6 Asymptotic approximation

Asymptotic approximation is also well known in practical Bayesian approaches
(De Bruijn 1970) for approximately obtaining the posterior distributions. For example,
as we discussed in Chapter 2, the posterior distributions of a model parameter p(®|0)
and a model p(M|O) given an observation O = {o, € RP|t = 1,...,T}) are usu-
ally difficult to solve. The approach assumes that we have enough data (i.e., T is
sufficiently large), which also makes Bayesian inference mathematically tractable. As a
particular example of asymptotic approximations, we introduce the Laplace approxima-
tion and Bayesian information criterion, which are widely used for speech and language
processing.

The Laplace approximation is used to approximate a complex distribution as a Gaus-
sian distribution (Kass & Raftery 1995, Bernardo & Smith 2009). It assumes that the
posterior distribution is highly peaked at about its maximum value, which corresponds
to the mode of the posterior distribution. Then the posterior distribution is modeled as a
Gaussian distribution with the mode as a mean parameter. By using the approximation,
we can obtain the posterior distributions analytically to some extent. Section 6.1 first
explains the Laplace approximation in general. In Sections 6.3 and 6.4 we also discuss
use of the Laplace approximation for analytically obtaining Bayesian predictive distribu-
tions for acoustic modeling and Bayesian extension of successful neural-network-based
acoustic modeling, respectively.

Another example of this asymptotic approximation is the Bayesian information cri-
terion (or Schwarz criterion (Schwarz 1978)). The Bayesian information criterion also
assumes the large sample case, and approximates the posterior distribution of a model
p(M|0) with a simple equation. Since the Bayesian information criterion assumes the
large sample case, it is also described as an instance of asymptotic approximations.
Section 6.2 explains the Bayesian information criterion in general; it is used for model
selection problems in speech processing. For example, Section 6.5 discusses the opti-
mization of an appropriate model structure of hidden Markov models, and Section 6.6
discusses estimation of the number of speakers and detecting speech segments in
conversations by regarding these approaches as model selection problems.

6.1 Laplace approximation

This section first describes the basic theory of the Laplace approximation. We first
consider a simple case where a model does not have a latent variable. We focus on
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the posterior distributions of model parameters, but this approximation can be applied
to the other continuous probabilistic variables. Let # € R’ be a J dimensional vector
form of continuous model parameters and O = {o, € RP|r = 1,--- ,T} be a T-frame
sequence of D dimensional feature vectors. We consider the posterior distribution of 6,
which has the following distribution p(8]0):

p610) = exp(—f(9)), (6.1)

where f(0) is a continuous function over #. Note that most parametric distributions can
be represented by this equation. The Laplace approximation approximates p(€|0O) as
a Gaussian distribution with the mode of p(#|O) as a mean parameter, which can be
obtained numerically or analytically for some specific distributions. Let OMAP be the
mode (MAP value, as discussed in Chapter 4) of p(0]0), that is:

OMAP — arg moax p(610)
= arg moinf(O). (6.2)
Here we use Eq. (6.1). Since the mode OMAP i5 the minimum value in f(8), OMAP also
satisfies the following equation:
Vof(0)|g_gmar =0, (6.3)

where Vp is the gradient operator with respect to #. Based on the property, a Taylor
expansion around OMAP approximates £(8) as follows:

£(0) ~ FOMAT) + (8 — OMAP)T Vg (0)],_gvar + %(o — @MAPYTH (9 — gMAP)
— OMAP) ¢ %(o _ QMAPYTE (g — gMAP). (6.4)

where the second term in the first line is canceled by using Eq. (6.3). Equation (6.4) is a
basic equation in this chapter. H is a J x J Hessian matrix defined as

H2 Vo Vof(0)lg_guar . 6.5)
By using Eq. (6.1), it can also be represented as
H2 - VyV, ]0gp(0|0)|0=0MAP . (6.6)

The Hessian matrix also appeared in Eq. (5.9), as the second derivative of the negative
log posterior. The determinant of this matrix plays an important role in the Occam factor,
which penalizes the model complexity. Note that the Hessian matrix is a symmetric
matrix based on the following property:

da 0
[H]ij = a—el_a—ejf(a)|0:0MAp
a 0

= 8_9j8_95f(0)|0="MAP = [H];i. (6.7)
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Thus, by substituting the Taylor expansion of f(8) (Eq. (6.4)) into Eq. (6.1), we obtain
the approximated form of p(0]0), as follows:

p(010) = exp (—£(9))

X exp (—%(a — OMAPYTH(9 — 0MAP)) ) (6.8)

Here, exp (—f(aMAP)) does not depend on 6, and we can neglect it. Thus, p(0|0)

is approximated by the following Gaussian distribution with mean vector #MAP and
covariance matrix H™!:

p(0]0) =~ N(@16MAY H™). 6.9)

Note that since the dimensionality of the Hessian matrix H is the number of param-
eters J, and it is often large in our practical problems, we would have a numerical
issue as to how to obtain H™!. To summarize the Laplace approximation, if we have
an arbitrary distribution p(#|O) with given continuous distribution f(@), the Laplace
approximation provides an analytical Gaussian distribution by using the mode §™MAP
and the Hessian matrix H. §MAP is usually obtained by some numerical computation or
the MAP estimation.

Now, let us consider the relationship between MAP (Chapter 4) and Laplace approx-
imations. As we discussed in Eq. (4.9), the MAP approximation of the posterior
distribution is represented by a Dirac delta function as follows:

PMAP10) = 5(0 — OMAP). (6.10)

Therefore, Eq. (6.9) approaches the MAP solution, when the variance in the Gaussian
distribution in Eq. (6.9) becomes very small. This often arises when the amount of
training data is very large. In this sense, the Laplace approximation is a more precise
approximation for the true posterior distribution than MAP, in terms of the asymptotic
approximation. This precision of the Laplace approximation comes from consideration
of the covariance matrix (Hessian matrix H) effect in Eq. (6.9).

The Laplace approximation is widely used as an approximated Bayesian inference
method for various topics (e.g., Bayesian logistic regression (Spiegelhalter & Lauritzen
1990, Genkin, Lewis & Madigan 2007), Gaussian processes (Rasmussen & Williams
2006), and Bayesian neural networks (MacKay 1992c)). Sections 6.3 and 6.4 discuss
the applications of the Laplace approximation to Bayesian predictive classification and
neural networks in acoustic modeling, respectively.

Note that the Laplace approximation is usually used to obtain the posterior distribu-
tion for non-exponential family distributions. Although the Laplace approximation can
be used to deal with latent variable problems in the posterior distribution (e.g., Gaussian
mixture model), the assumption of approximating a multiple peak distribution with a
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single peak Gaussian is not adequate in many cases. Therefore, the Laplace approxima-
tion is often used with the other approximations based on the EM algorithm (MAP-EM,
VB-EM) or sampling algorithm (MCMC) that handle latent variable problems.

6.2 Bayesian information criterion

This section describes the Bayesian information criterion in general. We focus on the
posterior distribution of model p(M|0O), which is introduced in Section 3.8.7. We first
think about a simple case when there is no latent variable. Then, p(M|0O) is represented
by using the Bayes rule and the sum rule as follows:

_ p(OIM)p(M)
p(0)
_ [ p(O16, M)p(0|M)dfp(M)
p(0) ’
where p(M) denotes a prior distribution for a model M. Similarly to the formalization
for Laplace approximation, we use a vector form of model parameters, that is § € R’,
and J is the number of parameters. Then, p(6|M) denotes a prior distribution for a model
parameter 6 given M, and p(0|@, M) denotes a likelihood function given # and M.
Suppose we want to compare two types of models (M; and M>) in terms of the
posterior values of these models. Figure 6.1 compares fitting the same data with a
single Gaussian (M1) or two Gaussians (M>). For this comparison, we can compute
the following ratio of p(M;|0) and p(M>|0) and check whether the ratio is larger/less

p(M|0)

(6.11)

than 1:
J p(O101.M)p(81|M1)d6 p(M;)
p(Mi10) 7(0)
p(M2|0) [ P(O162,M2)p(8>M2)d02p(M>)
p(O)

_ [ p(O161,M)p(01|M1)d6 p(M)

[ (0162, M2)p(B:|M2)d62p (M)
This factor is called the Bayes factor (Kass & Raftery 1993, 1995). To obtain the Bayes
factor, we need to compute the marginal likelihood term:

(6.12)

/p(O|0,M)p(0|M)d0. (6.13)
e S oc\* /e N\ /”'og N
[ e_ e °§Q>\‘ <>e e \/ & \‘
\ ( | )
Nt °,9,76 :,,,(,J«b’ / x\{i P ?/51\\? 2 Y
p(M1|0) p(M>|0)
Figure 6.1 An example of model comparison, fitting the same data with a single Gaussian (M) or two

Gaussians (M3 ). By comparing the posterior probabilities of p(M1]|0) and p(M>|0), we can
select a more probable model.
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Since it is difficult to solve this integral analytically, the following section approxi-
mates this calculation based on the asymptotic approximation, similarly to the Laplace
approximation, as discussed in Section 6.1.

