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Mobile Robots

T  –         “,”
but they could not move about from their fixed base. Up to this time, very

little work had been done on mobile robots even though they figured prominently
in science fiction. I have already mentioned Grey Walter’s “tortoises,” which were
early versions of autonomous mobile robots. In the early 1960s researchers at the
Johns Hopkins University Applied Physics Laboratory built a mobile robot they
called “The Beast.” (See Fig. 12.1.) Controlled by on-board electronics and guided
by sonar sensors, photocells, and a “wallplate-feeling” arm, it could wander the
white-walled corridors looking for dark-colored power plugs. Upon finding one,
and if its batteries were low, it would plug itself in and recharge its batteries. The
system is described in a book by Hans Moravec.1

Beginning in the mid-1960s, several groups began working on mobile robots.
These included the AI Labs at SRI and at Stanford. I’ll begin with an extended
description of the SRI robot project for it provided the stimulus for the invention
and integration of several important AI technologies.

12.1 Shakey, the SRI Robot

In November 1963, Charles Rosen, the leader of neural-network research at SRI,
wrote a memo in which he proposed development of a mobile “automaton” that
would combine the pattern-recognition and memory capabilities of neural networks
with higher level AI programs – such as were being developed at MIT, Stan-
ford, CMU, and elsewhere. Rosen had previously attended a summer course at
UCLA on LISP given by Bertram Raphael, who was finishing his Ph.D. (on SIR) at
MIT.

Rosen and I and others in his group immediately began thinking about mobile
robots. We also enlisted Marvin Minsky as a consultant to help us. Minsky spent
two weeks at SRI during August 1964. We made the first of many trips to the ARPA
office (in the Pentagon at that time) to generate interest in supporting mobile robot
research at SRI. We also talked with Ruth Davis, the director of the Department of
Defense Research and Engineering (DDR&E) – the office in charge of all Defense
Department research. We wrote a proposal in April 1964 to DDR&E for “Research
in Intelligent Automata (Phase I)” that would, we claimed, “ultimately lead to the
development of machines that will perform tasks that are presently considered to
require human intelligence.”2 The proposal, along with several trips and discussions
culminated, in November 1964, in a “work statement” issued by the then-director of
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Figure 12.1. The Johns Hopkins “Beast.” (Courtesy of Johns Hopkins University Applied
Physics Laboratory.)

ARPA’s Information Processing Techniques Office, Ivan Sutherland. The excerpt
in Fig. 12.2 describes the goals of the program.3

In the meantime, Bertram Raphael completed his MIT Ph.D. degree in 1964
and took up a position at UC Berkeley for an academic year. In April 1965, he
accepted our offer to join SRI to provide our group with needed AI expertise. After
several research proposal drafts and discussions with people in the relevant offices in
the Defense Department (complicated by the fact that Ivan Sutherland left ARPA
during this time), SRI was finally awarded a rather large (for the time) contract
based essentially on Sutherland’s work statement. The “start-work” date on the
project, which was administered for ARPA by the Rome Air Development Center
(RADC) in Rome, New York, was March 17, 1966. (Coincidentally, just before
joining SRI in 1961, I had just finished a three-year stint of duty as an Air Force
Lieutenant at RADC working on statistical signal-processing techniques for radar
systems.) Ruth Davis played a prominent role in getting ARPA and RADC to move
forward on getting the project started. The “knitting together” of several disparate
AI technologies was one of the primary challenges and one of the major contributions
of SRI’s automaton project.4
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Figure 12.2. Excerpt from the typescript of the automaton work statement.

