
3 Machine Learning Models

This chapter provides detailed descriptions and derivations of various machine learning
models for speaker verification. Instead of discussing these models in chronological
order, we will start from the fundamental models, such as Gaussian mixture models and
support vector machines and progressively move to the more complicated ones that are
built on these fundamental models. We will leave the recent development in DNN-based
models to the next two chapters.

3.1 Gaussian Mixture Models

A Gaussian mixture model (GMM) is a weighted sum of Gaussian distributions. In
the context of speech and speaker recognition, a GMM can be used to represent the
distribution of acoustic vectors o’s:1

p(o|�) =
C∑

c=1

πcN (o|μ
c
,�c), (3.1)

where � = {πc,μc
,�c}Cc=1 contains the parameters of the GMM. In Eq. 3.1, πc, μ

c
and

�c are the weight, mean vector, and covariance matrix of the cth mixture whose density
has the form

N (o|μc
,�c) = 1

(2π)
D
2 |�c| 1

2

exp

{
−1

2
(o − μ

c
)T�−1

c (o − μ
c
)

}
.

The mixture weight πc’s can be considered as the priors of the mixtures and they should
sum to 1.0, i.e.,

∑C
c=1 πc = 1. Figure 3.1 shows an example of a one-dimensional GMM

with three mixtures.
To estimate �, we express the log-likelihood of a set of training data in terms of the

parameters and find the parameters in � that lead to the maximum-likelihood of the
training data. Specifically, given a set of T independent and identically distributed (iid)
acoustic vectors O = {ot ;t = 1, . . . ,T }, the log-likelihood function (function of �) is
given by

1 In this book, we use lower case boldface letters to denote random vectors. Depending on the context,
lower-case boldface letters can also represent the realization (i.e., observations) of the corresponding
random vectors. Note that this is different from the usual probabilistic convention that random variables
are represented by capital letters (e.g., X) and their realization (x), as in P (X < x).

36

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.1 Gaussian Mixture Models 37

–20 –10 0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

x

p(
x)

Figure 3.1 A one-D GMM with three mixture components. [Adapted from Bayesian Speech and
Language Processing (Figure 3.2), by S. Watanabe and J.T. Chien, 2015, Cambridge University
Press.]

log p(O|�) = log

{
T∏

t=1

C∑
c=1

πcN (ot |μc
,�c)

}
=

T∑
t=1

log

{
C∑

c=1

πcN (ot |μc
,�c)

}
.

To find � that maximizes log p(O|�), we may set ∂ log p(O)
∂�

= 0 and solve for �. But
this method will not give a closed-form solution for �. The trouble is that the summation
appears inside the logarithm. The problem, however, can be readily solved by using the
EM algorithm to be explained next.

3.1.1 The EM Algorithm

The EM algorithm (see Section 2.2.2) is a popular iterative method for estimating the
parameters of statistical models. It is also an elegant method for finding maximum-
likelihood solutions for models with latent variables, such as GMMs. This is achieved
by maximizing a log-likelihood function of the model parameters through two iterative
steps: Expectation and Maximization.

Denote the acoustic vectors from a large population as O = {ot ;t = 1, . . . ,T }. In
GMM, for each data point ot , we do not know which Gaussian generates it. Therefore,
the latent information is the Gaussian identity for each ot . Define

L = {�tc; t = 1, . . . ,T and c = 1, . . . ,C}

as the set of latent variables, where �tc = 1 if ot is generated by the cth Gaussian; oth-
erwise �tc = 0. Figure 3.2 shows a graphical representation of a GMM. This graphical
model suggests that ot depends on �t = [�t1 . . . �tC]T so that the marginal likelihood
p(ot) can be obtained by marginalizing out the latent variable �t :

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

38 Machine Learning Models

ot
T

{ c, c}c=1
C

t
{ c}c=1

C

Figure 3.2 Graphical representation of a GMM. �t = [�t1 . . . �tC]T and ot , with t = 1, . . . ,T ,
are the latent variables and observed vectors, respectively.

p(ot) =
∑
�t

p(�t)p(ot |�t)

=
C∑

c=1

P (�tc = 1)p(ot |�tc = 1)

=
C∑

c=1

πcN (ot |μc
,�c),

(3.2)

which has the same form as Eq. 3.1.
In the EM literatures, {O,L} is called the complete data set, and O is the incomplete

data set. In EM, we maximize log p(O,L|�) with respect to � instead of maximizing
log p(O|�). The important point is that maximizing the former is much more straight-
forward and will lead to closed-form solutions for each EM iteration, as will be shown
below.

However, we actually do not know L. So, we could not compute log p(O,L|�). For-
tunately, we know its posterior distribution, i.e., P (L|O,�), through the Bayes theorem.
Specifically, for each ot , we compute the posterior probability:2

γ(�tc) ≡ P (�tc = 1|ot,�)

= P (�tc = 1|�)p(ot |�tc = 1,�)

p(ot |�)

= πcN (ot |μc
,�c)∑C

j=1 πjN (ot |μj
,�j)

. (3.3)

In the speech and speaker recognition literatures, computing the posterior probabilities
of mixture components is called alignment. Its aim is to determine how close a vector
ot is to the individual Gaussians, accounting for both the priors, means and covariances
of the mixture components. Figure 3.3 illustrates the alignment process.

With the posteriors γ(�tc), given the current estimate of the model parameters �old,
we can find its new estimate � by computing the expected value of log p(O,L|�) under

2 We denote probabilities and probability mass functions of discrete random variables using capital letter P ,
and we denote the likelihoods and probability density functions of continuous random variables using
lower case letter p.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.1 Gaussian Mixture Models 39

1 2

3

otγ(t1)

γ(t2)
γ(t3)

Figure 3.3 Aligning an acoustic vector ot to a GMM with three mixture components.

the posterior distribution of L:

Q(�|�old) = EL{log p(O,L|�)|O,�old}

=
T∑

t=1

C∑
c=1

P (�tc = 1|ot,�
old) log p(ot,�tc = 1|�)

=
T∑

t=1

C∑
c=1

γ(�tc) log p(ot,�tc = 1|�)

=
T∑

t=1

C∑
c=1

γ(�tc) log p(ot |�tc = 1,�)P (�tc = 1|�)

=
T∑

t=1

C∑
c=1

γ(�tc) log
[
N (ot |μc

,�c)πc

]
, (3.4)

where Q(�|�old) is called the auxiliary function or simply Q-function (see Eq. 2.6).
The E-step consists in computing γ(�tc) for all training samples so that Q(�|�old) can
be expressed as a function of μ

c
, �c, and πc for c = 1, . . . ,C.

Then, in the M-step, we maximize Q(�|�old) with respect to � by setting
∂Q(�|�old)

∂�
= 0 to obtain (see [32, Ch. 3]):

μc
=
∑T

t=1 γ(�tc)ot∑T
t=1 γ(�tc)

(3.5a)

�c =
∑T

t=1 γ(�tc)(ot − μc
)(ot − μc

)T∑T
t=1 γ(�tc)

(3.5b)

πc = 1

T

T∑
t=1

γ(�tc), (3.5c)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

40 Machine Learning Models

where c = 1, . . . ,C. Eq. 3.5a–Eq. 3.5c constitute the M-step of the EM algorithm. In
practical implementation of the M-step, we compute the sufficient statistics:

nc =
T∑

t=1

γ(�tc) (3.6a)

fc =
T∑

t=1

γ(�tc)ot (3.6b)

Sc =
T∑

t=1

γ(�tc)otoT
t , (3.6c)

where c = 1, . . . ,C. Then, Eq. 3.5a–Eq. 3.5c become

μ
c
= 1

nc

fc (3.7a)

�c = 1

nc

Sc − μc
μT

c
(3.7b)

πc = 1

T
nc. (3.7c)

In summary, the EM algorithm iteratively performs the E- and M-steps until
Q(�|�old) no longer increases.

• Initialization: Randomly select C samples from O and assign them to {μ
c
}Cc=1;

Set πc = 1
C

and �c = I, where c = 1, . . . ,C.

• E-Step: Find the distribution of the latent (unobserved) variables, given the
observed data and the current estimate of the parameters;

• M-Step: Re-estimate the parameters to maximize the likelihood of the observed
data, under the assumption that the distribution found in the E-step is correct.

The iterative process guarantees to increases the true likelihood or leaves it unchanged
(if a local maximum has already been reached).

3.1.2 Universal Background Models

If we use the speech of a large number of speakers to train a GMM using Eq. 3.3 and
Eqs. 3.5a–3.5c, we obtain a universal background model (UBM), �ubm, with density
function

p(o|�ubm) =
C∑

c=1

πubm
c N (o|μubm

c
,�ubm

c). (3.8)

Specifically, the UBM is obtained by iteratively carried out the E- and M-steps as
follows.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.1 Gaussian Mixture Models 41

• E-step: Compute the conditional distribution of mixture components:

γ(�tc) ≡ Pr(Mixture = c|ot) =
πubm

c N (ot |μubm
c

,�ubm
c)∑C

c=1 π
ubm
c N (ot |μubm

c
,�ubm

c)
(3.9)

where c = 1, . . . ,C.

• M-step: Update the model parameters:

– Mixture weights: πubm
c = 1

T

∑T
t=1 γ(�tc)

– Mean vectors: μubm
c

=
∑T

t=1 γ(�tc)ot∑T
t=1 γ(�tc)

– Covariance matrices: �ubm
c =

∑T
t=1 γ(�tc)ot oT

t∑T
t=1 γ(�tc)

− μubm
c

(μubm
c

)T

where c = 1, . . . ,C.

In a GMM–UBM system, each of the genuine speakers (also called target speakers)
has his/her own GMM, and the UBM serves as a reference for comparing likelihood
ratios. More precisely, if the likelihood of a test utterance with respect to a genuine-
speaker’s GMM is larger than its likelihood with respect to the UBM, there is a high
chance that the test utterance is spoken by the genuine speaker.

3.1.3 MAP Adaptation

If each target speaker has a large number of utterances for training his/her GMM,
the EM algorithm in Section 3.1 can be directly applied. However, in practice, the
amount of speech for each speaker is usually small. As a result, directly applying the
EM algorithm will easily cause overfitting. A better solution is to apply the maxi-
mum a posteriori (MAP) adaptation in which target-speaker models are adapted from
the UBM.

The MAP algorithm finds the parameters of target-speaker’s GMM given UBM
parameters �ubm = {πubm

c ,μubm
c

,�ubm
c }Cc=1 using the EM algorithm. The objective is to

estimate the mode of the posterior of the model parameters:

�map = argmax
�

p(�|O)

= argmax
�

p(O|�)p(�)

= argmax
�

T∏
t=1

p(ot |�)p(�).

(3.10)

Direct optimization of Eq. 3.10 is difficult. However, we may iteratively find the optimal
solution via the EM algorithm. Similar to the EM algorithm for GMM in Section 3.1,
instead of maximizing Eq. 3.10, we maximize the auxiliary function:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

42 Machine Learning Models

Q(�|�old) = EL
{

log
[
p(O,L|�)p(�)

] |O,�old
}

= EL
{

log p(O,L|�)|O,�old
}
+ EL

{
log p(�)|O,�old

}
=

T∑
t=1

C∑
c=1

P (�tc = 1|ot,�
old) log p(ot,�tc = 1|�) + log p(�)

=
T∑

t=1

C∑
c=1

γ(�tc) log p(ot,�tc = 1|�) + log p(�)

=
T∑

t=1

C∑
c=1

γ(�tc)
[
log p(ot |�tc = 1,�) + log P (�tc = 1|�)

]+ log p(�)

=
T∑

t=1

C∑
c=1

γ(�tc)
[
logN (ot |μc

,�c) + log πc

]+ log p(�), (3.11)

If only the mean vectors are adapted, we have πc = πubm
c and �c = �ubm

c . Also, we
only need to assume a prior over μ

c
:

p(μ
c
) = N (μ

c
|μubm

c
,r−1�ubm

c), (3.12)

where r is called the relevant factor [7]. Figure 3.4 shows the graphical model of the
Bayesian GMM when only the mean vectors {μ

c
}Cc=1 of the GMM are assumed random

with prior distribution given by Eq. 3.12.
Dropping terms independent of μ

c
, Eq. 3.11 can be written as:

Q(μ|μubm) =
T∑

t=1

C∑
c=1

γ(�tc) logN (ot |μc
,�ubm

c) + logN (μ
c
|μubm

c
,r−1�ubm

c). (3.13)

where μ = [μT
1 . . . μT

C
]T.

The E-step is similar to the E-step in training GMMs. Specifically, given Ts acoustic
vectors O(s) = {o1, . . . ,oTs } from speaker s, we compute the sufficient statistics:

nc =
Ts∑

t=1

γ(�tc) and Ec(O(s)) = 1

nc

Ts∑
t=1

γ(�tc)ot, (3.14)

ot
T

{ c
ubm}c=1

C

t
{ c

ubm}c=1
C

{ c}{ c
ubm}c=1

C

Figure 3.4 Graphical model of Bayesian GMMs with prior over the GMM’s mean vectors given
by Eq. 3.12.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.1 Gaussian Mixture Models 43

where γ(�tc) is computed as in Eq. 3.3. In the M-step, we differentiate Q(μ|μold) in Eq.
3.13 with respect to μ

c
, which gives

∂Q(μ|μubm)

∂μ
c

=
Ts∑

t=1

γ(�tc)(�ubm
c)−1(ot − μc

) − r(�ubm
c)−1(μ

c
− μubm

c
). (3.15)

By setting Eq. 3.15 to 0, we obtain the adapted mean

μ
c
=

∑
t γ(�tc)ot∑

t γ(�tc) + r
+ rμubm

c∑
t γ(�tc) + r

= αcEc(O(s)) + (1 − αc)μubm
c

,

(3.16)

where

αc = nc

nc + r
. (3.17)

The relevance factor r is typically set to 16. Figure 3.5 shows the MAP adaptation
process and Figure 3.6 illustrates a two-dimensional examples of the adaptation process.
Note that in practice only the mean vectors will be adapted.

According to Eq. 3.14 and Eq. 3.17, αc → 1 when O(s) comprises lots of vectors
(long utterances) and αc → 0 otherwise. This means that μ(s)

c
will be closed to the

observed vectors from Speaker s when the utterance is long and will be similar to the
cth Gaussian of the UBM when not many frames are aligned to the cth mixture. This
property agrees with the Bayesian philosophy.

In Eq. 3.17, r determines the minimum number of frames aligning to mixture c to
have the adaptation effect on μ(s)

c
. Specifically, when r is very small, say r = 1, a very

small number of frames aligning to mixture c will be enough to cause the mean vector
μ(s)

c
to be adapted to O(s). On the other hand, when r is large, say r = 30, a lot more

frames aligning to mixture c are required to have any adaptation effect.

Enrollment utterance of client speaker

Universal
background

model

Client speaker
model

Figure 3.5 The MAP adaptation process.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

44 Machine Learning Models

ubm

O(s)

2
(s)

3
(s)

3
ubm

2

ubm
3

Figure 3.6 A two-dimensional example illustrating the adaptation of mixture components in a
UBM. μubm

1 and μubm
2 will move toward the speaker-dependent samples O(s) as the samples are

close enough to these two Gaussians, whereas μubm
3 will remain unchanged because the samples

are too far away from it.

3.1.4 GMM–UBM Scoring

Given the acoustic vectors O(t) from a test speaker and a claimed identity s, speaker
verification can be formulated as a two-class hypothesis problem:

• H0: O(t) comes from the true speaker s

• H1: O(t) comes from an impostor

Verification score is a log-likelihood ratio:

SGMM–UBM(O(t)|�(s),�ubm) = log p(O(t)|�(s)) − log p(O(t)|�ubm), (3.18)

where log p(O(t)|�(s)) is the log-likelihood of O(t) given the speaker model �(s), which
is given by

log p(O(t)|�(s)) =
∑

o∈O(t)

log
C∑

c=1

πubm
c N (o|μ(s)

c
,�ubm

c). (3.19)

Note that only the mean vectors in the speaker model are speaker-dependent, i.e., �(s) =
{πubm

c ,μ(s)
c

,�ubm
c }Cc=1. This is because only the means are adapted in practice. Figure 3.5

shows the scoring process.
A side benefit of MAP adaptation is that it keeps the correspondence between the mix-

ture components of the target-speaker model �(s) and the UBM. This property allows
for fast scoring when the GMM and the UBM cover a large region of the feature space
so that only a few Gaussians contribute to the likelihood value for each acoustic vector o.
Figure 3.6 illustrates such situation in which the contribute of the third Gaussian (with
mean μubm

3) can be ignored for any test vectors far away from it. Therefore, we may
express the log-likelihood ratio of a test utterance with acoustic vectors O(t) as

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 45

SGMM–UBM(O(t)|�(s),�ubm) = log p(O(t)|�(s)) − log p(O(t)|�ubm)

=
∑

o∈O(t)

[
log

C∑
c=1

πubm
c N (o|μ(s)

c
,�ubm

c) − log
C∑

c=1

πubm
c N (o|μubm

c
,�ubm

c)

]

≈
∑

o∈O(t)

[
log

∑
c∈�

πubm
c N (o|μ(s)

c
,�ubm

c) − log
∑
c∈�

πubm
c N (o|μubm

c
,�ubm

c)

]
, (3.20)

where � is a set of indexes corresponding to the C′ largest likelihoods in
{πubm

c N (o|μubm
c

,�ubm
c)}Cc=1. Typically, C′ = 5. The third equation in Eq. 3.20 requires

C + C′ Gaussian evaluations for each o, whereas the second equation requires 2C

Gaussian evaluations. When C = 1024 and C′ = 5, substantial computation saving can
be achieved.

3.2 Gaussian Mixture Model–Support Vector Machines

A drawback of GMM–UBM systems is that the GMMs and UBM are trained separately,
which means that information that discriminates the target speakers from the back-
ground speakers cannot be fully utilized. In 2006, Campbell [14] proposed to turn the
GMMs into vectors so that target-speakers’ GMMs and background-speakers’ GMMs
can be treated as positive- and negative-class vectors for training discriminative classi-
fiers, one for each target speaker. Because of the high dimensionality of the resulting
vectors, linear support vector machines are a natural choice.

3.2.1 Support Vector Machines

To understand the concepts of support vector machines (SVMs), we need to ask ourself
“what is a good decision boundary?” Consider a two-class linearly separable classifi-
cation problem shown in Figure 3.7. There are plenty of methods to find a boundary
that can separate the two classes. A naive way is to find a line that is perpendicular
to the line joining the two centers and is of equal distance to the centers, as shown in
Figure 3.7. Setting the boundary position based on the centers of the two classes means
that all samples are considered equally important. But is the boundary in Figure 3.7
good? Obviously it is not.

In 1995, Vapnik [33] advocated finding a subset of vectors that are more relevant to
the classification task and using these vectors to define the decision boundary. Moreover,
the decision boundary should be as far away from the data of both classes as possible (of
course, not infinitely far). These two criteria can be fulfilled by maximizing the margin
shown in Figure 3.8. In the figure, relevant vectors highlighted by the big circles are
called support vectors, which give rise to the name support vector machines.

