 inference is performed to
find model parameters wRLS by using training data O while the hyperparameter λ is esti-
mated in level-2 inference via a cross validation scheme by using additional validation
data. However, Bayesian inference is implemented to calculate model parameters wMAP

in level-1 inference based on MAP estimation. In level-2 inference, the hyperparameters
�ML2 = {αML2,βML2} are inferred using ML2 estimation. By applying MAP and ML2
methods, the same training data O are used to estimate parameters wMAP and hyperpa-
rameters �ML2, respectively. It is desirable that no validation data are required by using
the Bayesian approach. Besides, RLS and MAP methods fulfil the point estimation and
assume that the estimates ŵ = wRLS and ŵ = wMAP are true values for prediction of
new data O in a test phase according to likelihood function p(O|ŵ). Instead of relying
on single parameter values ŵ in the RLS or MAP method, the ML2 method implements
the distribution estimation and directly infers the optimal hyperparameters �̂ = �ML2

by maximizing the predictive distribution or the marginal likelihood of training data
p(O|�) = ∫ p(O|w,�)p(w|�)dw, where all possible values of parameters w are con-
sidered. In a test phase, the same marginal distribution p(O|�̂), given the estimated
hyperparameters �̂, is applied for prediction of new data O.

5.1.4 Evidence framework for HMM and SVM

Although the evidence framework is only addressed for a linear regression model f (·),
extensions to the classification models including HMM and SVM have been proposed
in Zhang et al. (2009) and Kwok (2000), respectively. When ML2 estimation is applied
for the HMM framework, we estimate the hyperparameters of continuous-density HMM
parameters including initial state probabilities {πj}, state transition probabilities {aij},
mixture weights {ωjk}, mean vectors {μjk}, and covariance matrices {�jk}. For the prob-
ability parameters {πj}, {aij} and {ωjk} in multinomial distributions, ML2 estimation
is performed to find the corresponding hyperparameters � which are the parameters of
Dirichlet priors for multinomial or discrete variables of states j, state pairs (i, j), and mix-
ture components k, respectively. For the remaining Gaussian parameters {μjk} and {�jk}
of continuous feature vectors {ot}, ML2 estimation aims to calculate the corresponding
hyperparameters � which are the parameters of Gaussian–Wishart priors for Gaussian
mean vectors {μjk} and precision (or inverse covariance) matrices {�−1

jk }. In general,
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5.2 Bayesian sensing HMMs 191

Dirichlet distribution is known as the conjugate prior for multinomial variables while
Gaussian–Wishart distribution is seen as the conjugate prior for Gaussian variables. By
following this guideline, the closed-form solution to the integral in marginal likelihood
does exist, so that the optimization of marginal distribution with respect to individ-
ual hyperparameters has an analytical solution. These hyperparameters characterize the
uncertainties of HMM parameters which could be applied for robust speech recogni-
tion according to the Bayesian predictive classification as addressed in Eq. (3.16) and
Section 6.3. This approach is different from conventional BPC based on the hyperpa-
rameters which are heuristically determined or calculated in an ensemble way (Huo &
Lee 2000, Chien & Liao 2001).

The support vector machine (SVM) approach is based on the idea of structural risk
minimization, which shows that the generalization error is bounded by the sum of the
training set error and the Vapnik-Chervonenkis (VC) dimension of the learning machine
(Abu-Mostafa 1989, Vapnik 1995). By minimizing this upper bound, generalization to
future data is improved. Generalization error is related not to the number of inputs, but
to the margin with which it separates the data. SVM has been successfully applied in
many classification problems including speech recognition (Ganapathiraju, Hamaker &
Picone 2004). Although SVM is a nonparametric method, the probabilistic framework
and Bayesian perspective have been introduced to deal with the selection of two tuning
parameters or hyperparameters, including:

• a regularization parameter λ, which determines the trade-off between minimizing the
training errors and minimizing the model complexity;

• a kernel parameter, which implicitly defines the high dimensional feature space to be
used.

Conventionally, these hyperparameters are empirically selected by hand or via cross
validation. The evidence framework has been applied to find the optimal regulariza-
tion parameter for SVM (Kwok 2000). Next, we address the detailed estimation of
hyperparameters for two practical solutions to speech recognition. One is developed for
sparse Bayesian acoustic modeling while the other is proposed for hierarchical Dirichlet
language modeling.

5.2 Bayesian sensing HMMs

Speech recognition systems are usually constructed by collecting large amounts of train-
ing data and estimating a large number of model parameters to achieve the desired
recognition accuracy on test data. A large set of context-dependent Gaussian compo-
nents (several hundred thousand components is usually the norm) is trained to build
context-dependent phone models. GMMs with Gaussian mean vectors and diagonal
covariance matrices may not be an accurate representation of high dimensional acous-
tic features. The Gaussian components may be overdetermined. The mismatch between
training data and test conditions may not be carefully compensated. The uncertainty
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192 Evidence approximation

of estimated HMM parameters may not be properly characterized. A Bayesian learn-
ing approach is introduced to tackle these issues based on the basis representation.
ML2 estimation is conducted to estimate the automatic relevance determination (ARD)
parameter (MacKay 1995, Tipping 2001) which is the state-dependent hyperparameter
of weight parameter in basis representation. Sparse Bayesian learning is performed by
using the ARD parameter.

5.2.1 Basis representation

An acoustic feature vector o can be viewed as lying in a vector space spanned by a set
of basis vectors. Such a basis representation has been popular for regression problems
in machine learning and for signal recovery in the signal processing literature. This
approach is now increasingly important for acoustic feature representation. Compressive
sensing and sparse representation are popular topics in the signal processing community.
The basic idea of compressive sensing is to encode a feature vector o ∈ R

D based on a
set of over-determined dictionary or basis vectors � = [φ1, · · · , φN] via

o = w1φ1 + · · · + wNφN = �w, (5.19)

where the sensing weights w = [w1, · · · , wN]ᵀ are sparse and the basis vectors � are
formed by training samples. A relatively small set of relevant basis vectors is used for
sparse representation based on this exemplar-based method. The sparse solution to w can
be derived by optimizing the �1-regularized objective function (Sainath, Ramabhadran,
Picheny et al. 2011). However, the exemplar-based method is a memory-based method,
which is time-consuming with high memory cost. It is also important to integrate HMMs
into sparse representation of continuous speech frames O = {ot|t = 1, · · · , T}.

