
7 Variational Bayes

Variational Bayes (VB) was developed in the machine learning community in the 1990s
(Attias 1999, Jordan, Ghahramani, Jaakkola et al. 1999) and has now become a stan-
dard technique to approximated Bayesian inference for latent models, based on the
EM-like algorithm. In Chapter 4, we have also dealt with latent models based on the
maximum a-posteriori (MAP) EM algorithm. However, the MAP approximation uses
the point estimation of model parameters instead of the distribution estimation, which
is far from a true Bayesian manner of regarding all the variables introduced in our prob-
lem as probabilistic random variables. Another approximation based on the asymptotic
approximation in Chapter 6 assumes a complex posterior distribution as a single Gaus-
sian distribution without latent variables, which is not a true assumption for many of
our applications. The evidence approximation in Chapter 5 also does not explicitly deal
with latent models (can be obtained by combining MAP, VB, or MCMC). Instead of
considering the MAP, evidence, and asymptotic approximations, VB can efficiently
approximate complicated integrals and expectations over model parameters, based on
variational method within a specific family of distribution types (exponential family, as
discussed in Section 2.1.3). The key idea of the variational technique is to find the lower
bound of the marginal log likelihood, similar to the EM algorithm in Section 3.4, and
obtain the posterior distributions directly based on the variational method.

This chapter starts to explain the general framework of VB in Section 7.1, and more
specific pattern recognition problems in Section 7.2. Then this chapter goes on to pro-
vide a VB version of the EM algorithm for statistical models and model selection in
speech and language processing, including speech recognition in Sections 7.3 and 7.4
and speaker verification in Section 7.5. Sections 7.6 and 7.7 also deal with latent topic
models and their extensions; these try to capture long-range topic information from
(spoken) documents, based on VB solutions.

7.1 Variational inference in general

This section starts by describing a general latent model with observation data X =
{xn|n = 1, · · · , N}, and the set of all variables introduced in our model including latent
variables, parameters, hyperparameters, and model structure Z. The latter sections spec-
ify Z with more specific variables. The goal of Bayesian inference is to obtain posterior
distributions of any variables introduced in the problem, that is:

p(Z|X). (7.1)
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7.1 Variational inference in general 243

As discussed in Section 2.1.2, once we obtain p(Z|X), we can estimate various informa-
tion by the MAP or expectation procedure. In VB, we consider an arbitrary posterior
distribution q(Z|X). We use the approximated posterior distribution denoted by q(·)
to distinguish it from the true posterior distribution p(·). Then the problem is how to
obtain a q(Z|X) that is close to p(Z|X), so as to obtain a well-approximated posterior
distribution.

7.1.1 Joint posterior distribution

As a measure of evaluating the difference between two distributions, we use the
Kullback–Leibler divergence (Kullback & Leibler 1951), as introduced in the ML–EM
algorithm (Section 3.4). The Kullback–Leibler divergence between q(Z|X) and p(Z|X)
is defined as follows:

KL(q(Z|X)‖p(Z|X)) �
∫

q(Z|X) log
q(Z|X)

p(Z|X)
dZ. (7.2)

Z can be a set of discrete variables or a set of both continuous and discrete variables, and,
strictly speaking, we should use the summation sumZ for discrete variables and

∫
dZ for

continuous variables in such a case. However, for simplicity we use
∫

dZ instead of
mixing integrals and summations in the following formulation.

The KL divergence (Eq. (7.2)) is represented as

KL(q(Z|X)‖p(Z|X)) =
∫

q(Z|X) log
q(Z|X)
p(X,Z)
p(X)

dZ

= log p(X)−
∫

q(Z|X) log
p(X, Z)

q(Z|X)
dZ︸ ︷︷ ︸

�F [q(Z|X)]

, (7.3)

where

F[q(Z|X)] �
∫

q(Z|X) log
p(X, Z)

q(Z|X)
dZ (7.4)

is called the variational lower bound. The reason we call it the lower bound is that
F[q(Z|X)] is a lower bound of the evidence (marginal log likelihood) log p(X) because
of the non-negativity of the KL divergence, i.e.,

KL(q(Z|X)‖p(Z|X)) ≥ 0 ⇐⇒ log p(X) ≥ F[q(Z|X)]. (7.5)

Equation (7.3) means that we can obtain the optimal q(Z|X) by maximizing the varia-
tional lower bound F[q(Z|X)] that corresponds to minimizing the KL divergence since
the log evidence log p(X) does not depend on Z. That is

q̃(Z|X) = arg max
q(Z|X)

F[q(Z|X)] ⇐⇒ arg max
q(Z|X)

KL(q(Z|X)‖p(Z|X)). (7.6)

To obtain the optimal q̃(Z|X), we use a variational method for a functional F[q(Z|X)],
which achieves mapping a function to a real (or complex) value, i.e., f �→ a ∈ R.
Thus, the approach is called variational Bayes. The variational method is discussed in
Section 7.1.3.
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244 Variational Bayes

7.1.2 Factorized posterior distribution

In practical applications, we need to consider the factorized form of the joint distribution
q(Z|X) to make the calculation simple. To do this, we consider the jth element of Z and
make the following conditional independence assumption:

q(Z|X) =
J∏

j=1

q(Zj|X). (7.7)

J is the total number of elements. This is an essential approximation requirement of VB
to make the problem practical. Zj would be a subset of model parameters (e.g., Gaussian
mean vector μ and covariance matrix � in a particular component of GMM/CDHMM),
or an HMM state indicator st at frame t, for instance. Note that we do not assume the
factorization form for the true posterior p(Z|X). Instead, the true posterior p(Zi|X) can
be represented as the following marginalized distribution of p(Z|X) over all Zj except Zi:

p(Zi|X) =
∫
· · ·
∫

p(Z|X)
J∏

j �=i

dZj �
∫

p(Z|X)dZ\i, (7.8)

where Z\i denotes the complementary set of Zi.
By using Eq. (7.8), the KL divergence between q(Zi|X) and p(Zi|X) (not the KL

divergence between the joint distributions in Eq. (7.2)) is represented as follows:

KL(q(Zi|X)‖p(Zi|X)) =
∫

q(Zi|X) log
q(Zi|X)∫

p(Z|X)dZ\i
dZi

=
∫

q(Zi|X) log
q(Zi|X)∫ p(X,Z)
p(X) dZ\i

dZi

= log p(X)−
∫

q(Zi|X) log

∫
p(X, Z)dZ\i
q(Zi|X)

dZi. (7.9)

Since Eq. (7.9) has integrals in the logarithmic function, it is difficult to deal with.
Therefore, we use the following Jensen’s inequality for a concave function f , distri-
bution function p(Y) (

∫
p(Y)dY = 1), and an arbitrary function g(Y) introduced in

Section 3.4.1:

f

(∫
p(Y)g(Y)dY

)
≥
∫

p(Y)f (g(Y))dY . (7.10)

In the special case of f (·) = log(·), Y = Z\i, p(Y) = q(Z\i|X), and g(Y) = p(X,Z)
q(Z|X) ,

Eq. (7.10) can be rewritten as follows:

log

(∫
q(Z\i|X)

p(X, Z)

q(Z|X)
dZ\i

)
= log

(∫
p(X, Z)dZ\i
q(Zi|X)

)
≥
∫

q(Z\i|X) log

(
p(X, Z)

q(Z|X)

)
dZ\i, (7.11)

where we use Eq. (7.7) to cancel q(Z\i|X) in the fraction of the first line. We also use the
following relationship, which is true when p(Y) ≥ 0:
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a(Y) ≥ b(Y) ∀Y ⇒
∫

p(Y)a(Y)dY ≥
∫

p(Y)b(Y)dY . (7.12)

In the special case of

f (·) = log(·),
Y = Zi,

p(Y) = q(Zi|X),

a(Y) = log

(∫
p(X, Z)dZ\i
q(Zi|X)

)
,

b(Y) =
∫

q(Z\i|X) log

(
p(X, Z)

q(Z|X)

)
dZ\i, (7.13)

Eq. (7.12) is represented as∫
q(Zi|X) log

(∫
p(X, Z)dZ\i
q(Zi|X)

)
dZi

≥
∫

q(Zi|X)
∫

q(Z\i|X) log

(
p(X, Z)

q(Z|X)

)
dZ\idZi.

=
∫

q(Z|X) log

(
p(X, Z)

q(Z|X)

)
dZ = F[q(Z|X)], (7.14)

where we use Eq. (7.7) to obtain q(Z|X), and use the definition of the variational
lower bound in Eq. (7.4). Therefore, by substituting Eq. (7.14) into the KL divergence
Eq. (7.9), Eq. (7.9) is finally represented as follows:

KL(q(Zi|X)‖p(Zi|X)) ≤ log p(X)− F[q(Z|X)]. (7.15)

Compared with Eq. (7.3) that is the equality relationship, Eq. (7.15) is the inequality
relationship. Equation (7.15) still has the nice property that the maximization of the
variational lower bound corresponds to reducing the KL divergence that then causes the
approximated posterior q(Zi|X) to approach the true posterior p(Zi|X). That is, if we
obtain the following posterior distribution:

q̃(Zi|X) = arg max
q(Zi|X)

F[q(Z|X)], (7.16)

q̃(Zi|X) could be a well-approximated posterior distribution in terms of reducing the KL
divergence between the true posterior p(Zi|X) and approximated posterior q̃(Zi|X). In
this section, a tilde ˜ is added to indicate variationally optimized values or functions.
However, the maximization of the posterior distribution in terms of the lower bound
F[q(Z|X)] does not directly correspond to minimization of the KL divergence, and we
cannot globally optimize q(Zi|X) in terms of the KL divergence when we use the lower
bound as the objective functional. This is a shortcoming of the factorization approxima-
tion in Eq. (7.7), but it enables us to obtain the posterior distribution of each variable
q(Zi|X), unlike the joint distribution q(Z|X), which is more practical. The next section
discusses how to optimize the approximated posterior by using the variational method.
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246 Variational Bayes

7.1.3 Variational method

The variational method is based on functional differentiation, which is a technique
for obtaining an optimal function based on a variational calculation, and is defined as
follows:

Continuous function case

δ

δg(y)
H[g(x)] = lim

ε→0

H[g(x)+ εδ(x− y)]−H[g(x)]

ε
, (7.17)

where g(x) is a continuous function to be optimized, H[g(x)] is a functional of g(x) and
δ(x− y) is a Dirac delta function.

Discrete function case

δ

δgl
H[gn] = lim

ε→0

H[gn + εδ(n, l)]−H[gn]

ε
. (7.18)

Similarly, gn is a discrete function to be optimized, and δ(n, l) is a Kronecker delta func-
tion. This section aims to obtain the following optimized posterior distribution based on
the above variational method:

q̃(Zi|X) = arg max
q(Zi|X)

F[q(Z|X)]

= arg max
q(Zi|X)

∫
q(Z|X) log

(
p(X, Z)

q(Z|X)

)
dZ. (7.19)

For simplicity of the calculation, we simplify q(Zi|X) to q(Zi) in this section.
If we consider

∫
q(Zi)dZi = 1 constraint, the functional differentiation is represented

by substituting F[q(Z)] and q(Zi) into H and g(y) in Eq. (7.17), respectively, as follows:

δ

δq(Z′i)

(
F[q(Z)]+ K

(∫
q(Zi)dZi − 1

))
= lim

ε→0

1

ε

(∫ (
q(Zi)+ εδ(Zi − Z′i)

)
E(Z\i)

[
log

p(X, Z)(
q(Zi)+ εδ(Zi − Z′i)

)
q(Z\i)

]
dZi

− F[q(Z)]+ K

(∫ (
q(Zi)+ εδ(Zi − Z′i)

)
dZi − 1

)
− K

(∫
q(Zi)dZi − 1

))
, (7.20)

where K is a Lagrange multiplier, as introduced in Section 3.4.3 for the function
derivative. We focus on the first term in the brackets in the second line of Eq. (7.20).
The first term is rewritten as follows:
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∫ (
q(Zi)+ εδ(Zi − Z′i)

)
E(Z\i)

[
log

p(X, Z)(
q(Zi)+ εδ(Zi − Z′i)

)
q(Z\i)

]
dZi

=
∫ (

q(Zi)+ εδ(Zi − Z′i)
)
E(Z\i)

[
log

p(X, Z)

q(Z)+ q(Z)
q(Zi)

εδ(Zi − Z′i)

]
dZi

=
∫ (

q(Zi)+ εδ(Zi − Z′i)
)
E(Z\i)

[
log

p(X, Z)

q(Z)
− log

(
1+ ε

δ(Zi − Z′i)
q(Zi)

)]
dZi.