We first define the following continuous function g over 6:

p(O16, M)p(8|M) = exp (—g(8)) . (6.14)

This is slightly different from the definition of function f in Eq. (6.1), as Eq. (6.1) focuses
on the posterior distribution of the parameters. Then, similarly to the previous section,
we define the following MAP value:

0" = argmglxp(0|0,M)p(0|M)
= arg maing(()). (6.15)

By using the Taylor expansion result in Eq. (6.4) with 8*, Eq. (6.13) can be represented
as follows:

/p(O|0,M)p(0|M)d0

k 1 * *
A exp (—g(0 )) / exp <—§(0 —60"TH®O — 0 )) de

J
o
— exp (—g0") 227 (6.16)

[H|>

where J is the number of dimensions of 8, that is the number of parameters. The Hessian
matrix H is defined with g(6) as

H £ VpVpg(0)lg—p- - (6.17)
Or it is defined with p(016, M) and p(@|M) as
H £ —V,Vy log (p(016, M)p(6|M))|g_p- - (6.18)

The integral in Eq. (6.16) can be solved by using the following normalization property
of a Gaussian distribution:

* —1 |H|% 1 * *
/N(ow JH Hae = . /exp ——(0—6")TH@® —0%) ) do = 1
(2r)? 2
J
= /exp <_l(0 —6*)TH( — 0*)) do = (2”)12 . (6.19)
2 H|2

Thus, from Eq. (6.16), the marginal likelihood is computed by using the determinant of
the Hessian matrix |H|2.
Here, we focus on the determinant of the Hessian matrix |H|. From the definition in
Eq. (6.18), the Hessian matrix can be represented as:
H = — VyVylogp(O|0,M)|g—g+ — Vo Ve logp(0|M)|g_p+
~ — VgV logp(O10,M)|g_g* - (6.20)

https://doi.org/10.1017/CB0O9781107295360.007 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781107295360.007

216 Asymptotic approximation

Thus, the Hessian matrix is decomposed to the logarithmic likelihood and prior term,
and we neglect the prior term that does not depend on the amount of data. If we assume
that the observed data are independently and identically distributed (iid), the likelihood
term of T frame feature vectors is approximated when 7 is very large as'

Vg Vg log p(010, M)|g_g= ~ —TI, 6.21)

where I is a Fisher information matrix obtained from a single observation, which does
not depend on the amount of data. Therefore, we can approximate the determinant of
the Hessian matrix as:

H|"2 ~ |TI|"2 = T~ 31|, 6.22)

This approximation implies that the Hessian matrix approaches zero when the amount
of data is large. That is

N@10*, H ) - 56 — 0*) when T — oc. (6.23)

Therefore, the Laplace approximation can be equivalent to the MAP approximation
when the amount of data is large, which is a reasonable outcome.
In the BIC approximation, by substituting Eq. (6.22) into Eq. (6.16), we obtain

log ( / p(ow,M)p(mM))

J J J
~ log p(0|0*, M) + log p(0*|M) + 3 log(2m) — 5 logT — > log|I|. (6.24)

Further, by neglecting the terms that do not depend on T, we finally obtain the following
simple equation:

log p(MI0) o log ( / p(ow,M)p(mM))

J
~ log p(0|0*, M) — ElogT . (6.25)
—————
log likelihood

penalty term

0 ML 0 MAP 0 MAP

Here, 0* is often approximated by the ML estimate instead of , since
approaches OMY when T — o0, as discussed in Section 4.3.7. Model selection based
on this equation is said to be based on the Bayesian information criterion (BIC), or
Schwartz information criterion, which approximates the logarithmic function of the
posterior distribution of a model p(M|0). The first term on the right-hand-side is a
log-likelihood term with the MAP estimate (it is often approximated by the ML esti-
mate) of model parameter 6. It is well known that this log-likelihood value is always
increased when the number of parameters increases. Therefore, the log-likelihood value
from the maximum likelihood criterion cannot be used for model selection since it will
always prefer the model that has the largest number of parameters. On the other hand,
Eq. (6.25), which is based on the Bayesian criterion, has an additional term, which

1 This proof is not obvious. See Ghosh, Delampady & Samanta (2007) for more detailed derivations.
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is proportional to the number of model parameters, denoted by J, and the logarith-
mic number of observation frames, denoted by log 7. This term provides the penalty
so that the total value in Eq. (6.25) is penalized not to select a model with too many
parameters.

Comparing Eq. (6.25) with the regularized form of the objective function in Eq. (4.3)
in the MAP estimation, Eq. (6.25) can be viewed as having an [ regularization term:

J
log p(M|0) ~ log p(O|6*, M) — > logT
_ # 19110
= log p(0|0*, M) — - logT . (6.26)
—_—

log likelihood 0 R
I” regularization term

Therefore, the BIC objective function can also be discussed within a regularization
perspective. Another well-known model selection criterion, the Akaike information
criterion (AIC) (Akaike 1974), is similarly represented by

1
_EAIC = logp(0|0*,M) —J

= log p(0|0*, M) — 18]l 6.27)

It also has the ¥ regularization term, but it does not depend on the amount of data 7.

Using the BIC, we can simplify the model comparison based on the Bayes factor.
That is, by substituting Eq. (6.25) into the logarithm of the Bayes factor (Eq. (6.12)) we
can also obtain the following equation:

J1 —

J2
5 logT. (6.28)

(i%—;:g;) ~ logp(0|67, M1) — log p(0165, M>) —
Therefore, we can perform the model comparison by checking the sign of Eq. (6.28). If
the sign is positive, M is a more appropriate model in the BIC sense.

However, since we usually cannot assume that a single Gaussian distribution applies
to a complicated model and/or that there are enough data to satisfy the large sample
approximation, the BIC assumption is not valid for our practical problems. Therefore,
in practical use, we introduce a tuning parameter A which heuristically controls the
balance of the log-likelihood and penalty terms, as follows:

log (/ p(O|0,M)p(0|M)) ~ log p(010*,M) — Ag logT. (6.29)

This actually works effectively for the model selection problems of HMMs and GMMs,
including speech processing (Chou & Reichl 1999, Shinoda & Watanabe 2000) and
image processing (Stenger, Ramesh, Paragios et al. 2001). We discuss the applications
of BIC to speech processing in Sections 6.5 and 6.6.
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6.3 Bayesian predictive classification

This section addresses how the Laplace approximation is developed to build the
Bayesian predictive classification (BPC) approach which has been successfully applied
for robust speech recognition in noisy environments (Jiang et al. 1999, Huo & Lee
2000, Lee & Huo 2000, Chien & Liao 2001). As mentioned in Section 3.1, the Bayes
decision theory for speech recognition can be realized as the BPC rule where the
expected loss function in Eq. (3.16) is calculated by marginalizing over the continu-
ous density HMM parameters © = {r = {7;},A = {a;},B = {wjt, L, Zjk}}, as
discussed in Section 3.2.3, as well as the n-gram parameters ® = {p(wi|w§:}H_1 1,
as discussed in Section 3.6. Here, we only focus on the acoustic models based on
HMMs. The marginalization over all possible parameter values aims to construct a
decision rule which considers the prior uncertainty of HMM parameters. The result-
ing speech recognition is robust to mismatch conditions between training and test data.
In general, such marginalization could compensate some other ill-posed conditions
due to the uncertainties and variations from the observed data and the assumed mod-
els. In this section, we first describe how a Bayesian decision rule is established for
robust speech recognition and how the uncertainties of model parameters are charac-
terized. Then, the approximate solution to the HMM-based decision rule is formulated
by using the Laplace approximation. We also present some other extensions of the BPC
decision rule.