One of the tasks was the actual construction of a robot vehicle whose activi-
ties would be controlled by a suite of programs. Because of various engineering
idiosyncrasies, the vehicle shook when it came to an abrupt stop. We soon called
it “Shakey,” even though one of the researchers thought that sobriquet too dis-
respectful. [Shakey was inducted into the “Robot Hall of Fame” (along with C-3PO
among others) in 2004.5 It was also named as the fifth-best robot ever (out of 50) by
Wired Magazine in January 2006. Wired’s numbers 2 and 4 were fictional, “Spirit”
and “Opportunity” (the Mars robots) were number 3, and “Stanley” (winner of
the 2005 DARPA “Grand Challenge”) was named “the #1 Robot of All Time.”
Shakey is now exhibited at the Computer History Museum in Mountain View,
California.]6

Shakey had an on-board television camera for capturing images of its environment,
a laser range finder (triangulating, not time-of-flight) for sensing its distance from
walls and other objects, and cat-whisker-like bump detectors. Shakey’s environment
was a collection of “rooms” connected by doorways but otherwise separated by
low walls that we could conveniently see over but Shakey could not. Some of the
rooms contained large objects, as shown in Fig. 12.3. The size of Shakey can be
discerned from inspection of Fig. 12.4.

Most of the programs that we developed to control Shakey were run on a DEC
PDP-10 computer. Between the PDP-10 and the mobile vehicle itself were a PDP-15
peripheral computer (for handling the lower level communications and commands
to on-board hardware) and a two-way radio and video link. The PDP-10 programs
were organized in what we called a “three-layer” hierarchy. Programs in the lowest
level drove all of the motors and captured sensory information. Programs in the
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Figure 12.3. Shakey as it existed in November 1968 (with some of its components labeled).
(Photograph courtesy of SRI International.)

intermediate level supervised primitive actions, such as moving to a designated
position, and also processed visual images from Shakey’s TV camera. Planning more
complex actions, requiring the execution of a sequence of intermediate-level actions,
was done by programs in the highest level of the hierarchy. The Shakey project
involved the integration of several new inventions in search techniques, in robust
control of actions, in planning and learning, and in vision. Many of these ideas are
widely used today. The next few subsections describe them.

12.1.1 A∗: A New Heuristic Search Method

One of the first problems we considered was how to plan a sequence of “way points”
that Shakey could use in navigating from place to place. In getting around a single
obstacle lying between its initial position and a goal position, Shakey should first head
toward a point near an occluding boundary of the obstacle and then head straight for
the unobstructed final goal point. However, the situation becomes more complicated
if the environment is littered with several obstacles, and we sought a general solution
to this more difficult problem.
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Figure 12.4. Charles A. Rosen with Shakey. (Photograph courtesy of SRI International.)

Shakey kept information about the location of obstacles and about its own posi-
tion in a “grid model,” such as the one shown in Fig. 12.5. (To obtain the required
accuracy, grid cells were decomposed into smaller cells near the objects. I think this
was one of the first applications of adaptive cell decomposition in robot motion plan-
ning and is now a commonly used technique.) Consider, for example, the navigation
problem in which Shakey is at position R and needs to travel to G (where R and
G are indicated by the shaded squares). It can use a computer representation of the
grid model to plan a route before beginning its journey – but how? The map shows
the positions of three objects that must be avoided. It is not too difficult to compute
the locations of some candidate way points near the corners of the objects. (These
way points must be sufficiently far from the corners so that Shakey wouldn’t bump
into the objects.) The way points are indicated by shaded stars and labeled “A,” “B,”
and so on through “K.” Using techniques now familiar in computer graphics, it also
is not difficult to compute which way points are reachable using an obstacle-free,
straight-line path from any other way point and from R and G.

Looked at in this way, Shakey’s navigation problem is a search problem, similar
to ones I have mentioned earlier. Here is how a search tree can be constructed and
then searched for a shortest path from R to G. First, because A and F are directly
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Figure 12.5. A navigation problem for Shakey. (Illustration used with permission of SRI
International.)

reachable by obstacle-free, straight-line paths from R, these are set up as direct-
descendant “nodes” of R in the search tree. We continue the process of computing
descendant nodes (along obstacle-free, straight-line paths) from each of A and F and
so on until G is added to the tree. Then, it is a simple matter to identify the shortest
path from R to G.