(7.21)

By expanding the logarithmic term in Eq. (7.21) with respect to ε, Eq. (7.21) can be
represented thus:

Equation (7.21)

=
∫ (

q(Zi)+ εδ(Zi − Z′i)
) (

E(Z\i)

[
log

p(X, Z)

q(Z)

]
− ε

δ(Zi − Z′i)
q(Zi)

)
dZi + o(ε2)

=
∫

q(Zi)E(Z\i)

[
log

p(X, Z)

q(Z)

]
dZi − ε

∫
δ(Zi − Z′i)dZi

+ ε

∫
δ(Zi − Z′i)E(Z\i)

[
log

p(X, Z)

q(Z)

]
dZi + o(ε2)

= F[q(Z)]− ε + εE(Z\i)

[
log

p(X, Z′)
q(Z′)

]
+ o(ε2)

= F[q(Z)]+ ε

(
−1+ E(Z\i)

[
log

p(X, Z′)
q(Z′)

])
+ o(ε2), (7.22)

where o(ε2) denotes a set of terms of no less than the second power of ε. Z′ � {Z′i , Z\i},
but in the following equations, we simply use Z instead of Z′, as we do not have
to distinguish them. Therefore, by substituting Eq. (7.22) into Eq. (7.20), it can be
represented as:

Equation (7.20)

= lim
ε→0

1

ε

(
ε

(
−1+ E(Z\i)

[
log

p(X, Z)

q(Z)

]
+ K

)
+ o(ε2)

)
= −1+ E(Z\i)

[
log

p(X, Z)

q(Z)

]
+ K

= −1+ E(Z\i)
[
log p(X, Z)

]− E(Z\i)
[
log q(Z)

]+ K

= −1+ E(Z\i)
[
log p(X, Z)

]− log q(Zi)− E(Z\i)
[
log q(Z\i)

]+ K. (7.23)

We use Eq. (7.7) to factorize q(Zi) and q(Z\i). Therefore, the optimal posterior (VB
posterior) q̃(Zi) satisfies the relation whereby Eq. (7.23) = 0, and is obtained as:

log q̃(Zi) = −1+ E(Z\i)
[
log p(X, Z)

]− E(Z\i)
[
log q(Z\i)

]+ K. (7.24)

Since only the second term in the right-hand-side depends on Zi, the optimal VB
posterior is finally derived as:

q̃(Zi|X) ∝ exp
(
E(Z\i|X)

[
log p(X, Z)

])
, (7.25)
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or by considering the normalization constant, it is derived as

q̃(Zi|X) = exp
(
E(Z\i|X)

[
log p(X, Z)

])∫
exp
(
E(Z\i|X)

[
log p(X, Z)

])
dZi

, (7.26)

where the omitted notations are recovered (q(Zi) → q(Zi|X)). Thus, we obtain the gen-
eral form of the VB posterior distribution q̃(Zi|X) by using the variational method.
Equation (7.25) tells us that if we want to infer some probabilistic variables, we first
need to prepare the joint distribution of the observation X and target variables. Note that
q̃(Zi|X) and the other posterior distributions q̃(Z\i|X) = ∏J

j �=i q(Zj|X) depend on each
other due to the expectation in Eq. (7.25). Therefore, this optimization can be performed
iteratively from the initial posterior distributions for all q̃(Zi|X). The following sections
provide more practical forms of VB posteriors.

7.2 Variational inference for classification problems

This section provides more specific formulations for our speech and language processing
issues which focus more on pattern classification problems. Let O be a training data set
of feature vectors, and Z be a set of discrete latent variables. Then, with a fixed model
structure M, posterior distributions for model parameters p(�(c)|O, M) and p(Z(c)|O, M)
given category c are expressed as follows:1

p(�(c)|O, M) =
∑

Z

∫
p(O, Z|�, M)p(�|M)

p(O|M)
d�(\c) (7.27)

and

p(Z(c)|O, M) =
∑
Z(\c)

∫
p(O, Z|�, M)p(�|M)

p(O|M)
d�, (7.28)

where p(�|M) is a prior distribution for �. Here, \c represents the set of all categories
without c. In this section, we can also regard the prior hyperparameter setting as the
model structure setting, and include its variations in index M. The posterior distributions
for the model structure p(M|O) are expressed as follows:

p(M|O) =
∑

Z

∫
p(O, Z|�, M)p(�|M)p(M)

p(O)
d�, (7.29)

where p(M) denotes a prior distribution for model structure M.
These equations cannot be solved analytically, because the acoustic model for speech

recognition includes latent variables in HMMs and GMMs, as discussed in Section 3.2,
and the total number of model parameters amounts to more than one million. In addition,
these parameters depend on each other hierarchically. Solving all integrals and expecta-
tions numerically requires huge amounts of computation time. Therefore, when applying

1 It is reasonable to deal with the prior distribution p(�|M) of model parameters given model M instead of
p(�), since the actual functional form of model parameters is determined by model M. Conversely, it is
very difficult to consider the prior distribution of model parameters p(�) without the model setting.
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the Bayesian approach to acoustic modeling for speech recognition, an effective approx-
imation technique is necessary. Therefore, this section focuses on the VB approach
and derives general solutions for VB posterior distributions q(�|O, M), q(Z|O, M), and
q(M|O) to approximate the corresponding true posteriors. To begin with, by following
the general VB formulation in Section 7.1.2, we assume that

q(�, Z|O, M) =
∏

c

q(�(c)|O(c), M)q(Z(c)|O(c), M),

p(�, Z|O, M) =
∏

c

p(�(c)|O(c), M)p(Z(c)|O(c), M). (7.30)

This assumption means that probabilistic variables associated with each category are
statistically independent from other categories. In addition, these posterior distributions
depend on the model variable M, which is not marginalized. The speech data used are
assumed to be well transcribed and the label information is assumed to be reliable.
In addition, the frequently used feature extraction (e.g., MFCC) from the speech is
good enough for the statistical independence assumption of the observation data to be
guaranteed. Therefore, the assumption of class independence is reasonable.

7.2.1 VB posterior distributions for model parameters

This subsection discusses VB posterior distributions for model parameters with fixed
model structure M. Initially, arbitrary posterior distribution q(�(c)|O, M) is intro-
duced, and the Kullback–Leibler (KL) divergence (Kullback & Leibler 1951) between
q(�(c)|O, M) and true posterior distribution p(�(c)|O, M) is considered:

KL(q(�(c)|O, M)‖p(�(c)|O, M)) =
∫

q(�(c)|O, M) log
q(�(c)|O, M)

p(�(c)|O, M)
d�(c). (7.31)

Substituting Eq. (7.27) into Eq. (7.31), Eq. (7.31) is rewritten as follows:

KL(q(�(c)|O, M)‖p(�(c)|O, M))

=
∫

q(�(c)|O, M) log
q(�(c)|O, M)∑

Z

∫ p(O,Z|�,M)p(�|M)
p(O|M) d�(\c)

d�(c)

= log p(O|M)−
∫

q(�(c)|O, M)

× log

∑
Z

∫
p(O, Z|�, M)p(�|M)d�(\c)

q(�(c)|O, M)
d�(c). (7.32)

Then applying the continuous Jensen’s inequality Eq. (7.10) to Eq. (7.32), the following
inequality is obtained:

KL(q(�(c)|O, M)‖p(�(c)|O, M))

≤ log p(O|M)−
∑

Z

∫
q(�(c)|O, M)q(�(\c)|O, M)q(Z|O, M)

× log
p(O, Z|�, M)p(�|M)

q(�(c)|O, M)q(�(\c)|O, M)q(Z)
d�(c)d�(\c)
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= log p(O|M)−
∑

Z

∫
q(�|O, M)q(Z|O, M)

× log
p(O, Z|�, M)p(�|M)

q(�|O, M)q(Z|O, M)p(O|M)
d�. (7.33)

From the third to the fourth line, we use the definition d�(c)d�(\c) ≡ d� and the relation
q(�(c)|O, M)q(�(\c)|O, M) = q(�|O, M), which is derived from Eq. (7.30). Thus, we
finally obtain the following inequality:

KL(q(�(c)|O, M)‖p(�(c)|O, M))

≤ log p(O|M)− FM[q(�|O, M), q(Z|O, M)], (7.34)

where

FM[q(�|O, M), q(Z|O, M)]

�
∑

Z

∫
q(�|O, M)q(Z|O, M) log

p(O, Z|�, M)p(�|M)

q(�|O, M)q(Z|O, M)
d�

= E(�,Z)

[
log

p(O, Z|�, M)p(�|M)

q(�|O, M)q(Z|O, M)

]
. (7.35)

This corresponds to the variational lower bound, as discussed in Eq. (7.3). The inequality
(7.34) is strict unless q(�|O, M) = p(�|O, M) and q(Z|O, M) = p(Z|O, M) (i.e., the
arbitrary posterior distribution q is equivalent to the true posterior distribution p). From
the assumption Eq. (7.30), FM is decomposed into each category as follows:

FM[q(�|O, M), q(Z|O, M)]

=
∑

c

E(�(c),Z(c))

[
log

p(O(c), Z(c)|�(c), M)p(�(c)|M)

q(�(c)|O(c), M)q(Z(c)|O(c), M)

]
=
∑

c

FM,(c)[q(�(c)|O(c), M), q(Z(c)|O(c), M)]. (7.36)

This indicates that the total objective function is calculated by summing all objective
functions for each category.

From inequality Eq. (7.34), q(�(c)|O, M) approaches p(�(c)|O, M) as the right-hand-
side decreases. Therefore, the optimal posterior distribution can be obtained by a
variational method. Since the term log p(O|M) can be disregarded, minimization is
changed to maximization of FM with respect to q(�(c)|O, M), and is given by the
following variational equation:

δ

δq(�(c)|O, M)
FM[q(�|O, M), q(Z|O, M)]

= δ

δq(�(c)|O, M)
FM,(c)[q(�(c)|O(c), M), q(Z(c)|O(c), M)] = 0. (7.37)

From this equation, the optimal VB posterior distribution q̃(�(c)|O, M) is obtained by
using the variational method as follows:

q̃(�(c)|O, M) ∝ p(�(c)|M) exp
(
E(Z(c))

[
log p(O(c), Z(c)|�(c), M)

])
. (7.38)
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This result can also be obtained by using the general formula of the variational posterior
in Eq. (7.25). By using the replacement Zi → �(c), Eq. (7.25) can be rewritten as
follows:

q̃(�(c)|O(c), M) ∝ exp
(
E(�(\c),Z)

[
log p(O,�, Z|M)

])
= exp

(
E(�(\c),Z)

[
log p(O, Z|�, M)p(�|M)

])
= exp

⎛⎝∑
c′ �=c

E(�(c′),Z(c′))

[
log p(O(c′), Z(c′)|�(c′), M)p(�(c′)|M)

]⎞⎠
× exp

(
E(Z(c))

[
log p(O(c), Z(c)|�(c), M)p(�(c)|M)

])
∝ p(�(c)|M) exp

(
E(Z(c))

[
log p(O(c), Z(c)|�(c), M)

])
. (7.39)

Here, we use the factorization property of the posterior distributions in Eq. (7.30). This
result means that the optimal posterior distribution of model parameters q̃(�(c)|O(c), M)
is obtained by its prior distribution p(�(c)|M) and the expected complete data likelihood
p(O(c), Z(c)|�(c), M).

7.2.2 VB posterior distributions for latent variables

A similar method is used for the optimal VB posterior distribution q̃(Z(c)|O, M). An
inequality similar to Eq. (7.37) is obtained by considering the KL divergence between
the arbitrary posterior distribution q(Z(c)|O, M) and the true posterior distribution
p(Z(c)|O, M) as follows:

KL(q(Z(c)|O, M)‖p(Z(c)|O, M))

≤ log p(O|M)− FM[q(�|O, M), q(Z|O, M)]. (7.40)

The optimal VB posterior distribution q̃(Z(c)|O, M) is also obtained by maximizing FM

with respect to q(Z(c)|O, M) with the variational method as follows:

q̃(Z(c)|O, M) ∝ exp
(
E(�(c))

[
log p(O(c), Z(c)|�(c), M)

])
. (7.41)

This result is also obtained by using the general formula of the variational posterior in
Eq. (7.25). Compared with the result for q̃(�(c)|O(c), M) in Eq. (7.38), Eq. (7.41) does
not need to prepare the prior distribution for Z.

7.2.3 VB–EM algorithm

Equations (7.38) and (7.41) are closed-form expressions, and these optimizations can be
effectively performed by iterative calculations analogous to the expectation and maxi-
mization (EM) algorithm (Dempster et al. 1976), as discussed in Sections 3.4 and 4.2,
which increases FM at every iteration up to a converged value. Then, Eqs. (7.38) and
(7.41), respectively, correspond to the maximization step (M-step) and the expectation
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Table 7.1 Training specifications for ML and VB.