Linearly Separable Problems
In Figure 3.8, the decision boundary is given by

wTx + b = 0.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

46 Machine Learning Models

Figure 3.7 A naive way of finding a linear decision boundary that separates two classes. For
two-dimensional problems, the decision plane is of equal distance to the two class-centers and is
perpendicular to the line joining the centers. [Based on Biometric Authentication: A Machine
Learning Approach (Figure 4.1), by S.Y. Kung, M.W. Mak and S.H. Lin, 2005, Prentice Hall.]

x1

x2

w · x + b = +1

w · x + b = −1

w · x + b = 0

yi = −1

yi = +1

− w
w

Figure 3.8 Finding a decision plane such that the margin between the two classes is the largest.
[Based on Biometric Authentication: A Machine Learning Approach (Figure 4.1), by S.Y. Kung,
M.W. Mak and S.H. Lin, 2005, Prentice Hall.]

The points x1 and x2 lie on the two lines parallel to the decision boundary, i.e.,

wTx1 + b = −1

wTx2 + b = 1.
(3.21)

The margin of separation d is the projection of (x2−x1) onto the direction perpendicular
to the decision boundary, i.e.,

d = wT

‖w‖ (x2 − x1)

= 2

‖w‖ (Using Eq. 3.21).

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 47

Therefore, maximizing d is equivalent to minimizing ‖w‖2 subject to the constraint that
no data points fall inside the margin of separation. This can be solved by using con-
strained optimization. Specifically, given a set of training data points X = {x1, . . . ,xN }
with class labels Y = {y1, . . . ,yN } where yi ∈ {+1, − 1}, the weight vector w can be
obtained by solving the following primal problem:

Minimize
1

2
‖w‖2

subject to yi(wTxi + b) ≥ 1, for i = 1, . . . ,N .
(3.22)

To solve this constrained optimization problem, we introduce Lagrange multipliers
αi ≥ 0 to form the Lagrangian function

L(w,b,α) = 1

2
‖w‖2 −

N∑
i=1

αi

(
yi(wTxi + b) − 1

)
, (3.23)

where α = {α1, . . . ,αN }. Setting the gradient of L(w,b,α) with respect to w and b to
zero, we have

w =
N∑

i=1

αiyixi and
N∑

i=1

αiyi = 0. (3.24)

Substituting Eq. 3.24 into Eq. 3.23, we have [32, Ch. 4]

L(α) =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαj yiyj xT
i xj,

which is a function of αi’s instead of w. As Eq. 3.24 suggests that if we know αi’s, we
will know w. Therefore, we may solve the primal problem by solving the following dual
problem:3

maximize L(α) =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαj yiyj xT
i xj

subject to αi ≥ 0 and
N∑

i=1

αiyi = 0.

(3.25)

Note that because L(α) is quadratic in αi , a global maximum of αi can be found.
The solution of Eq. 3.25 comprises two kinds of Lagrange multipliers:

• αi = 0: The corresponding xi are irrelevant to the classification task,

• αi > 0: The corresponding xi are critical to the classification task,

where xi for which αi > 0 are called support vectors. The parameter b can be computed
by using the Karush-Kuhn-Tucker (KKT) condition [34], i.e., for any k such that yk = 1
and αk > 0, we have

3 Because Eq. 3.23 is convex in w, the duality gap is zero. As a result, the primal and dual problems have the
same solution.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

48 Machine Learning Models

αk[yk(wTxk + b) − 1] = 0

�⇒ b = 1 − wTxk .

The SVM output is given by

f (x) = wTx + b

=
∑
i∈S

αiyixT
i x + b, (3.26)

where S is the set of indexes for which αk > 0.

Linearly Non-Separable Problems
If the data patterns are not separable by a linear hyperplane (see Figure 3.9), a set of
slack variables {ξ = ξ1, . . . ,ξN } is introduced with ξi ≥ 0 such that the inequality
constraints in Eq. 3.22 become

yi(wTxi + b) ≥ 1 − ξi ∀i = 1, . . . ,N . (3.27)

The slack variables {ξi}Ni=1 allow some data to violate the constraints in Eq. 3.22. For
example, in Figure 3.9, x1 and x3 violate the constraints in Eq. 3.22 and their slack
variables ξ1 and ξ3 are nonzero. However, they satisfy the relaxed constraints in Eq.
3.27. The value of ξi indicates the degree of violation. For example, in Figure 3.9,
x3 has a higher degree of violation than x1, and x2 does not violate the constraint in
Eq. 3.22.

With the slack variables, the minimization problem becomes

min
1

2
‖w‖2 + C

N∑
i=1

ξi, subject to yi(wTxi + b) ≥ 1 − ξi, (3.28)

Support vectors
x1

x2

Marg
in of

Separa
tion

d

x3

1

3

w · x + b = +1

w · x + b = −1

w · x + b = 0

yi = −1

yi = +1

Figure 3.9 An example classification problem that cannot be perfectly separated by a linear
hyperplane. The nonzero slack variables ξ1 and ξ3 allow x1 and x3 to violate the primal
constraints in Eq. 3.22 so that the problem can still be solved by a linear SVM.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 49

where C is a user-defined penalty parameter to penalize any violation of the safety
margin for all training data. The new Lagrangian is

L(w,b,α) = 1

2
‖w‖2 + C

∑
i

ξi −
N∑

i=1

αi(yi(xi · w + b) − 1 + ξi) −
N∑

i=1

βiξi,

(3.29)

where αi ≥ 0 and βi ≥ 0 are, respectively, the Lagrange multipliers to ensure that
yi(xi · w + b) ≥ 1 − ξi and that ξi ≥ 0. Differentiating L(w,b,α) w.r.t. w, b, and ξi

and set the results to zero, we obtain Eq. 3.24 and C = αi + βi . Substituting them into
Eq. 3.29, we obtain the Wolfe dual:

maximize L(α) =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαj yiyj xT
i xj

subject to 0 ≤ αi ≤ C,i = 1, . . . ,N, and
N∑

i=1

αiyi = 0.

(3.30)

The solution of Eq. 3.30 comprises three types of support vectors shown in
Figure 3.10: (1) on the margin hyperplanes, (2) inside the margin of separation, and (3)
outside the margin of separation but on the wrong side of the decision boundary. Note
that for the nonsupport vectors and support vectors on the margin hyperplanes, their
slack variables ξi are 0.

Nonlinear SVM
The earlier discussions cover large-margin classifiers with a linear decision boundary
only. However, linear SVMs are not rich enough to solve complex problems. For exam-

Figure 3.10 Three types of support vectors in a linear SVM with slack variables in its
optimization constraints.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

50 Machine Learning Models

ple, in Figure 3.10, no straight line can perfectly separate the two classes. Figure 3.11(a)
shows another example in which two decision boundaries (thresholds) are required
to separate the two classes. Again, a one-D linear SVM could not solve this problem
because it can only provide one decision threshold.

In case the training data x ∈ X are not linearly separable, we may use a non-
linear function φ(x) to map the data from the input space to a new high-dimensional
space (called feature space) where data become linearly separable. For example, in
Figure 3.11, the nonlinear function is to perform the mapping:

φ : x → [x x2]T.

The decision boundary in Figure 3.11(b) is a straight line that can perfectly separate the
two classes. Specifically, it can be written as

x2 − c = [0 1]

[
x

x2

]
− c = 0

Or equivalently,

wTφ(x) + b = 0, (3.31)

where w = [0 1]T, φ(x) = [x x2]T, and b = −c. Note that Eq. 3.31 is linear in φ,
which means that by mapping x to [x x2]T, a nonlinearly separable problem becomes
linearly separable.

Figure 3.12(a) shows a two-dimensional example in which linear SVMs will not be
able to perfectly separate the two classes. However, if we transform the input vectors
x = [x1 x2]T by a nonlinear map:

φ : x → [x2
1

√
2x1x2 x2

2]T, (3.32)

x = 0
x

Decision boundaries

xx = 0

c

x2(x)

x

x

x2

(a)

(b)

Decision boundary on
the feature space

Figure 3.11 (a) One-dimensional example that cannot be solved by linear SVMs. (b) The same
problem on a two-dimensional feature space in which linear SVMs can easily solve the problem.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 51

we will be able to use a linear SVM to separate the two classes in three-dimensional
space, as shown in Figure 3.12(b). The linear SVM has the form

f (x) =
∑
i∈S

αiyiφ(xi)
Tφ(x) + b

= wTφ(x) + b,

where S is the set of support vector indexes and w =∑
i∈S αiyiφ(xi). Note that in this

simple problem, the dot products φ(xi)Tφ(xj) for any xi and xj in the input space can
be easily evaluated

φ(xi)
Tφ(xj) = x2

i1x
2
j1 + 2xi1xi2xj1xj2 + x2

i2x
2
j2 = (xT

i xj)2. (3.33)

While the mapping in Eq. 3.32 can transform the nonlinearly separable problem in
Figure 3.12 into a linearly separable one, its capability is rather limited, as demonstrated
in the two-spiral problem in Figure 3.13(a) and 3.13(b). The failure of this mapping in
the two-spiral problem suggests that it is necessary to increase the dimension of the
feature space. To achieve this without increasing the degree of the polynomial, we may
change Eq. 3.33 to

φ(xi)
Tφ(xj) = (1 + xT

i xj)2. (3.34)

With the addition of a constant term, the dimension of φ(x) in Eq. 3.34 increases to 6.
This can be observed by writing φ(u)Tφ(v) for any vectors u and v in the input space as

φ(u)Tφ(v) = (1 + uTv)2

=
(

1 + [u1 u2]

[
v1

v2

])2

= (1 + u1v1 + u2v2)(1 + u1v1 + u2v2)

= 1 + 2u1v1 + 2u2v2 + 2u1v1u2v2 + u2
1v2

1 + u2
2v2

2

= [
1

√
2u1

√
2u2

√
2u1u2 u2

1 u2
2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1√
2v1√
2v2√

2v1v2

v2
1

v2
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, vector x is mapped to φ(x) = [
1

√
2x1

√
2x2

√
2x1x2 x2

1 x2
2

]T
,

which is a six-dimensional vector. The decision boundary in the φ-space is linear
because the output of the SVM can now be written as:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

52 Machine Learning Models

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x
1

x 2

Class 1
Class 2

(a)

0
2

4
6

8
10

10

5

0

5

10
0

1

2

3

4

5

6

7

8

9

z
1

z
2

z 3

(b)

Figure 3.12 (a) A two-dimensional example that cannot be solved by linear SVMs. (b) By
applying the mapping in Eq. 3.32, the same problem can be easily solved by a linear SVM on the
three-dimensional space.

f (x) =
∑
i∈S

αiyiφ(x)Tφ(xi) + b.

Increasing the dimension to 6, however, is still not sufficient to solve the two-D spiral
problem, as shown in Figure 3.13. This is because the decision boundary produced by
a second-order polynomial is too smooth. The problem can be alleviated by increasing
the order to three. For example, if we define a mapping φ(x) such that

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 53

10 5 0 5 10 15
15

10

5

0

5

10

15

x
1

x 2

Class 1
Class 2

(a)

0
20

40
60

80
100

120

100

50

0

50

100
0

50

100

150

z
1

z
2

z 3

(b)

10 5 0 5 10 15
15

10

5

0

5

10

15
0

(c)

10 5 0 5 10 15
15

10

5

0

5

10

15

x
1

x 2

0
1
Support Vectors

(d)

10 5 0 5 10 15
15

10

5

0

5

10

15

x
1

x 2

0
1
Support Vectors

(e)

Figure 3.13 (a) A two-dimensional spiral example. (b) The mapping in Eq. 3.32 is not sufficient to
convert the nonlinearly separable problem into a linearly separable one. (c) A decision boundary
produced by a second-order polynomial SVM. (d) A decision boundary produced by a
third-order polynomial SVM. (e) A decision boundary produced by an RBF-SVM with σ = 1.
In (c)–(e), the penalty factor C was set to 1.

φ(xi)
Tφ(xj) = (1 + xT

i xj)3 (3.35)

for any xi and xj in the input space, we have a better chance of solving (not perfectly) the
two-spiral problem. This is because the polynomial in Eq. 3.35 has 10 terms,4 meaning

4 The number of terms in the polynomial expansion
(∑k

i=1 xi

)n
is
(n+k−1

n

)
.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

54 Machine Learning Models

that the transformed space has 10 dimensions. In such high dimensional space, the
highly nonlinear two-spiral problem will become more linear. Figure 3.13(d) shows the
decision boundary found by an SVM of the form

f (x) =
∑
i∈S

αiyiφ(xi)
Tφ(x) + b

=
∑
i∈S

αiyi(1 + xT
i x)3 + b.

Evidently, the SVM can classify most of the data points correctly.
When the polynomial degree increases, the dimension of φ(x) also increases. For

example, for x ∈ R
2 and third-order polynomial (Eq. 3.35), the dimension is 10. How-

ever, increasing the degree of polynomial does not necessarily increase the complexity
of the decision boundary. This may only increase the curvature of the boundary at some
locations in the input space, as demonstrated in Figure 3.13(d).

The dimension of φ-space increases rapidly with the input dimension. For example,
if the input dimension is 100, the dimension of φ(x) becomes 176,851 for third-order
polynomial. This will be too expensive to evaluate the dot products in such high-
dimensional space. Fortunately, we may evaluate the right-hand side of Eq. 3.35 instead
of the dot product on the left-hand side. The former is much cheaper and can be easily
generalized to polynomials of any degree d:

φ(xi)
Tφ(xj) = (1 + xT

i xj)d . (3.36)

To emphasize the fact that it is not necessary to evaluate the dot products, it is common
to write it as a kernel:

K(xi,xj) = (1 + xT
i xj)d .

In additional to the polynomial kernel, the radial basis function (RBF) kernel:

K(xi,xj) = exp

{
−‖xi − xj‖2

2σ2

}

is also commonly used. In this kernel, the parameter σ controls the kernel width, which
in turn controls the curvature of the decision boundary. The smaller the value of σ, the
sharper the curvature.

With this kernel notation, the decision function of an SVM can be written as

f (x) =
∑
i∈S

αiyiK(xi,x) + b.

where K(·,·) can be either a linear kernel, or a polynomial kernel, or an RBF kernel.
Note that the linear SVM in Eq. 3.26 uses the linear kernel:

K(xi,xj) = xT
i xj .

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 55

utt (s) Feature
Extraction

MAP
Adaptation

Mean
Stacking

X (s) Λ(s)
µ(s) =

⎡
⎢⎢⎢⎢⎣

µ
(s)
1

µ
(s)
2
...

µ
(s)
C

⎤
⎥⎥⎥⎥⎦

GMM-Supervector

UBM Λubm

Figure 3.14 Extraction of a GMM-supervector from an utteracne.

3.2.2 GMM Supervectors

To apply SVMs for speaker verification, it is necessary to convert a variable-length
utterance into a fixed-length vector, the so-called vectorization process. Campbell et al.
[14] proposed to achieve such task by stacking the mean vectors of a MAP-adapted
GMM as shown in Figure 3.14. Given the speech of a client speaker, MAP adaptation
(Eq. 3.16) is applied to create his/her GMM model. Then, the mean vectors of the
speaker model are stacked to form a supervector with dimension CF , where C is the
number of Gaussians in the UBM and F is the dimension of the acoustic vectors.
Typically, C = 1024 and F = 60, which result in supervectors with 61,440 dimensions.

Because of this high dimensionality, it is sensible to use linear SVMs to classify the
supervectors. To incorporate the covariance matrices and the mixture coefficients of the
UBM into the SVM, Campbell et al. suggest using a linear kernel of the form:5

K
(

utt(i),utt(j)
)
=

C∑
c=1

(√
πc�

− 1
2

c μ
(i)
c

)T (√
πc�

− 1
2

c μ
(j)
c

)
, (3.37)

where i and j index to the ith and j th utterances, respectively, and πc, �c and μ
c

are
the weight, covariance matrix, and mean vector of the cth mixture, respectively. Eq. 3.37
can be written in a more compact form:

K
(

utt(i),utt(j)
)
=
(
�− 1

2
−→μ (i)

)T (
�− 1

2
−→μ (j)

)
≡ K

(−→μ (i),
−→μ (j)

) (3.38)

where

� = diag
{
π−1

1 �1, . . . ,π
−1
C �C

}
and −→μ =

[
μT

1, . . . ,μT
C

]T
. (3.39)

In practice, �c’s are assumed to be diagonal.
For each target speaker, a set of target-speaker’s supervectors are obtained from

his/her enrollment utterances, one for each utterance. Then, a linear SVM is trained
to discriminate his/her supervector(s) from a set of supervectors derived from a number
of background speakers. After training, for target-speaker s, we have

5 To avoid cluttering with symbols, the superscript “ubm” in �c and πc is omitted.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

56 Machine Learning Models

Figure 3.15 Illustration of a linear SVM in three-dimensional space when solving a
data-imbalance problem in which the minority-class samples are represented by pentagrams and
the majority-class samples are represented by filled triangles. The shaded area under the decision
plane represents the possible locations of the minority-class samples. [Reprinted from Acoustic
vector resampling for GMMSVM-based speaker verification (Figure 1), M.W. Mak and W. Rao,
Proceedings of Annual Conference of International Speech Communication Association, 2010,
pp. 1449–1452, with permission of ISCA.]

f (s)(−→μ) =
∑
i∈Ss

α(s)
i K

(−→μ (i),
−→μ
)
−

∑
i∈Sbkg

α(s)
i K

(−→μ (i),
−→μ
)
+ b(s), (3.40)

where Ss and Sbkg are the support vector indexes corresponding to the target speaker

and background speakers, respectively, and α(s)
i ’s and b(s) are the Lagrange multipliers

and the bias term of the target-speaker’s SVM.
In practical situations, the number of target-speaker utterances is very small. This

create a severe data-imbalance problem [35] in which the decision boundary is largely
defined by the supervectors of the nontarget speakers. Another issue caused by data
imbalance is that the SVM’s decision boundary tends to skew toward the minority class
[36, 37]. This will lead to a large number of false rejections unless the decision threshold
has been adjusted to compensate for the bias. Figure 3.15 illustrates such situation. In
the figure, there is a large region in the supervector space in which the target-speaker’s
supervector will not affect the orientation of the decision boundary.

The data-imbalance problem in GMM–SVM systems can be overcome by creating
more supervectors from the utterance(s) of the target speakers [35, 38, 39]. Figure 3.16
illustrates the procedure, which is called utterance-partitioning with acoustic vector
resampling (UP-VAR). The goal is to increase the number of sub-utterances without
compromising their representation power. This is achieved by the following steps:

1. Randomly rearrange the sequence of acoustic vectors in an utterance;
2. Partition the acoustic vectors of an utterance into N segments;
3. Repeated Step 1 and Step 2 R times.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 57

Figure 3.16 Illustration of the utterance partitioning with acoustic vector resampling (UP-AVR)
process that increases the number of supervectors from a target speaker for training a
speaker-dependent SVM. [Reprinted from Utterance Partitioning with Acoustic Vector
Resampling for GMM-SVM Speaker Verification (Figure 2), M.W. Mak and W. Rao, Speech
Communication, vol. 53, no. 1, Jan. 2011, pp. 119–130, with permission of Elsevier.]