Several methods for searching trees (and their more general cousins, graphs) were
already in use by the mid-1960s. One point in favor of these known methods was that
they were guaranteed to find shortest paths when used to solve Shakey’s navigation
problems. However, they could be computationally inefficient for difficult problems.
Of course, solving simple navigation problems (such as the one in the diagram) does
not involve much search, so any search method would solve such problems quickly.
But we were interested in general methods that would work efficiently on larger,
more difficult problems. I was familiar with the heuristic search method proposed
by J. Doran and Donald Michie for solving the eight-piece, sliding-tile puzzle. They
assigned a numerical value to each node in the search tree, based on the estimated
difficulty of reaching the goal from that node. The node with the lowest score was
the one that was selected next to have its descendants generated.7
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I reasoned that a good “heuristic” estimate for the difficulty of getting from
a way point position to the goal (before actually searching further) would be the
“airline distance,” ignoring any intervening obstacles, from that position to the goal.
I suggested that we use that estimate as the score of the corresponding node in
the search tree. Bertram Raphael, who was directing work on Shakey at that time,
observed that a better value for the score would be the sum of the distance traveled
so far from the initial position plus my heuristic estimate of how far the robot had
to go.8

Raphael and I described this idea to Peter Hart, who had recently obtained a
Ph.D. from Stanford and joined our group at SRI. Hart recalls9 “going home that
day, sitting in a particular chair and staring at the wall for more than an hour, and
concluding” that if the estimate of remaining distance (whatever it might be) was
never larger than the actual remaining distance, then the use of such an estimate
in our new scoring scheme would always find a path having the shortest distance
to the goal. (Of course, my heuristic airline distance satisfied Hart’s more-general
condition.) Furthermore, he thought such a procedure would generate search trees
no larger than any other procedures that were also guaranteed to find shortest paths
and that used heuristic estimates no better than ours.

Together, Hart, Raphael, and I were able to construct proofs for these claims,
and we named the resulting search process “A∗.” (The “A” was for algorithm and
the “∗” denoted its special property of finding shortest paths. I think Hart and
Raphael did most of the heavy lifting in devising the proofs.) When paths have costs
associated with them that depend on more than just distance, and when such costs
(rather than distances) are taken into account in computing scores, A∗ is guaranteed
to find lowest cost paths.10

The inclusion of the estimate of remaining distance (or cost) to the goal contributes
to searching in the general direction of the goal. The inclusion of the actual distance
(or cost) incurred so far ensures that the search process will not forever be led down
promising but perhaps futile paths and will be able to “leak around” obstacles.

A∗ has been extended in many ways – especially by Richard Korf to make it more
practical when computer memory is limited.11 Today, A∗ is used in many applications
including natural language parsing,12 the computation of driving directions,13 and
interactive computer games.14

12.1.2 Robust Action Execution

The A∗ algorithm was embedded in Shakey’s programs for navigating from one place
to another within a room containing obstacles and for pushing an object from one
place to another. Navigation programs, along with others, occupied the middle level
of the hierarchy of Shakey’s programs. These intermediate-level programs were all
designed to achieve certain goals, such as getting an object in front of a doorway for
example. They were also quite robust in that they “kept trying” even in the face of
unforeseen difficulties. For example, if an object being pushed happened accidentally
to slip off the front “pushing bar,” the push program noticed this problem (through
built-in contact sensors in the pushing bar) and repositioned Shakey so that it could
reengage the object and continue pushing.
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In thinking about how to achieve this robustness, I was inspired both by Miller,
Galanter, and Pribram’s TOTE units and by the idea of homeostasis. (Recall that a
TOTE unit for driving in a nail keeps pounding until the nail is completely driven
in and that homeostatic systems take actions to return them to stability in the face of
perceived environmental disturbances.) I wanted the mid-level programs to seek and
execute that action that was both “closest” to achieving their goals and that could
actually be executed in the current situation. If execution of that action produced a
situation in which, as anticipated, an action even closer to achieving the goal could
be executed, fine; the mid-level program was at least making progress. If not, or
something unexpected caused a setback, some other action would be executed next
to get back on track. Richard Duda and I developed a format, called “Markov tables,”
for writing these intermediate-level programs having this “keep-trying” property.15

12.1.3 STRIPS: A New Planning Method

The mid-level programs could accomplish a number of simple tasks, such as getting
Shakey from one place to another in the same room, pushing objects, and getting
Shakey through a doorway into an adjoining room. However, to go to some distant
room and push an object there into some designated position would require joining
together a sequence of perhaps several of these mid-level programs. Just as humans
sometimes make and then execute plans for accomplishing their tasks, we wanted
Shakey to be able to assemble a plan of actions and then to execute the plan. The
plan would consist of a list of the programs to be executed.