6.3.1 Robust decision rule

In automatic speech recognition, we usually apply the plug-in maximum a-posteriori
(MAP) decision rule, as given in Eq. (3.2), and combine the approximate acoustic model
Pe(O|W) and language model pg(W) for finding the most likely word sequence W
corresponding to an input speech sentence O = {o;}. The maximum likelihood (ML)
parameters ®@ML, as described in Section 3.4, and the MAP parameters @MAP | as for-
mulated in Section 4.3, are treated as the point estimates and plugged into the MAP
decision for speech recognition. However, in practical situations, speech recognition
systems are occasionally applied in noisy environments. The training data may be col-
lected in ill-posed conditions, where the HMM parameters may be over-trained with
limited training data conditions, and can lose the generalization capability for future
data conditions. Thus, the assumed model may not properly represent the real-world
speech data. For this situation, the plug-in MAP decision, relying only on the single
best HMM parameter values @ML or @MAP s risky for speech recognition. Because of
these considerations, we are motivated to establish a robust decision rule which accom-
modates the uncertainties of the assumed model and the collected data so that the error
risks in speech recognition can be reduced.

In the HMM framework (Section 3.2), the prior uncertainty of GMM parameters
Q; = {a)jk,p,jk, Yjxlk=1,---,K}in an HMM state j should be characterized from
training data and then applied for a BPC decision of future data. In this section, we
use the following notation to clearly distinguish training and future data:
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O : future data,
O : training data. (6.30)

Let the distribution p(0,|®;) of a future observation frame o, under an HMM state j be
distorted in an admissible set Pj(¢;) with a distortion level €; < 0 which is denoted by

Pi(ej) = {p(0/]0))|0; € Q(e)}, (6.31)

where Q(¢;) denotes the admission region of the GMM parameter space. In the special
case of no distortion (¢; = 0), P;(0) = {p(0,|®;O) )} is a singleton set which consists
of the ideal and non-distorted distribution of an HMM state j with the parameters @1(-0)
estimated from a training set O. However, in real-world applications, there exist many
kinds of distortions (¢; > 0) between the trained models and the test observations. These
distortions and variations should be modeled and incorporated in the Bayes decision to
achieve robustness of speech recognition in adverse environments.

The Bayesian inference approach provides a good way to formalize this parameter
uncertainty problem and formulate the solution to the robust decision rule. To do so,
we intend to consider the uncertainty of the HMM parameters ® to be random. An
a-priori distribution p(®|¥) could serve as the prior knowledge about ®, where ® € Q
are located in a region of interest of the HMM parameter space €2, and W denotes
the corresponding hyperparameters. Such prior information may come from subject
considerations and/or from previous experience. Therefore, the BPC decision rule is
established as

W = dppc(0) = arg max H(W|0)

= argmax DPe(O|W)pe(W), (6.32)

where

ﬁ(O|W)=pr(O|®,W)p(®|O, W)do. (6.33)

Here, p(®|0O, W) denotes the posterior distribution of HMM parameters ® given the
training utterances O, which is written as

p(O|6, W)p(O)
Jop(O1©, W)p(©)do

p(B®|O, W) = (6.34)
In Eq. (6.33), the marginalization is performed over all possible HMM parameter val-
ues ©. This marginalized distribution is also called the predictive distribution. Model
uncertainties are considered in the BPC decision rule. The optimum BPC decision rule
was illustrated in Nadas (1985).

The crucial difference between the plug-in MAP decision and the BPC decision
is that the former acts as if the estimated HMM parameters were the true ones,
whereas the latter averages over the uncertainty of parameters. In an extreme case, if
p(O|O, W) = §(© — OMMAP) with §(.) denoting the Dirac delta function with the
ML or MAP estimate, the BPC decision rule coincides with the plug-in MAP decision
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rule based on ML HMM parameters @ML/MAP, i.e., the predictive distribution can be
approximated as:

p(OIW) = /QP(OIQ W)p(©|0, W)d©

~ / (010, W)5(© — @MIMAP) 16
Q
= p(O|@M-MAP yy), (6.35)

Therefore, the plug-in MAP decision rule with the ML/MAP estimate corresponds to an
approximation of the BPC decision rule.

Using the continuous density HMMs, the missing data problem happens so that the
predictive distribution is calculated by considering all sequences of HMM states S = {s;}
and mixture components V = {v;}:

pOIW) = / p(O1©, W)p(®©]0, W)d©
=/p(0|®, W)p(®|¥, W)d®

=> f (0,5, V|0, W)p(O|W, W)de
S,V

=y f (OIS, V. ©, W)p(S, V. |0, W)p(O| W, W)de
S,V

£ Es,v.e)[pOlS,V,0,W)], (6.36)

where the posterior distribution p(®|O, W) given training data O is replaced by the
prior distribution p(®|W¥, W) given hyperparameters W in accordance with an empirical
Bayes theory. This predictive distribution is seen as an integration of likelihood func-
tion p(0lS, V, ®, W) over all possible values of {S, V, ®}. However, the computation of
predictive distribution over all state sequences S and mixture component sequences V is
complicated and expensive. A popular way to deal with this computation is to employ
the Viterbi approximation, as we discussed in Section 3.3.2, to compute the approximate
predictive distribution (Jiang et al. 1999):

p(OIW) ~ HSH%/X/I?(O, S, VIO, Wp(e|V, W)do. (6.37)

Therefore, the approximated predictive distribution only considers marginalization over
the model parameter ®. The following sections describe how to deal with model
parameter marginalization.

6.3.2 Laplace approximation for BPC decision

In this section, Laplace approximation is adopted to approximate the integral in calcula-
tion of the predictive distribution p(O, S, V|W) in Eq. (6.36) or in Eq. (6.37), given state
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and mixture component sequences S and V. Let us define the continuous function g(®),
similarly to Egs. (6.1) and (6.14):
p(0, S5, V]|0, W)p(O|¥, W) = exp(—g(©)). (6.38)

The value of ® that minimizes g(®) is obtained as a mode or an MAP estimate of HMM
parameters,

OMAP — arg ngn 8(®)

= arg m@a)lx p(0,S5, V|0, W)p(B|¥, W). (6.39)
Note that we have a solution to the above optimization based on the MAP estimation,
as we discussed in Section 4.3. Then since we have the equation Vgg(®)|g_gmar =

0 from Eq. (6.39), a second-order Taylor expansion around ®MAP can be used to
approximate g(®) as follows:

1
8(0) ~ g(OM) + (6 — OVANTH(O — M), (6.40)
where H denotes a Hessian matrix defined as
H é V@V@g(®)|®:®MAP. (641)

We should note that we use a vector representation of ® (i.e., ® € R™ and M

is the number of all CDHMM parameters) by arranging all CDHMM parameters

(ayj, wjk, Rjks Xx}) to form a huge vector, to make the above gradient well defined.?
Therefore, we obtain the approximate predictive distribution, which is derived from

p(O, S, VIW) = /eXP (—8(©))d®

~ exp (—g(OMAP)) / exp (—%(@ — OMATH(E — ®MAP)>d®.
(6.42)

Similarly to Eq. (6.18), the predictive distribution in Eq. (6.42) is approximately
obtained through arranging a multivariate Gaussian distribution in the integrand of
Eq. (6.42) as follows:

(0, S, VIW) = p(0, S, VIOMAP )
x p(OMAP W w2 M/2|H|~1/2, (6.43)

As a result, the BPC decision based on Laplace approximation is implemented by
Eq. (6.43). The logarithm of predictive distribution, log p(O, S, V|W), is seen as follows:

log p(0, S, VW)

(6.44)
~ log (p(0, 5, VIOMA, Wyp(@MAP|w, W) ) + log (2" HI /).