By repeating Step 1 and Step 2 R times, we obtain RN+1 target-speaker’s supervectors
for training the speaker-dependent SVM.

3.2.3 GMM–SVM Scoring

During scoring, given a test utterance utt(t) and the SVM of a target-speaker s, we first
apply MAP adaptation to the UBM to obtain the corresponding supervector μ(t) (see
Figure 3.14). Then, we compute the GMM–SVM score as follows:

SGMM–SVM(s,t) =∑
i∈Ss

α(s)
i K

(−→μ (i),
−→μ (t)

)
−

∑
i∈Sbkg

α(s)
i K

(−→μ (i),
−→μ (t)

)
+ b(s). (3.41)

Therefore, GMM–SVM scoring amounts to finding the distance of the test supervector
from the speaker-dependent hyperplane defined by the SVM of the target speaker.

Comparing the first line of Eq. 3.20 and Eq. 3.41, we can see the similarity between
the GMM–UBM scoring and GMM–SVM scoring. In particular, both have two terms,
one from the target speaker and one from the background speakers. However, there are
also important differences. First, the two terms in GMM–UBM scoring are unweighted,
meaning that they have equal contribution to the score. On the other hand, the two terms

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

58 Machine Learning Models

in GMM–SVM are weighted by Lagrange multipliers, which are optimized to produce
the best discrimination between the target speaker and the background speakers. Second,
the speaker model �(s) and �ubm in GMM–UBM are separately trained, whereas the
Lagrange multipliers in GMM–SVM are jointly trained by the SVM optimizer. This
means that for each speaker, the optimizer will automatically find a set of important
utterances from his/her enrollment sessions and the background speakers. This speaker-
dependent selection of utterances make the GMM–SVM systems more flexible and
perform much better than GMM–UBM systems.

3.2.4 Nuisance Attribute Projection

Because the vectorization process in Figure 3.14 will collect both the speaker and
nonspeaker (e.g., channel) statistics from the input utterance through Eq. 3.3 and Eq.
3.16, the GMM-supervector −→μ will contain not only speaker but also other nonspeaker
information. Therefore, it is important to remove such unwanted information before
performing GMM–SVM scoring. One of the most promising approaches is the nuisance
attribute projection (NAP) [40–42].

Basic Idea of NAP
The idea of NAP is to find a subspace within the GMM-supervector space in which all
nonspeaker variabilities occur. The method requires a training set comprising multiple
speakers and multiple recording sessions per speaker. Assume that we are given a train-
ing set comprising N GMM-supervectors X = {−→μ (1), . . . ,

−→μ (N)}. Our goal is to find a
subspace defined by the column vectors in U and define a projection matrix

P ≡ I − UUT, (3.42)

where I is an identity matrix, such that the projected vectors

μ̃(i) ≡ P−→μ (i) = (I − UUT)−→μ (i), i = 1, . . . ,N (3.43)

retain most of the speaker information but with nonspeaker information suppressed. For
μ̃(i)’s to retain most of the speaker information, the rank of U should be much lower
than the dimension of −→μ (i)’s.

Figure 3.17 illustrates the concept of suppressing session variability in NAP. In the
figure, the superscript h is the session index, and all sessions (supervectors) from the
same speaker s – indexed by (s,h) – lie on the line defined by the single column in
U. By applying Eq. 3.43, we obtain a projected vector μ̃(s) independent of the session
index h.

Figure 3.18 demonstrates the capability of NAP in a three-dimensional toy problem in
which nonspeaker variability occurs along the x1-axis, i.e., U = [1 0 0]T. In the figure,
the feature vectors x’s come from two different speakers, one for each cluster. Because
U = [1 0 0]T is of rank 1, UUTx’s vary along a straight line and (I − UUT)x’s lie on
a plane perpendicular to the line. As shown in the figure, after NAP projection, there is
no direction in which the two clusters (black ◦) are indistinguishable.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 59

Subspace representing
session variability.

Defined by U

Subspace representing
session variability

0

µ̃(s) = P→µ (s,h)

= (I − UUT)→µ (s,h)

→µ (s,h)

UUT→µ (s,h)

Figure 3.17 Suppressing session variability by nuisance attribute projection (NAP) when U is of
rank 1. The superscripts s and h stand for speaker and session, respectively. The dashed line
represents the nuisance direction and the shaped plane is orthogonal to it. All of the
NAP-projected vectors lie on the shaped plane.

2 0 2 4 6 8 10

5
0

5
10

15
2

0

2

4

6

8

10

x
1

x
2

x 3

x
(I − UU)Tx

UUTx

• x
UUTx

◦ (I − UUT)x

Figure 3.18 A three-dimensional example illustrating how NAP suppresses nonspeaker variability
when U = [1 0 0]T. Before the projection, the dots from two different speakers are
indistinguishable along the x1-axis, as indicated by the “�.” After the projection, the black “◦”
of the two speakers lie on the plane perpendicular to the x1-axis. As there is no variation along
the x1-axis after the projection, nonspeaker variability has been suppressed.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

60 Machine Learning Models

Objective Function of NAP
The subspace U can be found by minimizing the objective function:

U∗ = argmin
U:UTU=I

1

2

∑
ij

wij

∥∥∥P
(−→μ (i) −−→μ (j)

)∥∥∥2
, (3.44)

where P = I − UUT and

wij =
{

1 −→μ (i) and −→μ (j) belong to the same speaker
0 otherwise.

(3.45)

Eq. 3.44 and Eq. 3.45 suggest that we pull the projected supervectors belonging to the
same speaker together and do not care about the vector pairs coming from different
speakers.

To find U∗ in Eq. 3.44, we define the data matrix X ≡ [−→μ (1) . . .
−→μ (N)] and the

vector difference

−→
d ij ≡ −→μ (i) −−→μ (j).

Then, the weighted projected distance in Eq. 3.44 can be expressed as

dNAP = 1

2

∑
ij

wij

(
P
−→
d ij

)T (
P
−→
d ij

)
= 1

2

∑
ij

wij
−→
d T

ij PTP
−→
d ij

= 1

2

∑
ij

wij
−→
d T

ij (I − UUT)T(I − UUT)
−→
d ij

= 1

2

∑
ij

wij
−→
d T

ij

−→
d ij − 1

2

∑
ij

wij
−→
d T

ij UUT−→d ij, (3.46)

where we have used the constraint UTU = I. Dropping terms independent of U, we have

d ′NAP = −1

2

∑
ij

wij

(−→μ (i) −−→μ (j)
)T

UUT
(−→μ (i) −−→μ (j)

)
= −1

2

∑
ij

wij (−→μ (i))TUUT−→μ (i) − 1

2

∑
ij

wij (−→μ (j))TUUTμ(j)

+
∑
ij

wij (−→μ (i))TUUT−→μ (j)

= −
∑
ij

wij (−→μ (i))TUUT−→μ (i) +
∑
ij

wij (−→μ (i))
T

UUT−→μ (j), (3.47)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.2 Gaussian Mixture Model–Support Vector Machines 61

where we have used the property wij = wj i . Using the identity aTBBTa = Tr{BTaaTB},
where Tr stands for matrix trace, Eq. 3.47 can be written as

d ′NAP = −Tr

⎧⎨⎩∑
ij

wij UT−→μ (i)(−→μ (i))
T

U

⎫⎬⎭+ Tr

⎧⎨⎩∑
ij

wij UT−→μ (i)(−→μ (j))
T

U

⎫⎬⎭
= −Tr

{
UTXdiag(W1)XTU

}
+ Tr

{
UTXWXTU

}
= Tr

{
UTX

[
W − diag(W1)

]
XTU

}
, (3.48)

where W is the weight matrix in Eq. 3.45, diag(a) means converting a into a diagonal
matrix, and 1 is a vector of all 1’s. It can be shown [43] that minimizing d ′NAP in Eq. 3.48
with the constraint UTU = I is equivalent to finding the first K eigenvectors with the
smallest eigenvalues of

X
[
W − diag(W1)

]
XTU = �U,

where � is a diagonal matrix containing the eigenvalues of X
[
W − diag(W1)

]
XT in its

diagonal. Once U has been found, we may apply Eq. 3.43 to all GMM-supervectors for
both SVM training and GMM–SVM scoring.

Note that speakers with lots of sessions will dominate the objective function in
Eq. 3.44. To balance the influence of individual speakers in the training set, we may
change the weights in Eq. 3.45 to

wij =
{

1
N2

k

both −→μ (i) and −→μ (j) belong to Speaker k

0 otherwise,
(3.49)

where Nk is the number of utterances from Speaker k.

Relationship with Within-Class Covariance Matrix
With the weights in Eq. 3.49, the distance in Eq. 3.46 can be obtained from the within-
class covariance matrix. To see this, let’s assume that we have N training utterances
spoken by K speakers, and for the kth speaker, we have Nk training utterances whose
indexes are stored in the set Ck . Then, we can write Eq. 3.46 as follows:

dNAP = 1

2

K∑
k=1

1

N2
k

∑
i∈Ck

∑
j∈Ck

(μ̃(i) − μ̃(j))T(μ̃(i) − μ̃(j))

=
K∑

k=1

1

Nk

∑
i∈Ck

(μ̃(i))Tμ̃(i) −
K∑

k=1

1

N2
k

∑
i∈Ck

∑
j∈Ck

(μ̃(i))Tμ̃(j)

=
K∑

k=1

⎡⎣ 1

Nk

∑
i∈Ck

(μ̃(i))Tμ̃(i) − m̃T
k m̃k

⎤⎦ , (3.50)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

62 Machine Learning Models

where m̃k = 1
Nk

∑
i∈Ck
μ̃(i). Note that the within-class covariance (WCCN) matrix is

given by

�wccn =
K∑

k=1

1

Nk

∑
i∈Ck

(μ̃(i) − m̃k)(μ̃(i) − m̃k)T

=
K∑

k=1

1

Nk

⎡⎣∑
i∈Ck

μ̃(i)(μ̃(i))T −
∑
i∈Ck

μ̃(i)m̃T
k −

∑
i∈Ck

m̃k(μ̃(i))T +
∑
i∈Ck

m̃km̃T
k

⎤⎦
=

K∑
k=1

1

Nk

⎡⎣∑
i∈Ck

μ̃(i)(μ̃(i))T − 2Nkm̃km̃T
k +Nkm̃km̃T

k

⎤⎦
=

K∑
k=1

1

Nk

⎡⎣∑
i∈Ck

μ̃(i)(μ̃(i))T − m̃km̃T
k

⎤⎦ . (3.51)

Comparing Eq. 3.51 with Eq. 3.50 and using the property of matrix trace, Tr{aaT} =
aTa, we obtain

Tr{�wccn} = dNAP. (3.52)

This means that the objective function in Eq. 3.44 using the weights in Eq. 3.49 is
equivalent to minimizing the trace of the within-class covariance matrix.

3.3 Factor Analysis

Although NAP can reduce the session variability, it does not define a speaker subspace
to model inter-speaker variability. Moreover, it does not take the prior distribution of
the supervectors into account when projecting out the nuisance information. These two
limitations, however, can be readily addressed by factor analysis models.

Factor analysis (FA) is a statistical method for modeling the variability and covari-
ance structure of observed variables through a smaller number of unobserved variables
called factors. It was originally introduced by psychologists to find the underlying latent
factors that account for the correlations among a set of observations or measures.

For instance, the exam scores of 10 different subjects of 1000 students may be
explained by two latent factors (also called common factors): language ability and
math ability. Each student has their own values for these two factors across all of the
10 subjects and his/her exam score for each subject is a linear weighted sum of these
two factors plus the score mean and an error. For each subject, all students share the
same weights, which are referred to as the factor loadings, for this subject. Specifically,
denote xi = [xi,1 · · · xi,10]T and zi = [zi,1 zi,2]T as the exam scores and common
factors of the ith student, respectively. Also, denote m = [m1 · · · m10]T as the mean
exam scores of these 10 subjects. Then, we have

xi,j = mj + vj,1zi,1 + vj,2zi,2 + εi,j, i = 1, . . . ,1000 and j = 1, . . . ,10, (3.53)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.3 Factor Analysis 63

Figure 3.19 Illustrative example showing the idea of factor analysis. xi represents the exam scores
of ten subjects of a student who is strong in language but weak in math. The factor loading
suggests that history demands language skill, whereas physics demands math skill.

where vj,1 and vj,2 are the factor loadings for the j th subject and εi,j is the error term.
Eq. 3.53 can also be written as:

xi =

⎡⎢⎣ xi1
...

xi,10

⎤⎥⎦ =

⎡⎢⎣m1
...

m10

⎤⎥⎦+

⎡⎢⎣ v1,1 v1,2
...

...
v10,1 v10,2

⎤⎥⎦[zi,1

zi,2

]
+

⎡⎢⎣ εi,1
...

εi,10

⎤⎥⎦
= m + Vzi + εi, i = 1, . . . ,1000,

(3.54)

where V is a 10 × 2 matrix comprising the factor loadings of the 10 subjects.
Figure 3.19 shows the exam scores of history and physics of a student who is strong

in language but weak in math (as reflected by the latent factors). The first two rows of
the loading matrix suggest that history requires language skill, whereas physics requires
math skill, because of the large factor loadings. Should the latent factors of this student
be swapped (i.e., 1.0 for language ability and 2.5 for math ability), he/she will obtain
very a high score in physics but very low score in history.

In the context of speaker recognition, one may consider the elements of a GMM-
supervector as the observed variables and the coordinates in the subspace in which the
supervector lives are the factors. To simplify the discussions, in this subsection, we start
from the simple case where the UBM only have one Gaussian component (so that the
supervector reduces to ordinary vectors) and then extend the simple case to the more
general case where the UBM has C mixtures.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

64 Machine Learning Models

3.3.1 Generative Model

Denote X = {x1, . . . ,xN } as a set of R-dimensional vectors. In factor analysis, xi’s are
assume to follow a linear-Gaussian model:

xi = m + Vzi + εi, i = 1, . . . ,N, (3.55)

where m is the global mean of vectors in X , V is a low-rank R × D matrix, zi is
a D-dimensional latent vector with prior density N (0,I), and εi is the residual noise
following a Gaussian density with zero mean and covariance matrix �. Figure 3.20
shows the graphical model of factor analysis.

Given the factor analysis model in Eq. 3.55 and the graphical model in Figure 3.20, it
can be shown that the marginal density of x is given by

p(x) =
∫

p(x|z)p(z)dz

=
∫

N (x|m + Vz,�)N (z|0,I)dz

= N (x|m,VVT + �).

(3.56)

Eq. 3.56 can be obtained by convolution of Gaussian [44] or by noting that p(x) is a
Gaussian. For the latter, we take the expectation of x in Eq. 3.55 to obtain:

E{x} = m.

Also, we take the expectation of (x − m)(x − m)T in Eq. 3.55 to obtain:

E{(x − m)(x − m)T} = E{(Vz + ε)(Vz + ε)T}
= VE{zzT}VT + E{εεT}
= VIVT + �

= VVT +�.

(3.57)

xi
zi

N

V

m

i

Figure 3.20 Graphical model of factor analysis.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.3 Factor Analysis 65

Eq. 3.56 and Eq. 3.57 suggest that x’s vary in a subspace of R
D with variability

explained by the covariance matrix VVT. Any deviations away from this subspace are
explained by �.

3.3.2 EM Formulation

Because there is no closed-form solution for V and �, they are estimated by the EM
algorithm. Although each iteration of EM should be started with the E-step followed
by the M-step, notationally, it is more convenient to describe the M-step first, assuming
that the posterior expectations have already been computed in the E-step.

In the M-step, we maximize the expectation of the complete likelihood. Denote ω =
{m,V,�} and ω′ = {m′,V′,�′} as the old and new parameter sets, respectively. Also
denote Z = {z1, . . . ,zN } as the latent factors of the FA model in Eq. 3.55. The E- and
M-steps iteratively maximize the expectation of the complete likelihood with respect to
the latent variables (see Section 2.2.2):

Q(ω′|ω) = Ez∼p(z|x){log p(X ,Z|ω′)|X ,ω}

= Ez∼p(z|x)

{∑
i
log

[
p
(
xi |zi,ω′)p(zi)

] ∣∣∣∣X ,ω
}

= Ez∼p(z|x)

{∑
i
log

[
N
(
xi |m′ + V′zi,�

′)N (zi |0,I)
] ∣∣∣∣X ,ω

}
.

(3.58)

To simplify notations, we drop the symbol (′) in Eq. 3.58, ignore the constant terms
independent of the model parameters, and replace expectation notation Ez∼p(z|x){z|x}
by 〈z|x〉, which results in

Q(ω) = −
∑

i

Ez∼p(z|x)

{
1

2
log |�| + 1

2
(xi − m − Vzi)

T�−1(xi − m − Vzi)

∣∣∣∣X ,ω
}

=
∑

i

[
−1

2
log |�| − 1

2
(xi − m)T�−1(xi − m)

]

+
∑

i

(xi − m)T�−1V 〈zi |xi〉 − 1

2

[∑
i

〈
zT
i VT�−1Vzi |xi

〉]
.

(3.59)

Using the following properties of matrix derivatives

∂aTXb
∂X

= abT

∂bTXTBXc
∂X

= BTXbcT + BXcbT

∂

∂A
log |A−1| = −(A−1)T

we have

∂Q

∂V
=
∑

i

�−1(xi − m)〈zT
i |xi〉 −

∑
i

�−1V
〈
zizT

i |xi

〉
. (3.60)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

66 Machine Learning Models

Setting ∂Q
∂V = 0, we have∑

i

V
〈
zizT

i |xi

〉
=
∑

i

(xi − m)〈zT
i |xi〉 (3.61)

V =
[∑

i

(xi − m)〈zi |xi〉T
][∑

i

〈
zizT

i |xi

〉]−1

. (3.62)

To find �, we evaluate

∂Q

∂�−1
= 1

2

∑
i

[
� − (xi − m)(xi − m)T

]
+
∑

i

(xi − m)〈zT
i |xi〉VT

− 1

2

∑
i

V〈zizT
i |xi〉VT.

Note that according to Eq. 3.61, we have

∂Q

∂�−1
= 1

2

∑
i

[
� − (xi − m)(xi − m)T

]
+
∑

i

(xi − m)〈zT
i |xi〉VT

− 1

2

∑
i

(xi − m)〈zT
i |xi〉VT.

Therefore, setting ∂Q

∂�−1 = 0 we have∑
i

� =
∑

i

[
(xi − m)(xi − m)T − (xi − m)〈zT

i |xi〉VT
]

.

Rearranging, we have

� = 1

N

∑
i

[
(xi − m)(xi − m)T − V〈zi |xi〉(xi − m)T

]
.

To compute m, we evaluate

∂Q

∂m
= −

∑
i

(
�−1m −�−1xi

)
+
∑

i

�−1V〈zi |xi〉.

