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Knowledge Representation
and Reasoning

F      ,       
and the means to draw conclusions from, or at least act on, that knowledge.

Humans and machines alike therefore must have ways to represent this needed
knowledge in internal structures, whether encoded in protein or silicon. Cognitive
scientists and AI researchers distinguish between two main ways in which knowl-
edge is represented: procedural and declarative. In animals, the knowledge needed
to perform a skilled action, such as hitting a tennis ball, is called procedural because
it is encoded directly in the neural circuits that coordinate and control that spe-
cific action. Analogously, automatic landing systems in aircraft contain within their
control programs procedural knowledge about flight paths, landing speeds, aircraft
dynamics, and so on. In contrast, when we respond to a question, such as “How old
are you?,” we answer with a declarative sentence, such as “I am twenty-four years
old.” Any knowledge that is most naturally represented by a declarative sentence is
called declarative.

In AI research (and in computer science generally), procedural knowledge is
represented directly in the programs that use that knowledge, whereas declarative
knowledge is represented in symbolic structures that are more-or-less separate from
the many different programs that might use the information in those structures.
Examples of declarative-knowledge symbol structures are those that encode logical
statements (such as those McCarthy advocated for representing world knowledge)
and those that encode semantic networks (such as those of Raphael or Quillian).
Typically, procedural representations, specialized as they are to particular tasks, are
more efficient (when performing those tasks), whereas declarative ones, which can
be used by a variety of different programs, are more generally useful. In this chapter,
I’ll describe some of the ideas put forward during this period for reasoning with and
for representing declarative knowledge.

11.1 Deductions in Symbolic Logic

Aristotle got things started in logic with his analysis of syllogisms. In the nineteenth
century, George Boole developed the foundations of propositional logic, and Gottlob
Frege improved the expressive power of logic by proposing a language that could
include internal components (called “terms”) as part of propositions. Later devel-
opments by various logicians gave us what we call today the predicate calculus – the
very language in which McCarthy proposed to represent the knowledge needed by
an intelligent system.
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Here is an instance of one of Aristotle’s syllogisms, stated in the language of the
predicate calculus:

1. (∀x)[Man(x) ⊃ Mortal(x)]
(The expression “(∀x)” is a way of writing “for all x”; and the expression
“⊃” is a way of writing “implies that.” “Man(x)” is a way of writing “x is a
man”; and “Mortal(x)” is a way of writing “x is mortal.” Thus, the entire
expression is a way of writing “for all x, x is a man implies that x is mortal”
or, equivalently, “all men are mortal.”)

2. Man(Socrates)
(Socrates is a man.)

3. Therefore, Mortal(Socrates)
(Socrates is mortal.)

Statement 3, following “Therefore,” is an example of a deduction in logic.
McCarthy proposed that the knowledge that an intelligent agent might need in
a specific situation could be deduced from the general knowledge given to it earlier.
Thus, for McCarthy-style AI, not only do we need a language (perhaps that of the
predicate calculus) but a way to make the necessary deductions from statements in
the language.

Logicians have worked out a variety of deduction methods based on what they call
“rules of inference.” For example, one important inference rule is called modus ponens
(Latin for “mode that affirms”). It states that if we have the two logical statements
P and P ⊃ Q, then we are justified in deducing the statement Q.

By the 1960s programs had been written that could use inference rules to prove
theorems in the predicate calculus. Chief among these were those of Paul Gilmore
at IBM,1 Hao Wang at IBM,2 and Dag Prawitz,3 now at Stockholm University.
Although their programs could prove simple theorems, proving more complex ones
would have required too much search.4

A Harvard Ph.D. student, Fisher Black (1938–1995), later a co-inventor of the
Black–Scholes equation for pricing options,5 had done early work implement-
ing some of McCarthy’s ideas.6 But it was a Stanford Ph.D. student and SRI
researcher, C. Cordell Green, who programmed a system, QA3, that more fully real-
ized McCarthy’s recommendation. Although it was not difficult to represent world
knowledge as logical statements, what was lacking at the time of Black’s work was
an efficient mechanical method to deduce conclusions from these statements. Green
was able to employ a new method for efficient reasoning developed by John Alan
Robinson.