Information needed for planning was stored in what was called an “axiom model.”
This model contained logical statements in the language of the predicate calculus
(which I talked about earlier.) For example, Shakey’s location was represented
by a statement such as AT(ROBOT, 7,5), the fact that Box1 was pushable was
represented by the statement PUSHABLE(BOX1), and the fact that there was a
doorway named D1 between rooms R1 and R2 was represented by the statement
JOINSROOMS(D1, R1,R2). The axiom model had close to two-hundred state-
ments such as these and was the basis of Shakey’s reasoning and planning abilities.

Our first attempt at constructing plans for Shakey used the QA3 deduction system
and the situation calculus. We would ask QA3 to prove (using a version of the axiom
model) that there existed a situation in which Shakey’s goal (for example, being in
some distant room) was true. The result of the deduction (if successful) would name
that situation in terms of a list of mid-level actions to be executed.16

The use of the situation calculus for planning how to assemble mid-level actions
involved using logical statements to describe the effects of these actions on situations.
Not only did we have to describe how a mid-level action changed certain things about
the world, but we also had to state that it left many things unaffected. For example,
when Shakey pushed an object, the position of that object in the resulting situation
was changed, but the positions of all other objects were not. That most things in
Shakey’s world did not change had to be explicitly represented as logical statements
and, worse, reasoned about by QA3. This difficulty, called the “frame problem,” has
been the subject of a great deal of research in AI, and there have been many attempts
to mitigate it, if not solve it.17 Because of the frame problem, QA3 could be used only

https://doi.org/10.1017/CBO9780511819346.015 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.015


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

170 The Quest for Artificial Intelligence

for putting together the simplest two- or three-step plans. Any attempt to generate
plans very much longer would exhaust the computer’s memory.

The problem with the situation calculus (as it was used then) was that it assumed
that all things might change unless it was explicitly stated that they did not change.
I reasoned that a better convention would be to assume that all things remained
unchanged unless it was explicitly stated that they did change. To employ a con-
vention like that, I proposed a different way of updating the collection of logical
statements describing a situation. The idea was that certain facts, specifically those
that held before executing the action but might not hold after, should be deleted and
certain new facts, namely, those caused by executing the action, should be added.
All other facts (those not slated for deletion) should simply be copied over into the
collection describing the new situation. Besides describing the effects of an action in
this way, each action description would have a precondition, that is, a statement of
what had to be true of a situation to be able to execute the action in that situation.
(A year or so earlier, Carl Hewitt, a Ph.D. student at MIT, was developing a robot
programming language called PLANNER that had mechanisms for similar kinds of
updates.)18

For example, to describe the effects of the program goto((X1,Y1),(X2,Y2))
for moving Shakey from some position (X1,Y1) to some position (X2,Y2), one should
delete the logical statement AT(ROBOT, X1,Y1), add the statement AT(ROBOT,
X2,Y2), and keep all of the other statements. Of course, to executegoto((X1,Y1),
(X2,Y2)), Shakey would already have to be at position (X1,Y1); that is, the axiom
model had to contain the precondition statement AT(ROBOT,X1,Y1), or at least
contain statements from which AT(ROBOT,X1,Y1) could be proved.

Around this time (1969), Richard Fikes (1942– ) had just completed his Ph.D.
work under Allen Newell at Carnegie and joined our group at SRI. Fikes’s disserta-
tion explored some new ways to solve problems using procedures rather than using
logic as in QA3. Fikes and I worked together on designing a planning system that
used preconditions, delete lists, and add lists (all expressed as logical statements) to
describe actions. Fikes suggested that in performing a search for a goal-satisfying
sequence of actions, the system should use the “means–ends” analysis heuristic cen-
tral to Newell, Shaw, and Simon’s General Problem Solver (GPS). Using means–ends
analysis, search would begin by identifying those actions whose add lists contained
statements that helped to establish the goal condition. The preconditions of those
actions would be set up as subgoals, and this backward reasoning process would
continue until a sequence of actions was finally found that transformed the initial
situation into one satisfying the goal.