Setting ∂Q
∂m = 0, we have

m = 1

N

N∑
i=1

xi,

where we have used the property
∑

i〈zi |xi〉 ≈ 0 when N is sufficiently large. This
property arises from the assumption that the prior of z follows a Gaussian distribution,
i.e., z ∼ N (0,I). Alternatively, we may take the expectation of 〈zi |xi〉 in Eq. 3.65(a) to
get this result.

In the E-step, we compute the posterior means 〈zi |xi〉 and posterior moments
〈zizT

i |xi〉. Let’s express the following posterior density in terms of its likelihood and
prior [45]:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.3 Factor Analysis 67

p(zi |xi,ω)

∝ p(xi |zi,ω)p(zi)

∝ exp

{
−1

2
(xi − m − Vzi)

T�−1(xi − m − Vzi) − 1

2
zT
i zi

}
∝ exp

{
zT
i VT�−1(xi − m) − 1

2
zT
i

(
I + VT�−1V

)
zi

}
.

(3.63)

Consider the following property of Gaussian distribution with mean μ
z

and covari-
ance Cz

N (z|μ
z
,Cz) ∝ exp

{
−1

2
(z − μ

z
)TC−1

z (z − μ
z
)

}
∝ exp

{
zTC−1

z μz
− 1

2
zTC−1

z z
}

.

(3.64)

Comparing Eq. 3.63 and Eq. 3.64, we obtain the posterior mean and moment as follows:

〈zi |xi〉 = L−1VT�−1(xi − m)

〈zizT
i |xi〉 = L−1 + 〈zi |xi〉〈zT

i |xi〉,
where L−1 = (I + VT�−1V)−1 is the posterior covariance matrix of zi , ∀i.

In summary, we have the following EM algorithm for factor analysis:

E-step:

〈zi |xi〉 = L−1VT�−1(xi − m) (3.65a)

〈zizT
i |xi〉 = L−1 + 〈zi |xi〉〈zi |xi〉T (3.65b)

L = I + VT�−1V (3.65c)

M-step:

m′ = 1

N

N∑
i=1

xi (3.65d)

V′ =
[

N∑
i=1

(xi − m′)〈zi |xi〉T
][

N∑
i=1

〈zizT
i |xi〉

]−1

(3.65e)

�′ = 1

N

{
N∑

i=1

[
(xi − m′)(xi − m′)T − V′〈zi |xi〉(xi − m′)T

]}
(3.65f)

Note that Eq. 3.65(a) and the Eq. 3.65(c) are the posterior mean and posterior precision
of the Bayesian general linear model [46, Eq.10.32 and Eq. 10.34].

3.3.3 Relationship with Principal Component Analysis

Both principal component analysis (PCA) and factor analysis (FA) are dimension reduc-
tion techniques. But they are fundamentally different. In particular, components in PCA
are orthogonal to each other, whereas factor analysis does not require the column vectors

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

68 Machine Learning Models

in the loading matrix to be orthogonal, i.e., the correlation between the factors could be
nonzero. Also, PCA finds a linear combination of the observed variables to preserve
the variance of the data, whereas FA predicts observed variables from theoretical latent
factors. Mathematically, if W = [w1 w2 · · · wM] is a PCA projection matrix in which
wj ’s are the eigenvectors of the data covariance matrix and V is an FA loading matrix,
we have

PCA : yi = WT(xi − m) and x̂i = m + Wyi

FA : xi = m + Vzi + εi,
(3.66)

where xi’s are observed vectors, x̂’s are PCA reconstructed vectors, yi’s are PCA-
projected vectors, zi’s are factors, and εi’ are residues.

Under specific conditions, FA becomes PCA. Consider the special situation in which
the covariance matrix of ε is diagonal and all elements in the diagonal are equals, i.e.,
� = σ2I. Then, Eq. 3.65(c) and Eq. 3.65(a) become

L = I + 1

σ2
VTV and 〈zi |xi〉 = 1

σ2
L−1VT(xi − m),

respectively. When σ2 → 0 and V is an orthogonal matrix, then L → 1
σ2 VTV and

〈zi |xi〉 → 1

σ2
σ2(VTV)−1VT(xi − m)

= V−1(VT)−1VT(xi − m)

= VT(xi − m).

(3.67)

Note that Eq. 3.67 has the same form as the PCA projection in Eq. 3.66 and that the
posterior covariance (L−1) of z becomes 0.

The analysis above suggests that PCA is a specific case of factor analysis in which
the covariances of residue noise ε collapse to zero. This means that in PCA, for a given
xi and W in Eq. 3.66, there is a deterministic yi . On the other hand, in factor analysis,
an xi can be generated by infinite combinations of zi and εi , as evident in Eq. 3.56.

The covariance matrix (VVT + �) of observed data in FA suggests that FA treats
covariances and variances of observed data separately. More specifically, the D column
vectors (factor loadings) of V in FA capture most of the covariances while the variances
of the individual components of x’s are captured by the diagonal elements of �. Note
that the diagonal elements in � can be different, providing extra flexibility in modeling
variances. On the other hand, because � → 0 in PCA, the first M principal components
attempt to capture most of the variabilities, including covariances and variances. As a
result, FA is more flexible in terms of data modeling.

3.3.4 Relationship with Nuisance Attribute Projection

If we write the projected vectors in Eq. 3.43 as follows:

−→μ (s) = μ̃(s) + U(UT−→μ (s))

= μ̃(s) + Ux(s), (3.68)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.4 Probabilistic Linear Discriminant Analysis 69

where the superscript s stands for speaker s and x(s) ≡ UT−→μ (s), then we may consider
NAP as a special case of factor analysis in which the loading matrix U is determined by
minimizing within-speaker covariance and x(s) is the factor that gives the appropriate
offset to produce −→μ (s). This factor analysis interpretation suggests that μ̃(s) is consid-
ered fixed for speaker s and that there is no intra-speaker variability for speaker s, i.e.,
all variability in −→μ (s) is due to the channel. As a result, NAP does not consider the prior
density of x(s) and does not have a speaker subspace to model inter-speaker variability.

3.4 Probabilistic Linear Discriminant Analysis

3.4.1 Generative Model

The Gaussian probabilistic LDA (PLDA) is the supervised version of FA. Consider a
data set comprising D-dimensional vectors X = {xij ;i = 1, . . . ,N;j = 1, . . . ,Hi}
obtained from N classes such that the ith class contains Hi vectors (e.g., i-vectors). The
i-vector xij is assumed to be generated by a factor analysis model:

xij = m + Vzi + εij, (3.69)

where m is the global mean of all i-vectors, V is the speaker loading matrix, zi is the
speaker factor (of the ith speaker), and εij is the residue that could not be captured by
the factor analysis model.

The class-specific vectors should share the same latent factor:

x̃i = m̃ + Ṽzi + ε̃i, x̃i,m̃ ∈ R
DHi, Ṽ ∈ R

DHi×M, ε̃i ∈ R
DHi, (3.70)

where x̃i = [xT
i1 · · · xT

iHi
]T, m̃ = [mT · · · mT]T, Ṽ = [VT · · · VT]T, and ε̃i =

[εT
i1 · · · εT

iHi
]T. Figure 3.21 shows the graphical representation of a Gaussian PLDA

model. Note that the key difference between the PLDA model in Figure 3.21 and the
FA model in Figure 3.20 is that in the former, for each i we have Hi observed vectors;
whereas for the latter, each i is associated with one observed vector only.

The E- and M-steps iteratively evaluate and maximize the expectation of the complete
likelihood:

Q(ω′|ω) = EZ {ln p(X ,Z|ω′)|X ,ω}

= EZ

{∑
ij

ln
[
p
(
xij |zi,ω′)p(zi)

] ∣∣∣∣X ,ω
}

= EZ

{∑
ij

ln
[
N
(
xij |m′ + V′zi,�

′)N (zi |0,I)
] ∣∣∣∣X ,ω

}
,

(3.71)

where the notation
∑

ij is a shorthand form of
∑N

i=1
∑Hi

j=1.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

70 Machine Learning Models

xij zi

N
Hi

V

m

ij

Figure 3.21 Graphical representation of a simplified Gaussian PLDA model in which the channel
variability is modeled by the full covariance matrix �. The prior of zi follows a standard
Gaussian distribution.

3.4.2 EM Formulations

Similar to Section 3.3.2, the auxiliary function can be simplified to

Q(ω) = −
∑
ij

EZ

{
1

2
log |�| + 1

2
(xij − m − Vzi)

T�−1(xij − m − Vzi)

}

=
∑
ij

[
−1

2
log |�| − 1

2
(xij − m)T�−1(xij − m)

]

+
∑
ij

(xij − m)T�−1V 〈zi |Xi〉 − 1

2

⎡⎣∑
ij

〈
zT
i VT�−1Vzi |Xi

〉⎤⎦ .

(3.72)

Taking the derivative of Q with respect to V, we have

∂Q

∂V
=
∑
ij

�−1(xij − m)〈zT
i |Xi〉 −

∑
ij

�−1V
〈
zizT

i |Xi

〉
. (3.73)

Setting ∂Q
∂V = 0, we have∑

ij

V
〈
zizT

i |Xi

〉
=
∑
ij

(xij − m)〈zT
i |Xi〉 (3.74)

V =
⎡⎣∑

ij

(xij − m)〈zi |Xi〉T
⎤⎦⎡⎣∑

ij

〈
zizT

i |Xi

〉⎤⎦−1

. (3.75)

To find �, we evaluate

∂Q

∂�−1
= 1

2

∑
ij

[
� − (xij − m)(xij − m)T

]
+
∑
ij

(xij − m)〈zT
i |Xi〉VT

− 1

2

∑
ij

V〈zizT
i |Xi〉VT.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.4 Probabilistic Linear Discriminant Analysis 71

Note that according to Eq. 3.61, we have

∂Q

∂�−1
= 1

2

∑
ij

[
� − (xij − m)(xij − m)T

]
+
∑
ij

(xij − m)〈zT
i |Xi〉VT

− 1

2

∑
ij

(xij − m)〈zT
i |Xi〉VT.

Therefore, setting ∂Q

∂�−1 = 0 we have

∑
ij

� =
∑
ij

[
(xij − m)(xij − m)T − (xij − m)〈zT

i |Xi〉VT
]

.

Rearranging, we have

� = 1∑
ij 1

∑
ij

[
(xij − m)(xij − m)T − V〈zi |Xi〉(xij − m)T

]
.

To compute m, we evaluate

∂Q

∂m
= −

∑
ij

(
�−1m −�−1xij

)
+
∑
ij

�−1V〈zi |Xi〉.

Setting ∂Q
∂m = 0, we have

m =
∑N

i=1
∑Hi

j=1 xij∑N
i=1

∑Hi

j=1 1
,

where we have used the property
∑

i〈zi |Xi〉 ≈ 0 when the number of training
speakers is sufficiently large. This property arises from the assumption that the factors
z ∼ N (0,I).

In the E-step, we compute the posterior means 〈zi |Xi〉 and posterior moments
〈zizT

i |Xi〉, where Xi denotes the i-vectors of speaker i. Let’s express the following
posterior density in terms of its likelihood and prior:

p(zi |xi1, . . . ,xiHi
,ω)

∝
Hi∏

j=1

p(xij |zi,ω)p(zi)

∝ exp

⎧⎨⎩−1

2

∑
j

(xij − m − Vzi)
T�−1(xij − m − Vzi) − 1

2
zT
i zi

⎫⎬⎭
= exp

⎧⎨⎩zT
i VT

∑
j

�−1(xij − m) − 1

2
zT
i

⎛⎝I +
∑
j

VT�−1V

⎞⎠ zi

⎫⎬⎭ .

(3.76)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

72 Machine Learning Models

Consider the following property of Gaussian distribution with mean μ
z

and covari-
ance Cz

N (z|μ
z
,Cz) ∝ exp

{
−1

2
(z − μ

z
)TC−1

z (z − μ
z
)

}
∝ exp

{
zTC−1

z μz
− 1

2
zTC−1

z z
}

.

(3.77)

Comparing Eq. 3.76 and Eq. 3.77, we obtain the posterior mean and moment as follows:

〈zi |Xi〉 = L−1
i VT

Hi∑
j=1

�−1(xij − m) (3.78)

〈zizT
i |Xi〉 = L−1

i + 〈zi |Xi〉〈zT
i |Xi〉 (3.79)

where Li = I +∑
j VT�−1V.

In summary, the EM algorithm for PLDA is as follows [47]:

E-step:

〈zi |Xi〉 = L−1
i VT�−1

∑Hi

j=1
(xij − m)

〈zizT
i |Xi〉 = L−1

i + 〈zi |Xi〉〈zi |Xi〉T
Li = I + HiVT�−1V

M-step:

V′ =
⎡⎣ N∑

i=1

Hi∑
j=1

(xij − m′)〈zi |Xi〉T
⎤⎦⎡⎣ N∑

i=1

Hi∑
j=1

〈zizT
i |Xi〉

⎤⎦−1

m′ =
∑

ij xij∑
i Hi

�′ = 1∑N
i=1 Hi

⎧⎨⎩
N∑

i=1

Hi∑
j=1

[
(xij − m′)(xij − m′)T − V′〈zi |Xi〉(xij − m′)T

]⎫⎬⎭

(3.80)

3.4.3 PLDA Scoring

PLDA is by far the most popular back end for speaker verification. Typically, it accepts
an i-vector (see Section 3.6) pair or more recently x-vector (see Section 5.2.1) pairs
as input and produces a score that quantifies how likely the pair comes from the same
speaker against the likelihood that the pair is from two different speakers.

Given a test i-vector xt and target-speaker’s i-vector xs , we need to test the hypothesis
H0 that both i-vectors come from the same speaker against the alternative hypothesis
that they belong to different speakers. Using the notations in Eq. 3.55, we have

H0 : Same speaker

{
xs = m + Vz + εs
xt = m + Vz + εt (3.81)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.4 Probabilistic Linear Discriminant Analysis 73

H1 : Different speakers

{
xs = m + Vzs + εs
xt = m + Vzt + εt (3.82)

Note that the speaker factor z is the same for both i-vectors in H0, whereas they are dif-
ferent in H1. This hypothesis testing problem can be solved by evaluating the likelihood
ratio score:

SLR(xs,xt) = p(xs,xt |same-speaker)

p(xs,xt |different-speakers)

=
∫

p(xs,xt,z|ω)dz∫
p(xs,zs |ω)dzs

∫
p(xt,zt |ω)dzt

=
∫

p(xs,xt |z,ω)p(z)dz∫
p(xs |zs,ω)p(zs)dzs

∫
p(xt |zt,ω)p(zt)dzt

=
N
([

xT
s xT

t

]T ∣∣∣m̂,�̂
)

N
([

xT
s xT

t

]T ∣∣∣m̂,diag{�,�}
) (3.83)

where m̂ = [
mT,mT

]T
, �̂ = V̂V̂T + �̂, V̂ = [

VT VT
]T

, �̂ = diag {�,�}, and
� = VVT+�. Because both the numerator and denominator of Eq. 3.83 are Gaussians,
it can be simplified as follows:

log SLR(xs,xt) = logN
([

xs

xt

] ∣∣∣∣ [m
m

]
,

[
�tot �ac

�ac �tot

])
− logN

([
xs

xt

] ∣∣∣∣ [m
m

]
,

[
�tot 0

0 �tot

])
, (3.84)

where �tot = VVT + � and �ac = VVT. Since m is a global offset that can be
precomputed and removed from all i-vectors, we set it to zero and expand Eq. 3.84 to
obtain:

log SLR(xs,xt) = −1

2

[
xs

xt

]T[
�tot �ac

�ac �tot

]−1[
xs

xt

]
+ 1

2

[
xs

xt

]T[
�tot 0

0 �tot

]−1[
xs

xt

]
+ const

= −1

2

[
xs

xt

]T[
(�tot −�ac�

−1
tot�ac)−1 −�−1

tot�ac(�tot − �ac�
−1
tot�ac)−1

−(�tot −�ac�
−1
tot�ac)−1�ac�

−1
tot (�tot −�ac�

−1
tot�ac)−1

][
xs

xt

]

+ 1

2

[
xs

xt

]T[
�−1

tot 0

0 �−1
tot

][
xs

xt

]
+ const

= 1

2

[
xs

xt

]T[
�−1

tot− (�tot− �ac�
−1
tot�ac)−1 �−1

tot�ac(�tot− �ac�
−1
tot�ac)−1

�−1
tot�ac(�tot−�ac�

−1
tot�ac)−1 �−1

tot− (�tot − �ac�
−1
tot�ac)−1

][
xs

xt

]
+const

= 1

2

[
xT
s xT

t

][Q P
P Q

][
xs

xt

]
+ const

= 1

2
[xT

s Qxs + xT
s Pxt + xT

t Pxs + xT
t Qxt] + const

= 1

2
[xT

s Qxs + 2xT
s Pxt + xT

t Qxt] + const, (3.85)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

74 Machine Learning Models

where

Q = �−1
tot − (�tot −�ac�

−1
tot�ac)−1,

P = �−1
tot�ac(�tot − �ac�

−1
tot�ac)−1.

(3.86)

Eq. 3.83 suggests that instead of using a point estimate of the latent variable z, the
verification process marginalizes the joint density of the latent and observed variables
over the latent variables. Instead of the actual value of the latent variable, the verification
process considers the likelihood that the two i-vectors share the same latent variable
[17]. Therefore, the verification score can be interpreted as the likelihood ratio between
the test and target speakers sharing the same latent variable and the likelihood that
they have different latent variables. As a result, a large score suggests that the two i-
vectors come from the same speaker (i.e., sharing the same latent variable) rather than
coming from two different speakers (i.e., having two distinct latent variables). Eq. 3.85
gives the PLDA score when there is only one enrollment i-vector per target speaker.
When there are multiple enrollment utterances per target speaker, we may either average
the corresponding enrollment i-vectors (so-called i-vector averaging) or average the
scores obtained by applying Eq. 3.85 to each of the enrollment i-vectors (so-called score
averaging).

While research has shown that in practice, i-vector averaging is a simple and effective
way to process multiple enrollment utterances [48], a more elegant approach is to derive
the exact likelihood ratio:

SLR(xs,1, . . . ,xs,R,xt) = p(xs,1, . . . ,xs,R,xt |H0)

p(xs,1, . . . ,xs,R,xt |H1)

= p(Xs,xt |H0)

p(Xs |H1)p(xt |H1)

= p(xt |Xs)

p(xt)
, (3.87)

where Xs = {xs,1, . . . ,xs,R} are R enrollment i-vectors from target-speaker s and xt

is an i-vector from a test speaker. Note that the numerator of Eq. 3.87 is a conditional
likelihood [49]

p(xt |Xs) = N
(

xt

∣∣m + V〈zs |Xs〉,VL−1
s VT +�

)
(3.88)

where 〈zs |Xs〉 and Ls are the posterior mean and posterior precision given by

〈zs |Xs〉 = L−1
s V�−1

R∑
r=1

(xs,r − m) (3.89a)

Ls = I + RVT�−1V. (3.89b)

Eq. 3.88 and Eq. 3.89 can be derived by noting that

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.4 Probabilistic Linear Discriminant Analysis 75

p(xt |Xs) =
∫

p(xt |zs)p(zs |Xs)dzs

=
∫

N (xt |m + Vzs,�)N (zs |〈zs |Xs〉,L−1
s)dzs

= N
(

xt

∣∣m + V〈zs |Xs〉,VL−1
s VT +�

) (3.90)

where the second Gaussian can be obtained by using Eq. 3.76. The marginal likeli-
hood in the denominator of Eq. 3.87 can be obtained by using Eq. 3.56, i.e., p(xt) =
N (xt |m,VVT +�).