During the early 1960s, the English (and American) mathematician and logician
John Alan Robinson (1930– ) developed a deduction method particularly well suited
to computer implementation. It was based on an inference rule he called “resolu-
tion.”7 Although a full description of resolution would involve too much technical
detail, it is a rule (as modus ponens is) whose application produces a new statement
from two other statements. For example, resolution applied to the two statements
¬P ∨ Q and P produces Q. (The symbol “¬” is a way of writing “not,” and the
symbol “∨” is a way of writing “or.”) Resolution can be thought of as canceling out
the P and the ¬P in the two statements. (Resolution is a kind of generalized modus
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ponens as can be seen from the fact that ¬P ∨ Q is logically equivalent to P ⊃ Q.)
This example was particularly simple because the statements had no internal terms.
Robinson’s key contribution was to show how resolution could be applied to general
expressions in the predicate calculus, expressions such as ¬P(x) ∨ Q(x) with internal
terms.

The advantage of resolution is that it can be readily implemented in programs to
make deductions from a set of logical statements. To do so, the statements must first
be converted to a special form consisting of what logicians call “clauses.” (Loosely
speaking, a clause is a formula that uses only ∨’s and ¬’s.) Any logical statement
can be converted to clause form (although some, such as John McCarthy, complain
that conversion might eliminate clues about how statements might best be used in
logical deductions).

The first use of resolution was in computer programs to prove mathematical
theorems. (Technically, a “theorem” is any logical statement obtained by successively
applying a rule of inference, such as resolution, to members of a base set of logical
statements, called “axioms,” and to statements deduced from the axioms.) Groups
at Argonne National Laboratories (under Lawrence Wos), at the University of
Texas at Austin (under Woody Bledsoe), and at the University of Edinburgh (under
Bernard Meltzer) soon began work developing theorem-proving programs based
on resolution. These programs were able to prove theorems that had previously
been proved “by hand” and even some new, never-before-proved, mathematical
theorems.8 One of these latter concerned a conjecture by Herbert Robbins that
a Robbins algebra was Boolean. The conjecture was proved in 1996 by William
McCune, using an automated theorem prover.9

Our concern here, though, is with using deduction methods to automate the
reasoning needed by intelligent systems. Around 1968, Green (aided by another
Stanford student, Robert Yates) programmed, in LISP, a resolution-based deduction
system called QA3, which ran on SRI’s time-shared SDS 940 computer. (QA1,
Green’s first effort, guided by Bertram Raphael at SRI, was an attempt to improve on
Raphael’s earlier SIR system. QA2 was Green’s first system based on resolution, and
QA3 was a more sophisticated and practical descendant.) “QA” stood for “question
answering,” one of the motivating applications.

I’ll present a short illustrative example of QA3’s question-answering ability taken
from Green’s Stanford Ph.D. thesis.10 First, two statements are given to the system,
namely,

1. ROBOT(Rob)
(Rob is a robot.)

2. (∀x)[MACHINE(x) ⊃ ¬ANIMAL(x)]
(x is a machine implies that it is not an animal.)

The system is then asked “Is everything an animal?” by having it attempt to deduce
the statement

3. (∀x)ANIMAL(x)

QA3 not only answers “NO,” finding that such a deduction is impossible, but it also
gives a “counterexample” as an answer to the question:
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4. x = Rob
(This indicates that ¬ANIMAL(Rob) contradicts what was to be deduced.)

The use of resolution, like that of any inference rule, to deduce some specific
conclusion from a large body of logical statements involves the need to decide to
which two statements, among the many possibilities, the rule should be applied.
Then a similar decision must be made again and again until, one hopes, finally
the desired conclusion is obtained. So just as with programs for playing checkers,
solving puzzles, and proving geometry theorems, deduction programs are faced
with the need to try many possibilities in their search for a solution. As with those
other programs, various heuristic search methods have been developed for deduction
programs.

11.2 The Situation Calculus

Green realized that “question answering” was quite a broad topic. One could ask
questions about almost anything. For example, one could ask “What is a program
for rearranging a list of numbers so that they are in increasing numerical order?”
Or one could ask, “What is the sequence of steps a robot should take to assemble a
tower of toy blocks?” The key to applying QA3 to answer questions of this sort lay
in using McCarthy’s “situation calculus.”

McCarthy proposed a version of logic he called the “situation calculus” in which
one could write logical statements that explicitly named the situation in which
something or other was true. For example, one toy block may be on top of another
in one situation but not in another. Green developed a version of McCarthy’s
logic in which the situation, in which something was true, appeared as one of the
terms in an expression stating that something was true. For example, to say that
block A is on top of block B in some situation S (allowing for the fact that this might
not be the case in other situations), Green would write

On(A, B, S),

to say that block A is blue in all situations, Green would write

(∀s)Blue(A, s),

and to say that there exists some situation in which block A is on block B, Green
would write

(∃s)On(A, B, s).