By 1970 or so, Fikes had finished programming (in LISP) our new planning sys-
tem. We called it STRIPS, an acronym for Stanford Research Institute Problem
Solver.19 After its completion, STRIPS replaced QA3 as Shakey’s system for gener-
ating plans of action. Typical plans consisting of six or so mid-level actions could be
generated on the PDP-10 in around two minutes.

The STRIPS planning system itself has given way to more efficient AI planners, but
many of them still describe actions in terms of what are called “STRIPS operators”
(sometimes “STRIPS rules”) consisting of preconditions, delete lists, and add lists.

https://doi.org/10.1017/CBO9780511819346.015 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.015


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

Mobile Robots 171

12.1.4 Learning and Executing Plans

It’s one thing to make a plan and quite another to execute it properly. Also, we
wanted to be able to save the plans already made by STRIPS for possible future use.
We were able to come up with a structure, called a “triangle table,” for representing
plans that was useful not only for executing plans but also for saving them. (John
Munson originally suggested grouping the conditions and effects of robot actions in a
triangular table. Around 1970, Munson, Richard Fikes, Peter Hart, and I developed
the triangle table formalism to represent plans consisting of STRIPS operators.)
The triangle table tabulated the preconditions and effects of each action in the plan
so that it could keep track of whether or not the plan was being executed properly.

Actions in the plans generated by STRIPS had specific values for their parameters.
For example, if some goto action was part of a plan, actual place coordinates were
used to name the place that Shakey was to go from and the place it was to go to,
perhaps goto((3,7),(8,14)). Although we might want to save a plan that had
that specific goto as a component, a more generally applicable plan would have a
goto component with nonspecific parameters that could be replaced by specific ones
depending on the specific goal. That is, we would want to generalize something like
goto((3,7),(8,14)), for example, to goto((x1,y1),(x2,y2)). One can’t
willy-nilly replace constants by variables, but one must make sure that any such
generalizations result in viable and executable plans for all values of the variables.
We were able to come up with a procedure that produced correct generalizations,
and it was these generalized plans that were represented in the triangle table.

After a plan was generated, generalized, and represented in the triangle table,
Shakey’s overall executive program, called “PLANEX,” supervised its execution.20

In the environment in which Shakey operated, plan execution would sometimes
falter, but PLANEX, using the triangle table, could decide how to get Shakey back
on the track toward the original goal. PLANEX gave the same sort of “keep-trying”
robustness to plan execution that the Markov tables gave to executing mid-level
actions.

12.1.5 Shakey’s Vision Routines

Shakey’s environment consisted of the floor it moved about on, the walls bounding
its rooms, doorways between the rooms, and large rectilinear objects on the floor in
some of the rooms. We made every effort to make “seeing” easy for Shakey. A dark
baseboard separated the light-colored floor from the light-colored walls. The objects
were painted various shades of red, which appeared dark to the vidicon camera and
light to the infrared laser range finder. Even so, visual processing still presented
challenging problems.

Rather than attempt complete analyses of visual scenes, our work concentrated
on using vision to acquire specific information that Shakey needed to perform its
tasks. This information included Shakey’s location and the presence and locations
of objects – the sort of information that was required by the mid-level actions. The
visual routines designed to gather that information were embedded in the programs

https://doi.org/10.1017/CBO9780511819346.015 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.015


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

172 The Quest for Artificial Intelligence

Figure 12.6. Using vision to locate an object. (From the film Shakey: An Experiment in Robot
Planning and Learning. Used with permission of SRI International.)

for performing those actions. Known properties of Shakey’s environment were
exploited in these routines.

Exploiting the fact that the objects, the floor, and the wall contained planes
of rather constant illumination, Claude Brice and Claude Fennema in our group
developed image-processing routines that identified regions of uniform intensity in
an image.21 Because the illumination on a single plane, say the face of an object,
might change gradually over the region, the region-finding routine first identified
rather small regions. These were then merged across region boundaries in the image
if the intensity change across the boundary was not too great. Eventually, the image
would be partitioned into a number of large regions that did a reasonable job of
representing the planes in the scene. The boundaries of these regions could then be
fitted with straight-line segments.