Substituting Eq. 3.88 and the marginal likelihood p(xt) into Eq. 3.87, we have

SLR(Xs,xt) =
N
(
xt

∣∣m + V〈zs |Xs〉,VL−1
s VT + �

)
N (xt |m,VVT +�)

,

which can be viewed as the likelihood ratio between the speaker-adapted PLDA model
and the universal PLDA model.

The above derivation assumes that the i-vectors from the target speaker are con-
ditional independent, because the posterior mean and covariance matrix in Eq. 3.89
are derived from Eq. 3.76. If independency is not assumed, we may use the method
described in [48]. But, the method will be computationally intensive when the number
of enrollment utterances per speaker is large.

3.4.4 Enhancement of PLDA

A number of enhancements have been proposed to improve the performance of PLDA.
For example, Cumani et al. [50] propose to map the acoustic vectors of an utterance to a
posterior distribution of i-vectors rather than a single i-vector. The method is particularly
suitable for short utterances. Burget et al. [51] and Vasilakakis et al. [52] consider pairs
of i-vectors and formulate an SVM-style training procedure to train a PLDA model to
discriminate between same-speaker pairs and different-speaker pairs. Other approaches
include constraining the PLDA parameters [53], applying nonparametric discriminant
analysis before PLDA [54–56], and the use of between-speaker scatter as well as within-
speaker scatter in PLDA training [57].

3.4.5 Alternative to PLDA

As PLDA models are linear, attempts have been made to see if they can be replaced
by nonlinear models. Research has shown that deep belief networks can be used for
discriminating the i-vectors of target speakers from those of impostors [58]. In [59],
a binary restricted Boltzmann machine (RBM) was used to model the joint density of
target-speaker’s i-vectors and test i-vectors. Because RBMs can model the distribution
of arbitrary complexity, they are thought to be more powerful than the conventional
PLDA models.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

76 Machine Learning Models

Instead of using PLDA for scoring i-vectors, [58, 60] use a deep belief network (DBN)
with two output nodes to classify i-vectors into speaker-class and impostor-class. The
key idea is to use unsupervised training to train a universal DBN for all speakers. Then,
a layer comprising two output nodes is stacked on top of the universal DBN, followed
by backpropagation fine-tuning to minimize the cross-entropy error.

3.5 Heavy-Tailed PLDA

In the simplified Gaussian PLDA discussed in Section 3.5, the prior of the latent factor z
follows a standard Gaussian distribution. This means that the parameters of the prior are
assumed deterministic. The idea of PLDA in [17] can be extended to a fully Bayesian
model in which the parameters of the prior distribution are assumed random, with the
distribution of the hyper-parameters follow Gamma distributions [61]. In that case, z
follows a Student’s t distribution rather than a Gaussian distribution and the resulting
model is called heavy-tailed PLDA model.

3.5.1 Generative Model

Figure 3.22 shows the graphical model of the heavy-tailed PLDA. The generative model
is given by

xij = m + Vzi + εij (3.91)

zi ∼ N (0,u−1
i I) (3.92)

xij zi

N
Hi

V

m

ui n

ij

vij

Figure 3.22 Graphical representation of a heavy-tailed PLDA model in which the channel
variability is modeled by the full covariance matrix �. The prior of zi follows a Gaussian
distribution N (0,u−1

i
I), where ui follows a Gamma distribution with n degree of freedom. The

prior of εij follows a Gaussian distribution N (0,v−1
ij

�), where vij follows a Gamma
distribution with ν degree of freedom.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.5 Heavy-Tailed PLDA 77

εij ∼ N (0,v−1
ij �) (3.93)

ui ∼ G(n/2,n/2) (3.94)

vij ∼ G(ν/2,ν/2), (3.95)

where G(α/2,α/2) is a Gamma distribution with α degree of freedom and identical
scale and rate parameters. Note that because the latent variable u follows G(n/2,n/2),
zi follows a Student’s t distribution with n degree of freedom [1, Eq. 2.161]. Similar
argument applies to ε, i.e., ε ∼ T (0,�,ν) [62].

3.5.2 Posteriors of Latent Variables

Figure 3.22 suggests that given a set of training vectors Xi = {xij ;j = 1, . . . ,Hi} from
the ith speakers, the posteriors of the latent variables zi , ui , εij , and vij are dependent.
This means that p(zi,ui,εij,vij |Xi) cannot be factorized; as a result, we resort to using
variational Bayes [1]:

log p(zi,ui,εij,vij |Xi) ≈ log q(zi) + log q(ui) + log q(εij) + log q(vij). (3.96)

We denote the combined latent variables as hi = {zi,ui,vi},6 where vi = [vi1 . . . viHi
]T.

To find q()’s, we apply variational Bayes:

log q(zi) = Eq(hi\zi) log p(Xi,hi) + const (3.97a)

log q(ui) = Eq(hi\ui) log p(Xi,hi) + const (3.97b)

log q(vij) = Eq(hi\vij) log p(Xi,hi) + const, (3.97c)

where the notation Eq(hi\zi) means taking expectation with respect to all latent vari-
ables except zi , using q(ui)q(vi) as the density. Similar meaning applies to other latent
variables.

Using Figure 3.22, we may express log p(Xi,hi) as follows:

log p(Xi,hi) = log p(Xi |zi,εij)p(zi |ui)p(ui)
Hi∏

j=1

p(εij |vij)p(vij)

= −1

2

⎡⎣ Hi∑
j=1

vij (xij − m − Vzi)
T�−1(xij − m − Vzi)

⎤⎦
+ M

2
log ui − ui

2
zT
i zi + logG(ui |n/2,n/2)

+ D

2

Hi∑
j=1

log vij − 1

2

Hi∑
j=1

vij εT
ij�

−1εij +
Hi∑

j=1

logG(vij |ν/2,ν/2)

+ const,

(3.98)

6 Note that εij is not part of the latent variables because it can be determined from zi , i.e.,
εij = xij − m − Vzi .

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

78 Machine Learning Models

where M is the dimension of zi and

G(ui |n/2,n/2) = 1

�(n
2)

(n

2

) n
2
u

n
2−1
i e−

n
2 ui (3.99)

is a Gamma distribution. The constant term in Eq. 3.98 absorbs the terms that do not
contain the latent variables.

Substituting Eq. 3.98 to Eq. 3.97(a), we have

log q(zi) = −1

2

⎡⎣ Hi∑
j=1

(xij − m − Vzi)
T〈vij 〉�−1(xij − m − Vzi)

⎤⎦
− 1

2
〈ui〉zTz + const,

(3.100)

where “const” absorbs all terms independent of z and 〈x〉 is the shorthand form for
the expectation of x using the variational posterior q(x) as the density function, i.e.,
〈x〉 ≡ Eq(x){x}. Note that we have used the factorization property of variational Bayes
in Eq. 3.96 to derive Eq. 3.100. Using the same technique as in Eq. 3.76 and Eq. 3.77,
we obtain the posterior mean and posterior covariance of zi as follows:

〈zi〉 =
⎛⎝〈ui〉I +

Hi∑
j=1

〈vij 〉VT�−1V

⎞⎠−1⎛⎝ Hi∑
j=1

〈vij 〉VT�−1(xij − m)

⎞⎠
Cov(zi,zi) =

⎛⎝〈ui〉I +
Hi∑

j=1

〈vij 〉VT�−1V

⎞⎠−1

,

(3.101)

where 〈ui〉 and 〈vij 〉 are the posterior means of ui and vij , respectively. Note that q(zi) is
a Gaussian distribution with mean 〈zi〉 and convariance matrix Cov(zi,zi) even though
ui and vij follow Gamma distributions.

Substituting Eq. 3.98 to Eq. 3.97(b), we have

log q(ui) = M

2
log ui − ui

2
〈zT

i zi〉 +
(n

2
− 1

)
log ui − n

2
ui + const

=
(

n+ M

2
− 1

)
log ui −

(
n+ 〈zT

i zi〉
2

)
ui + const,

(3.102)

where the const term absorbs all terms independent of ui . Eq. 3.102 is the logarithm of
a Gamma distribution with shape α and rate β given by

α = n +M

2
and β = n+ 〈zT

i zi〉
2

. (3.103)

As q(ui) is an approximation of the posterior density of ui , the posterior mean 〈ui〉 in
Eq. 3.101 can be computed as follows:

〈ui〉 = Eq(ui){ui} = αβ−1 = n+ M

n + 〈zT
i zi〉

. (3.104)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.5 Heavy-Tailed PLDA 79

Substituting Eq. 3.98 to Eq. 3.97(c), we have

log q(vij) = D

2
log vij − 1

2
vij 〈εT

ij�
−1εij 〉zi

+
(ν

2
− 1

)
log vij − ν

2
vij + const

=
(
ν + D

2
− 1

)
log vij −

(
ν + 〈εT

ij�
−1εij 〉zi

2

)
vij + const,

(3.105)

where D is the dimensionality of xij and 〈·〉zi
means taking expectation with respect to

the approximated posterior q(zi). Eq. 3.105 is the logarithm of a Gamma distribution
with shape α and rate β given by

α = ν +D

2
and β =

ν + 〈εT
ij�

−1εij 〉zi

2
.

The posterior mean of vij in Eq. 3.101 is given by

〈vij 〉 = Eq(vij){vij } = ν +D

ν + 〈εT
ij�

−1εij 〉zi

. (3.106)

The remaining posterior expectation is 〈εT
ij�

−1εij 〉zi
. To compute this posterior

expectation, we leverage the symmetry of �−1 [63, Eq. 318]:

〈εT
ij�

−1εij 〉zi
= Tr{�−1Cov(εij,εij)} + 〈εij 〉Tzi

�−1〈εij 〉zi
.

Because εij = xij − m − Vzi , we have

〈εij 〉zi
= xij − m − V〈zi〉

Cov(εij,εij) = VCov(zi,zi)VT,

where Cov(zi,zi) and 〈zi〉 can be obtained from Eq. 3.101.

3.5.3 Model Parameter Estimation

Denote the model parameter of a heavy-tailed PLDA model as ω = {m,V,�,n,ν}.
Also denote H = {zi,ui,vij ;i = 1, . . . ,N;j = 1, . . . ,Hi} as the set of latent variables
associated with the training vectors X = {X1, . . . ,XN }, where Xi = {xi1, . . . ,xiHi

}.
Similar to PLDA, the model parameter can be estimated by maximizing the following

auxiliary function:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

80 Machine Learning Models

Q(ω′|ω) = EH{ln p(X ,H|ω′)} (3.107a)

= EH

⎧⎨⎩∑
ij

log p(xij |zi,ui,vij,ω′)p(zi |ui,ω′)p(ui |ω′)p(vij |ω′)

⎫⎬⎭ (3.107b)

= EH

⎧⎨⎩∑
ij

logN (xij |m′ + V′zi,v
−1
ij �′)

⎫⎬⎭+ EH

⎧⎨⎩∑
ij

logN (zi |0,u−1
i I)

⎫⎬⎭
+ EH

⎧⎨⎩∑
ij

logG(ui |n/2,n/2)G(vij |ν/2,ν/2)

⎫⎬⎭ . (3.107c)

When estimating m, V, and �, the second and third terms in Eq. 3.107 can be dropped
because they do not contain these model parameters. Therefore, we may follow the
derivation in Section 3.4.2 to obtain the parameter update formulae (M-step) as follows:

V′ =
⎡⎣ N∑

i=1

Hi∑
j=1

〈vij 〉(xij − m′)〈zi〉T
⎤⎦⎡⎣ N∑

i=1

Hi∑
j=1

〈vij 〉〈zizT
i 〉
⎤⎦−1

(3.108a)

m′ =
∑

ij 〈vij 〉xij∑
ij 〈vij 〉 (3.108b)

�′ = 1∑N
i=1 Hi

⎧⎨⎩
N∑

i=1

Hi∑
j=1

〈vij 〉
[
(xij − m′)(xij − m′)T − V′〈zi〉(xij − m′)T

]⎫⎬⎭
(3.108c)

The degrees of freedom n can be estimating by minimizing the sum of the KL-
divergence:

d(n) =
N∑

i=1

DKL(G(αi,βi)‖G(n/2,n/2))

=
N∑

i=1

[
log

�(n/2)

�(αi)
+ αi log βi +

(
αi − n

2

)
(ψ(αi) − log βi) + αi

βi

(n

2
− βi

)]
− nN

2
log

n

2
,

where αi and βi are Gamma distribution parameters obtained from Eq. 3.103, �(αi) is
the gamma function, and

ψ(x) = ∂

∂x
log �(x) = �′(x)

�(x)

is the digamma function. We may use the following properties to simplify d(n):

〈ui〉 = αiβ
−1
i and 〈log ui〉 = ψ(αi) − log βi . (3.109)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.5 Heavy-Tailed PLDA 81

Also, consolidating terms in d(n) that are independent of n as a constant term, we have

d(n) = N log �(n/2) +
N∑

i=1

[
−n

2
〈log ui〉 + 〈ui〉n

2

]
− nN

2
log

n

2
+ const.

Setting the derivative of d(n) to 0, we have

N
�′(n/2)

�(n/2)
+

N∑
i=1

[−〈log ui〉 + 〈ui〉
]−N log

n

2
−N = 0,

which is equivalent to

Nψ
(n

2

)
+

N∑
i=1

[−〈log ui〉 + 〈ui〉
]− N log

n

2
−N = 0. (3.110)

The optimal value of n can be found by applying line search on Eq. 3.110. The value of
ν can be found similarly. Specifically, line search is applied to

N ′ψ
(ν

2

)
+

N∑
i=1

Hi∑
j=1

[−〈log vij 〉 + 〈vij 〉
]− N ′ log

ν

2
− N ′ = 0, (3.111)

where N ′ =∑N
i=1 Hi .

3.5.4 Scoring in Heavy-Tailed PLDA

Similar to the Gaussian PLDA in Section 3.4.3, scoring in heavy-tailed PLDA also
involves the computation of a likelihood ratio score

SLR(xs,xt) = p(xs,xt |H1)

p(xs |H0)p(xt |H0)
, (3.112)

where H1 and H0 are the hypotheses that the input vectors xs and xt are from the same
speaker and from different speakers, respectively. But unlike the Gaussian PLDA in Eq.
3.83, in heavy-tailed PLDA, there is no close form solution to the marginal likelihoods
in Eq. 3.112. Therefore, we need to define a tractable solution and use it as a proxy to
compute the marginal likelihoods. Let’s define

L = Eh∼q(h)

{
log

p(x,h)

q(h)

}
= Eh∼q(h){log p(x|h)} − Eh∼q(h)

{
log

q(h)

p(h)

}
= L1 + L2,

(3.113)

where x can be xs (target), xt (test), or [xT
s xT

t]T; h comprises all latent variables, i.e.,
h = {z,u,v}; and q(h) is the variational posterior of h. Note that L ≤ log p(x) with
equality holds when q(h) is equal to the true posterior p(h|x). Therefore, we may use L
as an approximation to the marginal likelihood p(x).

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

82 Machine Learning Models

L1 can be obtained from Eq. 3.98 by dropping all the prior over the latent variables:

L1 = Eh∼q(h){log p(x|z,u,v,ω)}
= Eh∼q(h){logN (x|m + Vz,v−1�)}
= D

2
〈log v〉 − D

2
log 2π − 1

2
log |�| − 1

2
〈v〉〈εT�−1ε〉,

(3.114)

where ε = x−m−Vz and 〈·〉 stands for expectation with respect to the latent variables
using q(h) as the density. The posterior expectation 〈v〉 can be obtained from Eq. 3.106
and 〈log v〉 can be computed by replacing u by v in Eq. 3.109 as follows:

〈log v〉 = ψ

(
ν + D

2

)
− log

(
ν + εT�−1ε

2

)
.

As L2 is the negative of the Kullback–Leibler divergence from q(h) to p(h) and the
variational posteriors are factorizable, we have

L2 = −DKL(q(z,u,v)‖p(z,u,v))

= −DKL(q(z,u)q(v)||p(z,u)p(v))

= − [DKL(q(z,u)‖p(z,u)) +DKL(q(v)‖p(v))
]

= − [DKL(q(u)‖p(u)) + Eu∼p(u){DKL(q(z|u)‖p(z|u))} +DKL(q(v)‖p(v))
]

= − [DKL(q(u)‖p(u)) + Eu∼p(u){DKL(q(z)‖p(z|u))} +DKL(q(v)‖p(v))
]
(3.115)

where we have used the chain rule of KL-divergence7 and the notation q(z) ≡ q(z|u).
Note that we have also used the fact p(v|z,u) = p(v) and Ep(z,u)p(v) = p(v) in Line 3
of Eq. 3.115.

The distributions in Eq. 3.115 can be obtained from the posteriors and priors of the
latent variables as follows:

q(u) = G
(

n+M

2
,
n + 〈zT

i zi〉
2

)
(3.116a)

p(u) = G
(n

2
,
n

2

)
(3.116b)

q(v) = G
(
ν +D

2
,
ν + 〈εT

ij�
−1εij 〉

2

)
(3.116c)

p(v) = G
(ν

2
,
ν

2

)
(3.116d)

q(z) = N (〈z〉,Cov(z,z)) (3.116e)

p(z|u) = N
(

0,u−1I
)

. (3.116f)

Note that the KL-divergence between two Gamma distributions and between two Gaus-
sian distributions are [64, 65]:

7 DKL(q(x,y)‖p(x,y)) = DKL(q(x)‖p(x)) + Ex∼p(x){DKL(q(y|x)‖p(y|x))}.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 83

DKL

(
N (μ

q
,�q)‖N (μ

p
,�p)

)
= 1

2

[
log

|�p|
|�q | + Tr{�−1

p �q} + (μ
q
− μ

p
)T�−1

p (μ
q
− μ

p
) −D

]
(3.117a)

DKL
(
G(αq,βq)‖G(αp,βp)

)
= αp log

βq

βp

− log
�(αq)

�(αp)
+ (αq − αp)ψ(αq) − (βq − βp)

αq

βq

. (3.117b)

Using these KL-divergence, the second term in Eq. 3.115 is given by

Eu∼p(u){DKL(q(z)‖p(z|u))}
= 1

2

[
−D〈log u〉 − log |Cov(z,z)| + Tr{〈u〉Cov(z,z)} + 〈u〉〈z〉T〈z〉 −D

]
.

The first and the third terms in Eq. 3.115 can be computed similarly using Eq. 3.117(b)
and Eq. 3.116.