Training Min-max optimization Objective function

ML ML–EM differential method Q function
VB VB–EM variational method FM functional

step (E-step) in the VB approach. We call this algorithm the variational Bayes expecta-
tion and maximization (VB–EM) algorithm. Therefore, by substituting q into q̃, these
equations can be represented as follows:{̃

q(�(c)|O, M) ∝ p(�(c)|M) exp
(
E(Z(c))

[
log p(O(c), Z(c)|�(c), M)

])
,

q̃(Z(c)|O, M) ∝ exp
(
E(�(c))

[
log p(O(c), Z(c)|�(c), M)

])
. (7.42)

Note that optimal posterior distributions for a particular category can be obtained simply
by using the category’s variables, i.e., we are not concerned with the other categories in
the calculation, since Eq. (7.42) only depends on category c, which is based on the
assumption given by Eq. (7.30).

Finally, to compare the VB approach with the conventional ML approach for training
latent variable models, the training specifications for ML and VB are summarized in
Table 7.1.

7.2.4 VB posterior distribution for model structure

The VB posterior distributions for a model structure are derived in the same way as in
Section 7.2.1, and model selection is carried out employing the posterior distribution.
Arbitrary posterior distribution q(M|O) is introduced and the KL divergence between
q(M|O) and the true posterior distribution p(M|O) is considered:

KL(q(M|O)‖p(M|O)) =
∑
M

q(M|O) log
q(M|O)

p(M|O)
. (7.43)

Substituting Eq. (7.29) into Eq. (7.43) and using Jensen’s inequality, the inequality of
Eq. (7.43) can be obtained as follows:

KL (q(M|O)‖p(M|O))

≤ log p(O)+ E(M)

[
log

q(M|O)

p(M)
− FM[q(�|O, M), q(Z|O, M)]

]
. (7.44)

Similarly to the discussion in Section 7.2.1, from the inequality Eq. (7.44), q(M|O)
approaches p(M|O) as the right-hand-side decreases.

Compared with the posterior distributions of model parameters and latent variables,
we cannot use the formula Eq. (7.25), since it is not practical to marginalize all possible
model structures M. Therefore, the optimal posterior distribution for a model structure
can again be obtained by a variational method, as explained in Section 7.1.3. If we
consider the constraint

∑
M q(M|O) = 1, the functional differentiation is represented by

substituting respectively FM and q(M|O) into H and gn in Eq. (7.18) as follows:
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δ

δq(M′|O)

(
E(M)

[
log

q(M|O)

p(M)
− FM

]
+ K

(∑
M

q(M|O)− 1

))

= lim
ε→0

1

ε

(∑
M

(q(M|O)+ εδMM′)

(
log

q(M|O)+ εδMM′

p(M)
− FM

)
− E(M)

[
log

q(M|O)

p(M)
− FM

]
+K

(∑
M

q(M|O)+ εδMM′ − 1

)
− K

(∑
M

q(M|O)− 1

))
, (7.45)

where K is a Lagrange multiplier. We focus on the first term in the brackets in the 2nd
line of Eq. (7.45). This term can be rewritten as follows:∑

M

(q(M|O)+ εδMM′)

(
log

q(M|O)+ εδMM′

p(M)
− FM

)
=
∑
M

(q(M|O)+ εδMM′)

(
log

q(M|O)

p(M)
+ log

(
1+ ε

δMM′

q(M|O)

)
− FM

)
. (7.46)

By expanding the logarithmic term in Eq. (7.46) with respect to ε, Eq. (7.46) is
represented as:

Equation (7.46)

= E(M)

[
log

q(M|O)

p(M)
− FM

]
+ ε

(
log

q(M′|O)

p(M′)
− FM′ + 1

)
+ o(ε2). (7.47)

Therefore, by substituting Eq. (7.47) into Eq. (7.45), Eq. (7.45) is represented as:

Equation (7.45) = log
q(M′|O)

p(M′)
− FM′ + 1+ K. (7.48)

Therefore, the optimal posterior (VB posterior) q̃(M|O) satisfies the relation whereby
Eq. (7.48) = 0, and is obtained as:

log
q̃(M|O)

p(M)
− FM + 1+ K = 0. (7.49)

By disregarding the normalization constant, the optimal VB posterior is finally
derived as:

q̃(M|O) ∝ p(M) exp
(FM[q(�|O, M), q(Z|O, M)]

)
. (7.50)

Compared with Eqs. (7.38) and (7.41), the posterior obtained is represented by the total
variational lower bound.

Assuming that p(M) is a uniform distribution,2 the proportional relation between
q̃(M|O) and FM is obtained as follows, based on the convexity of the logarithmic
function:

FM′ ≥ FM ⇔ q̃(M′|O) ≥ q̃(M|O). (7.51)

2 We can set an informative prior distribution for p(M) instead of the uniform distribution. Several prior
distributions for model structure are considered in Chapter 8.
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Therefore, an optimal model structure in the sense of maximum posterior probability
estimation can be selected as follows:

M̃ = arg max
M

q̃(M|O) = arg max
M

FM . (7.52)

This indicates that by maximizing total FM with respect to both q(�|O, M), q(Z|O, M),
and M, we can obtain the optimal parameter distributions and select the optimal model
structure simultaneously (Attias 1999, Ueda & Ghahramani 2002).

Thus, we analytically derive the variational posterior distributions of general latent
models. The next section applies these solutions to the continuous density hidden
Markov model (CDHMM), as we apply ML–EM and MAP–EM to CDHMMs in
Sections 3.4 and 4.3, respectively.

7.3 Continuous density hidden Markov model

This section reformulates the CDHMM training for speech processing based on the
VB framework (Valente & Wellekens 2003, Somervuo 2004, Watanabe et al. 2004).
The four formulations are obtained by using the VB framework to perform acoustic
model construction (model setting, training, and selection) and speech classification
consistently, based on the Bayesian approach. Consequently, the conventional formu-
lations based on the ML and MAP approaches in Sections 3.4 and 4.3 are replaced by
formulations based on the Bayesian approach as follows:

• Set generative model distributions
→ Set generative model distributions and prior distributions (Section 7.3.1 and
7.3.2);

• ML/MAP Baum–Welch algorithm
→ VB Baum–Welch algorithm (Section 7.3.3);

• Log likelihood
→ VB objective function (Section 7.3.4);

• ML/MAP-based classification
→ VB–BPC (Section 7.3.5).

These four formulations are explained in the following four subsections, by applying
the acoustic model for speech recognition to the general solution in Section 7.2.

7.3.1 Generative model

Similarly to the MAP–EM algorithm in Section 4.3, setting of the emission and prior
distributions is required when calculating the VB posterior distributions. This section
provides these distributions for CDHMM again, to provide the VB-based analytical
solutions.
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Let O = {ot ∈ R
D|t = 1, . . . , T} be a sequential speech data set for a speech seg-

ment of a phoneme category. Since the formulations for the posterior distributions are
common to all phoneme categories, the phoneme category index c is omitted from this
section to simplify the equation forms. D is used to denote the dimension number of the
feature vector and T to denote the frame number. The complete data likelihood func-
tion with speech, HMM state, and GMM component sequences (O, S, and V), which is
introduced in Eqs. (3.44) and (4.23), is expressed by

p(O, S, V|�, M) =
T∏

t=1

ast−1stωstvt p(ot|�stvt , M), (7.53)

where as0s1 = πs1 .3 Although we have many segments for each phoneme category
and the generative model distribution must consider the product of each segment
in Eq. (7.53), this is also omitted in this book. Here, S and V are sets of discrete
latent variables, which are the concrete forms of Z in Section 7.2. The parame-
ter aij denotes the state transition probability from state i to state j, and ωjk is
the kth weight factor of the Gaussian mixture for state j. In addition, p(ot|�jk)(=
N (ot|μjk, �jk)) denotes the Gaussian with mean vector μjk and covariance matrix �jk

defined as:

N (ot|μjk, �jk) � (2π )−
D
2 |�jk|− 1

2 exp

(
−1

2
(ot − μjk)ᵀ�−1

jk (ot − μjk)

)
. (7.54)

� = {aij,ωjk, μjk, �−1
jk |i, j = 1, . . . , J, k = 1, . . . , K} is a set of model parameters.

Here, J denotes the number of states in an HMM sequence and K denotes the number
of Gaussian components in a state. This section only considers the diagonal covariance
matrix case.

7.3.2 Prior distribution

Conjugate distributions, which are based on the exponential function, are as easy to
use as prior distributions since the function forms of prior and posterior distributions
become the same (Berger 1985, Gauvain & Lee 1994, Bernardo & Smith 2009), as
discussed in Sections 2.1.3 and 4.3.3. Then a distribution is selected where the proba-
bilistic variable constraint is the same as that of the model parameter. The state transition
probability aij and the mixture weight factor ωjk have the constraint that

∑
j aij = 1 and∑

k ωjk = 1. Therefore, the Dirichlet distributions for πj, aij, and ωjk are used, where the
variables of the Dirichlet distribution satisfy the above constraint. Similarly, the diago-
nal elements of the inverse covariance matrix �−1

jk are always positive, and the gamma
distribution is used. The range of the mean vector μjk is from −∞ to ∞, and the mul-
tivariate Gaussian distribution is used. Thus, as introduced in Eqs. (4.29) and (4.32),
the prior distribution for a CDHMM with a diagonal covariance matrix is expressed as
follows:

3 This section does not explicitly provide the posterior solution of the initial weight, as it is trivial.
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p(�|M) �
J∏

i=1

p({aij′ }Jj′=1|M)
J∏

j=1

p({ωjk′ }Kk′=1|M)
K∏

k=1

p(μjk, �jk|M)

�
J∏

i=1

Dir({aij′ }Jj′=1|{φa
ij′ }Jj′=1)

J∏
j=1

Dir({ωjk′ }Kk′=1|{φω
jk′ }Kk′=1)

×
K∏

k=1

D∏
d=1

N (μjkd|μ0
jkd, (φμ

jkrjkd)−1)Gam2(rjkd|φr
jk, r0

jkd). (7.55)

Here, �0 � {φa
ij,φ

ω
jk,φμ

jk,μ0
jkd,φr

jk, r0
jkd|i, j = 1, . . . , J, k = 1, . . . , K, d = 1, · · · , D}

is a set of prior parameters. In Eq. (7.55), Dir(·) denotes a Dirichlet distribution and
Gam2(·) denotes a gamma distribution. (It is different from the conventional definition
of the gamma distribution, see Appendix C.11.) If the covariance matrix elements are
off the diagonal, a Gaussian–Wishart distribution is used as the prior distribution of μjk

and �jk. The explicit forms of the distributions are defined as follows (Appendixes C.4,
C.5, and C.11):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dir({aij}Jj=1|{φa
ij}Jj=1) � CDir({φa

ij}Jj=1)
∏J

j=1(aij)
φa

ij−1,

Dir({ωjk}Kk=1|{φω
jk}Kk=1) � CDir({φω

jk}Kk=1)
∏K

k=1(ωjk)φ
ω
jk−1,

N (μjkd|μ0
jkd, (φμ

jkrjkd)−1) � CN (φμ
jk)(rjkd)

1
2 exp

(
−φ

μ
jkrjkd(μjkd−μ0

jkd)2

2

)
,

Gam2(rjkd|φr
jk, r0

jkd) � CGam2 (φr
jk, r0

jkd)(rjkd)
φr

jk
2 −1 exp

(
− r0

jkdrjkd

2

)
,

(7.56)

where the normalization constants are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDir({φa
ij}Jj=1) � �(

∑J
j=1 φ

a
ij)∏J

j=1 �(φa
ij)

,

CDir({φω
jk}Kk=1) � �(

∑K
k=1 φ

ω
jk)∏K

k=1 �(φω
jk)

,

CN (φμ
jk) �

(
φ
μ
jk

2π

) 1
2

,

CGam2(φr
jk, r0

jkd) �

(
r0
jkd
2 2

) φr
jk
2

�

(
φr

jk
2

) .

(7.57)

In the Bayesian approach, an important problem is how to set the prior parameters. Here,
two kinds of prior parameters of μ0 and r0 are set using sufficient amounts of data from:

• Statistics of higher hierarchy acoustic models for the acoustic model construction
task;

• Statistics of speaker independent models for the speaker adaptation task.

The other parameters (φa,φω,φμ, and φr) have a meaning as regarding tuning the
balance between the values obtained from training data and the above statistics.
These parameters are set appropriately based on experiments, as discussed in speaker
adaptation (Section 4.4).
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Finally, Algorithm 10 provides a generative process for a CDHMM with prior distri-
bution. For simplicity, the initial weight, the hyperparameters, and the model structure
are given in this generative process, but it can also be sampled from some distribu-
tions. Compared with Algorithm 3, CDHMM parameters are also sampled from the
prior distributions.