Here “(∃s)” is a way of writing “there exists some s such that . . . ”
Not only was QA3 able to deduce statements, but when it deduced a so-called

existential statement (such as the one just mentioned), it was able to compute
an instance of what was alleged to “exist.” Thus, when it deduced the statement
(∃s)On(A, B, s), it also computed for which situation the deduction was valid. Green
devised a way in which this value could be expressed in terms of a list of actions
for a robot that would change some initial situation into the situation for which the
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Figure 11.1. Robert Kowalski (left) and Alain Colmerauer (right). (Photographs courtesy of
Robert Kowalski and of Alain Colmerauer.)

deduced statement was true. Thus, for example, QA3 could be used to plan courses
of action for a robot. Later, we’ll see how it was used for this purpose.

11.3 Logic Programming

In the same way that QA3 could be used to make robot plans, it could also construct
simple computer programs. In his 1969 paper, Green wrote

The formalization given here [can] be used to precisely state and solve the problem of automatic
generation of programs, including recursive programs, along with concurrent generation of
proofs of the correctness of these programs. Thus any programs automatically written by this
method have no errors.

Green’s work on automatic programming was the first attempt to write programs
using logical statements. Around this time, Robert A. Kowalski (1941– ; Fig. 11.1),
an American who had just earned a Ph.D. at the University of Edinburgh, and Don-
ald Kuehner developed a more efficient version of Robinson’s resolution method,
which they called “SL-resolution.”11 In the summer of 1972, Kowalski visited Alain
Colmerauer (1941– ; Fig. 11.1), the head of Groupe d’Intelligence Artificielle (GIA),
Centre National de la Recherche Scientifique and Université II of Aix-Marseille in
Marseille. Kowalski wrote “It was during that second visit that logic programming,
as we commonly understand it, was born.”12

Colmerauer and his Ph.D. student, Philippe Roussel, were the ones who devel-
oped, in 1972, the new programming language, PROLOG. (Roussel chose the name
as an abbreviation for “PROgrammation en LOGique.”) In PROLOG, programs con-
sist of an ordered sequence of logical statements. The exact order in which these
statements are written, along with some other constructs, is the key to efficient
program execution. PROLOG uses an ordering based on the ordering of deductions
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in SL-resolution. Kowalski, Colmerauer, and Roussel all share credit for PROLOG,
but Kowalski admits “. . . it is probably fair to say that my own contributions were
mainly philosophical and Alain’s were more practical.”13

The PROLOG language gradually grew in importance to rival LISP, although it is
used mainly by AI people outside of the United States. Some American researchers,
especially those at MIT, argued against PROLOG (and other resolution-based deduc-
tion systems), claiming (with some justification) that computation based on deduction
was not efficient. They advocated computation controlled by embedding knowledge
about the problem being solved and how best to solve it directly into programs
to reduce search. This “procedural embedding of knowledge” was a feature of the
PLANNER languages developed by Carl Hewitt and colleagues at MIT. (Hewitt
coined the phrase “procedural embedding of knowledge” in a 1971 paper.)14

11.4 Semantic Networks

Semantic networks were (and still are) another important format for representing
declarative knowledge. I have already mentioned their use by Ross Quillian as a model
of human long-term memory. In the 1970s, Stanford cognitive psychologist Gordon
Bower (1932– ) and his student John Anderson (1947– ) presented a network-based
theory of human memory in their book Human Associative Memory.15 According to
a biographical sketch of Anderson, the book “immediately attracted the attention
of everyone then working in the field. The book played a major role in establishing
propositional semantic networks as the basis for representation in memory and
spreading activation through the links in such networks as the basis for retrieval of
information from memory.”16

The theory was partially implemented in a computer simulation called HAM (an
acronym for Human Associative Memory). HAM could parse simple propositional
sentences and store them in a semantic network structure. Using its accumulated
memory, HAM could answer simple questions.

Several other network-based representations were explored during the late 1960s
and early 1970s. Robert F. Simmons, after moving from SDC to the University of
Texas in Austin, began using semantic networks as a computational linguistic theory
of structures and processing operations required for computer understanding of
natural language. He wrote “Semantic nets are simple – even elegant – structures for
representing aspects of meaning of English strings in a convenient computational
form that supports useful language-processing operations on computers.”17

In 1971, Stuart C. Shapiro (1944– ), then at the University of Wisconsin in
Madison, introduced a network structure called MENS (MEmory Net Structure) for
storing semantic information.18 An auxiliary system called MENTAL (MEmory Net
That Answers and Learns) interacted with a user and with MEMS. MENTAL aided
MEMS in deducing new information from that already stored. Shapiro envisioned
that MENTAL would be able to answer users’ questions using information stored in
MEMS.