3.5.5 Heavy-Tailed PLDA versus Gaussian PLDA

While the training and scoring of heavy-tailed PLDA are more complicated and com-
putationally expensive than Gaussian PLDA, in speaker recognition, the former is pro-
posed earlier than the latter. In fact, Kenny has shown in [61] that heavy-tailed PLDA
performs better than Gaussian PLDA if no preprocessing is applied to the i-vectors.
However, in 2011, Garcia-Romero and Espy-Wilson [66] discovered that if i-vectors
are Gaussianized by length-normalization, Gaussian PLDA can perform as good as
heavy-tailed PLDA. Since then, Gaussian PLDA became more popular than heavy-
tailed PLDA.

In 2018, Silnova et al. [67] proposed a method that leverage the more exact modeling
of heavy-tailed PLDA but with the computation advantage of Gaussian PLDA. With
heavy-tailed PLDA, length-normalization, which may remove some speaker informa-
tion, is no longer needed. The main idea is based on the observation that the con-
ditional distribution of i-vectors given the speaker factor z is proportional to another
t-distribution with degrees of freedom n′ = n+D−M . If n′ is large, the distribution is
practically a Gaussian. In practice, D is about 500 and M is 150. As a result, n′ is large
enough to make the conditional distribution of x Gaussian. This approximation allows
the computation of the joint variational posterior q(vi) in Eq. 3.105 independent of the
speaker factor zi , which results in a very fast E-step.

3.6 I-Vectors

I-vectors are based on factor analysis in which the acoustic features (typically MFCC
and log-energy plus their first and second derivatives) are generated by a Gaussian
mixture model (GMM). Since its first appeared [16], it has become the de facto method
for many text-independent speaker verification systems. Although i-vectors were orig-

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

84 Machine Learning Models

inally proposed for speaker verification, they have been found useful in many other
applications, including speaker diarization [68], voice activity detection [69], language
recognition [70], and ECG classification [71].

3.6.1 Generative Model

Given the ith utterance, we extract the F -dimensional acoustic vectors Oi =
{oi1, . . . ,oiTi

} from the utterance, where Ti is the number of frames in the utterance. We
assume that the acoustic vectors are generated by an utterance-dependent GMM with
parameters �i = {πc,μic

,�c}Cc=1, i.e.,

p(oit) =
C∑

c=1

π(b)
c N (oit |μic

,�(b)
c), t = 1, . . . ,Ti, (3.118)

where C is the number of mixtures in the GMM. For simplicity, we assume that λ(b)
c and

�
(b)
c are tied across all utterances and are equal to the mixture weights and covariance

matrices of the universal background model (UBM), respectively.
In the i-vector framework [16], the supervector representing the ith utterance is

assumed to be generated by the following factor analysis model [1]:8

μ
i
= μ(b) + Twi (3.119)

where μ(b) is obtained by stacking the mean vectors of the UBM, T is a CF × D low-
rank total variability matrix modeling the speaker and channel variability, and wi ∈ R

D

comprises the latent (total) factors. Eq. 3.119 suggests that the generated supervectors
μ

i
’s have mean μ(b) and convariance matrix TTT. Eq. 3.119 can also be written in a

component-wise form:

μ
ic
= μ(b)

c
+ Tcwi, c = 1, . . . ,C (3.120)

where μ
ic
∈ R

F is the cth sub-vector of μ
i

(similarly for μ(b)
c

) and Tc is an F ×D sub-
matrix of T. Figure 3.23 shows the graphical representation of this generative model.

In [45], it was assumed that for every speaker s, the acoustic vectors (frames) aligning
to the cth mixture component have mean μ

sc
and covariance �

(b)
c . In the case of i-

vectors, every utterance is assumed to be spoken by a different speaker. As a result,
the frames of utterance i aligning to mixture c have mean μ

ic
and covariance matrix

�
(b)
c . This matrix measures the deviation of the acoustic vectors – which are aligned to

the cth mixture – from the utterance-dependent mean μ
ic

. A super-covariance matrix,
denoted as �(b), can be formed by packing the C covariance matrices, i.e., �(b) =
diag{�(b)

1 , . . . ,�
(b)
C }. In the i-vector framework, model estimation amounts to finding

the parameter set � = {μ(b),T,�(b)}. In practice, μ(b) and �(b) are the mean vectors
and covariance matrices of the UBM.

Note that unlike Eq. 3.55, Eq. 3.119 and Eq. 3.120 do not have the residue terms εi
and εic, respectively. This is because the FA model in Eq. 3.119 aims to generate the
supervector μ

i
. If the supervector is observed, e.g., an GMM-supervector obtained from

8 To simplify notations, from now on, we drop the over-arrow symbol (−→) in the supervectors.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 85

oit

Ti

{µc
(b), Tc}c=1

C

i,t{ c
(b)}c=1

C

µ ic

C

N

wi

{ c
(b)}c=1

C

I-vector

Figure 3.23 Graphical representation of the factor analysis model for i-vector extraction.
�i,t = [�i,t,1 . . . �i,t,c . . . �i,t,C]T are the mixture labels in one-hot encoding. The prior of wi

is assumed to be a standard Gaussian.

the MAP adaptation, an residue term will need to be added to Eq. 3.119 to represent the
difference between the observed and the generated supervectors.

There is a close relationship between the residue covariance matrix � in Eq. 3.56
and the component-wise covariance matrices �

(b)
c described above. Given the acoustic

vectors Oi of the ith utterance, we can compute the posterior mean (see Section 3.6.2),
〈wi |Oi〉. Then, the density of μ

ic
in Eq. 3.120 is N (μ

ic
|μ(b)

c
+ Tc〈wi |Oi〉,�(b)

c). Here,
the deviations of the acoustic vectors from the mean (μ(b)

c
+Tc〈wi |Oi〉) are specified by

�
(b)
c . In Eq. 3.55, these deviations are represented by ε whose covariance matrix is �.

3.6.2 Posterior Distributions of Total Factors

Given an utterance with acoustic vectors Oi , the i-vector xi representing the utterance
is the posterior mean of wi , i.e., xi = 〈wi |Oi〉. To determine xi , we may express the
joint posterior density of wi and indicator variables �i,t,c’s, where t = 1, . . . ,Ti and
c = 1, . . . ,C. The indicator variable �i,t,c specifies which of the C Gaussians generates
oit . More specifically, �i,t,c = 1 if the cth mixture generates oit ; otherwise, �i,t,c = 0.
The joint posterior density can be expressed in terms of wi using the Bayes rule:

p(wi,�i,·,·|Oi) ∝ p(Oi |wi,�i,·,· = 1)p(�i,·,·)p(wi)

=
T∏

t=1

C∏
c=1

[
πcp(oit |�i,t,c = 1,wi)

]�i,t,c p(wi) [1, Eq. 9.38]

= p(wi)
T∏

t=1

C∏
c=1

[
N (oit |μ(b)

c
+ Tcwi,�

(b)
c)
]�i,t,c

︸ ︷︷ ︸
∝ p(wi |Oi)

π
�i,t,c
c , (3.121)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

86 Machine Learning Models

where �i,·,· means all possible combinations of t and c for utterance i. In Eq. 3.121, we
have used the fact that for each (i,t)-pair, only one of the �i,t,c for c = 1, . . . ,C equals
to 1, the rest are zeros. Extracting terms depending on wi from Eq. 3.121, we obtain

p(wi |Oi)

∝ exp

⎧⎨⎩−1

2

C∑
c=1

∑
t∈Hic

(oit − μ(b)
c

− Tcwi)
T(�(b)

c)−1(oit − μ(b)
c

− Tcwi) − 1

2
wT

i wi

⎫⎬⎭
= exp

⎧⎨⎩wT
i

C∑
c=1

∑
t∈Hic

TT
c (�(b)

c)−1(oit − μ(b)
c

)

−1

2
wT

i

⎛⎝I +
C∑

c=1

∑
t∈Hic

TT
c (�(b)

c)−1Tc

⎞⎠wi

⎫⎬⎭ ,

(3.122)

where Hic comprises the frame indexes for which oit aligned to mixture c. Comparing
Eq. 3.122 with Eq. 3.77, we obtain the following posterior expectations:

〈wi |Oi〉 = L−1
i

C∑
c=1

∑
t∈Hic

TT
c

(
�(b)

c

)−1
(oit − μ(b)

c
)

= L−1
i

C∑
c=1

TT
c

(
�(b)

c

)−1 ∑
t∈Hic

(oit − μ(b)
c

) (3.123)

〈wiwT
i |Oi〉 = L−1

i + 〈wi |Oi〉〈wT
i |Oi〉, (3.124)

where

Li = I +
C∑

c=1

∑
t∈Hic

TT
c (�(b)

c)−1Tc. (3.125)

Note that when C = 1 (i.e., the UBM has one Gaussian only), Eq. 3.123 reduces to
the posterior mean of the latent factor in the PLDA model in Eq. 3.78. This means that
the factor analysis model in PLDA is a special case of the more general factor analysis
model in i-vectors.

In Eq. 3.123 and Eq. 3.125, the sum over Hic can be evaluated in two ways:

(1) Hard Decisions. For each t , the posterior probabilities of �i,t,c, for c = 1, . . . ,C,
are computed. Then, oit is aligned to mixture c∗ when

c∗ = argmax
c

γ(�i,t,c),

where

γ(�i,t,c) ≡ Pr(Mixture = c|oit)

= π(b)
c N (oit |μ(b)

c
,�

(b)
c)∑C

j=1 π
(b)
j N (oit |μ(b)

j ,�
(b)
j)

, c = 1, . . . ,C
(3.126)

are the posterior probabilities of mixture c given oit .

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 87

(2) Soft Decisions. Each frame is aligned to all of the mixtures with degree of align-
ment according to the posterior probabilities γ(�i,t,c). Then, we have

∑
t∈Hic

1 →
Ti∑

t=1

γ(�i,t,c)

∑
t∈Hic

(oit − μ(b)
c

) →
Ti∑

t=1

γ(�i,t,c)(oit − μ(b)
c

).

(3.127)

Eq. 3.127 results in the following Baum–Welch statistics:

Nic ≡
Ti∑

t=1

γ(�i,t,c) and f̃ic ≡
Ti∑

t=1

γ(�i,t,c)(oit − μ(b)
c

). (3.128)

3.6.3 I-Vector Extractor

Training of the total variability matrix involves estimating the total variability matrix
T using the EM algorithm. The formulation can be derived based on the EM steps in
Section 3.3. Specifically, using Eqs. 3.65, 3.123, and 3.124, the M-step for estimating
T is

Tc =
[∑

i
f̃ic〈wi |Oi〉T

] [∑
i
Nic〈wiwT

i |Oi〉
]−1

, c = 1, . . . ,C. (3.129)

Figure 3.24 shows the pseudo-code of training an i-vector extractor.
When estimating the TV matrix T, the likelihood of training data can also be max-

imized through minimizing the divergence [72]. The idea is to force the i-vectors to
follow the standard Gaussian prior. This can be achieved by performing the following
transformation after computing Tc in Eq. 3.129:

Tc ← TcL and 〈wi |Oi〉 ← L−1〈wi |Oi〉, (3.130)

where LLT is the Cholesky decomposition of 1
M

∑M
i=1〈wiwT

i |Oi〉, where M is the
number of training utterances. The advantage of performing these transformations is
the speedup of the convergence [73].

To extract the i-vector xi from an utterance with acoustic vectors Oi , we substitute
Eq. 3.128 into Eq. 3.123 and Eq. 3.125:

xi ≡ 〈wi |Oi〉 = L−1
i

C∑
c=1

TT
c

(
�(b)

c

)−1
f̃ic

= L−1
i TT(�(b))−1f̃i,

(3.131)

where f̃i = [f̃T
i1 · · · f̃T

iC]T and

Li = I +
C∑

c=1

NicTT
c (�(b)

c)−1Tc = I + TT(�(b))−1NiT, (3.132)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

88 Machine Learning Models

c = Nic Li
1 + xixi

T

i=1

M

c
R R

= fixi
T

i=1

M
CF R

Li = I+TT 1NiT Li
R R and T CF R

xi =Li
1TT 1fi xi

R

Ni =

Ni1IF F 0 0

0 Ni2IF F 0 0

0 0 0
0 0 NiCIF F CF CF

Tc = c c
1

for i = 1 : no. of training utterances

Randomize T CF R with submatrices denoted by Tc
F R , c =1,...,C

foreach iteration

end

end

M = no. of training utterances

Figure 3.24 The pseudo-code for computing the total variability matrix.

where Ni is a CF × CF block diagonal matrix containing NicI, c = 1, . . . ,C, as its
block diagonal elements.

Eq. 3.131 and Eq. 3.132 suggest that given a total variability matrix T, an UBM,
and an utterance with acoustic vectors Oi , the i-vector of the utterance can be extracted
by firstly aligning every frame in Oi with the UBM using Eq. 3.126 to compute the
mixture posteriors γ(�i,t,c)’s. These posteriors, together with the mean vectors in the
UBM, allow us to compute the zeroth and first-order sufficient statistics. Substituting
these statistics into Eq. 3.132 and Eq. 3.131 leads to the i-vector. Figure 3.25 shows the
procedure of i-vector extraction.

As will be discussed in Section 3.6.10, the posteriors γ(�i,t,c)’s do not have to be
computed by aligning individual frames with the UBM. In the senone i-vectors, the
mixture components c are replaced by senones and γ(�i,t,c)’s are replaced by senone
posteriors. The latter can be estimated by a phonetic-aware deep neural network. Note
that in senone i-vectors, a UBM is still required because Eq. 3.131 and Eq. 3.132
involve C covariance matrices. However, instead of computing these matrices through
the EM algorithm, we may compute these matrices using the senone posteriors and the
acoustic vectors in one iteration. Figure 3.26 shows the procedure of senone i-vector
extraction.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 89

Figure 3.25 The procedure of GMM i-vector extraction. For clarity, the utterance index i is
omitted.

Figure 3.26 The procedure of DNN senone i-vector extraction. For clarity, the utterance index i is
omitted.

3.6.4 Relation with MAP Adaptation in GMM–UBM

It can be shown that MAP adaptation in GMM–UBM [7] is a special case of the factor
analysis model in Eq. 3.119. Specifically, when T is a CF×CF diagonal matrix denoted
as D, then Eq. 3.119 can be rewritten as

μ
i
= μ(b) + Dzi . (3.133)

Using Eq. 3.131, we obtain the posterior mean of latent factor zi

〈zi |Oi〉 = L−1
i DT(�(b))−1f̃i,

where Oi comprises the MFCC vectors of utterance i. Define r as the relevance factor
in MAP adaptation such that rDT(�(b))−1D = I. Then, Eq. 3.132 becomes

Li = rDT(�(b))−1D + DT(�(b))−1NiD

= DT(�(b))−1(rI + Ni)D.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

90 Machine Learning Models

As a result, the offset to the UBM’s supervector μ(b) for utterance i is

D〈zi |Oi〉 = D
[
DT(�(b))−1(rI + Ni)D

]−1
DT(�(b))−1f̃i

= D
[
D−1(rI + Ni)

−1(�(b))D−T
]

DT(�(b))−1f̃i

= (rI + Ni)
−1f̃i .

(3.134)

Recall from Eq. 3.16 that given utterance i, the MAP adaptation of mixture c in
GMM–UBM is

μ
i,c

= αi,cEc(Oi) + (1 − αi,c)μ(b)
c

= Ni,c

Ni,c + r

fi,c
Ni,c

+ μ(b)
c

− Ni,c

Ni,c + r
μ(b)

c

= μ(b)
c

+ 1

Ni,c + r
(fi,c − Ni,cμ(b)

c
)

= μ(b)
c

+ (rI + Ni,c)−1f̃i,c,

(3.135)

where r is the relevance factor, Ni,c is the zeroth order sufficient statistics of mixture
c, and Ni,c = diag{Ni,c, . . . ,Ni,c} is the cth block of matrix Ni . Note that the offset to
UBM’s means in Eq. 3.135 is equivalent to Eq. 3.134.

3.6.5 I-Vector Preprocessing for Gaussian PLDA

It is necessary to preprocess the i-vectors before using the Gaussian PLDA because
it requires the i-vectors to follow a Gaussian distribution. Gaussianization of i-vectors
involves two steps. First, a whitening transform is applied to i-vectors:

xwht = WT(x − x̄), (3.136)

where W is the Cholesky decomposition of the within-class covariance matrix of i-
vectors [74], x̄ is the global mean of i-vectors, and xwht is the whitened i-vector. In the
second step, we apply a simple length-normalization to the whitened i-vectors:

xlen-norm = xwht

‖xwht‖ . (3.137)

It is a common practice to include LDA (or NDA) and within-class covariance nor-
malization (WCCN) [74] in the preprocessing steps. The whole preprocessing can be
written in a more concise form:

x ← P(x − x̄)

‖xwht‖ , (3.138)

where P denotes the transformation matrix that combines whitening, LDA and WCCN,
and x on the left of Eq. 3.138 is the preprocessed i-vector that is ready for PLDA
modeling.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 91

3.6.6 Session Variability Suppression

Because the total variability matrix T models not only the speaker variability but also
other variabilities in the acoustic vectors, it is important to remove the unwanted vari-
abilities in the i-vectors. This can be done by minimizing within-speaker scatter and
maximizing between-speaker scatter.

LDA+WCCN
A classical approach to session variability suppression is to apply linear discriminant
analysis (LDA) followed by within-class covariance normalization (WCCN). As shown
in Figure 3.27, given the utterances of a target speaker s and a test speaker t , the
verification score is the cosine of the angle between the two transformed vectors:

SCD(xs,xt) =
(
WTxs

) · (WTxt

)∥∥WTxs

∥∥ ∥∥WTxt

∥∥, (3.139)

where W is the combined LDA+WCCN transformation matrix.
The LDA+WCCN transformation matrix can be estimated by supervised learning as

follows. Denote A and B as the LDA and WCCN transformation matrices, respectively.
Therefore, the combined matrix is W = BA. To find A and B, we need a number of
training speakers, each providing a number of utterances (i-vectors). Assume that we
have K training speakers whose i-vectors are denoted as xn’s. To find A, we maximize
the between-speaker scatter and minimize the within-speaker scatter after the transfor-
mation. This can be achieved by maximizing the LDA criterion:

J (A) = Between-speaker scatter

Within-speaker scatter
= Tr

{(
ATSbA

) (
ATSwA

)−1
}

, (3.140)

Figure 3.27 Preprocessing of i-vectors for cosine-distance or PLDA scoring.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

92 Machine Learning Models

where Sb and Sw are respectively the between-speaker and within-speaker scatter
matrices

Sb =
K∑

k=1

Nk(x̄k − x̄)(x̄k − x̄)T (3.141a)

Sw =
K∑

k=1

∑
n∈Ck

(xn − x̄k)(xn − x̄k)T. (3.141b)

In Eq. 3.141, x̄k is the mean i-vector of speaker k, x̄ is the global mean of i-vectors, Ck

comprises the utterance indexes of speaker k, and Nk is the number of samples in the
class k, i.e., Nk = |Ck|.

Eq. 3.140 can be framed as a constrained optimization problem:

maxA Tr{ATSbA}
subject to ATSwA = I,

(3.142)

where I is an M × M identity matrix. Denote A = [a1, . . . ,aK ′]. To find aj , j =
1, . . . ,K ′, we write the Lagrangian function as:

L(aj,λj) = aT
j Sbaj − λj (aT

j Swaj − 1),

where λj is a Lagrange multiplier. Setting ∂L
∂wj

= 0, we obtain the optimal solution of
aj , which satisfies

(S−1
w Sb)aj = λj aj .