Algorithm 10 Generative process for continuous density hidden Markov model with
prior distributions

Require: �, M, and {πj}Jj=1
1: for i, j = 1, · · · , J do
2: Draw aij from Dir({aij}Jj=1|{φa

ij}Jj=1)
3: end for
4: for j = 1, · · · , J do
5: for k = 1, · · · , K do
6: Draw ωjk from Dir({ωjk}Kk=1|{φω

jk}Kk=1)
7: for d = 1, · · · , D do
8: Draw rjkd from Gam2(rjkd|φr

jk, r0
jkd)

9: Draw μjkd from N (μjkd|μ0
jkd, (φμ

jkrjkd)−1)
10: end for
11: end for
12: end for
13: Draw s1 from Mult(s1|{πj}Jj=1)

14: Draw v1 from Mult(v1|{ωs1k}Kk=1)
15: Draw o1 from N (o1|μs1v1

, �s1v1 )
16: for t = 2, · · · , T do
17: Draw st from Mult(st|{ast−1j}Jj=1)

18: Draw vt from Mult(vt|{ωstk}Kk=1)
19: Draw ot from N (ot|μstvt

, �stvt )
20: end for

7.3.3 VB Baum–Welch algorithm

This subsection introduces concrete forms of the VB posterior distributions for model
parameters q(�|O, M) and for latent variables q(Z|O, M) in acoustic modeling, which
are efficiently computed by VB iterative calculations within the VB framework. This
calculation is effectively carried out by the VB Baum–Welch algorithm (MacKay 1997).

VB M-step

First, the VB M-step for acoustic model training is explained. This is solved by
substituting the acoustic model setting in Section 7.3.1 into the general solution for
the VB M-step in Section 7.2. From Eq. (7.42), the VB posterior distributions for the
model parameters are represented as follows:
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q̃(�|O, M) ∝ p(�|M) exp
(
E(S,V)

[
log p(O, S, V|�, M)

])
. (7.58)

Taking the logarithmic operation, Eq. (7.58) is represented as:

log q̃(�|O, M) ∝ log p(�|M)+ E(S,V)
[
log p(O, S, V|�, M)

]
� Q̃(�). (7.59)

Here, Q̃(�) is a VB auxiliary function defined as follows:

Q̃(�) � E(S,V)
[
log p(O, S, V|�, M)

]+ log p(�|M)

=
∑
S,V

q̃(S, V|O, M) log p(O, S, V|�, M)+ log p(�|M). (7.60)

On the other hand, the MAP auxiliary function in Eq. (4.16) is defined as follows:

QMAP(�′|�) �
∑
S,V

p(S, V|O,�, M) log p(O, S, V|�′, M)+ log p(�′|M). (7.61)

Comparing the VB and MAP auxiliary functions, these are almost equivalent except the
posterior distributions of latent variables, i.e., q̃(S, V|O, M) vs. p(S, V|O,�, M). Since
q̃(S, V|O, M) is obtained by marginalizing �, Q̃(�) is more appropriate in terms of the
Bayesian treatment.

Therefore, this VB-M step is solved by using the result of the MAP-M step solution,
except that q̃(S, V|O, M) is obtained by using the VB-E step. The calculated results
for the optimal VB posterior distributions for the model parameters are summarized as
follows:

q̃(�|M) �
J∏

i=1

q̃({aij′ }Jj′=1|M)
J∏

j=1

q̃({ωjk′ }Kk′=1|M)
K∏

k=1

q̃(μjk, �jk|M)

�
J∏

i=1

Dir({aij′ }Jj′=1|{φ̃a
ij′ }Jj′=1)

J∏
j=1

Dir({ωjk′ }Kk′=1|{φ̃ω
jk′ }Kk′=1)

×
K∏

k=1

D∏
d=1

N (μjkd|μ̃jkd, (φ̃μ
jkrjkd)−1)Gam2(rjkd|φ̃r

jk, r̃jkd). (7.62)

The concrete forms of the distributions are defined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dir({aij}Jj=1|{φ̃a
ij}Jj=1) � CDir({φ̃a

ij}Jj=1)
∏J

j=1(aij)
φ̃a

ij−1,

Dir({ωjk}Kk=1|{φ̃ω
jk}Kk=1) � CDir({φ̃ω

jk}Kk=1)
∏K

k=1(ωjk)φ̃
ω
jk−1,

N (μjkd|μ̃jkd, (φ̃μ
jkrjkd)−1) � CN (φ̃μ

jk)(rjkd)
1
2 exp

(
− φ̃

μ
jkrjkd(μjkd−μ̃jkd)2

2

)
,

Gam2(rjkd|φ̃r
jk, r̃jkd) � CGam2 (φ̃r

jk, r̃jkd)(rjkd)
φ̃r

jk
2 −1 exp

(
− r̃jkdrjkd

2

)
,

(7.63)
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where the normalization constants are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CDir({φ̃a
ij}Jj=1) � �(

∑J
j=1 φ̃

a
ij)∏J

j=1 �(φ̃a
ij)

,

CDir({φ̃ω
jk}Kk=1) � �(

∑K
k=1 φ̃

ω
jk)∏K

k=1 �(φ̃ω
jk)

,

CN (φ̃μ
jk) �

(
φ̃
μ
jk

2π

) 1
2

,

CGam2 (φ̃r
jk, r̃jkd) �

( r̃jkd
2

) φ̃r
jk
2

�

(
φ̃r

jk
2

) .

(7.64)

Note that Eqs. (7.55) and (7.62) are members of the same function family, and the only
difference is that the set of prior parameters �0 in Eq. (7.55) is replaced with a set of
posterior distribution parameters �̃ in Eq. (7.62), where �̃ is defined as:

�̃ �{φ̃a
ij, φ̃

ω
jk, φ̃μ

jk, μ̃jkd, φ̃r
jk, r̃jkd

|i, j = 1, . . . , J, k = 1, . . . , K, d = 1, · · · , D}. (7.65)

The conjugate prior distribution is adopted because the posterior distribution is theoret-
ically a member of the same function family as the prior distribution, and is obtained
analytically, which is a characteristic of the exponential distribution family, as discussed
in Section 2.1.4. Here, �̃ values are calculated from:

φ̃a
ij = φa

ij + ξ̃ij,

φ̃ω
jk = φω

jk + γ̃jk,

φ̃
μ
jk = φ

μ
jk + γ̃jk,

μ̃jkd =
φ
μ
jkμ

0
jkd + γ

(1)
jkd

φ
μ
jk + γ̃jk

,

φ̃r
jk = φr

jk + γ̃jk,

r̃jkd = γ̃
(2)
jkd + φ

μ
jk(μ0

jkd)2 − φ̃
μ
jk(μ̃jkd)2 + r0

jkd. (7.66)

ξ̃ij denotes the sufficient statistics of the transition matrix, and γ̃jk, γ̃ (1)
jkd , and γ̃

(2)
jkd denote

zeroth-, first-, and second-order sufficient statistics of the GMM, respectively, and are
defined as follows: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ξ̃ij �
∑T−1

t=1 ξ̃t(i, j),

γ̃jk �
∑T

t=1 γ̃t(j, k),

γ̃
(1)
jkd �

∑T
t=1 γ̃t(j, k)otd,

γ̃
(2)
jkd �

∑T
t=1 γ̃t(j, k)(otd)2.

(7.67)
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These sufficient statistics �̃ � {̃ξij, γ̃jk, γ̃ (1)
jkd , γ̃ (2)

jkd |i, j = 1, . . . , J, k = 1, . . . , K, d =
1, · · · , D} are computed by using ξ̃t(i, j) and γ̃t(j, k), defined as follows:{

ξ̃t(i, j) � q̃(st = i, st+1 = j|O, M),
γ̃t(j, k) � q̃(st = j, vt = k|O, M).

(7.68)

Here, ξ̃t(i, j) is a VB transition posterior distribution, which denotes the transition prob-
ability from a state i to a state j at a frame t, and γ̃t(j, k) is a VB occupation posterior
distribution, which denotes the occupation probability of a mixture component k in a
state j at a frame t, in the VB approach. These are similar to those defined in Eq. (3.119)
by using the ML–EM algorithm of a CDHMM. Therefore, �̃ can be calculated from
�0, ξ̃t(i, j), and γ̃t(j, k), enabling q̃(�|O, M) to be obtained.

VB E-step

Before we focus on the calculation of ξ̃t(i, j) and γ̃t(j, k), we first focus on the posterior
distribution of the joint distribution of the HMM state and mixture component sequences
q̃(S, V|�, M). From Eq. (7.25), q̃(S, V|�, M) is represented as follows:

q̃(S, V|O, M) = q̃(O, S, V|M)

q̃(O|M)
∝ exp

(
E(�)

[
log p(O, S, V|�, M)

])
. (7.69)

Since q̃(O|M) does not depend on S and V , we find that the complete data likelihood
marginalized by the model parameter � can also be obtained by considering the same
expectation with Eq. (7.69):

q̃(O, S, V|M) ∝ exp
(
E(�)

[
log p(O, S, V|�, M)

])
. (7.70)

Once we obtain the complete data likelihood q̃(O, S, V|M), we can compute the posterior
probabilities ξ̃t(i, j) and γ̃t(j, k) by using the forward–backward algorithm, similarly to
Section 3.3. Therefore, we focus on how to compute the following expectation of the
complete data log likelihood:

E(�)
[
log p(O, S, V|�, M)

]
. (7.71)

By substituting Eq. (7.53) into Eq. (7.71), Eq. (7.71) can be represented as follows:

E(�)
[
log p(O, S, V|�, M)

]
= E(�)

[
log

T∏
t=1

ast−1stωstvtN (ot|μstvt
, �stvt )

]

=
T∑

t=1

E(�)
[
log(ast−1st )+ log(ωstvt )+ log(N (ot|μstvt

, �stvt ))
]

=
T∑

t=1

E(�)
[
log(ast−1st )

]+ E(�)
[
log(ωstvt )

]+ E(�)
[
log(N (ot|μstvt

, �stvt ))
]

.

(7.72)
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Now we focus on the case when st−1 = i, st = j, and vt = k, where we need to compute
the following equations:

log ãij � E(aij)
[
log(aij)

]
,

log ω̃jk � E(ωjk)
[
log(ωjk)

]
,

log b̃jk(ot) � E(μjk ,�jk)
[
log(N (ot|μjk, �jk))

]
. (7.73)

We can also define the following function based on Eq. (7.73):

ũ(O, S, V|M) �
T∏

t=1

ãst−1st ω̃stvt b̃stvt (ot). (7.74)

This equation behaves similarly to the likelihood function of p(O, S, V|�, M) in
Eq. (7.53). Note that ũ(O, S, V|M) is not properly normalized, and cannot be dealt with
as a probabilistic distribution. However, from Eq. (7.70), ũ(O, S, V|M) is proportional to
q̃(O, S, V|M), and this function has the following relationship from Eq. (7.69):

q̃(O, S, V|M) = q̃(O|M)q̃(S, V|O, M)

= q̃(O|M)∑
S′,V ′ ũ(O, S′, V ′|M)

ũ(O, S, V|M)

�
T∏

t=1

Cãast−1st Cωbω̃stvt b̃stvt (ot), (7.75)

where Ca and Cωb are normalization constants of ãij and ω̃jk̃bjk(ot) respectively for each
frame, and satisfy the following condition:

q̃(O|M)∑
S′,V ′ ũ(O, S′, V ′|M)

= (CaCωb)T . (7.76)

Note that it is not easy to obtain the normalization factors Ca and Cωb explicitly, since
it requires q̃(O|M) and

∑
S′,V ′ ũ(O, S′, V ′|M). However, it will be shown later that the

calculation of the occupation probabilities does not require computation of the normal-
ization factors explicitly, but only requires ãij, ω̃jk, and b̃jk. Therefore, we can compute
various values from Eq. (7.74) (e.g., the forward and backward variables and the occupa-
tion probabilities), as discussed in Section 3.3. Thus, the following paragraphs provide
the analytical solutions of ãij, ω̃jk, and b̃jk in detail.

State transition ãij

First, the integral over aij is solved from Eq. (7.63) by using a partial integral technique
and a normalization constant:

log ãij =
∫

q̃({aij′ }Jj′=1|M) log aij

J∏
j′=1

daij′

= CDir({φ̃a
ij′ }Jj′=1)

∫
log aij

J∏
j′=1

(aij′ )
φ̃a

ij′−1
daij′ . (7.77)

https://doi.org/10.1017/CBO9781107295360.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.008


262 Variational Bayes

Then we use the following derivative formula:

∂

∂φ̃a
ij

(aij)
φ̃a

ij−1 = (log aij)(aij)
φ̃a

ij−1. (7.78)

By substituting Eq. (7.78) into Eq. (7.77), Eq. (7.77) can be rewritten as:

log ãij = CDir({φ̃a
ij′ }Jj′=1)

∫
∂

∂φ̃a
ij

(aij)
φ̃a

ij−1daij

∫ J∏
j′ �=j

(aij′ )
φ̃a

ij′−1
daij′

= CDir({φ̃a
ij′ }Jj′=1)

∂

∂φ̃a
ij

∫ J∏
j′=1

(aij′ )
φ̃a

ij′−1
daij′

= CDir({φ̃a
ij′ }Jj′=1)

∂

∂φ̃a
ij

1

CDir({φ̃a
ij′ }Jj′=1)

, (7.79)

where we replace the derivative and integral, and the integral can be performed to derive
the inverse of the normalization constant of the Dirichlet distribution.