Another vision routine was able to identify straight-line segments in the image
directly. Richard Duda and Peter Hart developed a method for doing this based on
a modern form of the “Hough transform.”22 After edge-detection processing had
identified the locations and directions of small line segments, the Hough transform
was used to construct those longer lines that were statistically the most likely, given
the small line segments as evidence.

Both region finding and line detection were used in various of the vision routines
for the mid-level actions. One of these routines, called obloc, was used to refine
the location of an object whose location was known only roughly. The pictures in
Fig. 12.6 show a box, how it appears as a TV image from Shakey’s camera, and two of
the stages of obloc’s processing. From the regions corresponding to the box and the
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Figure 12.7. Using vision to update position. (From the film Shakey: An Experiment in Robot
Planning and Learning. Used with permission of SRI International.)

floor (and using the fact that Shakey is on the same floor as the box), straightforward
geometric computations could add the box and its location to Shakey’s models.

Shakey ordinarily kept track of its location by dead-reckoning (counting wheel rev-
olutions), but this estimate gradually accumulated errors. When Shakey determined
that it should update its location, it used another vision routine, called picloc.
A nearby “landmark,” such as the corner of a room, was used to update Shakey’s
position with respect to the landmark. The pictures in Fig. 12.7 show how obloc
traces out the baseboard and finds the regions corresponding to the walls and the
floor. The final picture shows the discrepancy between Shakey’s predicted location
of the corner (based on Shakey’s estimate of its own location) and the actual location
based on picloc. This discrepancy was used to correct Shakey’s estimate of its
position.

Before Shakey began a straight-line motion in a room where the presence of
obstacles might not be known, it used a routine called clearpath to determine

https://doi.org/10.1017/CBO9780511819346.015 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.015


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

174 The Quest for Artificial Intelligence

whether its path was clear. This routine checked the image of its path on the floor (a
trapezoidal-shaped region) for changes in brightness that might indicate the presence
of an obstacle.

In appraising Shakey’s visual performance, it is important to point out that it
was really quite primitive and subject to many errors – even in Shakey’s specially
designed environment. As one report acknowledges, “Regions that we wish to keep
distinct – such as two walls meeting at a corner – are frequently merged, and
fragments of meaningful regions that should be merged are too often kept distinct.”
Regarding clearpath, for example, this same report notes that “. . . shadows and
reflections can still cause false alarms, and the only solution to some of these problems
is to do more thorough scene analysis.”23 Nevertheless, vision played an important
part in Shakey’s overall performance, and many of the visual processing techniques
developed during the Shakey project are still used (with subsequent improvements)
today.24

12.1.6 Some Experiments with Shakey

To illustrate Shakey’s planning and plan-execution and learning methods in action,
we set up a task in which Shakey was to push a specified box in front of a specified
doorway in a nonadjacent room. To do so, Shakey had to use STRIPS to make a plan
to travel to that room and then to push the box. Before beginning its execution of
the plan, Shakey saved it in the generalized form described earlier. In the process
of executing the plan, we arranged for Shakey to encounter an unexpected obstacle.
Illustrating its robust plan execution procedure, Shakey was able to find a different
version of the generalized plan that would take it on a somewhat different route to
the target room where it could carry on.25

One of the researchers working on the Shakey project was L. Stephen Coles
(1941– ), who had recently obtained a Ph.D. degree under Herb Simon at Carnegie
Mellon University working on natural language processing. Coles wanted to give
Shakey tasks stated in English. He developed a parser and semantic analysis system
that translated simple English commands into logical statements for STRIPS. For
example, the task of box pushing just mentioned was posed for Shakey in English as
follows:

Use BOX2 to block door DPDPCLK from room RCLK.

(BOX2, DPDPCLK, and RCLK were the names Shakey used to identify the box,
door, and room in question. We were obliging enough to use Shakey’s names for
things when giving it tasks to perform.)