Therefore, A comprises the first K ′ eigenvectors of S−1
w Sb. A more formal proof can

be find in [75]. As the maximum rank of Sb is K − 1, S−1
w Sb has at most K − 1

nonzero eigenvalues. As a result, K ′ can be at most K − 1. This suggests that for
practical systems, a few hundred training speakers are required. Figure 3.28 shows the
effect of LDA+WCCN on i-vectors. The diagram shows the projection of the original
i-vectors and the LDA+WCCN-projected i-vectors on a three-dimensional t-SNE space
[4]. Evidently, the LDA is very effective in separating the i-vectors of different speakers.

After finding A, all training i-vectors are transformed, i.e., ATxn, ∀n. Then, a within-
class covariance matrix is computed based on the LDA-transformed i-vectors:

Wwccn =
K∑

k=1

1

Nk

∑
n∈Ck

AT(xn − x̄k)(xn − x̄k)TA. (3.143)

Then, the matrix B can be obtained from the Cholesky decomposition of Wwccn, i.e.,
BBT = Wwccn.

Once we have matrices A and B, we may apply LDA+WCCN transformation on all
i-vectors, including test i-vectors as follows:

x ← WTx = BTATx.

As Eq. 3.142 suggests, LDA aims to maximize speaker discrimination. WCCN,
on the other hand, aims to inversely scale the LDA-projected space according to the

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 93

(a)

(b)

Figure 3.28 T-SNE plot of I-vectors (a) before and (b) after LDA+WCCN transformation. Each
marker type represents a speaker. The legend shows the speaker IDs.

within-speaker covariance matrix (Eq. 3.143). After the scaling, the directions of high
intra-speaker variability will be de-emphasized. Thus, WCCN has the effect of variance
normalization.

NDA
In LDA, it is assumed that samples in individual classes follow a Gaussian distribution.
It is also assumed that these samples share the same covariance matrix. Because the

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

94 Machine Learning Models

within-class and between-class scatter matrices are estimated empirically from training
data, their accuracy depends on a number of factors. One important factor is the accuracy
of the class-dependent means. Because in practical situation, the number of sessions per
training speaker is not very large and some speakers may only have a few sessions, some
of the class-dependent means could be very inaccurate. If the effect of these inaccurate
means is not suppressed, the performance of LDA will suffer.

To address the limitation of LDA, a nonparametric discriminant analysis (NDA)
[76] – which is originally proposed for face recognition – has successfully been applied
to speaker verification [55, 56].

As mentioned earlier, in LDA, the class-dependent means are used for computing the
within-class scatter matrix. On the other hand, in NDA, the class-dependent means are
replaced by the nearest neighbors to each training vector. Moreover, instead of using the
global mean and class-dependent means to compute the between-class scatter matrix,
NDA uses all of the training vectors and their nearest neighbors from other classes
to compute the between-class scatter matrix. It was found that this strategy is more
effective than LDA in capturing the structural information of speaker boundaries.

Denote xij as the jth length-normalized i-vector from speaker i. In NDA, the nonpara-
metric between-class and within-class scatter matrices are given by

SNDA
b =

S∑
i=1

S∑
r=1
r �=i

Kb∑
l=1

Ni∑
j=1

ω(i,r,l,j)(xij − ψl(xij,r))(xij − ψl(xij,r))T
(3.144)

and

SNDA
w =

S∑
i=1

Kw∑
l=1

Ni∑
j=1

(xij − ψl(xij,i))(xij − ψl(xij,i))
T, (3.145)

respectively. In Eq. 3.144 and Eq. 3.145, Ni is the number of i-vectors from the ith
speaker, S is the total number of speakers in the training set, ψl(xij,r) is the lth nearest
neighbor from speaker r to xij , and Kb and Kw are the number of nearest neighbors
selected for computing SNDA

b and SNDA
w , respectively.

The weighting term ω(i,r,l,j) in Eq. 3.144 is defined as:

ω(i,r,l,j) = min{dα(xij,ψl(xij,i)),dα(xij,ψl(xij,r))}
dα(xij,ψl(xij,i)) + dα(xij,ψl(xij,r))

= 1

1 + g(xij)α
, i �= r

(3.146)

where α controls the rate of change of the weight with respect to the distance ratio g(xij)
and d(xp,xq) is the Euclidean distance between vector xp and vector xq .

In Eq. 3.146, if dα(xij,ψl(xij,i)) < dα(xij,ψl(xij,r)), then

g(xij) = d(xij,ψl(xij,r))

d(xij,ψl(xij,i))
,

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 95

Figure 3.29 A two-dimensional example showing the within-class distance d(xij ,ψl(xij ,i)) [solid
lines] and the between-class distance d(xij ,ψl(xij ,r)) [dashed lines] and for the training
i-vectors xij from the ith speaker. For xi1 and xi2, the weighting function ω(·) in Eq. 3.146
approaches 0.5. For xi3, ω(·) approaches 0.0. [Reprinted from SNR-Invariant PLDA Modeling in
Nonparametric Subspace for Robust Speaker Verification (Figure 1), N. Li and M.W. Mak,
IEEE/ACM Trans. on Audio Speech and Language Processing, vol. 23, no. 10, pp. 1648–1659,
Oct. 2015, with permission of IEEE.]

otherwise

g(xij) = d(xij,ψl(xij,i))

d(xij,ψl(xij,r))
. (3.147)

If a selected i-vector xij is close to a speaker boundary (e.g., xi1 and xi2 in
Figure 3.29), the between-class distance d(xij,ψl(xij,r)) [dashed line] will be com-
parable to the within-class distance d(xij,ψl(xij,i)) [solid line]. This will cause g(xij)
in Eq. 3.147 approaching 1.0. As a result, the weighting function ω(·) in Eq. 3.146 will
approach 0.5. On the other hand, if the selected i-vector xij is far away from a speaker
boundary, e.g., xi3, the between-class distance d(xij,ψl(xij,i)) will be much smaller
than the between-class distance d(xij,ψl(xij,r)). This will make the weighting function
ω(·) approaching 0.0. Consequently, the weighting function is able to emphasize
the discriminative speaker boundary information in the training set. In [55], α was
set to 2.

In LDA, the class-dependent means (x̄k in Eq. 3.141) are assumed to be the param-
eters of normal distributions. More precisely, each class has its own class-dependent
mean but all classes share the same covariance matrix. In that sense, LDA is parametric.
On the other hand, NDA is nonparametric because the terms in Eqs. 3.145 and 3.144
are vectors near the decision boundaries. They are not the parameters of normal distri-
butions.

Similar to the standard LDA, the NDA projection matrix comprises the eigenvectors
of (SNDA

w)−1SNDA
b .

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

96 Machine Learning Models

SVDA
SVDA (support vector discriminant analysis) [77] is a variant of LDA in that its objec-
tive function is the same as Eq. 3.140. The difference is that the between-speaker and
within-speaker scatter matrices are computed by using the support vectors of linear
SVMs that optimally separate any combinations of two speakers.

Given C speakers in a training set, there are 1
2C(C−1) combinations of speaker pairs.

For each pair, we train a linear SVM to classify the two speakers in the pair. The linear
SVM that separates the speakers pair (i,j), where i < j , has a decision function

fij (x) =
∑
k∈Sij

αkykxT
k x + bij

= wT
ij x + bij,

where Sij contains the support vector indexes for this speaker pair, αk’s and yk ∈ {−1,+
1} are Lagrange multipliers and speaker labels, respectively, and bij is a bias term. As
shown in Figure 3.8, wij is parallel to the optimal direction to classify speakers i and j .
Therefore, we may use it to compute the within-speaker scatter matrix as follows:

Sb =
∑

1≤i≤j≤C

wij wT
ij .

Similarly, the within-speaker scatter matrix can be computed from the support vectors
only:

Sw =
C∑

c=1

∑
k∈Sc

(xk − μc
)(xk − μc

)T,

where Sc contains the support vector indexes of speaker c and

μ
c
= 1

|Sc|
∑
k∈Sc

xk

is the mean of support vectors from speaker c. Then, the SVDA projection matrix is
obtained from the eigenvectors of S−1

w Sb.
It was found in [77] that replacing LDA by SVDA can improve the performance by

up to 32 percent.

3.6.7 PLDA versus Cosine-Distance Scoring

The cosine distance scoring in Eq. 3.139 simply computes the similarity between two i-
vectors, regardless of their variability. In fact, all nonspeaker variabilities are assumed to
be removed by the LDA+WCCN projection. One may think of this projection as creating
a speaker subspace on which all projected i-vectors depend on speaker characteristics
only. The PLDA discussed in Section 3.5, however, finds the speaker subspace by
maximizing the likelihood of observed i-vectors using a factor analysis model and the
speaker labels of the observed i-vectors. The advantage of PLDA is that it produces a
probabilistic model through which true likelihood-ratio can be computed. As a result, in
theory, score normalization [13] is not necessary.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 97

3.6.8 Effect of Utterance Length

An interesting question to ask is “will the modeling capability of i-vectors keeps on
improving when the utterance duration increases.” The answer is “no.” This is because
the information captured by i-vectors saturates when the utterances reach certain
duration.

To demonstrate this saturation effect, we computed the intra- and inter-speaker
cosine-distance scores of 272 speakers extracted from the telephone calls (phonecall_tel)
and interview sessions (interview_mic) of SRE10. Each conversation was divided into
a number of equal-length segments. By concatenating variable numbers of equal-length
segments, sub-utterances of variable length were obtained. A voice activity detector
(VAD) [78] was applied to remove the nonspeech regions in the sub-utterances. An
i-vector was then estimated by using the acoustic vectors of each sub-utterance. Then,
LDA and WCCN were applied to reduce the dimension of the vectors to 150 for
computing cosine distance scores.

The mean intra- and inter-speaker scores (with error bars indicating two standard
deviations) of the three types of speech are shown in Figure 3.30. The scores in “8-min
interview_mic” were acquired from the 8-min interview sessions of 29 male speak-
ers; each of these speakers give four interview-style conversations. Totally, for each
utterance-length, there are 6496 inter-speaker scores and 174 intra-speaker scores. The
scores in “3-min interview_mic” were acquired from the 3-minute interview sessions
of 196 male speakers; each of them provide four interview sessions. This gives rise to
305,760 inter-speaker scores and 1176 intra-speaker scores for each utterance-length.
For the “5-min phonecall_tel,” the scores were acquired from the 5-minute telephone
conversations of 47 male speakers, each giving four conversations. For each segment-
length, there are 282 intra-speaker scores and 17,296 inter-speaker scores. Figure 3.30
clearly shows that both types of scores level off when the segment length is longer than
a certain threshold.

Figure 3.31 shows the minimum decision cost (minDCF) versus the utterance length
for estimating the i-vectors using the intra- and inter-speaker scores shown in Figure
3.30. The results further demonstrate the discriminative power of i-vectors with respect
to the utterance duration. Evidently, the capability of discriminating speakers get satu-
rated when the utterance duration is longer than two minutes. This result indicates that it
may not be necessary to record very long utterances. From another perspective, when an
utterance is sufficiently long, we may be able to leverage its long duration by dividing
it into a number of sub-utterances so that more i-vectors can be derived, as illustrated in
Figure 3.32 [79].

3.6.9 Gaussian PLDA with Uncertainty Propagation

While the i-vector/PLDA framework has been a great success, its performance drops
rapidly when both the enrollment and test utterances have a wide range of durations.
There are several reasons for this performance degradation. First, the duration of utter-
ances is totally ignored in i-vector extraction, which means that the utterances are repre-
sented by vectors of fixed dimension without taking the utterance duration into account.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

98 Machine Learning Models

(a) 8-min interview_mic

(b) 3-min interview_mic

(c) 5-min phonecall_tel

Figure 3.30 Inter- and intra-speaker cosine-distance scores against utterance duration. (a) 8-min
interview conversation; (b) 3-min interview conversation; (c) 5-min telephone conversation.
[Reprinted from Boosting the Performance of I-Vector Based Speaker Verification via Utterance
Partitioning (Figure 1), W. Rao and M.W. Mak, IEEE Trans. on Audio Speech and Language
Processing, vol. 21, no. 5, pp. 1012–1022, May 2013, with permission of IEEE.]

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 99

Figure 3.31 Minimum decision costs (MinDCF) versus utterance duration. The costs were based
on the inter- and intra-speaker cosine-distances shown in Figure 3.30. [Reprinted from Boosting
the Performance of I-Vector Based Speaker Verification via Utterance Partitioning (Figure 2), W.
Rao and M.W. Mak, IEEE Trans. on Audio Speech and Language Processing, vol. 21, no. 5, pp.
1012–1022, May 2013, with permission of IEEE.]

utt

Feature Extraction and Index Randomization

0XUtterance Partitioning

1X 2X NX3X

Baum Welch Statistics Extraction

NXX ,,0

UBM

I Vector ExtractorTotal Variability
Matrix

Nw,,w0

Figure 3.32 The utterance partitioning with acoustic vector resampling (UP-AVR) process.
[Reprinted from Boosting the Performance of I-Vector Based Speaker Verification via Utterance
Partitioning (Figure 3), W. Rao and M.W. Mak, IEEE Trans. on Audio Speech and Language
Processing, vol. 21, no. 5, pp. 1012–1022, May 2013, with permission of IEEE.]

The accuracy of i-vectors depends on the number of acoustic vectors used for computing
the posterior mean of the latent variable w. If we do not take the utterance duration into
consideration, we essentially treat all i-vectors to be equally reliable. Second, PLDA
assumes that the intra-speaker variability (represented by � in Eq. 3.80) is the same
across all i-vectors. This does not really reflect the real situation because intra-speaker
variability in short utterances is larger than that of long utterances.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

100 Machine Learning Models

Kenny et al. [80] proposed to modify the standard PLDA to better accommodate
utterance-length variability. The method aims to tie the i-vector extraction and PLDA
modeling through propagating the uncertainty of i-vectors into the PLDA model. As
shown in Eq. 3.132, the uncertainty (posterior covariance) of i-vectors depends on the
number of acoustic vectors involves in computing the sufficient statistics. The longer
the utterances, the smaller the uncertainty. By propagating the uncertainty to the PLDA
model through the loading matrix, we will be able to model the variability in i-vectors
due to difference in utterance duration. The resulting model will be better in handling
the duration variability in utterances than the conventional PLDA model.

Preprocessing for Gaussian PLDA with UP
To apply UP, we need to apply the preprocessing steps in Section. 3.6.5 to the posterior
covariance matrices as well. Assume that only a linear transformation P is applied to an
i-vector, the corresponding preprocessed covariance matrix is

cov(Pw,Pw) = PL−1PT, (3.148)

where L is the precision matrix in Eq. 3.132. If length-normalization is also applied, the
preprocessed covariance matrix can be estimated as follows [80]:

� ← PL−1PT

‖xwht‖ . (3.149)

Other methods to deal with this nonlinear transformation on the posterior matrix can be
found in [80, 81].

Generative Model for Gaussian PLDA with UP
In uncertainty propagation, the i-vectors and the PLDA model are considered as a whole.
Given an i-vector xr , its uncertainty is propagated to the PLDA model by adding an
utterance-dependent loading matrix Ur to the generative model as follows:

xr = m + Vz + Urqr + εr . (3.150)

In this model, Ur is the Cholesky decomposition of the posterior covariance matrix �r

of the i-vector, qr is a latent variable with prior N (0,I), and εr is the residue that follows
N (0,�). The intra-speaker variability of xr in Eq. 3.150 is:

cov(xr,xr |z) = �r +�, (3.151)

where �r varies from utterances to utterances, thus reflecting the reliability of i-
vector xr .

Given a target speaker’s i-vector xs together with its posterior covariance matrix �s

and a test i-vector xt together with its posterior covariance matrix �t , the log-likelihood
ratio can be written as:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.6 I-Vectors 101

SLR(xs,xt ;�s,�t) = log
p(xs,xt ;�s,�t |same-speaker)

p(xs,xt ;�s,�t |different-speaker)

= log p

([
xs

xt

] ∣∣∣∣ [0
0

]
,

[
�s �ac

�ac �t

])
− log p

([
xs

xt

] ∣∣∣∣ [0
0

]
,

[
�s 0
0 �t

])
= 1

2
xT
s Ax,txs + xT

s Bs,txt + 1

2
xT
t Cs,txt + Ds,t (3.152)

where

As,t = �−1
s − (�s − �−1

t �ac)−1 (3.153)

Bs,t = �−1
s �ac(�t − �ac�

−1
s �ac)−1 (3.154)

Cs,t = �−1
t − (�t −�−1

s �ac)−1 (3.155)

Ds,t = −1

2
log

∣∣∣∣�s �ac

�ac �t

∣∣∣∣+ 1

2
log

∣∣∣∣�s 0
0 �t

∣∣∣∣ (3.156)

�t = VVT + �t + � (3.157)

�s = VVT + �s + � (3.158)

�ac = VVT. (3.159)

Note that Eqs. 3.153–3.156 involve terms dependent on both the target speaker’s utter-
ance and the test utterance, which means that these terms need to be evaluated during
scoring. This means that uncertainty propagation is computationally expansive.

Fortunately, fast scoring methods [82] have been proposed to reduce the complexity
of UP. The basic idea in [82] is to group i-vectors with similar reliability so that for each
group the utterance-dependent loading matrices are replaced by a representative one.
The procedure is as follows:

1. Compute the posterior covariance matrices from development data
2. For the kth group, select the representative UkUT

k as shown in Figure 3.33.

In [83], three approaches to finding the representative posterior covariances were
investigated: (1) utterance duration, (2) mean of diagonal elements of posterior covari-
ance matrices, and (3) based on the largest eigenvalue of posterior covariance matri-
ces. With the above procedure, a set of representative matrices that cover all possible
i-vectors can be precomputed. It has been demonstrated that by replacing the group

Figure 3.33 Representing the posterior covariance groups by one posterior covariance matrix.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

102 Machine Learning Models

Figure 3.34 Equal error rates (EERs) and scoring time of PLDA, PLDA-UP, and fast PLDA-UP.
For fast PLDA-UP, the EERs and scoring time of three systems, each with a different number of
i-vector groups, were shown. The numbers within the parenthesis in the x-axis labels denote the
numbers of i-vector groups. [Reprinted from Fast Scoring for PLDA with Uncertainty
Propagation via I-vector Grouping (Figure 2), W.W. Lin, M.W. Mak and J.T. Chien, Computer
Speech and Language, vol. 45, pp. 503–515, 2017, with permission of Elsevier.]

members by their representative, scoring time can be reduced by 33 times with negligi-
ble performance degradation. Figure 3.34 shows the dramatic reduction in the scoring
time when this strategy is used.

3.6.10 Senone I-Vectors

Recently, Lei et al. [84] and Ferrer et al. [85] proposed to replace the UBM in the i-
vector extractor by a deep neural network (DNN). The idea is to replace the zeroth order
sufficient statistics (Eq. 3.126) by the outputs of a DNN trained for speech recognition.
An advantage of this method is that it enables each test frame to be compared with the
training frames for the same phonetic content.