5.2.2 Model construction

Bayesian sensing HMMs (BS-HMMs) (Saon & Chien 2012a) are developed by incor-
porating Markov chains into the basis representation of continuous speech. A Bayesian
sensing framework is presented for speech recognition. The underlying aspect of BS-
HMMs is to measure an observed feature vector ot of a speech sentence O based on
a compact set of state-dependent dictionary �j =

[
φj1, · · · , φjN

]
at state j. For each

frame, the reconstruction error between measurement ot and its representation �jwt,
where wt = [wt1, · · · , wtN]ᵀ, is assumed to be Gaussian distributed with zero mean and
a state-dependent covariance matrix or inverse precision matrix �j = R−1

j . The state
likelihood function with time-dependent sensing weights wt is defined by

p(ot|�j) � N (ot|�jwt, R−1
j ). (5.20)

The Bayesian perspective in BS-HMMs has its origin from the relevance vector machine
(RVM) (Tipping 2001). Figure 5.3 illustrates the graphical model based on BS-HMMs.
The RVM is known as a sparse Bayesian learning approach for regression and classi-
fication problems. We would like to apply RVM to conduct sparse basis representation
and combine it with HMMs to characterize the dynamics in the time domain. Therefore,
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5.2 Bayesian sensing HMMs 193

Figure 5.3 Graphical model of BS-HMM.

BS-HMM parameters are obtained by � = {πj, aij, �j, Rj}. Obviously, similarly to con-
ventional GMM-based HMMs, we can extend BS-HMM to deal with a mixture model
for basis representation where the mixture weight ωjk, the basis vectors �jk, and the pre-
cision matrix Rjk of individual mixture component k are incorporated. In what follows,
we neglect the extension to a mixture model and exclude the time-dependent weight
parameters wt from the parameter set �.

5.2.3 Automatic relevance determination

However, the sensing weights wt play a crucial role in basis representation, and so we
introduce Bayesian compressive sensing (Ji, Xue & Carin 2008) for acoustic modeling.
The idea of Bayesian learning in BS-HMMs is to yield the distribution estimates of the
speech feature vectors ot due to the variations of sensing weights wt in basis represen-
tation. A Gaussian prior with zero mean and state-dependent diagonal precision matrix
Aj = diag{αjn} is introduced to characterize the weight vector, i.e.

p
(
wt|Aj

) = N (wt|0, diag{α−1
jn })

=
N∏

n=1

N (wtn|0,α−1
jn ). (5.21)

Considering a hierarchical prior model where precision parameter αjn is represented by
a gamma prior with parameters a and b in Appendix C.11:

p(αjn) = Gam(αjn|a, b) = 1

�(a)
baαa−1

jn exp(−bαjn). (5.22)

The marginal prior distribution is derived as a Student’s t-distribution as defined in
Appendix C.16:

p(wtn|a, b) =
∫ ∞

0
N (wtn|0,α−1

jn )Gam(αjn|a, b)dαjn

= ba

�(a)

(
1

2π

)1/2 (
b+ w2

tn

2

)−a−1/2

�(a+ 1/2)

= St

(
wtn

∣∣∣∣0,
b

a
, 2a

)
, (5.23)
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Figure 5.4 An example of two-dimensional Gaussian distribution.

Figure 5.5 An example of two-dimensional Student’s t-distribution.

which is known as a sparse prior distribution, since this distribution has a heavy tail and
steep peak. Student’s t-distribution, illustrated in Figure 5.5, is a heavy tailed distribution
and is more robust to outliers than a Gaussian distribution (Figure 5.4) (Bishop 2006).

Correspondingly, if the precision parameter αjn in N (wtn|0,α−1
jn ) is large, the weight

parameter wtn is likely to be zero, wtn → 0, which implies that the associated basis
vector φjn is irrelevant to Bayesian basis representation of a target observation ot. The
physical meaning of automatic relevance determination (ARD) is then reflected by the
precision parameter αjn in state-dependent hyperparameters, � = {Aj = diag{αjn}}.
We simply call αjn the ARD parameter. According to the ARD scheme, only relevant
basis vectors are selected to represent sequence data O. Sparse Bayesian learning (SBL)
can be realized by using an ARD scheme (Tipping 2001). In the implementation, the

values of state-dependent ARD parameters {αj1, · · · ,αjN} can be used to rank or select
salient basis vectors {φj1, · · · , φjN} which are relevant to a target HMM state j. The
larger the estimated value αjn, the more likely it is that the basis vector φjn should be
pruned from the parameter set. The compressed model can be achieved by applying this
property (Saon & Chien 2011). The ARD parameter serves as a compression factor for
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model complexity control. One can initially train a large model and then prune it to a
smaller size by removing basis elements which correspond to the larger ARD values.
Although we appear to be utilizing a non-sparse Gaussian prior over the weights, in
truth the hierarchical formulation implies that the real weight prior is clearly recognized
as encouraging sparsity. Considering this sparse Bayesian basis representation, BS-
HMM parameters and hyperparameters are formed by {�,�} = {πj, aij, �j, Rj,Aj|j =
1, · · · , J} consisting of initial state probability πj, state transition probability aij, basis
vectors �j, and precision matrices of reconstruction errors Rj and sensing weights Aj.
Level-1 inference and level-2 inference are done simultaneously in BS-HMMs.