2 We should also note that most CDHMM parameters have some constraint (e.g., state transitions and
mixture weights have positivity and sum-to-one constraint) and the gradient of these parameters should
consider these constraints. However, the following example only considers mean vector parameters, and
we do not have this constraint problem.
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The likelihood of the first term can be obtained by using the MAP-EM (or Viterbi
approximation), as we discussed in Section 4.3. The second term is based on the log-
arithm of the determinant of the Hessian matrix. From Eq. (6.9), the Hessian matrix
can be interpreted as the precision (inverse covariance) matrix of the model parameters
(P(®|0) ~ N(O|OMAP H~1)) Therefore, if the model parameters are uncertain, the
determinant of the covariance matrix of ® becomes large (i.e., the determinant of the
Hessian matrix H becomes small), the log likelihood of the predictive distribution is
decreased. Thus, considering model uncertainty in the BPC decision is meaningfully
reflected in Eq. (6.43).

6.3.3 BPC decision considering uncertainty of HMM means

To simplify the discussion, we only consider the uncertainty of the mean vectors in
HMM parameters for BPC decoding, as the mean vectors are the most dominant param-
eters for the ASR performance. In addition, by only focusing on the mean vectors, we
can avoid the difficulty of applying the Laplace approximation to the covariance and
weight parameters, which have constraints, assuming the HMM means of state j > and
mixture component k in dimension d are independently generated from Gaussian prior
distributions with the Hessian matrix as the precision matrix.
The joint prior distribution p(®|W, W) is expressed by

J K D (ikd — 0 \2
Mjkd M'kd)
Pt Zhadt- W =TT 11 !

1 [ }
eXp| =5 |0 (6.45)
j=1k=1d=1 m 22jkd

with a collection of hyperparameters including Gaussian mean vectors ;Ljok = {u;)kd}
and diagonal covariance matrices Z]Qk = diag {E](.}{ 4ld=1,.--,D} for different states
and mixture components. The GMM mixture weights {wj} and diagonal covariance
matrices {Xj = diag {Zjxgld = 1,-- -, D}} of the original CDHMM are assumed to be
deterministic without uncertainty. Note that the above prior distribution is conditional on
the word sequence W, as it is required in the BPC decision rule in Eq. (6.36). This condi-
tion means that we only deal with the prior distributions of HMM parameters appearing
in the state sequences obtained by hypothesized word sequence W. But this condition
can be disregarded since this condition for the prior distribution does not matter in the
following analysis.

Given an unknown test utterance O = {o;/t = 1,---,T} and the unobserved
state sequence S = {s|t = 1,---,T} and mixture component sequence V =
{wlt = 1,.--,T} obtained by hypothesized word sequence W, we combine the
Gaussian likelihood function p(O|S, V, {M]’.kd}, W) and the Gaussian prior distribution

P u}’k - zj‘.}(d}, W) based on the MAP—EM approach (Section 4.2) to give:

3 Note that index j denotes all HMM states for all phonemes, unlike index j for a phoneme in Section 3.2.
Therefore, the number of HMM states J appearing later in this section also means the number of all HMM
states used in the acoustic models, which could be several thousand when we use a standard LVCSR setup.
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log p({ig}10, W) &~ OMAP ({1l g} {1jea})
= Es »)[log p(0, S, VI{ija}, WO, {ija}]
+log pUrja {15 Zigads W- (6.46)

Equation (6.46) is further rewritten to come up with an approximate posterior distribu-
tion which is arranged as a Gaussian distribution:

T J K

log p({1js O, W) ~ 3 3 3 G, k)[logp(om = jovi = K, fgs W)
=1 j=1 k=1
;0 50
+log p(1jrgl Mikas Tikas W)]
K
= Z Z Z log N (Wiggl jkas Ejea), (6.47)
=1 j=1 k=1

with the hyperparameters derived as

0
R Yikd 0 CikZjgg  _
Wikd = ——=p = Hia T —=p— = Ojkd> (6.48)
! CjkE]%d + Xjkd Jkd Cjkzjgcd + Yjkd !
1 1 i
— = L (6.49)
Yikd Ejkd Xikd
where
yt(i9 k) = p(sl :ja Vi = k|Os {Mjkd}s W)’ (650)
T
k=Y _ vk, (6.51)
=1
T .
_ ,k)o
0jx = M (6.52)

Cjk
The posterior distribution in Eq. (6.46) is obtained because we adopt the conjugate prior

to model the uncertainty of HMM means. Recall the MAP estimation result of the mean
vector in Eq. (6.53):

P ¢](1L<d“](‘)kd + ZIT:1 V1, k)ow
jkd = ; :

S + 21 v b
Comparing Egs. (6.53) and (6.48), it is apparent that Eq. (6.48) based on the BPC
solution considers the effect of E}}C i

An EM algorithm is iteratively applied to approximate the log posterior distribution
of new estimate {u;kd}, log p({u;kd}|0, W), by using the posterior auxiliary function

(6.53)

of new estimate {u]’.kd} given the current estimate {ujiq}, QMAP({M}M}HM]’kd}). The
calculation converges after several EM iterations. Given the updated occupation proba-
bility, the Gaussian posterior distribution of {/L]/.kd} = [}, " m,T, - 71T, which
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concatenates all Gaussian mean vectors, is calculated and used to find the approximation

in Eq. (6.9):
PUMNO, W) ~ N (g} {jra) {Zjra))
~ N (e g™ 1 ALES ™ ). (6.54)
Therefore, we substitute
Wi = Hjka: (6.55)
[(HY ik = Zjeas (6.56)

into Eq. (6.43). This approximation avoids a need to directly compute the Hessian
matrix, where the number of dimensions of the Hessian matrix is very large (J/ x K x D).
The BPC-based recognition is accordingly implemented for robust speech recognition.

In Chien & Liao (2001), the BPC decision was extended to a transformation-based
BPC decision where the uncertainties of transformation parameters were taken into
account. The transformation parameters of HMM means and variances were charac-
terized by the Gaussian—Wishart distribution. Using this decision, HMM parameters
were treated as deterministic values. In Chien (2003), the transformation-based BPC was
further combined with the maximum likelihood linear regression adaptation (Leggetter
& Woodland 1995). The linear regression based BPC was proposed for noisy speech
recognition. The transformation regression parameters were represented by the mul-
tivariate Gaussian distribution. The predictive distributions in these two methods were
approximated by calculating the predictive distributions for individual frames o, without
involving the Laplace approximation.

6.4 Neural network acoustic modeling

Acoustic modeling based on the deep neural network (DNN) is now a new trend
towards achieving high performance in automatic speech recognition (Dahl, Yu, Deng
et al. 2012, Hinton et al. 2012). The context-dependent DNNs were combined with
HMMs and have recently shown significant improvements over discriminatively trained
HMMs with state-dependent GMMs (Seide, Li, Chen et al. 2011). In particular, the
DNN was proposed to conduct a greedy and layer-wise pretraining of the weight
parameters with either a supervised or unsupervised criterion (Hinton, Osindero &
Teh 2006, Salakhutdinov 2009). This pretraining step prevents the supervised train-
ing of the network from being trapped in a poor local optimum. In general, there are
five to seven hidden layers with thousands of sigmoid non-linear neurons in a DNN
model. The output layer consists of softmax non-linear neurons. In addition to the pre-
training scheme, the success of the DNN acoustic model also comes from the tandem
processing, frame randomization (Seide et al. 2011) and (Hessian-free) sequence train-
ing (Kingsbury, Sainath & Soltau 2012, Vesely, Ghoshal, Burget et al. 2013). Without
loss of generality, we address the artificial neural network (NN) acoustic model for
ASR, based on the feed-forward multilayer perceptron with a single hidden layer, as
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Ytk

Figure 6.2 A neural network based on the multilayer perceptron with a single hidden layer. o; € RD,
7; € RM ,andy; € RX denote the input vector, hidden unit vector, and output vector at frame ¢,
respectively. 0,9 and zq are introduced to consider the bias terms in the transformation, and these
are usually set with some fixed values (e.g., 0,0 = z;0 = 1). wl) ¢ RM(+D ang
w® e RKM+D) denote the weight vectors (to use a Laplace approximation, we represent these
values as the vector representation rather than the matrix representation) from the input to hidden
layers and from the hidden to output layers, respectively.

illustrated in Figure 6.2. We bring in the issue of model regularization in construction
of NNs and present the Bayesian neural networks (MacKay 1992¢, Bishop 2006) for
robust speech recognition. This framework can obviously be extended to DNN-based
speech recognition with many hidden layers. Importantly, we introduce a prior distribu-
tion to express the uncertainty of synaptic weights in Bayesian NNs. This uncertainty
serves as a penalty factor to avoid too-complicated or over-trained models. The varia-
tions of acoustic models due to the heterogeneous training data could be compensated
through Bayesian treatment. The Laplace approximation is applied to derive the pre-
dictive distribution for robust classification of a speech signal. In what follows, we first
describe the combination of Bayesian NNs and HMMs for the application of speech
recognition. MAP estimation is applied to find a solution to adaptive NN training. A
Laplace approximation is developed to construct Bayesian NNs for HMM-based speech
recognition.