Coles’s program, called ENGROB,26 translated this English command into the
following condition to be made true (expressed in the language of the predicate
calculus):

BLOCKED(DPDPCLK, RCLK, BOX2)

This condition was then given to STRIPS to make a plan for achieving it.
Coles was also interested in getting Shakey to solve problems requiring indirect

reasoning. He set up an experiment in which Shakey was to push a box off an
elevated platform. To do so, it would have to figure out that it would need to push
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a ramp to the platform, roll up the ramp, and then push the box. This task was
given to Shakey in English as “Push the box that is on the platform onto the floor.”
The task was successfully executed and described in one of the Shakey technical
reports.27

The “push-the-box-off-the-platform” task was Coles’s way of showing that
Shakey could solve problems like the “monkey-and-bananas” problem. That prob-
lem, made famous by John McCarthy as an example for deductive reasoning, involved
a monkey, a box, and some bananas hanging out of reach. The monkey was supposed
to be able to reason that to get the bananas, it would have to push the box under
the bananas, climb up on the box, and then grab the bananas.28 McCarthy is said to
have heard Karl Lashley at the 1948 Caltech Hixon symposium describe a similar
problem for demonstrating intelligent problem solving by chimpanzees.

One of the persons who was impressed with Shakey was Bill Gates, who later
co-founded Microsoft. He saw the 1972 Shakey film as a junior in high school and
drove down from Seattle to SRI (with Paul Allen, who would be the other co-founder
of Microsoft) to have a look. According to one source, he was “particularly excited
about Shakey moving things around so it could go up a ramp.”29

12.1.7 Shakey Runs into Funding Troubles

Shakey was the first robot system having the abilities to plan, reason, and learn;
to perceive its environment using vision, range-finding, and touch sensors; and to
monitor the execution of its plans. It was, perhaps, a bit ahead of its time. Much
more research (and progress in computer technology generally) would be needed
before practical applications of robots with abilities such as these would be feasible.
We mentioned some of the limiting assumptions that were being made by robot
research projects at that time in one of our reports about Shakey:

Typically, the problem environment [for the robot] is a dull sort of place in which a single
robot is the only agent of change – even time stands still until the robot moves. The robot
itself is easily confused; it cannot be given a second problem until it finishes the first, even
though the two problems may be related in some intimate way. Finally, most robot systems
cannot yet generate plans containing explicit conditional statements or loops.

Even though the SRI researchers had grand plans for continuing work on Shakey,
DARPA demurred, and the project ended in 1972. This termination was unfortunate,
because work on planning, vision, learning, and their integration in robot systems had
achieved a great deal of momentum and enthusiasm among SRI researchers. Further-
more, several new ideas for planning and visual perception were being investigated.
Many of these were described in detail in a final report for the Shakey project.30

Among these ideas, a particularly important one involved techniques for con-
structing plans in a hierarchical fashion. To do so, an overall plan consisting of
just “high-level” actions must be composed first. Such a plan can be found with
much less searching than one consisting of all of the lowest level actions needed. For
example, one’s plan for getting to work might involve only the decision either to
take the subway or to drive one’s car. Then, gradually, the high-level plan must be
refined in more and more detail until actions at the lowest level (such as which set of
car keys should be used) would eventually be filled in.
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A Stanford computer science graduate student working at SRI, Earl Sacerdoti
(1948– ), proposed two novel methods for hierarchical planning. First (as part
of his master’s degree work), he programmed a system he called ABSTRIPS.31 It
consisted of a series of applications of STRIPS – beginning with an easy-to-compose
plan that ignored all but the most important operator preconditions. Subsequent
applications of STRIPS, guided by the higher level plans already produced, would
then gradually take the more detailed preconditions into account. The result was a
series of evermore-detailed plans, culminating in one that could actually be executed.