5.2.4 Model inference

We estimate BS-HMM parameters and hyperparameters from the observed speech data
O according to the type-2 ML (ML2) estimation:

{πML2
j , aML2

ij , �ML2
j , RML2

j ,AML2
j } = arg max

{πj,aij,�j,Rj,Aj}
p(O|{πj, aij, �j, Rj,Aj}). (5.24)

Without loss of generality, we view Eq. (5.24) as the ML2 estimation because the
marginal likelihood with respect to sensing weights wt is calculated at each frame t in
likelihood function p(O|{πj, aij, �j, Rj,Aj}). However, the marginalization over πj, aij,
�j, and Rj is not considered. Since the optimization procedure is affected by an incom-
plete data problem, the EM algorithm (Dempster et al. 1976) is applied to find the
optimal solution to {πj, aij, �j, Rj,Aj}. In E-step, an auxiliary function is calculated
by averaging the log likelihood function of the new estimates {�′,� ′}, given the old
estimates {�,�} over all latent variables {S, V}:

Q(�′,� ′|�,�) = E(S,V)[log p(O, S, V|�′,� ′)|O,�,�]

=
∑

S

∑
V

p(S, V|O,�,�) log p(O, S, V|�′,� ′). (5.25)

In the M-step, we maximize the auxiliary function with respect to new parameters and
hyperparameters {�′,� ′},

{�′,� ′} = arg max
{�′,� ′}

Q(�′,� ′|�,�), (5.26)

to find optimal parameters and hyperparameters. The auxiliary function is expanded by

∑
S

∑
V

p(S, V|O,�,�)

[
T∑

t=1

(log a′st−1st
+ log p(ot|�′st

,� ′st
))

]

=
∑

j

T∑
t=1

γt(j)

[
log a′st−1j + log

∫
p(ot|wt, �

′
j, R′j)p(wt|A′j)dwt

]
, (5.27)

where γt(j) = p(st = j|O,�,�) is the posterior probability of being in state j at time t
given the current parameters and hyperparameters {�,�} generating measurements O.
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We tacitly use the convention as0s1 = πs1 . Since the estimation of initial state probabil-
ity πj and state transition probability aij is the same as that in HMMs, we neglect the
estimation of {πj, aij} hereafter.

5.2.5 Evidence function or marginal likelihood

The key issue in the E-step is to calculate the frame-based evidence function or marginal
likelihood p(ot|�′st

,� ′st
) = p(ot|�′j, R′j,A′j), which is marginalized over sensing weights

wt at state st = j and is proportional to∫
|R′j|1/2 exp

[
−1

2
(ot −�′jwt)

ᵀR′j(ot −�′jwt)

]
× |A′j|1/2 exp

[
−1

2
wᵀ

t A′jwt

]
dwt

= |R′j|1/2|A′j|1/2
∫

exp

[
−1

2

(
oᵀ

t R′jot

− 2oᵀ
t R′j�′jwt + wᵀ

t

(
(�′j)ᵀR′j�′j +A′j

)
wt

)]
dwt

= |R′j|1/2|A′j|1/2 exp

[
−1

2
(oᵀ

t R′jot)

]

×
∫

exp

⎡⎢⎣−1

2

⎛⎜⎝ wᵀ
t (�′j)−1wt − 2(oᵀ

t R′j�′j�′j)(�′j)−1wt

+(oᵀ
t R′j�′j�′j)(�′j)−1(�′j(�′j)ᵀR′jot)

−(oᵀ
t R′j�′j�′j)(�′j)−1(�′j(�′j)ᵀR′jot)

⎞⎟⎠
⎤⎥⎦ dwt

∝ |R′j|1/2|A′j|1/2|�′j|1/2 exp

[
−1

2
oᵀ

t (R′j − R′j�′j�′j(�′j)ᵀR′j)ot

]
= |R′j|1/2|A′j|1/2|�′j|1/2 exp

[
−1

2
(oᵀ

t R′jot − (m′
tj)

ᵀ(�′j)−1m′
tj)

]
. (5.28)

In Eq. (5.28), the notations

(�′j)−1 � (�′j)ᵀR′j�′j +A′j, (5.29)

m′
tj � �′j(�′j)ᵀR′jot, (5.30)

are introduced, and the integral of a Gaussian distribution

N (wt|�′j(�′j)ᵀR′jot, �
′
j) (5.31)

is manipulated. By applying the Woodbury matrix inversion (Eq. (B.20))

(A+ UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1, (5.32)

given the dimensionally compatible matrices A, U, C, and V, the marginal likelihood
p(ot|�′j, R′j,A′j) is derived as

N (ot|0, (R′j − R′j�′j
(

(�′j)ᵀR′j�′j +A′j
)−1

(�′j)ᵀR′j)−1)

= N (ot|0, (R′j)−1 +�′j(A′j)−1(�′i)ᵀ), (5.33)
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which is a Gaussian likelihood function with zero mean. The equality of the determinant

|R′j − R′j�′j�′j(�′j)ᵀR′j| = |R′j‖A′j‖�′j| (5.34)

is held. This implies that frame discrimination among different states is done solely
on the basis of the covariance matrix. Apparently, the covariance matrix (R′j)−1 +
�′j(A′j)−1(�′i)ᵀ is positive definite, so that p(ot|�′j, R′j,A′j) is a valid probability density
function. For diagonal R′j, the marginal likelihood is seen as a new Gaussian distribution

with a factor analyzed covariance matrix (R′j)−1+�′j(A′j)−1(�′j)ᵀ, where the factor load-

ing matrix �′j(A′j)−1/2 is seen as a rank-N correction to (R′j)−1 (Saon & Chien 2011).

5.2.6 Maximum a-posteriori sensing weights

In BS-HMMs, we can determine the maximum a-posteriori (MAP) estimate of Bayesian
sensing weights wMAP

t for each observation ot from

wMAP
t = arg max

wt
p(wt|ot,�

′,� ′)

= arg max
wt

p(ot|wt, �
′
j, R′j)p(wt|A′j)

= �′j(�′j)ᵀR′jot � mtj, (5.35)

which is seen as a weighted product in vector space of observation ot and transposed
basis vectors (�′j)ᵀ. The notations m′

tj (or equivalently wMAP
t ) and �′j are the mean vector

and the covariance matrix of the posterior distribution p(wt|ot,�′,� ′), respectively. The
precision matrix for wt is modified from A′j of a-priori density p(wt) to (�′j)ᵀR′j�′j+A′j
of the a-posteriori distribution p(wt|ot). The difference term (�′j)ᵀR′j�′j comes from
the likelihood function p(ot|wt), and is caused by the measurement �′jwt for obser-
vation ot at frame t represented by new basis vectors �′j of state j. This is meaningful
because Bayesian learning performs subjective inference, naturally increasing the model
precision.