From Eq. (7.64), this derivative can be calculated as follows:

∂

∂φ̃a
ij

1

CDir({φ̃a
ij′ }Jj′=1)

= ∂

∂φ̃a
ij

∏J
j′=1 �(φ̃a

ij′)

�(
∑J

j′=1 φ̃
a
ij′ )

=

(
∂

∂φ̃a
ij

�(φ̃a
ij)

)∏J
j′ �=j �(φ̃a

ij′)�(
∑J

j′=1 φ̃
a
ij′)−

∏J
j′=1 �(φ̃a

ij′)

(
∂

∂φ̃a
ij

�(
∑J

j′=1 φ̃
a
ij′)

)
(
�(
∑J

j′=1 φ̃
a
ij′)
)2

= �(φ̃a
ij)
∏J

j′=1 �(φ̃a
ij′)�(

∑J
j′=1 φ̃

a
ij′)−

∏J
j′=1 �(φ̃a

ij′)�(
∑J

j′=1 φ̃
a
ij′)�(

∑J
j′=1 φ̃

a
ij′)(

�(
∑J

j′=1 φ̃
a
ij′)
)2

=
∏J

j′=1 �(φ̃a
ij′)
(
�(φ̃a

ij)−�(
∑J

j′=1 φ̃
a
ij′ )
)

�(
∑J

j′=1 φ̃
a
ij′ )

= 1

CDir({φ̃a
ij′ }Jj′=1)

⎛⎝�(φ̃a
ij)−�(

J∑
j′=1

φ̃a
ij′)

⎞⎠ , (7.80)

where �(y) is a di-gamma function, which first appeared in Eq. (5.82), and is defined as

�(y) � ∂

∂y
log�(y) =

∂
∂y�(y)

�(y)
. (7.81)

Thus, ãij is finally obtained as follows:

log ãij = �(φ̃a
ij)−�(

J∑
j′=1

φ̃a
ij′). (7.82)
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Mixture weight ω̃jk

In a way similar to that used for ãij, the integral over ωjk is solved from Eq. (7.63), and
ω̃jk is obtained as follows:

log ω̃jk = �(φ̃ω
jk)−�(

K∑
k′=1

φ̃ω
jk′). (7.83)

Gaussian distribution b̃jk (ot )

First, log b̃jk(ot) can be factorized for each dimension:

log b̃jk(ot) = E(μjk ,�jk)
[
log(N (ot|μjk, �jk))

]
= E(μjk ,�jk)

[
log

(
D∏

d=1

N (otd|μjkd,�jkd)

)]

=
D∑

d=1

E(μjkd ,�jkd)
[
log
(N (otd|μjkd,�jkd)

)]
. (7.84)

Therefore, we focus on calculation of the d element. Since the calculation is more com-
plicated than the two previous calculations, the indexes j, k, t, and d are removed to
simplify the derivation. By using (7.63), log b̃(o) can be rewritten as follows:

log b̃(o)

=
∫

N (μ|μ̃, (φ̃μr)−1)Gam2(r|φ̃r, r̃)

×
(
−1

2

(
log(2π )− log(r)+ r(o− μ)2

))
dμdr. (7.85)

Now we focus on the integral over mean parameter μ. To calculate the integral, we first
rewrite the part that is related to μ as follows:∫

N (μ|μ̃, (φ̃μr)−1)r(o− μ)2dμ

= r
∫

N (μ|μ̃, (φ̃μr)−1)(o− μ+ μ̃− μ̃)2dμ

= r
∫

N (μ|μ̃, (φ̃μr)−1)
(

(μ− μ̃)2 + (o− μ̃)2 − 2(μ− μ̃)(o− μ̃)
)

dμ. (7.86)

The integral of the above terms can be analytically solved. We first consider the
following partial derivative:

∂

∂φ̃μr
exp

(
−1

2
(μ− μ̃)2φ̃μr

)
= −1

2
(μ− μ̃)2 exp

(
−1

2
(μ− μ̃)2φ̃μr

)
. (7.87)

Therefore, the first integral can be represented as:
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∫
N (μ|μ̃, (φ̃μr)−1)(μ− μ̃)2dμ

= (2π )−
1
2 (φ̃μr)

1
2

∫
exp

(
−1

2
(μ− μ̃)2φ̃μr

)
(μ− μ̃)2dμ

= (2π )−
1
2 (φ̃μr)

1
2 (−2)

∫
∂

∂φ̃μr
exp

(
−1

2
(μ− μ̃)2φ̃μr

)
dμ. (7.88)

By replacing the integral with the partial derivative, we can solve the integral as:∫
N (μ|μ̃, (φ̃μr)−1)(μ− μ̃)2dμ

= (−2)(2π )−
1
2 (φ̃μr)

1
2

∂

∂φ̃μr

∫
exp

(
−1

2
(μ− μ̃)2φ̃μr

)
dμ

= (−2)(2π )−
1
2 (φ̃μr)

1
2

∂

∂φ̃μr
(2π )

1
2 (φ̃μr)−

1
2

= (−2)(φ̃μr)
1
2

(
−1

2

)
(φ̃μr)−

3
2 = (φ̃μr)−1. (7.89)

The other two integrals are trivially solved as follows:∫
N (μ|μ̃, (φ̃μr)−1)(o− μ̃)2dμ = (o− μ̃)2,∫

N (μ|μ̃, (φ̃μr)−1)(μ− μ̃)(o− μ̃)dμ = 0. (7.90)

Therefore, Eq. (7.86) is solved as:∫
N (μ|μ̃, (φ̃μr)−1)r(o− μ)2dμ

= r
(

(o− μ̃)2 + (φ̃μr)−1
)
= r(o− μ̃)2 + 1

φ̃μ
. (7.91)

Now, we focus on the integral over r, because the integral without log(r) can be
easily computed by the result of the mean value of the gamma distribution in
Appendix C.11 as:

log b̃(o)

=
∫

Gam2(r|φ̃r, r̃)

(
−1

2

(
log(2π )− log(r)+ r(o− μ̃)2 + 1

φ̃μ

))
dr

= −1

2

(
log(2π )+ φ̃r

r̃
(o− μ̃)2 + 1

φ̃μ

)
+ 1

2

∫
Gam2(r|φ̃r, r̃) log(r)dr. (7.92)

Therefore, we focus on the final term. From Eqs. (7.63) and (7.64), the concrete form of
the gamma distribution, Gam2(·), is defined as follows:

Gam2(r|φ̃r, r̃) = CGam2 (φ̃r, r̃)(r)
φ̃r

2 −1 exp

(
− r̃r

2

)
, (7.93)

where

CGam2 (φ̃r, r̃) =
( r̃

2

) φ̃r

2

�
(
φ̃r

2

) . (7.94)
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Similarly to the Dirichlet and Gaussian distributions, we consider the following
derivative:

∂

∂φ̃r
(r)

φ̃r

2 −1 = 1

2
(r)

φ̃r

2 −1 log(r). (7.95)

Therefore, the integral is solved by using this relationship as:∫
Gam2(r|φ̃r, r̃ ) log(r)dr

= CGam2 (φ̃r, r̃ )
∫

(r)
φ̃r

2 −1 exp

(
− r̃r

2

)
log(r)dr

= CGam2 (φ̃r, r̃ )
∫

2
∂

∂φ̃r
(r)

φ̃r

2 −1 exp

(
− r̃r

2

)
dr

= 2CGam2 (φ̃r, r̃ )
∂

∂φ̃r

1

CGam2 (φ̃r, r̃)
. (7.96)

The derivative with respect to φ̃r is calculated as follows:

∂

∂φ̃r

�

(
φ̃r

2

)
( r̃

2

) φ̃r
2

=
1
2

∂

∂
φ̃r
2

�
(
φ̃r

2

) ( r̃
2

) φ̃r

2 + 1
2 log

( r̃
2

) ( r̃
2

) φ̃r

2 �
(
φ̃r

2

)
( r̃

2

)φ̃r

=
1
2�
(
φ̃r

2

)
�
(
φ̃r

2

)
+ 1

2 log
( r̃

2

)
�
(
φ̃r

2

)
( r̃

2

) φ̃r
2

, (7.97)

where �(·) is a di-gamma function defined in Eq. (7.81). Therefore,

2CGam2(φ̃r, r̃)
∂

∂φ̃r

1

CGam2(φ̃r, r̃ )
= �

(
φ̃r

2

)
+ log

(
r̃

2

)
. (7.98)

Thus, finally log b̃(o) is obtained analytically as follows:

log b̃(o)

= −1

2

∫
Gam2(r|φ̃r, r̃)

(
log(2π )+ 1

φ̃μ
− log(r)+ r(o− μ̃)2

)
dr

= −1

2

(
log(2π )+ 1

φ̃μ
−�

(
φ̃r

2

))
− 1

2

(
log

(
r̃

2

)
+ (o− μ̃)2 φ̃

r

r̃

)
. (7.99)

Reverting to the indexes k, j, t, and d, log b̃jk(ot) is represented as

log b̃jk(ot) = −D

2

(
log(2π )+ 1

φ̃
μ
jk

−�

(
φ̃r

jk

2

))

− 1

2

D∑
d=1

(
log

(
r̃jk

2

)
+ φ̃r

jk(otd − μ̃jkd)2

r̃jkd

)
. (7.100)
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Thus, we obtain ãij, ω̃jk and b̃jk(ot), which are summarized as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ãij � exp
(
�(φ̃a

ij)−�(
∑

j′ φ̃
a
ij′)
)
,

ω̃jk � exp
(
�(φ̃ω

jk)−�(
∑

k′ φ̃
ω
jk′ )
)
,

b̃jk(ot) � exp

(
−D

2

(
log(2π )+ 1

φ̃
μ
jk
−�

(
φ̃r

jk
2

))
− 1

2

∑D
d=1

(
log
(

r̃jk
2

)
+ φ̃r

jk(otd−μ̃jkd)2

r̃jkd

))
.

(7.101)

These variables are used to compute the VB transition probability ξ̃t(i, j) and VB
occupation probability γ̃t(j, k).

VB transition probability ξ̃t (i , j ) and occupation probability γ̃t (j , k ) (VB E-step)

From Eq. (7.25), VB transition probability ξ̃t(i, j) is represented as:

ξ̃t(i, j) � q̃(st = i, st+1 = j|O, M). (7.102)

Section 3.4.2 shows an efficient computation of the transition probability based on the
complete data likelihood p(O, S, V|�). Here we also consider how to obtain it based on
the VB version of the complete data likelihood q̃(O, S, V|M), as introduced in Eq. (7.69).
However, from Eq. (7.74), ãij, ω̃jk, and b̃jk(ot) can only compute the unnormalized
likelihood function ũ(O, S, V|M), that is

ũ(O, S, V|M) =
T∏

t=1

ãst−1st ω̃stvt b̃stvt (ot). (7.103)

Therefore, as we discussed in Section 3.4.2, from the dependency of the HMM, we can
represent q̃(O, st = i, st+1 = j|M) as follows:

q̃(st = i, st+1 = j, O|M)

= q̃(o1, · · · , ot, st = i|M)︸ ︷︷ ︸
=α̃t(i)

q̃(ot+1|st+1 = j, M)︸ ︷︷ ︸
=Cωb

∑K
k=1 ω̃jkb̃jk(ot+1)

q̃(ot+2, · · · , oT |st+1 = j, M)︸ ︷︷ ︸
=β̃t+1(j)

× q̃(st+1 = j|st = i, M)︸ ︷︷ ︸
=Caãij

. (7.104)

Here, α̃t(i) is a forward variable at frame t in state i, as introduced in Eq. (3.50). Simi-
larly, β̃t+1(j) is a backward variable at frame t+ 1 in state j, as introduced in Eq. (3.55).
The forward and backward variables based on the VB formulation are represented as
described below.