6.4.1 Neural network modeling and learning

A standard neural network for a K-class classification problem is depicted in Figure 6.2,
which is established as a feed-forward network function with a layer structure.
This function maps the D input neurons o, = {0} € R” to K output neurons
¥i(0, W) = {yu(0;, W)} € R¥ where

exp (ax(0r, W)

Zj exp (aj (S W))

Vik(0r, W) = (6.57)
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is given by a softmax non-linear function, or the normalized exponential function which
satisfies 0 < yy < 1 and Zszl v = 1. In Eq. (6.57), ar(o;, w) is calculated as the
output unit activation given by

M D
ax(o;, w) = Z w,(cjz)Sigmoid (Z wj(-il)ot,) , (6.58)
j=0 i=0
where
1
Si idla) = —— 6.59
igmoid(a) 1T exp(—a) (6.59)

denotes the logistic sigmoid function and
w={w w1l <i<D1<j<M1<k<K) (6.60)

denotes the synaptic weights of the first and the second layers, respectively. For model
training, the target values of output neurons are assigned as Bernoulli variables where
value 1 in the kth neuron means that o, belongs to class k and the other neurons have
target value 0. In this figure, g0 = z,0 = 1 and the corresponding weights {wj%), w,%)}
denote the bias parameters in neurons. This model is also known as the multilayer per-
ceptron. Such a neural network model performs well for pattern recognition for two
reasons. One is the nested non-linear function, which can learn the complicated deep
structure from real-world data through feed-forwarding the input signals to the output
classes layer by layer. The second reason is that it adopts the softmax function or the
logistic sigmoid function Sigmoid(-) as the neuron processing unit, which is beneficial
for building high-performance discriminative models. In general, deep neural networks
are affordable for learning the invariance information and extracting the hierarchy of
concepts or features from data. Higher-level concepts are defined from lower-level ones.
The logistic sigmoid function and softmax function play an important role for binary
classification and multi-class classification, respectively. These functions are essential
for calculating posterior probability and establishing the discriminative model. Basi-
cally, we collect a set of training samples and their target values {o;,t;}. The synaptic
weights are estimated by calculating an error function E(w) and minimizing it through
the gradient descent algorithm,

wTtD — W@ _ nVE(W(T)), (6.61)

where 1 denotes the learning rate and t denotes the iteration index. The sum-of-squares
error function is calculated for the regression problem while the cross entropy error
function is applied for the classification problem. The error back-propagation algorithm
has been proposed to find gradient vector VE(w) and widely applied for training of

individual synaptic weights w = {w;,.l), w,(;)} in different layers.

6.4.2 Bayesian neural networks and hidden Markov models

For the application of speech recognition, the NNs should be combined with the HMMs
(denoted by NN-HMMs) to deal with sequential training of synaptic weights w from a
sequence of speech feature vectors O = {o; € RP|r = 1,---,T}. As discussed before,
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this feature can be obtained by stacking the neighboring MFCC or filter bank features.

For example, if the original features are represented by 0°¢ = {o;"¢ e RP™|r =
1,---,T}, the stacked feature for the NN input is represented by
0; = [(0 )T, ,(0®)T, -+, (0TI, (6.62)

Then, the number of feature dimensions becomes D = (2L + 1)D°8. L is set between
five and seven depending on the task. This expanded feature can model the short-range
dynamics of speech features, as we model in the conventional GMM framework by
using the delta cepstrum or linear discriminant analysis techniques (Furui 1986, Haeb-
Umbach & Ney 1992).

However, the stacking technique cannot fully model the long-range speech dynamics.
The Markov states are used to characterize the temporal correlation in sequential pat-
terns. We estimate the NN-HMM parameters ® = {x,A, w}, consisting of initial state
probabilities &, state transition probabilities A and the N-dimensional synaptic weights
w, by maximizing the likelihood function p(O|®). Each output neuron calculates the
posterior probability of a context dependent HMM state k given a feature vector o; using
synaptic weights w, i.e.,

yi(0;, W) £ p(s; = klos, w). (6.63)

ML estimation of ® has an incomplete data problem and should be solved according
to the EM algorithm. The EM algorithm is an iterative procedure where the E-step is to
calculate an auxiliary function of training utterances O using new NN-HMM parameters
©®’ given parameters © at the current iteration:

oMH(@'10) = Es){logp(0, 5|©)|0, ©)

T
= ZP(S|O’ ®) |:Z(10g a;,,lsl + logp(ollsl’ W/)):|

S =1

T K
oD > k) [log d,, ., +logpls; = klo, W) — log p(s; = k)},
t=1 k=1
(6.64)

where yy(k) = p(s; = k|0, ®) denotes the state occupation probability. NN-HMM
parameters © at a new iteration are then estimated by M-step:

w = argmin (=MW w)l. (6.65)

Here, we only consider the estimation of the synaptic weights w by minimizing the
corresponding negative auxiliary function:

T K

—QMH(wW'lw) o =) > " i) log pls; = klog, W)
t=1 k=1
T K

==Y (k) log yi(o,, w). (6.66)

t=1 k=1
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To implement the ML supervised training of NN-HMM parameters w, we first
perform Viterbi decoding of training speech O = {o;|t = 1,--- , T} by using true tran-
scription and NN-HMM parameters ® or w at the current iteration. Each frame o, is
assigned an associated HMM state or output neuron s, = k. This Viterbi alignment is
equivalent to assigning a label or target value fx 2 y,(k) of a speech frame o, at an
output neuron k of either O or 1. That is, y,(k) € {0, 1} is treated as a Bernoulli target
variable. The negative auxiliary function in ML estimation is accordingly viewed as the
cross entropy error function between the Bernoulli target values based on current esti-
mate w and the posterior distributions from the NN outputs using new estimate w’. By
minimizing the cross entropy between the desired outputs {y;(k)} and the actual out-
puts {yx(0;, w)} over all time frames 1 < ¢ < T and all context-dependent HMM states
1 < k < K, we establish the discriminative acoustic models (NN—HMMs) for speech
recognition. The ML NN-HMM parameters @M = {wML} are estimated. The error
back-propagation algorithm can be implemented to train the synaptic weights wML by
minimizing —Q(W’|w), as given in Eq. (6.66).

More importantly, we address the maximum a-posteriori (MAP) estimation of
NN-HMM parameters where the uncertainty of synaptic weights is compensated by
using a prior distribution. For simplicity, we assume that the continuous values of
weights in different layers come from a multivariate Gaussian distribution,

p(w) = N(w“l’w’ ZW), (667)

where p,, denotes the mean vector and X,, denotes the covariance matrix. This prior
information could be empirically inferred from training data. There are two Bayesian
inference stages in the so-called Bayesian NN-HMMs. The first stage is to find the
point estimate of synaptic weights according to the MAP estimation. This idea is simi-
lar to MAP estimation of HMM parameters (Gauvain & Lee 1994). MAP estimates of
NN-HMM parameters are calculated for adaptive training or speaker adaptation. The
second stage is to conduct the distribution estimation, and this stage tries to fulfil a full
Bayesian analysis by calculating the marginal likelihood with respect to all values of
synaptic weights. Robustness of speech recognition to variations of synaptic weights
due to heterogeneous data is assured.