5.2.7 Optimal parameters and hyperparameters

By substituting Eq. (5.28) into Eq. (5.27), the optimal BS-HMM parameters and hyper-
parameters are estimated by maximizing the expanded auxiliary function with respect
to individual parameters and hyperparameters {�′j, R′j,A′j}. The auxiliary function in a
BS-HMM state is simplified to

Q(�′j, R′j,A′j|�j, Rj,Aj)

=
T∑

t=1

γt(j) log
∫

p(ot|wt, �
′
j, R′j)p(wt|A′j)dwt

∝
∑T
t=1

γt(j)

[
log |R′j| + log |A′j|

+ log |�j| − oᵀ
t R′jot + (m′

tj)
ᵀ(�′j)−1m′

tj

]
. (5.36)
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Let us first consider the maximization of Eq. (5.28) with respect to N × N hyperparam-
eter matrix A′j. We take the gradient of Eq. (5.28) with respect to A′j and set it to zero to
obtain

T∑
t=1

γt(j)

⎡⎢⎢⎣(A′j)−1 −�′j −�′j(�′j)ᵀR′jot︸ ︷︷ ︸
m′

tj

· oᵀ
t R′j�′j�′j︸ ︷︷ ︸

(m′
tj)

ᵀ

⎤⎥⎥⎦ = 0. (5.37)

The value of A′j that maximizes the auxiliary function satisfies

(AML2
j )−1 = �′j +

∑T
t=1 γt(j)m′

tj(m
′
tj)

ᵀ∑T
t=1 γt(j)

� FML2(A′j). (5.38)

Notably, Eq. (5.38) is an implicit solution to A′j because Fa is a function of A′j. The

hyperparameter (AML2
j )−1 of sensing weights is obtained by adding the covariance

matrix �′j of posterior p(wt|ot,�′,� ′) and the weighted autocorrelation of MAP sensing

weights {m′
tj � wMAP

t }.
To find an ML2 estimate of basis vectors �′j, we maximize Eq. (5.36) by taking the

gradient of the terms related to �′j and setting it to zero, which leads to

∂

∂�′j

[ T∑
t=1

γt(j)

[
− log |(�′j)ᵀR′j�′j +A′j|

+ oᵀ
t R′j�′j

(
(�′j)ᵀR′j�′j +A′j

)−1
(�′j)ᵀR′jot

]]
= 0, (5.39)

where the gradients of the two terms are derived as the D× N matrices given by

∂

∂�′j
log|(�′j)ᵀR′j�′j +A′j|

= 2R′j�′j
(

(�′j)ᵀR′j�′j +A′j
)−1 = 2R′j�′j�′j, (5.40)

∂

∂�′j

[
oᵀ

t R′j�′j
(

(�′j)ᵀR′j�′j +A′j
)−1

(�′j)ᵀR′jot

]
= ∂

∂�′j
tr{�′j(�′j)ᵀR′joto

ᵀ
t R′j�′j}

= −2R′j�′j�′j(�′j)ᵀR′joto
ᵀ
t R′j�′j�′j + 2R′joto

ᵀ
t R′j�′j�′j. (5.41)

The optimal solution �ML2
j , which is a D× N matrix, satisfies

T∑
t=1

γt(j)

[
−R′j�′j�′j − R′j�′j�′j(�′j)ᵀR′joto

ᵀ
t R′j�′j�′j + R′joto

ᵀ
t R′j�′j�′j

]

=
T∑

t=1

γt(j)R′j
[
−�′j�′j −�′jm′

tj(m
′
tj)

ᵀ + ot(m′
tj)

ᵀ
]
= 0. (5.42)
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Similarly to the solution to A′j, the ML2 estimate can be expressed in an implicit form

written by a function Fφ(�′j), namely

�ML2
j =

[
T∑

t=1

γt(j)ot(m′
tj)

ᵀ
][

T∑
t=1

γt(j)(�
′
j +m′

tj(m
′
tj)

ᵀ)

]−1

=
∑T

t=1 γt(j)ot(m′
tj)

ᵀ∑T
t=1 γt(j)

·AML2
j

� FML2(�′j). (5.43)

This solution is viewed as a weighted operation in the outer product space of observa-
tions {ot} and MAP sensing weights {m′

tj � wMAP
t }. The posterior probabilities {γt(j)}

and the ML2 hyperparameters AML2
j serve as the weights and the rotation operator of the

weighted average, respectively.
To find the ML2 estimate of precision matrix R′j, we maximize Eq. (5.36) with respect

to R′j and obtain

T∑
t=1

γt(j)

[
(R′j)−1 −�′j�′j(�′j)ᵀ − oto

ᵀ
t

+ ∂

∂R′j

(
oᵀ

t R′j�′j�′j(�′j)ᵀR′jot

)]
= 0, (5.44)

where

∂

∂R′j

(
oᵀ

t R′j�′j�′j(�′j)ᵀR′jot

)
= ∂

∂R′j
tr{�′j(�′j)ᵀR′joto

ᵀ
t R′j�′j}

= −�′j�′j(�′j)ᵀR′joto
ᵀ
t R′j�′j�′j(�′j)ᵀ

+�′j�′j(�′j)ᵀR′joto
ᵀ
t + oto

ᵀ
t R′j�′j�′j(�′j)ᵀ. (5.45)

We derive the ML2 solution as

(RML2
j )−1 =

∑T
t=1 γt(j)

⎡⎢⎣ �′j�′j(�′j)ᵀ + oto
ᵀ
t

+�′j�′j(�′j)ᵀR′joto
ᵀ
t R′j�′j�′j(�′j)ᵀ

−�′j�′j(�′j)ᵀR′joto
ᵀ
t − oto

ᵀ
t R′j�′j�′j(�′j)ᵀ

⎤⎥⎦
∑T

t=1 γt(j)

= �′j�′j(�′j)ᵀ +
∑T

t=1 γt(j)(ot −�′jm′
tj)(ot −�′jm′

tj)
ᵀ∑T

t=1 γt(j)

� FML2(R′j), (5.46)

which is also an implicit solution to R′j since the right-hand-side (RHS) of Eq. (5.46)
depends on R′j. Note that the RHS of Eq. (5.46) is symmetric positive definite. The first
term is a scaled covariance matrix �′j of the posterior distribution p(wt|ot,�′,� ′), which
is doubly transformed by �′j. The second term is interpreted as a covariance matrix
weighted by posterior probabilities γt(j), and is calculated using observations {ot} and
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“mean” vectors �′jm′
tj. This corresponds to performing Bayesian sensing, again using

the MAP estimates {m′
tj � wMAP

t }.
We can see that type-2 ML (ML2) estimates of BS-HMM parameters and hyper-

parameters are consistently formulated as the implicit solutions, which are beneficial
for efficient implementation and good convergence in parameter estimation. Differ-
ently from conventional basis representation, where basis vectors and sensing weights
are found separately, BS-HMMs provide a multivariate Bayesian approach to hybrid
estimation of the compact basis vectors and the precision matrices of sensing weights
under a consistent objective function. No training examples are stored for memory-based
implementation.