First, the VB forward variable α̃t(j) is computed by using the following equation:

• Initialization

α̃1(j) = q̃(o1, s1 = j|M)

= q̃(o1|s1 = j, M)̃q(s1 = j|M)

= CãajCωb

K∑
k=1

ω̃jk̃bjk(o1), 1 ≤ j ≤ J. (7.105)
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Then, unnormalized forward variable ˜̃α1(j) is defined as:

˜̃α1(j) � ãj

K∑
k=1

ω̃jk̃bjk(o1)

= α̃1(j)

CaCωb
. (7.106)

• Induction

α̃t(j) = q̃(o1, · · · , ot, st = j|M)

= q̃(ot|st = j, M)
J∑

i=1

q̃(st = j|st−1 = i, M)̃q(o1, · · · , ot−1, st−1 = i|M)

=
(

Ca

J∑
i=1

α̃t−1(i)̃aij

)
Cωb

K∑
k=1

ω̃jk̃bjk(ot)

=
(

Ca(CaCωb)t−1
J∑

i=1

˜̃αt−1(i)̃aij

)
Cωb

K∑
k=1

ω̃jk̃bjk(ot)

= (CaCωb)t

(
J∑

i=1

˜̃αt−1(i)̃aij

)
K∑

k=1

ω̃jk̃bjk(ot),
2 ≤ t ≤ T
1 ≤ j ≤ J,

(7.107)

where the unnormalized forward variable ˜̃αt(j) is represented as

˜̃αt(j) =
(

J∑
i=1

˜̃αt−1(i)̃aij

)
K∑

k=1

ω̃jk̃bjk(ot),
2 ≤ t ≤ T
1 ≤ j ≤ J.

. (7.108)

• Termination

q̃(O|M) =
J∑

j=1

α̃T (j)

= (CaCωb)T
J∑

j=1

˜̃αT (j). (7.109)

The VB forward variable α̃t(j) is obtained with the unnormalized forward variable ˜̃αt(j)
and normalization constants Ca and Cωb. From this algorithm, we can compute the
unnormalized forward variable ˜̃αt(j) similarly to the original forward algorithm, but we
should be careful that the unnormalized forward variable is not a probability, and prob-
abilistic calculation (sum and product rules etc.) must be performed via the normalized
VB forward variable α̃t(j).

Similarly, the VB backward variable β̃t(j) is computed by using the following
equations:

• Initialization

β̃T (j) = 1, 1 ≤ j ≤ J. (7.110)
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• Induction

β̃t(i) = q̃(ot+1, · · · , oT |st = i, M)

=
J∑

j=1

q̃(ot+2, · · · , oT |st+1 = j, M)̃q(ot+1|st+1 = j, M)̃q(st+1 = j|st = i, M)

=
J∑

j=1

Cãaij

K∑
k=1

Cωbω̃jk̃bjk(ot+1)β̃t+1(j)

= (CaCωb)T−t
J∑

j=1

ãij

K∑
k=1

ω̃jk̃bjk(ot+1) ˜̃βt+1(j),

t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ J, (7.111)

where the unnormalized backward variable ˜̃βt(i) is represented as

˜̃
βt(i) =

J∑
j=1

ãij

K∑
k=1

ω̃jk̃bjk(ot+1) ˜̃βt+1(j). (7.112)

• Termination

β0 � q̃(O|M)

=
J∑

j=1

ãj

K∑
k=1

ω̃jk̃bjk(o1)β̃1(j)

= (CaCωb)T
J∑

j=1

ãj

K∑
k=1

ω̃jk̃bjk(o1) ˜̃β1(j). (7.113)

Therefore, based on the VB forward and backward variables, we can compute the
posterior probabilities as follows:

ξ̃t(i, j)

=
α̃t(i)̃aij

(∑K
k=1 ω̃jkb̃jk(ot)

)
β̃t+1(j)∑J

i′=1
∑J

j′=1 α̃t(i′ )̃ai′j′
(∑K

k=1 ω̃j′kb̃j′k(ot)
)
β̃t+1(j′)

=
(CaCωb)t ˜̃αt(i)CãaijCωb

(∑K
k=1 ω̃jkb̃jk(ot)

)
(CaCωb)T−t−1 ˜̃βt+1(j)∑J

i′=1
∑J

j′=1(CaCωb)t ˜̃αt(i′)Cãai′j′Cωb

(∑K
k=1 ω̃j′kb̃j′k(ot)

)
(CaCωb)T−t−1 ˜̃βt+1(j′)

=
˜̃αt(i)̃aij

(∑K
k=1 ω̃jkb̃jk(ot)

) ˜̃
βt+1(j)∑J

i′=1
∑J

j′=1
˜̃αt(i′ )̃ai′j′

(∑K
k=1 ω̃j′kb̃j′k(ot)

) ˜̃
βt+1(j′)

. (7.114)

Thus, we can compute the transition probability with unnormalized VB variables ãij, ω̃jk,

and b̃jk(ot), and unnormalized forward and backward variables ˜̃αt(i) and ˜̃βt+1(j), where
the normalization constants Ca and Cωb are canceled out. This is based on a well-known
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scaling property of the HMM forward–backward algorithm (Rabiner & Juang 1993).
Similarly the occupation probability is also calculated as:

γ̃t(j, k) =
˜̃αt(j)

˜̃
βt(j)∑J

j′=1
˜̃αt(j′) ˜̃βt(j′)

· ω̃jk̃bjk(ot)∑K
k′=1 ω̃jk′ b̃jk′ (ot)

. (7.115)

These probabilities are obtained similarly to the ML cases in Eqs. (3.126) and (3.122),
and the MAP case in Eqs. (4.91) and (4.92) with the VB-based variables obtained by
Eq. (7.101). Thus, ξ̃t(i, j) and γ̃t(j, k) are calculated efficiently by using a probabilistic
assignment via the familiar forward–backward algorithm. This algorithm is called the
VB forward–backward algorithm.

Similarly to the VB forward–backward algorithm, the Viterbi algorithm is also
derived within the VB approach by exchanging the summation over i for the maxi-
mization over i in the calculation of the unnormalized forward probability ˜̃αt(j). This
algorithm is called the VB Viterbi algorithm.

Thus, VB posteriors can be calculated iteratively in the same way as the Baum–Welch
algorithm, even for a complicated sequential model that includes latent variables such
as HMM and GMM for acoustic models. These calculations are referred to as a VB
Baum–Welch algorithm, as proposed in MacKay (1997), Watanabe et al. (2002), Beal
(2003) and Watanabe et al. (2004).

7.3.4 Variational lower bound

This section discusses the VB objective function FM for a whole acoustic model
topology, i.e., the variational lower bound, and provides general calculation results.
The variational lower bound is a criterion for both posterior distribution estimation,
and model topology optimization in acoustic model construction. This section begins
by focusing on one phoneme category. By substituting the VB posterior distribution
obtained in Section 7.3.3, we obtain analytical results for FM , and therefore, this calcu-
lation also requires a VB iterative calculation based on the VB Baum–Welch algorithm
used in the VB posterior calculation. We can separate FM into two components: one is
composed solely of q̃(S, V|O, M), whereas the other is mainly composed of q̃(�|O, M).
Therefore, we define FM

� and FM
S,V , and represent FM as follows:

FM = E(�,S,V)

[
log

p(O, S, V|�, M)p(�|M)

q̃(�|O, M)

]
− E(S,V)

[
log q̃(S, V|O, M)

]
= FM

� − FM
S,V , (7.116)

where

FM
� � E(�,S,V)

[
log

p(O, S, V|�, M)p(�|M)

q̃(�|O, M)

]
,

FM
S,V � E(S,V)

[
log q̃(S, V|O, M)

]
. (7.117)

https://doi.org/10.1017/CBO9781107295360.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.008


270 Variational Bayes

First, we focus on FM
� . Based on the variational solution of q̃(S, V|O, M) in Eq. (7.42),

FM
� is rewritten as follows:

FM
� � E(�,S,V)

[
log

p(O, S, V|�, M)p(�|M)
1
Z p(�|M) exp

(
E(S,V)

[
log p(O, S, V|�, M)

])]
= E(�,S,V)

[
log p(O, S, V|�, M)

]+ E(�)
[
log p(�|M)

]
− E(�,S,V)

[
log p(O, S, V|�, M)

]− E(�)
[
log p(�|M)

]+ log Z

= log Z, (7.118)

where Z is a normalization constant. This equation means that FM
� is represented by the

logarithmic function of the normalization constant Z. By using the definition of the VB
auxiliary function q̃(�) in Eq. (7.60), Z can be rewritten as

Z �
∫

p(�|M) exp
(
E(S,V)

[
log p(O, S, V|�, M)

])
d�

=
∫

exp
(

Q̃(�)
)

d�. (7.119)

Here, from the similarity of the VB and MAP auxiliary functions, as discussed in
Section 7.3.3, Q̃(�) can be obtained by using the analytical results of the MAP aux-
iliary function. From Eq. (4.38), Q̃(�) is decomposed into the following auxiliary
functions:

Q̃(�) = Q̃(A)+ Q̃(ω)+ Q̃(μ, �), (7.120)

where Q̃(A), Q̃(ω), and Q̃(μ, �) are obtained from the analytical solutions of the
corresponding MAP auxiliary functions in Eqs. (4.51), (4.54), and (4.73), as follows:

Q̃(A) =
J∑

i=1

log
(

Dir({aij}Jj=1|{φ̃a
ij}Jj=1)

)
+

J∑
i=1

log
CDir({φa

ij}Jj=1)

CDir({φ̃a
ij}Jj=1)

, (7.121)

Q̃(ω) =
J∑

j=1

log
(

Dir({ωjk}Kk=1|{φ̃ω
jk}Kk=1)

)
+

J∑
j=1

log
CDir({φω

jk}Kk=1)

CDir({φ̃ω
jk}Kk=1)

, (7.122)

Q̃(μ, R)

=
J∑

j=1

K∑
k=1

log
(
N (μjk|μ̃jk, (φ̃μ

jkRjk)−1)W(Rjk|R̃jk, φ̃R
jk)
)

+
J∑

j=1

K∑
k=1

(
−

T∑
t=1

γ̃t(j, k)D

2
log(2π )+ D

2
log

φμ

φ̃μ
+ log

CW (R0
jk,φR

jk)

CW (R̃jk, φ̃R
jk)

)
. (7.123)

If we consider the diagonal covariance matrix, Eq. (7.123) is modified by using the
gamma distribution as follows:
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Q̃(μ, R)

=
J∑

j=1

K∑
k=1

D∑
d=1

log
(
N (μjkd|μ̃jkd, (φ̃μ

jkrjkd)−1)Gam2(rjkd|r̃jkd, φ̃r
jk)
)

+
J∑

j=1

K∑
k=1

(
−

T∑
t=1

γ̃t(j, k)D

2
log(2π )+ D

2
log

φ
μ
jk

φ̃
μ
jk

+ log
CGam2 (r0

jkd,φr
jk)

CGam2 (r̃jkd, φ̃r
jk)

)
.

(7.124)

Here CGam2 in Eq. (7.124) and CDir in Eqs. (7.121) and (7.122) are normalization
constants of Gamma and Dirichlet distributions, respectively, and are defined as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

CDir({φj}Jj=1) = �
(∑J

j=1 φj

)
∏J

j=1 �(φj)
,

CGam2(φ, r0) =
(

r0
2

) φ
2

�
(
φ
2

) .

(7.125)

Therefore, by substituting Eqs. (7.121), (7.122), and (7.124) into Eq. (7.119), and by
using the definition of the normalization constant of the Dirichlet and gamma distribu-
tions in Eq. (7.125), the integral in Z is performed with the normalization of �, and Z is
simply obtained as follows:

FM
� = log Z

= log

⎛⎝∫ ∏
i,j

exp
(

Q̃(A)
)

daij

⎞⎠+ log

⎛⎝∫ ∏
j,k

exp
(

Q̃(ω)
)

dωjk

⎞⎠
+ log

⎛⎝∫ ∏
j,k

exp
(

Q̃(μ, R)
)

dμjkdRjk

⎞⎠
=
∑

i

log
�(
∑

j φ
a
ij)

�(
∑

j′ φ̃
a
ij)

∏
j �(φ̃a

ij)∏
j �(φa

ij)
+
∑

j

log
�(
∑

k φ
ω
jk)

�(
∑

k φ̃
ω
jk)

∏
k �(φ̃ω

jk)∏
k �(φω

jk)

+
∑
j,k

log

⎛⎜⎜⎜⎜⎜⎝(2π )−
γ̃jkD

2

(
φ
μ
jk

φ̃
μ
jk

)D
2

(
�

(
φ̃r

jk
2

))D∏
d

(
r0
jkd
2

) φr
jk
2

(
�
(
φr

jk
2

))D∏
d

(
r̃jkd
2

) φ̃r
jk
2

⎞⎟⎟⎟⎟⎟⎠ . (7.126)

From Eq. (7.126), FM
� can be calculated by using the statistics of the posterior distribu-

tion parameters �̃ given in Eq. (7.66). This part is equivalent to the objective function
for model selection based on Akaike’s Bayesian information criterion (Akaike 1980).
The whole FM for all categories is obtained by simply summing up the FM results
obtained in this section for all categories as in Eq. (7.36).