For his Ph.D. work, Sacerdoti went on to develop a more powerful hierarchi-
cal planning system he called NOAH (for Nets of Action Hierarchies).32 Unlike
ABSTRIPS, whose action operators were all at the same level of detail (albeit with
preconditions that could be selectively ignored), NOAH employed action operators
at several levels of detail. Each operator came equipped with specifications for how
it could be elaborated by operators at a lower level of detail. Furthermore, NOAH’s
representation of a plan, in a form Sacerdoti called a “procedural network,” allowed
indeterminacy about the order in which plan steps at one level might be carried out.
This “delayed commitment” about ordering permitted the more detailed steps of
the elaborations of nonordered plans at one level to be interleaved at the level below,
often with a consequent improvement in overall efficiency.

Sacerdoti was hoping to use his hierarchical planning ideas in the Shakey project,
so he and the rest of us at SRI were quite disappointed that DARPA was not going
to support a follow-on project. (Basic research on robots was one of the casualties of
the DARPA emphasis on applications work that began in the early 1970s.) However,
we were able to talk DARPA into a project that had obvious military relevance but
still allowed us to continue work on automatic planning, vision, and plan execution.
Interestingly, the project was pretty much a continuation of our research work on
Shakey but with a human carrying out the planned tasks instead of a robot. We called
it the “computer-based consultant (CBC) project.” I’ll describe it in a subsequent
chapter.

Sacerdoti and the SRI researchers were not alone in recognizing the importance
of hierarchical planning. As part of his Ph.D. work at the University of Edin-
burgh, Austin Tate (1951– ) was developing a network-based planning system called
INTERPLAN.33 In 1975 and 1976, supported by the British Science Research Council,
Tate and colleagues from operations research produced a hierarchical planner called
NONLIN.34 The planner took its name from the fact that, like NOAH, some of the plan
steps were left unordered until they were elaborated at lower levels of the hierarchy.

Other planning systems grew out of the NOAH and NONLIN tradition. One was the
interactive plan-generation and plan-execution system SIPE-2 developed by David E.
Wilkins at SRI International.35 Another was O-PLAN developed by Tate and col-
leagues at the Artificial Intelligence Applications Institute (AIAI) at the University
of Edinburgh.36 These systems have been widely used, extended, and applied.37

12.2 The Stanford Cart

In the early 1960s, James Adams, a Mechanical Engineering graduate student at
Stanford (and later a Stanford professor), began experimenting with a four-wheeled,
mobile cart with a TV camera and a radio control link. Lester Earnest wrote (in his
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Figure 12.8. The Stanford cart. (Photograph courtesy of Lester Earnest.)

history of the several projects using this cart) “Among other things, Adams showed
in his dissertation that with a communication delay corresponding to the round
trip to the Moon (about 2 1

2 seconds) the vehicle could not be reliably controlled if
traveling faster than about 0.2 mph (0.3 kph).”38

After Earnest joined the Stanford AI Laboratory, he and Rodney Schmidt, an
Electrical Engineering Ph.D. student, got an upgraded version of the cart to “follow
a high contrast white line [on the road around the Lab] under controlled lighting
conditions at a speed of about 0.8 mph (1.3 kph).” Other AI graduate students also
experimented with the cart from time to time during the early 1970s. A picture of
the cart (as it then appeared) is shown in Fig. 12.8.

When Hans Moravec came to Stanford to pursue Ph.D. studies on visual naviga-
tion, he began work with the cart, “but suffered a setback in October 1973 when the
cart toppled off an exit ramp while under manual control and ended up with battery
acid throughout its electronics.” By 1979 Moravec got the refurbished cart, now
equipped with stereo vision, to cross a cluttered room without human intervention.
But it did this very slowly. According to Moravec,39

The system was reliable for short runs, but slow. The Cart moved 1 m every 10 to 15 min,
in lurches. After rolling a meter it stopped, took some pictures, and thought about them for a
long time. Then it planned a new path, executed a little of it, and paused again. It successfully
drove the Cart through several 20-m courses (each taking about 5 h) complex enough to
necessitate three or four avoiding swerves; it failed in other trials in revealing ways.

A short video of the cart in action can be seen at http://www.frc.ri.cmu.edu/
users/hpm/talks/Cart.1979/Cart.final.mov. Along with Shakey, the Stanford Cart
resides in the Computer History Museum in Mountain View, California. They were
the progenitors of a long line of robot vehicles, which will be described in subsequent
chapters.
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