To improve LVCSR performance based on BS-HMMs, there have been several exten-
sions developed for acoustic modeling. As mentioned in Section 5.2.2, the mixture
model of BS-HMMs can be extended by considering multiple sets of basis vectors per
state. A mixture model of basis vectors is included for acoustic modeling. Using this
mixture model, each observation ot at state st = j is expressed by

p(ot|�j) �
K∑

k=1

ωjkN (ot|�jkwt, R−1
jk ), (5.47)

where ωjk is the mixture weight of jth component with the constraint

K∑
k=1

ωjk = 1. (5.48)

Here, the reconstruction error of an observation vector ot due to the jth component
with basis vectors �jk = [φjk1, · · · , φjkN] is assumed to be Gaussian distributed with
zero mean and precision matrix Rjk. In addition, BS-HMMs can be constructed by
incorporating a non-zero mean vector μw

j in the prior density of sensing weights, i.e.,

p(wt|0,Aj) → p(wt|μw
j ,Aj). (5.49)

Similarly to the Maximum Likelihood Linear Regression (MLLR) adaptation for
HMMs, BS-HMMs are developed for speaker adaptation where the nth BS-HMM basis
vector is transformed by

φ̂jn = Mφ̃jn, (5.50)

where M is a D × (D + 1) regression matrix and φ̃jn = [φᵀ
jn 1]ᵀ is the extended basis

vector. The type-2 ML estimation can be applied to calculate the optimal solutions to
non-zero mean vector μw

j and regression matrix M.

5.2.8 Discriminative training

Finally, BS-HMMs are sophisticated, incorporating both model-space and feature-space
discriminative training, which is crucial to improve classification of confusing patterns
in pattern recognition systems. Developing discriminative training for BS-HMMs is
important for LVCSR. Instead of the goodness-of-fit criterion using marginal likelihood
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function, the objective function for discriminative training is established according to the
mutual information between observation data O and the sequence of reference words Wr

(Bahl et al. 1986, Povey & Woodland 2002, Povey, Kanevsky, Kingsbury et al. 2008):

F(�) � I�(O, Wr) = log
p�(O, Wr)

p�(O)p(Wr)

= log p�(O|Wr)− log
∑
W

p�(O|W)p(W)

� Fnum(�)− Fden(�), (5.51)

which consists of a numerator term Fnum(�) and a denominator term Fden(�). The
Maximum Mutual Information (MMI) estimation of BS-HMMs �MMI is performed
for discriminative training. To solve the optimization problem, we calculate the weak-
sense auxiliary function (Povey & Woodland 2002, Povey 2003), where the HMM state
sequence S is incorporated as follows:

Q(�′|�) = Qnum(�′|�)− Qden(�′|�)+ Qsm(�′|�)

=
∑

S

p(S|O, Wr,�) log p(S, O|�′)

−
∑

S

∑
W

p(S, W|O,�) log p(S, O|�′)

+ Qsm(�′|�). (5.52)

The property of weak-sense auxiliary function turns out to meet the condition

∂Q(�′|�)

∂�′

∣∣∣∣
�′=�

= ∂F(�′)
∂�′

∣∣∣∣
�′=�

, (5.53)

where the mode of MMI auxiliary function and its weak-sense auxiliary function have
the same value. The smoothing function Qsm(�′|�) in Eq. (5.52) is added to ensure that
the objective function Q(�′|�) is improved by this extended EM algorithm. For this,
the smoothing function should satisfy

∂Qsm(�′|�)

∂�′

∣∣∣∣
�′=�

= 0. (5.54)

In what follows, we address the discriminative training of basis vectors �j of state j.
The same procedure can be applied to estimate the discriminative precision matrix of
reconstruction errors Rj.

One possible choice of smoothing function meeting Eq. (5.54) is formed by the
Kullback–Leibler divergence KL(·‖·) between marginal likelihoods of the current
estimate p(ot|�) and the new estimate p(ot|�′) given by

Qsm({�′j}|{�j}) � −
J∑

j=1

DjKL(p(o|�j)‖p(o|�′j))

∝
J∑

j=1

Dj

∫
p(o|�j) log p(o|�′j)do
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∝
J∑

j=1

Dj

[
log |R′j| −

∫
p(o|�j)

× (o−�jw+�jw−�′jw)ᵀ

× R′j(o−�jw+�jw−�′jw)do
]

=
J∑

j=1

Dj

[
log |R′j| −

∫
p(o|�j)

× (o−�jw)ᵀR′j(o−�jw)do

− (�jw−�′jw)ᵀR′j(�jw−�′jw)

]
. (5.55)

Here, Dj is a state-dependent smoothing constant. Typically, the smoothing function
is mathematically intractable when applying marginal likelihoods. Noting this, we can
approximate the marginal likelihood by using an average plug-in MAP estimate:

w ≈ 1

T

T∑
t=1

wMAP
t , (5.56)

obtained by taking an ensemble average of the MAP estimates in Eq. (5.35) using all
observation frames {o1, · · · , oT}. Ignoring the terms independent of �j, the smoothing
function is obtained by substituting the approximate MAP estimate of Eq. (5.56) into

Qsm({�′j}|{�j}) = −
J∑

j=1

Djwᵀ(�j −�′j)ᵀR′j(�j −�′j)w. (5.57)

As a result, the weak-sense auxiliary function is expressed in terms of state occupation
posteriors as follows:

Q({�′j}|{�j}) =
T∑

t=1

J∑
j=1

(γ num
t (j)− γ den

t (j))

×
[

log |A′j| + log |R′j| + log |�′j|

− oᵀ
t R′jot + (m′

tj)
ᵀ(�′j)−1m′

tj

]
−

J∑
j=1

Djwᵀ(�j −�′j)ᵀR′j(�j −�′j)w, (5.58)

where the state occupation posteriors of staying in state st = j at time t in the numerator
and denominator terms are calculated by