Shapiro later moved to the State University of New York at Buffalo where he
and colleagues are continuing to develop a series of systems called SNePS (Semantic
NEtwork Processing System).19 SNePS combines features of logical representations
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Figure 11.2. Roger Schank. (Photograph
courtesy of Roger Schank.)

with those of network representations and has been used for natural language under-
standing and generation and other applications.20

In his Ph.D. research in linguistics at the University of Texas at Austin, Roger C.
Schank (1946– ; Fig. 11.2) began developing what he called “conceptual dependency
representations for natural language sentences.”21 Subsequently, as a Professor at
Stanford and at Yale, he and colleagues continued to develop these ideas. The basis
of Schank’s work was his belief that people transform natural language sentences into
“conceptual structures” that are independent of the particular language in which the
sentences were originally expressed. These conceptual structures, he claimed, were
how the information in sentences is understood and remembered. So, for example,
when one translates a sentence from one language into another, one first represents
its information content as a conceptual structure and then uses that structure to
reason about what was said or to regenerate the information as a sentence in another
language. As he put it in one of his papers, “. . . any two utterances that can be said
to mean the same thing, whether they are in the same or different languages, should
be characterized in only one way by the conceptual structures.”22

The notation Schank used for his conceptual structures (sometimes called “con-
ceptual dependency graphs”) evolved somewhat during the 1970s.23 As an example,
Fig. 11.3, taken from one of his papers, shows how he would represent the sentence
“John threw the pencil to Sam.” This structure uses three of the “primitive actions”
Schank has defined for these representations. These are ATRANS, which means a
transfer of possession; PTRANS, which means a transfer of physical location; and
PROPEL, which means an application of force to an object. Schank defined several
other primitive actions to represent movement, attending to, speaking, transferring
of ideas, and so on.

An expanded literal reading of what this structure represents would be “John
applied physical force to a pencil, which caused it to go through the air from John’s
location to Sam’s location, which caused Sam to possess it” or something like that.
Schank, like many others who are interested in meaning representation languages,
notes that these representations can be used directly to perform deductions and
answer questions. For example, answers to questions such as “How did Sam get the
pencil?” and “Who owned the pencil after John threw it?” are easily extracted.

Although network structures are illustrated graphically in papers about them,
they were encoded using LISP for computer processing.
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Figure 11.3. Conceptual structure for “John threw the pencil to Sam.” (From Roger C.
Schank, “Identification of Conceptualizations Underlying Natural Langauge,” in Roger
Schank and Kenneth Colby (eds.), Computer Models of Thought and Language, p. 226, San
Francisco: W. H. Freeman and Co., 1973.)

11.5 Scripts and Frames

Graphical knowledge representations, such as semantic networks and conceptual
structures, connect related entities together in groups. Such groupings are efficient
computationally because things that are related often participate in the same chain
of reasoning. When accessing one such entity it is easy to access close-by ones also.
Roger Schank and Robert Abelson expanded on this idea by introducing the concept
of “scripts.”24 A script is a way of representing what they call “specific knowledge,”
that is, detailed knowledge about a situation or event that “we have been through
many times.” They contrast specific knowledge with “general knowledge,” the latter
of which is the large body of background or commonsense knowledge that is useful
in many situations.

Their “restaurant” script (“Coffee Shop version”) became their most famous illus-
trative example. The script consists of four “scenes,” namely, Entering, Ordering,
Eating, and Exiting. Its “Props” are Tables, Menu, F-Food, Check, and Money. Its
“Roles” are S-Customer, W-Waiter, C-Cook, M-Cashier, and O-Owner. Its “Entry
conditions” are S is hungry and S has money. Its “Results” are S has less money, O
has more money, S is not hungry, and S is pleased (optional). Figures 11.4 shows
their script for the “Ordering” scene.