Now we focus on FM
S,V . From the definition in Eq. (7.117), −FM

S,V can be represented
as follows:
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−FM
S,V = −E(S,V)

[
log q̃(S, V|O, M)

]
= −

∑
S,V

q̃(S, V|O, M) log q̃(S, V|O, M). (7.127)

Therefore, FM
S,V denotes the entropy of the posterior distribution q̃(S, V|O, M). As we

discussed in Section 7.69, it is difficult to obtain the analytical form of q̃(S, V|O, M) due
to the normalization constant, and direct calculation of the above entropy is also difficult.
Instead, we focus on the variational complete data likelihood form q̃(O, S, V|M), which
is obtained by the Bayes theorem as follows:

q̃(S, V|O, M) = q̃(O, S, V|M)∑
S,V q̃(O, S, V|M)

. (7.128)

Based on the discussion in Eq. (7.73), q̃(O, S, V|M) is represented with the unnormalized
function ũ(O, S, V|M) as follows:

q̃(O, S, V|M) = C ũ(O, S, V|M)

= C
T∏

t=1

ãst−1st ω̃stvt b̃stvt (ot), (7.129)

where C is a normalization constant, defined as follows:

C =
∫ ∑

S,V

ũ(O, S, V|M)dO. (7.130)

ãij, ω̃jk, b̃jk(ot) are analytically calculated in the VB-E step (Eq. (7.101)). Therefore, by
substituting (7.129) into (7.128), the normalization constant is canceled out, and we can
obtain the following equation:

q̃(S, V|O, M) = Cũ(O, S, V|M)∑
S′,V ′ Cũ(O, S′, V ′|M)

= ũ(O, S, V|M)∑
S′,V ′ ũ(O, S′, V ′|M)

. (7.131)

Therefore, FM
S,V can be rewritten as follows:

FM
S,V =

∑
S,V

q̃(S, V|O, M) log q̃(S, V|O, M)

=
∑
S,V

q̃(S, V|O, M) log (̃u(O, S, V|M))

− log

⎛⎝∑
S,V

ũ(O, S, V|M)

⎞⎠ . (7.132)

Note that the second term corresponds to the summation of all possible S and V
for unnormalized function ũ(O, S, V|M), which can be computed in the VB forward
algorithm in Eq. (7.109) as follows:
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∑
S,V

ũ(O, S, V|M) =
J∑

j=1

˜̃αT (j). (7.133)

Now we focus on the first term in Eq. (7.132). From the discussions in Section 3.4.2, we
can convert summation over sequences S, V to a summation over HMM states i and j,
and mixture component k in this term. Therefore, this term is represented as follows:∑

S,V

q̃(S, V|O, M) log (̃u(O, S, V|M))

=
∑
S,V

q̃(S, V|O, M)
T∑

t=1

(
log ãst−1st + log ω̃stvt + log b̃stvt (ot)

)
=
∑
i,j,t

ξ̃t(i, j) log ãij +
∑
j,k,t

γ̃t(j, k)
(

log ω̃jk + log b̃jk(ot)
)

. (7.134)

Thus, we obtain the term without computing the summation over S and V .
Finally, we summarize calculation of FM

S,V by using the definitions of ãij, ω̃jk, b̃jk(ot)
in Eq. (7.101), as follows:

FM
S,V =

∑
i,j

ξ̃ij

(
�
(
φ̃a

ij

)
−�

(∑
j′
φ̃a

ij′
))
+
∑
j,k

γ̃jk

(
�
(
φ̃ω

jk

)
−�

(∑
k′
φ̃ω

jk′
))

− 1

2

∑
j,k

γ̃jk

(
D

(
log(2π )+ 1

φ̃
μ
jk

−�

(
φ̃r

jk

2

))
+
∑

d

log
r̃jkd

2

)

− 1

2

∑
j,k

⎛⎝φ̃r
jk

∑
t,d

γ̃t(j, k)(otd − μ̃jkd)2

r̃jkd

⎞⎠− log

⎛⎝∑
j

˜̃αT (j)

⎞⎠ . (7.135)

Thus, we also obtain the analytical result for FM
S,V , which corresponds to the latent

variable effect for the variational lower bound.
The analytical result for the variational lower bound FM for the CDHMM is deter-

mined using FM
� in Eq. (7.126) and FM

S,V in Eq. (7.135). Although the analytical result
looks complicated, all variables are already computed in the VB expectation and max-
imization steps. We also want to emphasize that the computation is quite feasible since
it is carried out without a summation over all possible latent variable sequences S and
V . The variational lower bound is derived analytically so that it retains the effects of the
dependence between model parameters and of the latent variables, defined in the gen-
erative model distribution in Eq. (7.53), unlike the conventional Bayesian information
criterion and minimum description length (BIC/MDL) approaches, as discussed in Sec-
tion 6.5. Therefore, the variational lower bound can compare any acoustic models with
respect to all topological aspects and their combinations, e.g., contextual and temporal
topologies in HMMs, the number of components per GMM in an HMM state, and the
dimensional size of feature vectors, based on the following equation:

M̃ = arg max
M∈(T×S×G×D)

FM . (7.136)
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Here T, S, G, and D denote search spaces of HMM-temporal, HMM-contextual, GMM
and feature vector topologies, respectively.

Based on the discussion in Section 7.3, the seven steps in Algorithm 11 provide a
VB training algorithm for acoustic modeling. Here, τ denotes an iteration count, and ε

denotes a threshold that checks whether FM converges. Thus, the posterior distribution
estimation in the VB framework can be effectively constructed based on the VB Baum–
Welch algorithm, which is analogous to the ML Baum–Welch algorithm (Algorithm
4). In addition, VB can realize the model selection using the VB objective function as
shown in Step 9. Thus, VB can construct an acoustic model consistently based on the
Bayesian approach.

Algorithm 11 Variational Bayesian Baum–Welch algorithm for CDHMMs with model
selection
Require: Set posterior parameter �̃[τ = 0] from initialized transition probability

ξ̃ [τ = 0], occupation probability γ̃ [τ = 0], and model structure M (prior parameter
�0 is included) for each category

1: repeat
2: Compute ã[τ + 1], ω̃[τ + 1], and b̃(O)[τ + 1] using �̃[τ ]. (By Eq. (7.101))
3: Update ξ̃ [τ + 1] and γ̃ [τ + 1] via the Viterbi algorithm or forward–backward

algorithm. (By Eqs. (7.114) and (7.115))
4: Accumulate the sufficient statistics ξ̃ [τ + 1], γ̃ [τ + 1]γ̃ (1)[τ + 1], γ̃ (2)[τ + 1] (by

Eq. (7.67)
5: Compute �̃[τ + 1] using �̃[τ + 1] and �0. (By Eq. (7.66))
6: Calculate total FM[τ + 1] for all categories. (By using Eqs. (7.126) and (7.135)

and summing up all categories’ FM)
7: Calculate � = |(FM[τ + 1]− FM[τ ])/FM[τ + 1]|, τ ← τ + 1
8: until � ≤ ε

Calculate FM for all possible M and find M̃(= arg maxM FM)

Note that if we change ˜→ ̂ (a value with ̂ attached indicates an ML estimate),
� → � and FM → ŁM (where ŁM means the log-likelihood for a model M), this
algorithm becomes an ML-based framework, except for the model selection. Therefore,
in the implementation phase, the VB framework can be realized in the conventional
systems of acoustic model construction by adding the prior distribution setting and by
changing the estimation procedure and objective function calculation.

7.3.5 VB posterior for Bayesian predictive classification

This subsection deals with the Bayes decision rule based on the VB approach. It is
related to the Bayesian predictive classification, as discussed in Section 6.3.1 with the
Laplace approximation, but this section deals with the same issue with VB. In this

https://doi.org/10.1017/CBO9781107295360.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.008


7.3 Continuous density hidden Markov model 275

section, we use the following notation to clearly distinguish the training and recognition
data, similar to Section 6.3.1:

O : future data,

O : training data. (7.137)

In recognition, O = {Ot ∈ R
D|t = 1, · · · , T} denotes the feature vector sequence

of input speech, and S = {st ∈ {1, · · · , J}|t = 1, · · · , T} denotes the corresponding
HMM state sequence. Although our target application is ASR, which outputs the word
sequence W, this section simplifies the decoding rule for the explanation. That is, the
decoding needs to handle the word sequence W in addition to the state sequence S, but it
can be combined with the LVCSR decoder if we can build the Viterbi algorithm. There-
fore, this section focuses on formulating the Viterbi algorithm within the VB framework,
similarly to that within the ML framework, as discussed in Section 3.3.2.

The Viterbi algorithm can achieve the optimal state sequence S̃ by using a conditional
probability function p(S|O,O) given input data O and training data O, as follows:

S̄ = arg max
S

p(S|O,O) = arg max
S

p(O, S|O)

p(O|O)

= arg max
S

p(O, S|O). (7.138)

p(O, S|O) is a variant of predictive distribution (Berger 1985, Bernardo & Smith 2009),
because this distribution predicts the probability of unknown data O conditioned by
training data O. Note that Eq. (7.138) does not depend on parameters � and model M,
and these can be explicitly involved by considering the following sum rule:

p(O, S|O) =
∑
M

∫
p(O, S|�,O, M)p(�|O, M)p(M|O)d�. (7.139)

This predictive distribution based approach involves considering the integrals and true
posterior distributions, an approach which is also applied to speech recognition (Huo
& Lee 2000, Jiang et al. 1999, Lee & Huo 2000, Chien & Liao 2001), as discussed in
Section 6.3.1, with the Laplace approximation.

After VB-based acoustic modeling in Section 7.3.4, an appropriate model structure M̃
is selected based on the VB model selection Eq. (7.136), and the optimal VB posterior
distributions are obtained q̃(�|O, M̃). Therefore, the true posterior distributions can be
approximated by the VB posteriors, and Eq. (7.139) is approximated as:

p(O, S|O) ≈
∑
M

∫
p(O, S|�, M)̃q(�|O, M)δ(M, M̃)d�

=
∫

p(O, S|�, M̃)̃q(�|O, M̃)d�

= E(�)
[
p(O, S|�, M̃)

]
. (7.140)
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Thus, we can build the Viterbi algorithm for the expectation over the model parameter �
by using the VB posterior. In the following section we omit the models structure index
M̃ for simplicity.

Similarly to Section 3.3.2, we first define the following expected highest probability
along a single path, at time t, which accounts for the first t observations and ends in
state j:

δ̃t(j) � max
s1,··· ,st−1

E(�)
[
p(s1, · · · , st = j, o1, · · · , ot|�)

]
. (7.141)

By using δ̃t(j) recursively, we can obtain the most probable state sequence as follows:

• Initialization

δ̃1(i) = E(π) [πi]
K∑

k=1

E(ω) [ωik] E(μ,�)
[N (o1|μik, �ik)

]
,

ψ1(i) = 0, 1 ≤ i ≤ J. (7.142)

• Recursion

δ̃t(j) =
(

max
1≤i≤J

δ̃t−1(i)E(A)
[
aij
]) K∑

k=1

E(ω) [ωik] E(μ,�)
[N (o1|μjk, �jk)

]
,

ψt(j) =
(

arg max
1≤i≤J

δ̃t−1(i)E(A)
[
aij
])

,
2 ≤ t ≤ T
1 ≤ j ≤ J. (7.143)

• Termination

p(̃S, O|O) = max
1≤j≤J

δ̃T (i),

s̃T = arg max
1≤j≤J

δ̃T (i). (7.144)

• State sequence backtracking

s̃t = ψt+1(̃st+1), t = T − 1, T − 2, · · · , 1. (7.145)

Thus, we can perform the Viterbi algorithm for the predictive distribution based on
the VB posteriors. To realize the Viterbi algorithm, we need to consider the following
expectation:

E(A)
[
aij
]

,

E(ω) [ωik] ,

E(μ,�)
[N (ot|μjk, �jk)

]
. (7.146)

We provide the solution for each of the expected variables. Note that these are different
from the expected variables of the CDHMM parameters in the VB E-step, as discussed
in Eq. (7.73),4 i.e.,

4 Again we omit the initial transition parameters for simplicity.
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ãij = exp
(
E(aij)

[
log(aij)

])
,

ω̃jk = exp
(
E(ωjk)

[
log(ωjk)

])
,

b̃jk(ot) = exp
(
E(μjk ,�jk)

[
log(N (ot|μjk, �jk))

])
. (7.147)

This is because the VB E-step is a training step, and we need to optimize these values
based on the variational method, which necessitates considering the expectation of the
parameters in the logarithmic domain. In the prediction case, since we already have the
posterior distributions in the training step, Eq. (7.146) simply performs the expectation
determination for the CDHMM parameters directly.

Expected state transition E(A)
[
aij
]

We first focus on calculation of the expected state transition ãij. Although this can be
obtained as the mean result of the Dirichlet distribution in Appendix C.4, we provide the
derivation for its educational value. Based on the definition of the Dirichlet distribution
in Eq. (7.62), we can obtain the following equation:

E(A)
[
aij
] = ∫ aijDir({aij′ }Jj′=1|{φ̃a

ij′ }Jj′=1)
J∏

j′=1

daij′

= CDir({φ̃a
ij}Jj=1)

∫
aij

J∏
j′=1

(aij′ )
φ̃a

ij′−1
daij′ . (7.148)

Now we define the following variable:

φ̂a
ij′ �

{
φ̃a

ij′ + 1 j′ = j

φ̃a
ij′ j′ �= j.