γ num
t (j) � p(st = j|O, Wr,�), (5.59)

γ den
t (j) �

∑
W

p(st = j|O, W,�), (5.60)
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given the reference word sequence Wr and all possible word sequences {W}, respec-
tively. The current estimates {�j} are used in this calculation. To find an MMI estimate
for basis parameters, we differentiate Eq. (5.58) with respect to �′j and set it to zero:

∂

∂�′j
Q(�′j|�j) ∝ R′j

T∑
t=1

(γ num
t (j)− γ den

t (j))

× (−�′j�′j −�′jm′
tj(m

′
tj)

ᵀ + ot(m′
tj)

ᵀ)

− R′jDj(�
′
j −�j)wwᵀ = 0, (5.61)

which is derived by considering the definition of variables (�′j)−1 and m′
j in Eq. (5.29)

and Eq. (5.30), respectively. Again, the implicit solution to an MMI estimate of �′j
should satisfy

�MMI2
j =

[
T∑

t=1

(γ num
t (j)− γ den

t (j))ot(m′
tj)

ᵀ + Dj�jwwᵀ
]

×
[ T∑

t=1

(γ num
t (j)− γ den

t (j))

× (�′j +m′
tj(m

′
tj)

ᵀ)+ Djwwᵀ
]−1

� FMMI2(�′j). (5.62)

This solution is expressed as a recursive function FMMI2 of new basis parameter �′j.
Strictly speaking, an MMI estimation based on marginal likelihood is seen as a type
2 MMI (MMI2) estimation, which is different from conventional MMI training (Bahl
et al. 1986, Povey & Woodland 2002, Povey et al. 2008) based on likelihood func-
tion without marginalization. In Eq. (5.62), the second terms in the numerator and the
denominator come from smoothing function Qsm(�′j|�j) and serve to prevent instability
in the MMI2 optimization procedure. The solution is highly affected by the differ-
ence between statistics for the reference hypothesis and statistics for the competing
hypotheses γ num

t (j)− γ den
t (j).

It is clear that discriminative training and Bayesian learning are simultaneously per-
formed in a type 2 MMI estimation. By doing this, the performance of LVCSR can be
significantly improved (Saon & Chien 2012b). The robustness to uncertainty of sens-
ing weights in a basis representation can be assured. Some experimental results are
described below.

5.2.9 System performance

Evaluation of BS-HMMs was performed by using the LVCSR task in the domain of
Arabic broadcast news transcription which was part of the DARPA GALE program.
In total, 1800 hours of manually transcribed Arabic broadcast news and conversations
were used in this evaluation (Saon & Chien 2011). The results on several test sets were
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Table 5.1 Comparison of the number of free parameters and word error rates for baseline acoustic
models after ML training and BS-HMMs after ML2 training.

System Nb. parameters WER

DEV’07 DEV’08 DEV’09

Baseline 800K 64.8M 13.8% 16.4% 19.6%
Baseline 2.8M 226.8M 14.1% 16.2% 19.3%
BS-HMM 417K 148.5M 13.6% 16.0% 18.9%

reported: DEV’07 (2.5 hours), DEV’08 (3 hours) and DEV’09 (3 hours). The front-end
processing was performed as mentioned in Saon & Chien (2012b). The vocal-tract-
length-warped PLP (Hermansky 1990) cepstrum features were extracted with a context
window of nine frames. The features were mean and variance normalized on a per
speaker basis. Linear discriminant analysis was used to reduce the feature dimension
to 40. The maximum likelihood training of the acoustic model was interleaved with
the estimation of a global semi-tied covariance transform (Gales 1998). All models in
this evaluation were estimated based on pentaphones and speaker adaptively trained
with feature-space MLLR (fMLLR). Each pentaphone was modeled by a 3-state left-to-
right HMM without state skipping. At test time, speaker adaptation was performed with
vocal-tract-length normalization (Wegmann, McAllaster, Orloff et al. 1996), fMLLR
and multiple regression MLLR transforms. The vocabulary contained 795K words. The
decoding was done with 4-gram language models which were estimated with modified
Kneser–Ney smoothing. The acoustic models were discriminatively trained in both fea-
ture space and model space according to the boosted MMI criterion (Povey, Kingsbury,
Mangu et al. 2005). The baseline acoustic models had 5000 context-dependent HMM
states and 800K 40-dimensional diagonal covariance Gaussians.

In the implementation, BS-HMM parameters were initialized by training a large
HMM model with 2.8M diagonal covariance Gaussians by maximum likelihood
method. The means of GMM were clustered and then treated as the initial basis �jk

for state j and mixture component k. The resulting number of mixture components in
BS-HMMs after the clustering step was 417K. The precision matrices Rjk and Ajk were
assumed to be diagonal and were initialized to the identity matrix. Table 5.1 compares
the performance of the baseline 800K Gaussians model and the 2.8M Gaussians model
used to train baseline acoustic models after ML training and to seed BS-HMMs after
ML2 training. The number of free parameters is included in this comparison. As we can
see, BS-HMMs outperform both baseline systems in terms of word error rates (%). The
possible reasons are twofold. The first one is that the covariance modeling in BS-HMMs
is more accurate than that in HMMs. The second one is due to the Bayesian parameter
updates which provide an effective smoothing.

In contrast, we conducted a model comparison for BS-HMMs according to the esti-
mated hyperparameters of sensing weights. Model compression was performed by
discarding 50% of the basis vectors �jkn corresponding to the largest hyperparameters
αjkn. This results in a compressed model with approximately 91M free parameters (about
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Table 5.2 Comparison of word error rates for original and compressed BS-HMMs before and after
model-space discriminative training with MMI2 training.

Model Training DEV07 DEV08 DEV09

Original ML2 12.0% 13.9% 17.4%
Compressed ML2 12.4% 14.2% 17.6%
Original MMI2 10.7% 11.9% 15.0%
Compressed MMI2 10.4% 11.7% 14.8%

30% larger than the 800K baseline HMM). For both original and compressed models,
we performed model-space discriminative training using the MMI2 criterion. Table 5.2
reports the recognition performance before and after model-space discriminative train-
ing. We find that the compressed models outperform the originals after discriminative
training even though they start from a higher word error rate after ML2 estimation. How-
ever, discriminative training is significantly more expensive than ML estimation which
makes it difficult to find the optimal model size.