Besides the actions PTRANS (transfer of location) and ATRANS (transfer of posses-
sion), this script uses two more of their primitive actions, namely, MTRANS (transfer
of information) and MBUILD (creating or combining thoughts). CP(S) stands for
S’s “conceptual processor” where thought takes place, and DO stands for a “dummy
action” defined by what follows. The lines in the diagram show possible alterna-
tive paths through the script. So, for example, if the menu is already on the table,
the script begins at the upper left-hand corner; otherwise it begins at the upper
right-hand corner. I believe most of the script is self-explanatory, but I’ll help out
by explaining what goes on in the middle. S brings the “food list” into its central
processor where it is able to mentally decide (build) a choice of food. S then transfers
information to the waiter to come to the table, which the waiter does. Then, S trans-
fers the information about his or her choice of food to the waiter. This continues
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Figure 11.4. A scene in the restaurant script. (From Roger C. Schank and Robert P. Abelson,
Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures, p. 43,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1977.)

until either the cook tells the waiter that he does not have the food that is ordered
or the cook prepares the food. The three other scenes in the restaurant script are
similarly illustrated in Schank and Abelson’s book.25 Several other variations of the
restaurant script (for different kinds of restaurants, and so on) are possible.

Scripts help explain some of the reasoning we do automatically when we hear a
story. For example, if we hear that John went to a coffee shop and ordered lasagne,
we can reasonably assume that lasagne was on the menu. If we later learn that John
had to order something else instead, we can assume that the coffee shop was out of
lasagne. Schank and Abelson give anecdotal evidence that even small children build
such scripts and that people must have a great number of them to enable them to
navigate through and reason about situations they encounter.
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Schank later expanded on scripts and related ideas in another book, in which he
introduced the idea of “memory organization packets” (MOPS) that describe situa-
tions in a more distributed and dynamic way than scripts do.26 He later “revisited”
some of these ideas in a book about their application to education, a field to which
he has made significant contributions.27

Schank and his claims generated a good deal of controversy among AI researchers.
For example, I remember arguing with him in 1983 in a restaurant somewhere
(while waiting for the menu?) about the comparative performance of his programs
for natural language understanding and that of our programs at SRI. As I recall, he
was eager to make more grandiose claims about what his programs could do than I
was prepared to believe or to claim about ours. Tufts University philosopher Daniel
Dennett is quoted as having said “I’ve always relished Schank’s role as a gadfly
and as a naysayer, a guerrilla in the realm of cognitive science, always asking big
questions, always willing to discard his own earlier efforts and say they were radically
incomplete for interesting reasons. He’s a gadfly and a good one.”28 I think his basic
idea about scripts was prescient. Also, he has produced a great bunch of students.
The “AI Genealogy” Web site29 lists almost four dozen Schank students, many of
whom have gone on to distinguished careers.

Around the time of Schank’s work, Marvin Minsky proposed that knowledge
about situations be represented in structures he called “frames.”30 He mentioned
Schank’s ideas (among others) as exemplary of a movement away from “trying to
represent knowledge as collections of separate, simple fragments” such as sentences
in a logical language. As he defined them,

A frame is a data-structure for representing a stereotyped situation, like being in a certain kind
of living room, or going to a child’s birthday party. Attached to each frame are several kinds of
information. Some of this information is about how to use the frame. Some is about what one
can expect to happen next. Some is about what to do if these expectations are not confirmed.
. . .
Collections of related frames are linked together into frame-systems. The effects of important
actions are mirrored by transformations between the frames of a system. These are used to
make certain kinds of calculations economical, to represent changes of emphasis and attention,
and to account for the effectiveness of “imagery.”

Minsky’s paper described how frame systems could be applied to vision and
imagery, linguistic and other kinds of understanding, memory acquisition, retrieval
of knowledge, and control. Although his paper was rich in ideas, Minsky did not
actually implement any frame systems. A couple of years later, some of his students
and former students did implement some framelike systems. One, called FRL (for
Frame Representation Language), was developed by R. Bruce Roberts and Ira P.
Goldstein.31 Daniel Bobrow and Terry Winograd (the latter being one of Papert’s
students), implemented a more ambitious system called KRL (for Knowledge Rep-
resentation Language).32

Frame systems accommodated a style of reasoning in which details “not specifically
warranted” could be assumed, thus “bypassing “logic,” as Minsky would have
it. This style was already used earlier in Raphael’s SIR system (see p. 98), and
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researchers advocating the use of logical languages for knowledge representation
would later extend logic in various ways to accommodate this style also. Even so,
the last section (titled “Criticism of the Logistic Approach”) of Minsky’s paper
about frames gives many reasons why one might doubt (along with Minsky) “the
feasibility of representing ordinary knowledge effectively in the form of many small,
independently ‘true’ propositions.”
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