In the first inference stage, MAP estimates of model parameters {w
calculated by maximizing a-posteriori probability or the product of likelihood function
and prior distribution. An EM algorithm is applied to find MAP estimates by maximiz-
ing the posterior auxiliary function QMAP(®'|®). A MAP estimate of synaptic weights
wMAP i5 derived by minimizing the corresponding auxiliary function:

OMAP _ (WMAPY 4o

T K

—QMAP(W W) oc = Y )" yi(k) log pls; = Kloy, w)

t=1 k=1
1 / Ty —1/w/
+ W = )TEC W — ), (6.68)

which is viewed as a kind of penalized cross entropy error function. The prior distribu-
tion provides subjective information for Bayesian learning, or equivalently, serves as a
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penalty function for model training. X, plays the role of a metric matrix of the w' — u,,,
distance. Again, the error back-propagation algorithm is applied to estimate the synaptic
weights w' at a new iteration. Using this algorithm, the derivative of penalty function
with respect to w’ contributes the estimation of wMAP . The estimated wMAP is treated as
a point estimate or deterministic value for prediction or classification of future data.

6.4.3 Laplace approximation for Bayesian neural networks

In the second Bayesian inference stage, the synaptic weights w are treated as a latent
random variable. The hyperparameters ¥ = {u,,, X} are used to represent the uncer-
tainty of random parameters w. Such uncertainty information plays an important role in
subjective inference, adaptive learning, and robust classification. Similarly to the BPC
based on the standard HMMs as addressed in Section 6.3, we would like to present the
BPC decision rule based on the combined NN-HMMs. To do so, we need to calculate
the predictive distribution of test utterance O which is marginalized by considering all
values of weight parameters w in the likelihood function p(O|w):

FOlpy, E0) = / PO Wk, Toy)dw

= /p(O|W)p(W|ILW, Xw)dw
2 Eqw)[p(Olw)]. (6.69)

The integral is performed over the parameter space of w. However, due to the non-linear
feed-forward network function yi(o;, w) = p(s; = k|o;, w), the closed-form solution to
the integral calculation does not exist and should be carried out by using the Laplace
approximation. By applying the Laplace approximation for integral operation in BIC
and BPC decision, as given in Egs. (6.16) and (6.43), we develop the BPC decision
based on the NN-HMMs according to the approximate predictive distribution:
(Ol Zo) = pOIWMAY) - pwWMA |, 5,) - |H] 712
= pw"A*10, .. By,) - [H| 7'/

~ exp (QMAP(W/|W)) | gap - [H| 712, (6.70)

MAP

where the mode w of posterior distribution p(w|O, i, X,,) is obtained through the

EM iteration procedure,
wMAP — arg max {QMAP(w'|w)}, (6.71)
w/
and the Hessian matrix H is also calculated according to the EM algorithm through

H = VW/ VW/ IOg{p(O|W/)p(W/|ﬂws ZW)} |w/:wMAp
A Vi Vi OMAP (W [W)| gy —yyMAP

= Vo Vo OME(W |W)]yr—ypvar — 21, (6.72)
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which is the second-order differentiation of the log posterior distribution with respect
to NN-HMM parameters at the mode wMAP Here, the auxiliary function OMAP (w'|w)
is introduced because the NN-HMM framework involves the missing data problem. As
explained in Section 6.3.3, the EM algorithm is applied to iteratively approximate the
posterior distribution at its mode by

POVIO, By Tl _yrine = exp ( QAP W 1)) [y v 6.73)

Accordingly, we construct the BPC decision based on NN-HMMs, which can achieve
robustness in automatic speech recognition.

6.5 Decision tree clustering

This section introduces the application of BIC-based model selection to decision
tree clustering of context-dependent HMMs, as performed in Shinoda & Watanabe
(1997) and Chou & Reichl (1999), without having to set a heuristic stopping crite-
rion, as is done in Young, Odell & Woodland (1994).* This section first describes
decision tree clustering based on the ML criterion, which determines the tying struc-
ture of context-dependent HMMs efficiently. Then, the approach is extended by
using BIC.

6.5.1 Decision tree clustering using ML criterion

The decision tree method has been widely used to construct a tied state HMM effectively
by utilizing the phonetic knowledge-based constraint and the binary tree search (Odell
1995) approaches. Here, we introduce a conventional decision tree method using the
ML criterion.

Let ©2(n) denote a set of states that tree node n holds. We start with only a root node
(n = 0) which holds a set of all context-dependent phone (e.g., triphone hereinafter,
as shown in Figure 6.5) HMM states €2(0) for an identical center phoneme. The set of
triphone states is then split into two sets depending on question Q, Q(ng) and Q(ng,),
which are held by two new nodes, ng and ”1%’ respectively, as shown in Figure 6.3.
The partition is determined by an answer to a phonemic question Q, such as “is the
preceding phoneme a vowel” and “is the following phoneme a nasal.” A particular ques-
tion is chosen so that the partition is the optimal of all the possibilities, based on the
likelihood value. We continue this splitting successively for every new set of states to
obtain a binary tree, as shown in Figure 6.4, where each leaf node holds a shared set
of triphone states. The states belonging to the same cluster are merged into a single
HMM state. A set of triphones is thus represented by a set of tied-state HMMs. An
HMM in an acoustic model usually has a left-to-right topology with three or four tem-
poral states. A decision tree is usually produced for each state in the sequence, and

4 Acoustic model selections based on BIC and minimum description length (MDL) criteria have been
independently proposed, but they are practically the same if we deal with Gaussian distributions.
Therefore, they are identified in this book and referred to as BIC.
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Q(n) Lam)

fall}-/k,/-{all}

Q: Is following phoneme vowel?

Q(ny) Q(n?) Lame) T Lame)

{ally-/k,/-{/a/, [/, 1ul, e/, [of} {all}-/k,/-{all except /a/, /i/, /u/, Je/, [o/}

Figure 6.3 Splitting a set of HMM states €2(n) in node » into two sets of states Q(ng) and Q(nI%) according

to question Q. The objective function is changed from Lg(y) to £ o (ng) +L Q (n]%) after the split.

. : Root node

(:,‘ : Non-leaf node /\/\/\ /\/\
O : Leaf node /\/Aj\\/\/\/\/\

Yes/\No
\-
AA/\@ My
i LA
AA M

Figure 6.4 Binary decision tree. A context-dependent HMM state is represented by a single Gaussian
distribution, and a set of states is assigned to each node. Two child nodes are obtained based on a
yes/no answer to a (phonemic) question.

the trees are independent of each other, or a single decision tree is produced for all
states.

The phonetic question concerns the preceding and following phoneme context, and
is obtained through knowledge of the phonetics (Odell 1995) or it is also decided
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[al-/k/,-/a/ [al-/k/y/a/ [al-/k/-/a/

\
1al-IkIelil a1 : fal-IK/ i/

| S

I
I

1al-Is/-1i] I 1al-Islyli] al-Is/51i]
|

Figure 6.5 Examples of context-dependent (triphone) HMM and sharing structure. We prepare a three-state
left-to-right HMM for each triphone, where /a/-/k/j-/a/ denotes a jth state in a triphone HMM
with preceding phoneme /a/, central phoneme /k/, and following phoneme /a/. In this example,
triphone HMM states /a/-/k/1-/al, /a/-/k/1-/i/, and /a/-/s/-/i/ are shared with the same Gaussian
distribution.

in a data-driven manner (Povey, Ghoshal, Boulianne et al. 2011). Table 6.1 shows
examples of the question. In a conventional ML-based approach, an appropriate question
is obtained by maximizing a likelihood value as follows:

Q =arg ngl/x AL, (6.74)

where AL(p) denotes the gain of log-likelihood when a state set in a node is split by a
question Q. To calculate AL(g), we assume the following constraints:
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Table 6.1 Examples of phonetic questions for a j(= 1)th HMM state of a phoneme /a/.

Question Yes No
Preceding phoneme {78/, /il, I/, Iel, Jol} - [ali—y - {all } otherwise
is vowel?