5.3 Hierarchical Dirichlet language model

In what follows, we revisit the interpolation smoothing methods presented in Section
3.6 and used to deal with the small sample size problem in ML estimation of n-gram
parameters �ML = {pML(wi|wi−1

i−n+1)}. Different from the heuristic solutions to language
model smoothing in Section 3.6, a full Bayesian language model is proposed to realize
interpolation smoothing for n-grams. The theory of evidence approximation is devel-
oped and applied to construct the hierarchical Dirichlet language model (MacKay &
Peto 1995, Kawabata & Tamoto 1996).

5.3.1 n-gram smoothing revisited

In general, the frequency estimator in a higher-order language model has large variance,
because there are so many possible word combinations in an n-gram event {wi−1

i−n+1, wi}
that only a small fraction of them have been observed in the data. A simple linear inter-
polation scheme for an n-gram language model is performed by interpolating an ML
model of an n-gram pML(wi|wi−1

i−n+1) with that of an (n− 1)-gram pML(wi|wi−1
i−n+2) using

p̂(wi|wi−1
i−n+1) = λpML(wi|wi−1

i−n+1)+ (1− λ)pML(wi|wi−1
i−n+2), (5.63)

where λ denotes the interpolation weight, which can be determined empirically from
validation data. Basically, it is not possible to make language models without making
a-priori assumptions. The smoothed n-gram p̂(wi|wi−1

i−n+1) in Eq. (5.63) can be seen as
an integrated n-gram model which is determined from a hierarchical model based on
the smoothing parameters a-posteriori from the data. In what follows, we would like to
reverse-engineer the underlying model, which gives a probabilistic meaning to language
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model smoothing. We will explain the construction of a hierarchical prior model and
illustrate how this model is used to justify the smoothed language model from a Bayesian
perspective. A type-2 ML estimation is conducted to find optimal hyperparameters from
training data. No cross validation procedure is required in a Bayesian language model.

5.3.2 Dirichlet prior and posterior

n-gram model parameters � = {p(wi|wi−1
i−n+1)} are known as multinomial parameters

which are used to predict n-gram events of word wi appearing after observing history
words wi−1

i−n+1. The ML estimation of an n-gram θwi|wi−1
i−n+1

= p(wi|wi−1
i−n+1) from a text

corpus D has been shown in Eq. (3.192). Here, we are interested in a Bayesian language
model where the prior density of multinomial parameters is introduced. A parameter
vector consists of N multinomial parameters:

θ = vec(�) = [θ1, · · · , θN]ᵀ subject to (5.64)

0 ≤ θi ≤ 1 and
N∑

i=1

θi = 1.

The conjugate prior over multinomial parameters θ is specified by a Dirichlet prior with
hyperparameters α = [α1, · · · ,αN]ᵀ, which is a multivariate distribution in the form of

p(θ |α) = Dir(θ |α) = 1

Z(α)

N∏
i=1

θ
αi−1
i . (5.65)

We express the normalization constant of the Dirichlet distribution by

Z(α) =
∏N

i=1 �(αi)

�(
∑N

i=1 αi)
. (5.66)

The mean vector of Dirichlet distribution is given by∫
θDir(θ |α)dθ = α∑N

i=1 αi
. (5.67)

When we observe the training samples D, the posterior distribution is derived as another
Dirichlet distribution:

p(θ |D, α) = p(D|θ)p(θ |α)

p(D|α)

=
∏N

i=1 θ
c(θi)
i

∏N
i=1 θ

αi−1
i

p(D|α)Z(α)

=
∏N

i=1 θ
c(θi)+αi−1
i

Z(c+ α)

= Dir(θ |c+ α), (5.68)

with the updated hyperparameters c+ α. In Eq. (5.68), each entry c(θi) of

c = [c(θ1), · · · , c(θN)]ᵀ (5.69)
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denotes the number of occurrences of the ith n-gram event in θi in training data D. This
shows the property of a conjugate prior by using the Dirichlet distribution.

5.3.3 Evidence function

To obtain the predictive probability of a word wi given history words wi−1
i−n+1 and train-

ing data D, we apply the sum rule to calculate the evidence function or the marginal
likelihood:

p(wi|wi−1
i−n+1,D, α) =

∫
p(wi|wi−1

i−n+1,D, α)p(θ |D, α)dθ

=
∫

θwi|wi−1
i−n+1

Dir(θ |c+ α)dθ

= c(θi|j)+ αi∑N
k=1[c(θk|j)+ αk]

, (5.70)

which is marginalized over all values of parameter θ . This predictive distribution is
equivalent to calculating the mean of an n-gram parameter:

p(wi|wi−1
i−n+1) � θi|j, (5.71)

based on the posterior distribution p(θ |D, α), which is a Dirichlet distribution with
hyperparameters c + α. Here, the n-gram probability p(wi|wi−1

i−n+1) is simply expressed
by θi|j where j denotes the back-off smoothing information from the lower-order model
p(wi|wi−2

i−n+1), which is addressed in Section 5.3.4.
We may further conduct the next level of inference by inferring the hyperparameters

given the data. The posterior distribution of α is expressed by

p(α|D) = p(D|α)p(α)

p(D)
. (5.72)

The hierarchical prior/posterior model of parameters θ and hyperparameters α is
constructed accordingly. The marginal likelihood over hyperparameters α is yielded by

p(wi|wi−1
i−n+1,D) =

∫
p(wi|wi−1

i−n+1,D, α)p(α|D)dα. (5.73)

We may find the most probable MAP estimate αMAP by

αMAP = arg max
α

p(α|D). (5.74)

Then the marginal distribution is approximated as

p(wi|wi−1
i−n+1,D) ≈ p(wi|wi−1

i−n+1,D, αMAP). (5.75)

In addition, we would like to calculate the optimal hyperparameters via ML2 esti-
mation from training data D based on the evidence framework. To do so, we need
to determine the evidence function given hyperparameters p(D|α). By referring to
Eq. (5.68), this function is derived as

p(D|α) = Z(c+ α)

Z(α)
=
∏

j

(∏N
i=1 �(c(θi|j)+ αi)

�(
∑N

i=1 c(θi|j)+ αi)
· �(

∑N
i=1 αi)∏N

i=1 �(αi)

)
, (5.76)
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which is viewed as a ratio of normalization constants of posterior probability p(θ |D, α)
over prior probability p(θ |α).