One important characteristic of this method is that the acoustic features for speech
recognition in the DNN are not necessarily the same as the features for the i-vector
extractor. Specifically, denote the acoustic features of utterance i for the DNN and i-
vector extractor as ait and oit , respectively, where t = 1, . . . ,Ti . Then, the Baum–Welch
statistics in Eq. 3.128 can be rewritten as:

Nic ≡
Ti∑

t=1

γDNN
c (ait) and f̃ic ≡

Ti∑
t=1

γDNN
c (ait)(oit − μc

), (3.160)

where γDNN
c (ait)’s are the senone posterior probabilities obtained from the DNN’s out-

puts and μ
c
’s are the probabilistic weighted sum of speaker features:

μ
c
=
∑N

i=1
∑Ti

t=1 γ
DNN
c (ait)oit∑N

i=1
∑Ti

t=1 γ
DNN
c (ait)

. (3.161)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.7 Joint Factor Analysis 103

Similar strategy can also be applied to Eq. 3.132:

Li = I +
C∑

c=1

NicTT
c (�c)−1Tc = I + TT�−1NiT, (3.162)

where Nic is obtained in Eq. 3.160 and

�c =
∑N

i=1
∑Ti

t=1 γ
DNN
c (ait)oitoT

it∑N
i=1

∑Ti

t=1 γ
DNN
c (ait)

− μ
c
μT

c
. (3.163)

Note that Tc in Eq. 3.162 should be estimated by replacing f̃ic in Eq. 3.129 with the
first-order statistics in Eq. 3.160. Similarly, the posterior expectation in Eq. 3.123 should
also be computed as follows:

〈wi |Oi〉 = L−1
i

C∑
c=1

TT
c �−1

c f̃ic, (3.164)

where Li and �c are obtained from Eqs. 3.162 and 3.163, respectively. Because the
mixture posteriors are now replaced by senone posteriors, the resulting i-vectors are
termed senone i-vectors [3]. In some literature, they are also called DNN i-vectors.

Figure 3.35 shows an example of senone i-vector extraction [3]. The input ait to the
DNN comprises a context frames of acoustic features (could be MFCCs or filterbank
outputs) centered at frame t and the vector oit can be obtained from the bottleneck layer
of the DNN.

3.7 Joint Factor Analysis

Before the introduction of i-vectors in 2010, joint factor analysis (JFA) [15] was the de
facto standard for text-independent speaker verification. JFA is based on the assump-
tion that a speaker- and channel-dependent supervector can be decomposed into the
sum of two statistically independent and normally distributed supervectors: a speaker-
dependent supervector and a channel-dependent supervector. Because a JFA model com-
prises three sets of latent factors, it is the most complex among all FA models in speaker
recognition.

3.7.1 Generative Model of JFA

Denote V and U as the loading matrices representing the speaker- and channel sub-
spaces, respectively. In JFA, the speaker- and channel-dependent supervectors mh(s)
can be generated by the following generative model:9

mh(s) = m + Vy(s) + Uxh(s) + Dz(s), (3.165)

9 We follow the notations in [15, 86] as much as possible.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

104 Machine Learning Models

.

.

.

.

.

Contextual frames of
acoustic vectors,

.

.

.

.

BN features,

.

Senone posteriors

PCA whitening

Senones

First-order
sufficient
statistics

order
sufficient
statistics

I-vector extraction

Senone I-vector

B

white

ne I v

st-or

,

ng

I

Summation

Multiplication
& summation

h ord
T-matrix

or ext

0th

Figure 3.35 The procedure of extracting senone i-vectors. [Reprinted from Denoised Senone
I-Vectors for Robust Speaker Verification (Figure 2), Z.L. Tan, M.W. Mak, et al., IEEE/ACM
Trans. on Audio Speech and Language Processing, vol. 26, no. 4, pp. 820–830, April 2018, with
permission of IEEE.]

where h and s stand for the recording (session) and speaker, respectively. In this model,
y(s) is a speaker factor that depends on the speaker s and xh(s) is a channel factor that
depends on both the speaker and the session. Also, D is a diagonal matrix and the priors
of y(s), xh(s) and z(s) follow the standard Gaussian distribution. Figure 3.36 shows the
graphical model of JFA.

Without the second and the third terms, Eq. 3.165 reduces to the classical MAP
adaptation [7] where the adapted model is the mode of the posterior distribution of
mh(s). Also, without the third and the fourth terms, Eq. 3.165 reduces to the eigenvoice
MAP [45]. Unlike Eq. 3.55, Eq. 3.165 does not have the residue term ε. This is because
Eq. 3.165 is to generate the supervector mh(s). If the supervector is observed, an residue
term will need to be added to Eq. 3.165 to represent the difference between the observed
and the generated supervectors.

3.7.2 Posterior Distributions of Latent Factors

To find the posterior distribution of all latent factors jointly, we may stack all the latent
factors of speaker s with recording h = 1, . . . ,Hs and pack the loading matrices as
follows:

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.7 Joint Factor Analysis 105

oht (s)

Ths

{m, V, U, D}

ht (s){ c
(b)}c=1

C

mh,c (s)

C

S

y(s)

xh (s)

Hs

z(s)

{ c
(b)}c=1

C

Figure 3.36 Graphical representation of the joint factor analysis model. �ht = [�h,t,1 . . . �h,t,c

. . . �h,t,C]T are the mixture labels in one-hot encoding. The priors of xh(s), z(s), and y(s) are
assumed to be standard Gaussians.

⎡⎢⎣ m1(s)
...

mHs (s)

⎤⎥⎦ =

⎡⎢⎣m
...

m

⎤⎥⎦+

⎡⎢⎢⎢⎣
V U 0 0 · · · D
V 0 U 0 · · · D
...

...
. . .

. . . · · · ...
V 0 · · · 0 U D

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

y(s)
x1(s)

...
xHs (s)

z(s)

⎤⎥⎥⎥⎥⎥⎦ . (3.166)

Eq. 3.166 can be written in a compact form:10

m(s) = m + V(s)z(s), (3.167)

which has the same form as Eq. 3.119. This means that we can use Eq. 3.132 to compute
the posterior precision matrix of z(s) for speaker s as follows:

L(s) = I + V(s)T�−1(s)N(s)V(s), (3.168)

In Eq. 3.168, N(s) is a CFHs × CFHs block-diagonal matrix

N(s) =

⎡⎢⎢⎢⎢⎢⎢⎣

N1(s)
. . .

Nh(s)
. . .

NH (s)

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Nh(s) is a CF × CF diagonal matrix with elements

Nhc(s) =
∑

o∈Oh(s)

γc(o), (3.169)

10 While V, U, D, and � are independent of s, V(s) and �(s) do, because their size depends on Hs .

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

106 Machine Learning Models

where Oh(s) comprises the acoustic vectors of the hth recording of speaker s. Similarly,
� is a CFHs × CFHs block-diagonal matrix whose hth diagonal block is a CF ×
CF matrix �. In practice, � can be substituted by the super-covariance matrix of the
UBM �(b).

Using Eq. 3.131, the posterior mean and the posterior moment of z(s) are given by〈
z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s)VT(s)�−1(s)f̃(s), (3.170)

and〈
z(s)z(s)T

∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s) +

〈
z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉 〈
z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉T
, (3.171)

respectively, where f̃(s) is a CFHs-dimensional vector whose cth segment of the hth
block is an F -dimension vector

f̃hc(s) =
∑

o∈Oh(s)

γc(o)(o − mc), h = 1, . . . ,Hs and c = 1, . . . ,C. (3.172)

3.7.3 Model Parameter Estimation

The training in JFA amounts to finding the model parameters � = {m,V,U,D,�},
where � is a diagonal covariance matrix. For each speaker s, we assume that there are
Hs recording sessions. Define the joint latent factor

ẑh(s) ≡ [y(s) xh(s) z(s)]T, h = 1, . . . ,Hs . (3.173)

Also define the joint loading matrix V̂ ≡ [V U D]. Then, for recording h of speaker s,
we have

mh(s) = m + V̂ẑh(s), h = 1, . . . ,Hs .

Using Eq. 3.170 and Eq. 3.171, we obtain the posterior mean and posterior covariance
of ẑh(s) as follows: 〈

ẑh(s)|Oh(s)
〉 = L̂−1

h (s)V̂T�−1f̃h(s) (3.174)

and 〈
ẑh(s)ẑh(s)T|Oh(s)

〉
= L̂−1

h (s) + 〈
ẑh(s)|Oh(s)

〉 〈
ẑh(s)|Oh(s)

〉T . (3.175)

In Eq. 3.174, f̃h(s) is a CF × 1 vector formed by stacking the C components of Eq.
3.172 and the precision matrix L̂h(s) is an (Rv + Ru + CF) × (Rv + Ru + CF) matrix

L̂h(s) = Î + V̂T�−1Nh(s)V̂, (3.176)

where Rv and Ru are the rank of U and V, respectively, and Î is an (Rv + Ru + CF) ×
(Rv + Ru + CF) identity matrix.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.7 Joint Factor Analysis 107

Using Eq. 3.80 and Eq. 3.129, the maximum-likelihood solution of V̂ is

V̂c =
[∑

s

Hs∑
h=1

f̃hc(s)
〈
ẑh(s)|Oh(s)

〉T][∑
s

Hs∑
h=1

Nhc(s)
〈
ẑh(s)ẑh(s)T|Oh(s)

〉]−1

.

(3.177)

Concatenating the latent factors as in Eq. 3.166 and Eq. 3.173 means that these factors
are correlated in the posterior, i.e., the precision matrices L(s) in Eq. 3.168 and L̂h(s) in
Eq. 3.176 are non-diagonal. Because the dimension of z(s) is very high (= 61,440
for 1024 Gaussians and 60-dimensional acoustic vectors), using Eqs. 3.177, 3.174,
and 3.175 to compute the model parameters is impractical.

A more practical approach is to estimate the loading matrices separately, as suggested
in [87]. Specifically, the loading matrices are estimated using the following steps:

1. Estimate the eigenvoice matrix V by assuming that U = D = 0.
2. Given V, estimate the eigenchannel matrix U by assuming that D = 0.
3. Given V and U, estimate D.

With this simplification, the formulations in Step 1 are

mh(s) = m + Vy(s), h = 1, . . . ,Hs (3.178a)

L(s) = I + VT�−1N(s)V (3.178b)

N(s) = diag{N1(s)I, . . . ,NC(s)I} (3.178c)

Nc(s) =
Hs∑
h=1

∑
o∈Oh(s)

γc(o) (3.178d)

f̃c(s) =
Hs∑
h=1

∑
o∈Oh(s)

γc(o)(o − mc), c = 1, . . . ,C (3.178e)

〈
y(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s)VT�−1f̃(s) (3.178f)〈

y(s)y(s)T
∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s) +

〈
y(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉 〈
y(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉T
(3.178g)

Vc =
[∑

s

f̃c(s)

〈
y(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉T][∑
s

Nc(s)

〈
y(s)y(s)T

∣∣∣∣{Oh(s)}Hs

h=1

〉]−1

.

(3.178h)

In Step 2, for all of the recordings from speaker s, we account for his/her speaker shift
using the estimated V and speaker factor y(s), which results in the first-order statistics:

f̃hc(s) =
∑

o∈Oh(s)

γc(o)(o − Vcy(s) − mc), h = 1, . . . ,Hs and c = 1, . . . ,C,

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

108 Machine Learning Models

where y(s) can be obtained from the posterior mean in Eq. 3.178f. Because we are
modeling channel variability, there is no need to sum over the recordings of speaker s

to compute the zeroth order statistic, i.e., Nc(s) in Eq. 3.178d becomes

Nhc(s) =
∑

o∈Oh(s)

γc(o).

Also, the posterior precision matrix of xh(s) is recording- and speaker-dependent:

Lh(s) = I + UT�−1Nh(s)U.

Finally, we compute the posterior mean and posterior moment of xh(s) and estimate the
eigenchannel matrix U as follows:

〈xh(s)|Oh(s)〉 = L−1
h (s)UT�−1f̃h(s) (3.179a)〈

xh(s)x̂h(s)T|Oh(s)
〉
= L−1

h (s) + 〈xh(s)|Oh(s)〉 〈xh(s)|Oh(s)〉T (3.179b)

Uc =
[∑

s

Hs∑
h=1

f̃hc(s) 〈xh(s)|Oh(s)〉T
][∑

s

Hs∑
h=1

Nhc(s)
〈
xh(s)xh(s)T|Oh(s)

〉]−1

(3.179c)

In Step 3, for each recording from speaker s, we need to account for the speaker
shift and the channel shift using the estimated V and U, respectively. Using the same
principle as in Step 2, we have the following zeroth- and first-order statistics:

Nc(s) =
Hs∑
h=1

∑
o∈Oh(s)

γc(o)

f̃c(s) =
Hs∑
h=1

∑
o∈Oh(s)

γc(o)(o − Vcy(s) − Ucxh(s) − mc), c = 1, . . . ,C.

The posterior precision matrix becomes

L(s) = I + D2�−1N(s),

where N(s) = diag{N1(s)I, . . . ,NC(s)I}. Then, the diagonal elements of D can be
estimated as follows:

diag{Dc} =
diag

{∑
s f̃c(s)

〈
z(s)

∣∣{Oh(s)}Hs

h=1

〉T}
diag

{∑
s Nc(s)

〈
z(s)z(s)T

∣∣{Oh(s)}Hs

h=1

〉}, (3.180)

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.7 Joint Factor Analysis 109

where diag{A} means converting the diagonal elements of A into a vector and the
division is applied element-wise, and〈

z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s)DT�−1f̃(s) (3.181a)〈

z(s)z(s)T
∣∣∣∣{Oh(s)}Hs

h=1

〉
= L−1(s) +

〈
z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉 〈
z(s)

∣∣∣∣{Oh(s)}Hs

h=1

〉T
.

(3.181b)

3.7.4 JFA Scoring

Scoring in JFA involves computing the likelihoods of acoustic vectors with respect
to the target speaker and the UBM. There are several approaches to computing these
likelihoods [88]. Here, we focus on the one based on the point estimates of the channel
factors.

Point Estimate of Channel Factors
To express the likelihood of acoustic vectors, we need some notations. Let’s define the
channel-independent supervector of target-speaker s as

m(s) = m + Vy(s) + Dz(s), (3.182)

where m, V, D, y(s), and z(s) have the same meaning as those in Eq. 3.165. Note that
while we use the same symbol s in both Eq. 3.182 and Eq. 3.165, the target speaker
does not necessarily to be one of the training speakers in Eq. 3.165. Enrollment in JFA
amounts to estimating m(s) for each target speaker using his/her enrollment utterances.
The point estimates of y(s) and z(s) can be obtained from their posterior means.

Denote Otst as the set of acoustic vectors from a test utterance. We compute the
posterior mean of the channel factor given O and m(s):

xs ≡ 〈x|Otst,m(s)〉 = (I + UT�−1NU)−1UT�−1f̃(s),

where N comprises the zeroth order statistics along its diagonal and f̃(s) contains the
first-order statistics, i.e., the cth component of f̃(s) is

f̃c(s) =
∑

o∈Otst

γc(o)(o − mc(s)) = fc − Ncmc(s).

Similarly, we also compute the posterior mean of the channel factor based on the super-
vector of the UBM:

xubm ≡ 〈x|Otst,m〉 = (I + UT�−1NU)−1UT�−1f̃(ubm),

where

f̃c(ubm) =
∑

o∈Otst

γc(o)(o − mc) = fc − Ncmc.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

110 Machine Learning Models

Using Theorem 1 of [86], the log-likelihood of Otst with respect to the target
speaker s is

log p(Otst|m(s),xs) =
C∑

c=1

Nc log
1

(2π)
F
2 |�c| 1

2

− 1

2
Tr{�−1S}

+ r(s)TGT�−1f̃ − 1

2
r(s)TGTN�−1Gr(s)

(3.183)

where

r(s) ≡
⎡⎣y(s)

z(s)
xs

⎤⎦ , G ≡ [V D U]

and the cth component of S is

Sc = diag

⎧⎨⎩ ∑
o∈Otst

(o − mc)(o − mc)T

⎫⎬⎭ .

Note that y(s) and z(s) – which are approximated by their posterior means – have been
computed during enrollment, whereas xs is computed during verification. Similarly, the
the log-likelihood of Otst with respect to the UBM is

log p(O|m,xubm) =
C∑

c=1

Nc log
1

(2π)
F
2 |�c| 1

2

− 1

2
Tr{�−1S}

+ r(ubm)TGT�−1f̃(ubm) − 1

2
r(ubm)TGTN�−1Gr(ubm)

(3.184)

where

r(ubm) =
⎡⎣ 0

0
xubm

⎤⎦ .

Using Eq. 3.183 and Eq. 3.184, the log-likelihood ratio (LLR) score for speaker
verification can be computed as follows:

SLLR(Otst|m(s)) = log p(Otst|m(s),xs) − log p(O|m,xubm)

= r(s)TGT�−1f̃(s) − 1

2
r(s)TGTN�−1Gr(s)

− r(ubm)TGT�−1f̃(ubm) + 1

2
r(ubm)TGTN�−1Gr(ubm).

(3.185)

Linear Approximation
Define q ≡ Gr(s) and consider the first-order Taylor expansion of

f (q) = qT�−1f̃(s) − 1

2
qTN�−1q.

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

3.7 Joint Factor Analysis 111

We have f (q) ≈ qT�−1f̃(s) and therefore only the first and the third term in Eq. 3.185
remain:

SLLR(Otst|m(s)) ≈ r(s)TGT�−1f̃(s) − r(ubm)TGT�−1 f̃(ubm)

= (Vy(s) + Dz(s) + Uxs)T�−1f̃(s) − xT
ubmUT�−1f̃(ubm).

(3.186)

If we further assume that the first-order statistics are obtained from the target speaker
m(s) for both the target speaker and the UBM and that xs = xubm, we have

SLLR(Otst|m(s)) ≈ (Vy(s) + Dz(s) + Uxubm)T�−1f̃(s) − (Uxubm)T�−1f̃(s)

= (Vy(s) + Dz(s))T�−1f̃(s)

= (Vy(s) + Dz(s))T�−1(f − Nm(s))

= (Vy(s) + Dz(s))T�−1(f − Nm − NUxubm).

(3.187)

3.7.5 From JFA to I-Vectors

One problem of JFA is its insufficiency in distinguishing between speaker and channel
information. It was found in [16] that the channel factors also contain speaker infor-
mation, causing imprecise modeling if the speaker subspace and channel subspace are
modeled separately by two loading matrices. This finding motivates the development of
i-vectors, which combines the two subspaces into one subspace called total variability
space. Modeling in i-vectors involves two steps: (1) use low-dimensional vectors (called
i-vectors) that comprise both speaker and channel information to represent utterances
(see Section 3.6.3); and (2) model the channel variabilities of the i-vectors during scor-
ing (see Sections 3.4.3 and 3.6.6).

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

https://doi.org/10.1017/9781108552332.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.004