Following phoneme {all} -/ali=y - {/a/, i/, Iul, Iel, [of} otherwise
is vowel?

Following phoneme {all } -/a/i=y - {/b/, /d/, /g/} otherwise
is media ?

Preceding phoneme {1/, lol} - fali=y - {all } otherwise

is back vowel?

Data alignments y;(j, k) and &(i, j) for each state are fixed while splitting.

Emission probability distribution in a state is represented by a single Gaussian
distribution (i.e., K = 1).

Covariance matrices have only diagonal elements.

A contribution of state transitions a;; and initial weights m; for likelihood is disre-
garded.

These constraints simplify the likelihood calculation without using an iterative calcula-
tion, which greatly reduces the computational time.

Equation (6.74) corresponds to an approximation of the Bayes factor, as discussed in
Eq. (6.12) to compare two models: M; models a set of triphones in the node n with a
single Gaussian; and M; models two sets of triphones in the nodes ng and ”1% separated
by a question Q:

A = log <P(M2|0)>
p(M110)
p(O|©ME, My)

~ lo < ) .

—_ 6.75
p(O|OME, M) 7%

We obtain the gain of log-likelihood AL(g) in Eq. (6.74) under the above constraints.
Let O() = {o,()) € RP : t = 1,...,T(i)} be a set of feature vectors that are assigned
to HMM state i by the Viterbi algorithm. 7'(i) denotes the frame number of training data
assigned to state i, and D denotes the number of feature vector dimensions. From the
constraints, log-likelihood L, for a training data set, assigned to state set €2, is expressed
by the following D dimensional Gaussian distribution:

Lgo = logp({OD}icalig, o)
T()
=log[ [[ [N(O:()lng, Za)
ieQr=1
TG)
—log [[[J2m) % 1Bl } e 20 #a) 25 @)-ka), (6.76)
ieQ =1
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where g and X g denote a D dimensional mean vector and a D x D diagonal covariance
matrix for a data set in €2, respectively. ML estimates ;L%IL and Zlg\z/"“ are obtained by
using the derivative technique. First, Eq. (6.76) is rewritten as

QL (Otd(l) m)
== 10g(27r) > oT6) - - Z > <log Tod + ) , (6.77)
i€ zeQz 1 d=1

where X is a d-d element of the diagonal covariance matrix X . Then, by using the
following derivative with respect to pqq,

d _ ! Z Z 20td(l) — UQd _o, 6.78)

a’ugd zeQz 1

we can obtain the ML estimate of the mean vector [LQ as:

TG) .
ML _ 2icg 21 %) (6.79)
ILQ = —. .
Tq
Similarly, by using the following derivative with respect to X,
T() . )
1 —
- __! Z Z (2 _ (0ra (i) . Hed) ) =0, (6.80)
Qd :eQz 1 Sd 204
we can obtain the ML estimate of the diagonal component of the covariance matrix
ZSI‘;[dL as
2
ZS-I\;[[]{ _ Z[EQ Zt (Totd(l) - ,LL ) (681)
Q

‘We summarize the above ML estimates as:

TG) .

ML _ Dieq 2t 01(0)

po ===,
Tq

TG .
Yica 0w — uM)?
Ta '

(E0 e = =8 = (6.82)
Tq & Y icq T(i) denotes the frame number of training data assigned to HMM states
belonging to £2. Eg;‘ denotes a d-d component for matrix EIS\]’IL. By substituting
Eq. (6.82) into Eq. (6.76), we can derive the following log-likelihood Lg with the ML
estimates of Zl;z/”“ :

g (0a(i) — piaa)’
- ——10g(2n)ZT(z)——ZZZ<IogE 4 o S M )
ieQ ieQ =1 d=1 Sd ugdéugj
EQdﬁEgdL
D ML
D 1 ML PR
= — log@m)To — 5To ;log o — TQ Z 2ML
Tq ML
=-> (D(1 + log(27)) + log |ZG") . (6.83)
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Note that the likelihood value is represented by the determinant of the ML estimate of
the covariance matrix, which can easily be calculated as we use the diagonal covariance.
Therefore, a gain of log-likelihood AL () can be solved as follows (Odell 1995):

AL = L0, + Lou9), — Lam
= QD)) + (D) — Q). (6.84)
Here / in Eq. (6.84) is defined as:

1
() £ =3 (Talog (|2g"))
for § = (Qr}), Q1R), ),
where we use the following relation:

TQ(n) =T

Q) + 7,

Q) (6.85)
Equations (6.84) and (6.85) show that AL ) can be calculated using the ML estimate
Z?Z/IL and frame number Tq. Finally, the appropriate question in the sense of the ML
criterion can be computed by substituting Eq. (6.84) into Eq. (6.74).

However, we cannot use this likelihood criterion for stopping the split of nodes in
a tree. That is, the positivity of AL ) for any split causes the ML criterion to always
select the model structure in which the number of states is the largest. That is, no states
are shared at all. To avoid this, the ML criterion requires the following threshold to be
set to stop splitting manually:

AL < Thd. (6.86)

There exist other approaches to stopping splitting manually by setting the number of
total states, or the maximum depth of the tree, as well as a hybrid approach combining
those approaches. However, the effectiveness of the thresholds in all of these manual
approaches has to be judged by the performance of the development set.

6.5.2 Decision tree clustering using BIC

We consider automatic model selection based on the BIC criterion, which is widely
used in model selection for various aspects of statistical modeling. Recall the following
definition of a BIC-based objective function for O = {os|t = 1,--- T} in Eq. (6.29):

J
LBIC = log p(0O|0*, M) — 23 log T, (6.87)

where 6* is the ML or MAP estimate of model parameters for model M, J is the number
of model parameters, and X is a tuning parameter. Similarly to Section 6.5.1, we use a
single Gaussian for each node. Then, Eq. (6.87) for node €2 can be rewritten as follows:

E?ZIC = Lo —ADlogTg

= _TTQ (D(1 + log(27)) + log | Z¥"|) — ADlog Ta, (6.88)
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where J = 2D when we use the diagonal covariance matrix. Therefore, the gain of objec-
tive function Aﬁfé)c using the BIC criterion (the logarithmic Bayes factor) is obtained

while splitting a state set by question Q, as follows:
ALES = AL — ADlog Te), (6.89)

where A is a tuning parameter in the BIC criterion, and Tq(o) denotes the frame number
of data assigned to a root node.’> Equation (6.89) suggests that the BIC objective function
penalizes the gain in log-likelihood on the basis of the balance between the number of
free parameters and the amount of training data, and the penalty can be controlled by
varying A. Model structure selection is achieved according to the amount of training data
by using A[,PQI)C instead of using ALg) in Eq. (6.74), that is

0 =arg mQa}x AE?QI,C). (6.91)

We can also use Aﬁ?QI)C for stopping splitting when this value is negative, without using
a threshold in Eq. (6.86), that is
ALRS <0. (6.92)

Thus, we can obtain the tied-state HMM by using the BIC model selection criterion.®

Note that the BIC criterion is an asymptotic criterion that is theoretically effective
only when the amount of training data is sufficiently large. Therefore, in the case of
a small amount of training data, model selection does not perform well because of
the uncertain ML estimates uMY and XML, Shinoda & Watanabe (2000) show the
effectiveness of the BIC criterion for decision tree clustering in a 5000 Japanese word
recognition task by comparing the performance of acoustic models based on BIC with
models based on heuristic stopping criteria (namely, the state occupancy count and the
likelihood threshold). BIC selected 2069 triphone HMM states automatically with an
80.4 % recognition rate, while heuristic stopping criteria selected 1248 and 591 states
with recognition rates of 77.9 % and 66.6 % in the best and worst cases, respectively.
This result clearly shows the effectiveness of model selection using BIC. An extension
of the BIC objective function by considering a tree structure is also discussed in Hu
& Zhao (2007), and an extension based on variational Bayes is discussed in Section
7.3.6. In addition, BIC is used for Gaussian pruning in acoustic models Shinoda & Iso
(2001), and speaker segmentation (Chen & Gopinath 1999), which is discussed in the
next section.