5.3.4 Bayesian smoothed language model

It is important to illustrate the physical meaning of predictive distribution in Eq. (5.70).
The hyperparameter αi appears as an effective initial count for an n-gram event wi

i−n+1.
This marginal likelihood is integrated by the information sources from prior statistics
α as well as training data D or their counts of occurrences c. On the other hand, the
predictive distribution in Eq. (5.70) can be rewritten as

p(wi|wi−1
i−n+1,D, α) =

c(wi
i−n+1)+ αwi|wi−1

i−n+2∑
wi

[
c(wi

i−n+1)+ αwi|wi−1
i−n+2

]
= λwi−1

i−n+1
pML(wi|wi−1

i−n+1)+ (1− λwi−1
i−n+1

)
αwi|wi−1

i−n+2∑
wi
αwi|wi−1

i−n+2

, (5.77)

where pML(wi|wi−1
i−n+1) denotes the ML model introduced in Eq. (3.192) and 1− λwi−1

i−n+1
implies the interpolation weight for prior statistics and is herein obtained as

1− λwi−1
i−n+1

=
∑

wi
αwi|wi−1

i−n+2∑
wi

[
c(wi

i−n+1)+ αwi|wi−1
i−n+2

] . (5.78)

It is interesting to see that the predictive distribution in Eq. (5.77) is interpreted as the
smoothed n-gram based on the interpolation smoothing. We build the tight connec-
tion between the Bayesian language model and a linearly smoothed language model as
addressed in Section 3.6. The prior statistics or hyperparameters αwi|wi−1

i−n+2
should suf-

ficiently reflect the backoff information from the low-order model p(wi|wi−1
i−n+2) when

calculating the predictive n-gram probability p(wi|wi−1
i−n+1,D, α). Comparing Eq. (5.78)

and Eq. (3.211), the Bayesian language model is shown to be equivalent to the Witten–
Bell smoothed language model in the case that the hyperparameters αwi|wi−1

i−n+2
are

selected to meet the condition∑
wi

αwi|wi−1
i−n+2

= N1+(wi−1
i−n+1, •). (5.79)

(As before, the • represents any possible words at i that are summed over.)
Nevertheless, the advantage of the Bayesian smoothed language model is to automat-

ically determine the optimal hyperparameters αwi|wi−1
i−n+2

from training data D.

5.3.5 Optimal hyperparameters

According to the evidence framework, a type-2 ML estimation is carried out to find
optimal hyperparameters α = [α1, · · · ,αN]ᵀ by maximizing the evidence function

αML2 = arg max
α

p(D|α). (5.80)
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More specifically, we find individual parameter αML2
i through calculating the

differentiation

∂

∂αi
log p(D|α) =

∑
j

[
�(c(θi|j)+ αi)−�

(
N∑

i=1

c(θi|j)+ αi

)

+�

(
N∑

i=1

αi

)
−�(αi)

]
, (5.81)

where the di-gamma function

�(x) � ∂

∂x
log�(x) (5.82)

is incorporated. We may use the conjugate gradient algorithm to find αML2
i or apply some

approximation to derive an explicit optimization algorithm.
In general, it is reasonable that

∑N
i=1 αi > 1 and αi < 1. We can use the recursive

formula of the di-gamma function (MacKay & Peto 1995),

�(x+ 1) = �(x)+ 1

x
, (5.83)

to combine the first and fourth terms in the brackets of Eq. (5.81) to obtain

�(c(θi|j)+ αi)−�(αi) = 1

c(θi|j)− 1+ αi
+ 1

c(θi|j)− 2+ αi

+ · · · + 1

2+ αi
+ 1

1+ αi
+ 1

αi
. (5.84)

The number of terms in the right-hand-side of Eq. (5.84) is c(θi|j). Assuming αi is smaller
than 1, we can approximate Eq. (5.84), for c(θi|j) ≥ 1, by

�(c(θi|j)+ αi)−�(αi) = 1

αi
+

c(θi|j)∑
c=2

[
1

c− 1+ αi

]

≈ 1

αi
+

c(θi|j)∑
c=2

[
1

c− 1
− αi

(c− 1)2
+ O(α2

i )

]

= 1

αi
+

c(θi|j)∑
c=2

1

c− 1
− αi

c(θi|j)∑
c=2

1

(c− 1)2
+ O(α2

i ). (5.85)

Here, the function inside the brackets,

f (αi) = 1

c− 1+ αi
, (5.86)

is approximated by a Taylor series at the point αi = 0. Further, we apply the
approximation of a di-gamma function,

�(x) ≈ log(x)− 1

2x
+ O

(
1

x2

)
, (5.87)
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to approximate the second and third terms in Eq. (5.81) (MacKay & Peto 1995):

K(α) =
∑

j

{
�

(
N∑

i=1

αi

)
−�

(
N∑

i=1

c(θi|j)+ αi

)}

≈
∑

j

log

[∑N
i=1 c(θi|j)+ αi∑N

i=1 αi

]

+ 1

2

∑
j

⎡⎣ ∑N
i=1 c(θi|j)(∑N

i=1 αj

) (∑N
i=1 c(θi|j)+ αi

)
⎤⎦ . (5.88)

For each count c and word i, let Nci be the number of back-off contexts j such that
c(θi|j) ≥ c, and let cmax

i denote the largest c such that Nci > 0. Denote the number of
entries in row i of c(θi|j) that are non-zero N1i by Vi. We compute the quantities:

Gi =
cmax

i∑
c=2

Nci

c− 1
, (5.89)

Hi =
cmax

i∑
c=2

Nci

(c− 1)2
. (5.90)

Finally, the solution to optimal hyperparameters αML2 is obtained. The hyperparameter
αML2

i corresponding to each word i should satisfy

αML2
i = 2Vi

K(α)− Gi +
√

(K(α)− Gi)2 + 4HiVi

� fi(α). (5.91)

Again, this solution to ML2 estimation is expressed as an implicit solution because the
right-hand-side of Eq. (5.91) is a function of hyperparameters α. Starting from the initial
hyperparameters α and the resulting function K(α), the individual hyperparameter is
then updated to α

(1)
j . The function K(α(1)) is updated as well. The estimation procedure

α → α(1) → · · · converges very rapidly.
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