5 The following objective function
BIC
ALy = ALg) — +DlogTo) (6.90)

is derived in Shinoda & Watanabe (2000). There are several ways to set the penalty term from Eq. (6.89).
6 The BIC criterion also has a tuning parameter X in Eq. (6.87). However, the A setting is more robust than
the threshold setting in Eq. (6.86) (Shinoda & Watanabe 2000).
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6.6 Speaker clustering/segmentation

BIC-based speaker segmentation is a particularly important technique for speaker
diarization, which has been widely studied recently (Chen & Gopinath 1999,
Anguera Miro, Bozonnet, Evans et al. 2012). The approach is usually performed in
two steps; the first step segments a long sequence of speech to several chunks by using
a model selection approach. Then the second step clusters these chunks to form speaker
segments, which can also be performed by a model selection approach. Both steps use
BIC as model selection. This section considers the first step of speaker segmentation
based on the BIC criterion.

6.6.1 Speaker segmentation

First, we consider the simple segmentation problems of segmenting a speech sequence
to two chunks where these chunks are uttered by two speakers, respectively, as shown
in Figure 6.6. That is:

{019"' ’OT} - {0]"" ’Ol} and {OT+]"" ,OT}a (693)

where ¢ is a change point from one speaker to the other speakers or noises. Assuming
that each speaker utterance is modeled by a single Gaussian, which is a very simple
assumption but works well in a practical use, this problem can be regarded as a model
selection problem where we have a set of candidates represented by:

o My:o01,---,0r ~N(u, X);
L] Ml t01, 0,0 NN(ILl,p Zl,[)? 0[+1"" , 01 NN(I"’Z’p 22,[)
fort=[2,T —1].

Speaker boundary
|

{01,027"‘70t} {0t+1,0t+27"'70T}

o~ N(Nl,t, 2l,t) o~ N(/JQ,t, 22,t)

Figure 6.6 Speaker segmentation for audio data, which find a speaker boundary 7 given speech features
{o1,--- ,or}. The BIC segmentation method assumes that each segmentation is represented by a
Gaussian distribution.
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The model M means that the sequence can be represented by one Gaussian with mean
vector u and the diagonal covariance matrix X, that is, the sequence only has one
speaker utterance. Similarly, the model M, for t = [2, T — 1] means that the sequence has
two speakers with a change point ¢ with two Gaussians that have mean vectors u| , and
i, and diagonal covariance matrices X1, and X7, depending on the change point 7.

Based on these hypothesized models, we can also consider the Bayes factor in
Eq. (6.12) to compare two models of My and M;:

og <p(M—t|O)) fort=1[2,T —1]. (6.94)
p(Mo|O)

Similarly to the decision tree clustering, we can select an appropriate model from My
and {Mt}tT:_zl by using BIC. Recall the following definition of a BIC-based objective
function of model M for O = {os|t = 1,- - - N} in Eq. (6.29):

J
LPI€ = log p(016*, M) — 15 log, (6.95)

where 0 is the ML or MAP estimate of model parameters for model M, J is the number
of model parameters, and X is a tuning parameter. Since we use a Gaussian (with diago-
nal covariance matrix) for the likelihood function in Eq. (6.95), the BIC function for M
is written as follows:

T
2D
£PCMo) = log [ [N (or| M, ZME) — 3=~ log T

t=1

= —g (DA + log(27)) + log |EMY|) — ADlog T, (6.96)

EML

where is the ML estimate of the diagonal covariance matrix:

T
ML _ D =19
T 9
T ML\2
$ML _ 2=100d — 1g )
d T *

n

6.97)

This result is obtained by assuming that we only have one state in Eq. (6.83).
Similarly, M, is written as follows:

¢ T
4D
log [ [ Meor 'y, 21 +1log [ Norlwdy 230 — A=~ log T
=1 r=t+l
t
—5 (D1 + log(2)) + log [E}H))

T—1t
- (D(1 + log(2m)) + log | ZYV|) — 2D log T

,CBIC(Mt)

t T—1 T
— log |z - 5 log |z - 5 (D(1 +log(2m))) = 22D log T,
(6.98)
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where EII\AIL and Elzth are the ML estimates of the diagonal covariance matrices, and are
obtained as follows:

t
ML _ 2r=10/
”'1,1 - P 5
t ML\2
ML Zt’:](ol‘/d - Ml,td)
Zl,td = P ’
T
ML __ Zt’:ﬂrl oy
’1’2,[ - )

t

T ML2
ML _ Dr=r41(0ra = [4347)
2,td — ¢ .

Again, this result is obtained by assuming that we only have two separated states
(Mp and M;) in Eq. (6.83).
Therefore, the difference of BIC values between M and M, is represented as follows:

(6.99)

T—1
2
This is the objective function of finding the segmentation boundary based on the BIC
criterion. If the ALBIC() is positive, ¢ is a segmentation boundary, and the optimal

boundary 7 is obtained by maximizing ALBIC(7) as follows:

=_§log‘zML|+%]0g|Z¥tL|+ log =M — ADlogT. (6.100)

7=arg max ALBCh) it ALBCk) > 0. (6.101)

Thus, we can find the optimal boundary of two speech segments by using BIC. If
we consider multiple changing points based on BIC, we can use Algorithm 9. The
approach has also been extended to deal with prior distributions (Watanabe & Nakamura
2009).

Algorithm 9 Detecting multiple changing points

Require: interval [z,,1] : 1, = 151, =2

1: whilet, < T do

2:  Detect if there is one changing point in [#,, ;] via BIC
3 if no change in [#,, ;] then
4 =1+ 1
5. else
6 th=t+1t,=t,+1
7 end if
8: end while

6.6.2 Speaker clustering

Once we have the speech segments obtained by the BIC-based speech segmentation,
we can again use the BIC criterion to cluster the speech segments, where the cluster
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obtained can be interpreted as a specific speaker. This can be obtained by similar
techniques to the decision tree clustering of context-dependent HMMs in Section 6.5.2.
The main difference between them is that the decision tree clustering is performed by
splitting the nodes from the root node by using the (phonetic) question, while the speaker
clustering starts to merge the leaf nodes, which are represented by a speech segment,
successively to build a tree.

Let i be a speech segment index obtained by speech segmentation techniques, and
we have in total J segments. Then, similarly to the previous sections, we can compute
the approximated Bayes factor based on the following difference of the BIC value when
merging the speech segments i and i’ as

AL & L3 — £P1C + £, (6.102)
where the BIC values of E?IC and E?IC are represented as:
T.
LPC = =% (D(1 +log(2m)) + log |ZML)) — ADlog Ti, (6.103)

where T; and Z?’IL are the number of frames assigned to the speech segment i and the
ML estimate of the covariance matrix of the speech segment i, respectively. Similarly,

the BIC value of E?il,c, which merges two nodes i and 7, is represented as

T, s
L8 =~ (DA + log(2m)) + log | ZNF

) —Dlog Ty, (6.104)

where T;y = T; + Ty, and Z%I,L is the ML estimate of the covariance matrix when we
represent the speech segments i and i’ as a single Gaussian.

The most appropriate combination of merging two nodes can be obtained by
considering all possible i and i/’ combinations and selecting the combination

25 BIC

Li=arg omax AL (6.105)
And the selected i and i can be merged to a new node. This process is iteratively
performed while it satisfies AEE}C > 0. The final leaf nodes can represent a speaker
cluster. This approach is also called agglomerative clustering, and BIC based agglom-
erative clustering is actually used to build state-of-the-art speaker diarization systems
(Wooters & Huijbregts 2008), which provide the “who spoke when” information in
speech data.

6.7 Summary
This chapter describes the asymptotic approximation of the Bayesian approach, and
introduces the Laplace approximation and the BIC criterion. Both approaches are very

powerful for approximating the Bayesian inference of acoustic model parameters in
speech recognition and Bayesian inference of model selection problems in speech
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clustering and segmentation. However, the asymptotic approximation makes the single
Gaussian assumption for the prior and posterior distributions and large sample assump-
tions for target data, which limits the application for speech and language processing.
The next chapter provides another approximation technique, variational Bayes, which
can handle the problem in the asymptotic approximation.
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