(7.149)

By using φ̂a
ij′ , the integral in Eq. (7.148) is solved as:

E(A)
[
aij
] = CDir({φ̃a

ij}Jj=1)
∫ J∏

j′=1

(aij′ )
φ̂a

ij′−1
daij′

= CDir({φ̃a
ij}Jj=1)

CDir({φ̂a
ij}Jj=1)

. (7.150)

The normalization constant of the Dirichlet distribution is defined (Appendix C.4) as

CDir({φj}Jj=1) �
�(
∑J

j=1 φj)∏J
j=1 �(φj)

. (7.151)

Therefore, by substituting the concrete form of the normalization constant into
Eq. (7.150) and by using the definition of φ̂a

ij′ , Eq. (7.150) can be represented as follows:
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E(A)
[
aij
] = ∏J

j′=1 �(φ̂a
ij′)∏J

j′=1 �(φ̃a
ij′)

�(
∑J

j′=1 φ̃
a
ij′ )

�(
∑J

j′=1 φ̂
a
ij′ )

=
∏J

j′ �=j �(φ̃a
ij′)∏J

j′ �=j �(φ̃a
ij′)

�(φ̃a
ij + 1)

�(φ̃a
ij)

�(
∑J

j′=1 φ̃
a
ij′)

�(1+∑J
j′=1 φ̃

a
ij′ )

= �(φ̃a
ij + 1)

�(φ̃a
ij)

�(
∑J

j′=1 φ̃
a
ij′ )

�(1+∑J
j′=1 φ̃

a
ij′)

. (7.152)

Finally, we use the following formula for the gamma function:

�(x+ 1) = x�(x). (7.153)

Then, Eq. (7.152) is analytically obtained as the following simple equation:

E(A)
[
aij
] = φ̃a

ij�(φ̃a
ij)

�(φ̃a
ij)

�(
∑J

j′=1 φ̃
a
ij′ )∑J

j′=1 φ̃
a
ij′�(

∑J
j′=1 φ̃

a
ij′ )

= φ̃a
ij∑J

j′=1 φ̃
a
ij′

. (7.154)

Note that the state transition probability is obtained from the normalized weight, which
is proportional to the posterior hyperparameter φ̃a

ij, and the result is very intuitive.

Expected mixture weight E(ω)
[
ωjk
]

Since the mixture weight ωjk is represented by a multinomial distribution, it is simi-
lar to the state transition aij. Similarly to E(A)

[
aij
]
, the expected state transition ω̃jk is

calculated as follows:

E(ω)
[
ωjk
] = φ̃ω

jk∑K
k′=1 φ̃

ω
jk′

. (7.155)

Again, the mixture weight probability is obtained using the normalized weight of the
posterior hyperparameter φ̃ω

jk.

Expected Gaussian distribution E(μ,�)
[N (ot |μjk , � jk )

]
Finally, we calculate the expected value of the Gaussian distribution with VB posteriors
for Gaussian parameters. First the expectation is factorized for each dimension when we
use the diagonal covariance as follows:

E(μ,�)
[N (ot|μjk, �jk)

] = D∏
d=1

E(μjkd ,rjkd)

[
N (otd|μjkd, (rjkd)−1)

]
. (7.156)

The indexes of state ij, mixture component k, frame t, and dimension d are removed to
simplify the derivation.
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Based on the definition of the Gaussian and gamma distributions in Eq. (7.62), we
can obtain the following equation:

E(μ,r)

[
N (o|μ, r−1)

]
=
∫

N (μ|μ̃, (φ̃μr)−1)Gam2(r|φ̃r, r̃ )N (o|μ, r−1)dμdr

= CN (φ̃μ)CGam2 (φ̃r, r̃ )CN

×
∫

r
1
2 exp

(
− φ̃μr(μ− μ̃)2

2

)
r
φ̃r

2 −1 exp

(
− r̃r

2

)
r

1
2 exp

(
− r(o− μ)2

2

)
dμdr

∝
∫

r
φ̃r

2 exp

(
− r̃r

2

)
exp

(
− φ̃μr(μ− μ̃)2

2

)
exp

(
− r(o− μ)2

2

)
dμdr.

(7.157)

First, we focus on the integration with respect to μ, and completing the square with
respect to μ. Then, by integrating with respect to μ, and arranging the equation, the
following equation is obtained:∫

exp
(
− r

2

(
(o− μ)2 + φ̃μ(μ− μ̃)2

))
dμ

=
∫

exp

(
− r

2

(
(1+ φ̃μ)

(
μ− o+ φ̃μμ̃

1+ φ̃μ

)2

− (o+ φ̃μμ̃)2

1+ φ̃μ
+ o2 + φ̃μμ̃2

))
dμ

∝ r−
1
2 exp

(
− r

2

(
− (o+ φ̃μμ̃)2

1+ φ̃μ
+ o2 + φ̃μμ̃2

))
= r−

1
2 exp

(
− r

2(1+ φ̃μ)

(
−(o+ φ̃μμ̃)2 + (1+ φ̃μ)(o2 + φ̃μμ̃2)

))
= r−

1
2 exp

(
−r

φ̃μ(o− μ̃)2

2(1+ φ̃μ)

)
. (7.158)

Here we discuss the case when the VB posterior for r is the Dirac delta function around
the MAP value of r, and the argument of its Dirac delta function is the maximum value
of the VB posterior. Then, the result of the integration with respect to r is obtained by
changing r to the MAP value (φ̃r − 2)̃r−1 in Eq. (7.158) in Appendix C.11. Therefore,
the following equation is obtained:

E(μ)

[
N (o|μ, r−1)

]
∝ exp

(
− φ̃r − 2

r̃

φ̃μ(o− μ̃)2

2(1+ φ̃μ)

)
= N

(
o

∣∣∣∣μ̃,
1+ φ̃μ

(φ̃r − 2)φ̃μ
r̃

)
. (7.159)

Thus, by recovering the omitted indexes, we can obtain

E(μ) [N (ot|μ, �)] =
D∏

d=1

N
(

otd

∣∣∣∣∣μ̃jkd,
1+ φ̃

μ
jk

(φ̃r
jk − 2)φ̃μ

jk

r̃jkd

)
. (7.160)

This is the analytical result of the expected function of a Gaussian distribution with
expectation only over the mean parameter μ.
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By substituting Eq. (7.158) into Eq. (7.157), we can obtain the following integral:∫
r
φ̃r+1

2 −1 exp

(
−r

φ̃μ(o− μ̃)2 + (1+ φ̃μ )̃r

2(1+ φ̃μ)

)
dr. (7.161)

First we use the following notation to simplify the integral:

α � φ̃r + 1

2
,

β � φ̃μ(o− μ̃)2 + (1+ φ̃μ )̃r

2(1+ φ̃μ)
. (7.162)

Note that β depends on the observation o. Then, the integral with the explicit range of r
is rewritten as follows: ∫ ∞

0
rα−1e−βrdr. (7.163)

Now, we convert r with the following variable x:

r = x

β
,

dr = 1

β
dx,

r ∈ [0,∞] → x ∈ [0,∞]. (7.164)

Now φ̃μ is a hyperparameter of the Dirichlet distribution, and φ̃μ > 0, therefore
β > 0 from Eq. (7.162), and the range of x becomes [0,∞]. Then, the integral can
be rewritten as: ∫ ∞

0
rα−1e−βrdr =

∫ ∞

0

(
x

β

)α−1

e−x 1

β
dx

=
(

1

β

)α ∫ ∞

0
xα−1e−xdx. (7.165)

Here, from the formula of the gamma function, we can further rewrite the above
integral as: ∫ ∞

0
rα−1e−βrdr =

(
1

β

)α

�(α) =
(

1

β

)α

(α − 1)!

∝
(

1

β

)α

. (7.166)

Since (α − 1)! does not depend on the observation o, we can disregard it as a constant
value. Finally, by recovering the variables of α and β from Eq. (7.162), Eq. (7.161) is
obtained as the following equation:∫

r
φ̃r+1

2 −1 exp

(
−r

φ̃μ(o− μ̃)2 + (1+ φ̃μ)̃r

2(1+ φ̃μ)

)
dr

∝
(
φ̃μ(o− μ̃)2 + (1+ φ̃μ)̃r

2(1+ φ̃μ)

)− φ̃r+1
2

∝
(

1+ φ̃μ

(1+ φ̃μ )̃r
(o− μ̃)2

)− φ̃r+1
2

. (7.167)
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Here we refer to the concrete form of the Student’s t-distribution given in
Appendix C.16:

St(x|μ, λ, κ) � CSt

(
1+ 1

κλ
(x− μ)2

)− κ+1
2

. (7.168)

The parameters μ, κ , and λ of the Student’s t-distribution correspond to those of the
above equation as follows: ⎧⎪⎪⎨⎪⎪⎩

μ = μ̃,

λ = (1+φ̃μ )̃r

φ̃μ φ̃r
,

κ = φ̃r.

(7.169)

Thus, the result of the integral with respect to μ and r (Eq. (7.157)) is represented as the
Student’s t-distribution:

St

(
o

∣∣∣∣μ̃,
(1+ φ̃μ )̃r

φ̃μφ̃r
, φ̃r
)

. (7.170)

The third parameter in the t-distribution is called the degree of freedom, and if this value
is large, the distribution approaches the Gaussian distribution theoretically.

Thus, by recovering the omitted indexes, we can obtain

E(μ,�) [N (ot|μ, �)] =
D∏

d=1

St

(
otd

∣∣∣∣∣μ̃jkd,
(1+ φ̃

μ
jk )̃rjkd

φ̃
μ
jkφ̃

r
jk

, φ̃r
jk

)
. (7.171)

This is the analytical result of the expected Gaussian distribution with marginalization of
both mean and precision parameters μ and r. Compared with Eq. (7.160), the marginal-
ization of both parameters changes the distribution from the Gaussian distribution to the
Student’s t-distribution. The latter is called a long tail distribution since it is a power law
function, and it provides a robust classification in general, when the amount of training
data is small.

Since the degree of freedom in this solution is the posterior hyperparameter of the pre-
cision parameter φ̃r, and it is proportional to the amount of data, as shown in Eq. (7.67),
this solution approaches the Gaussian distribution. Then, the variance parameters in
Eq. (7.171) also approximately approach the following value:

(1+ φ̃
μ
jk )̃rjkd

φ̃
μ
jkφ̃

r
jk

≈ r̃jkd

φ̃r
jk

. (7.172)

Thus, Eq. (7.171) is approximated by the following Gaussian distribution when the
amount of data O is large:

E(μ,�) [N (ot|μ, �)] ≈
D∏

d=1

N
(

otd

∣∣∣∣∣μ̃jkd,
r̃jkd

φ̃r
jk

)
. (7.173)

This solution corresponds to the MAP estimation result of the Gaussian distribution in
CDHMM, as discussed in Section 4.3.5.
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In Watanabe & Nakamura (2006), experimental results were reported to show the
effectiveness of the Bayesian predictive classification without marginalization (it cor-
responds to the MAP estimation in Section 4.3), with marginalization of only mean
parameters (corresponds to Eq. (7.160)), and with marginalization of both mean and
covariance parameters (corresponds to Eq. (7.171)). Speaker adaptation experiments for
LVCSR (30 000 vocabulary size) show that the Student’s t-distribution-based Bayesian
predictive classification improved the performance from the MAP estimation and the
marginalization results, reducing the WERs by 2.3 % and 1.2 %, respectively, when we
only used one utterance (3.3 seconds on average) for the adaptation data. Since all the
results use the same prior hyperparameter values, the improvement purely comes from
the marginalization effect. In addition, if the amount of adaptation data increased, the
performance of these three methods converged to the same value, which is also expected,
based on the discussion of analytical results of the Student’s t-distribution in Eq. (7.173).

The use of VB-based Bayesian predictive classification makes acoustic modeling in
speech recognition a totally Bayesian framework that follows a consistent concept,
whereby all acoustic procedures (model parameter estimation, model selection, and
speech classification) are carried out based on posterior distributions. For example,
compare the variational Bayesian speech recognition framework with a conventional
ML-BIC approach: the model parameter estimation, model selection and speech clas-
sification are based on ML (Chapter 3) and BIC (Chapter 6). BIC is an asymptotic
criterion that is theoretically effective only when the amount of training data is suffi-
ciently large. Therefore, for a small amount of training data, model selection does not
perform well because of the uncertainty of the ML estimates. The next section aims at
solving the problem caused by a small amount of training data by using VB.

7.3.6 Decision tree clustering

This section revisits decision tree clustering of the context-dependent HMM states,
as we discussed in Section 6.5, based on the VB framework (Watanabe et al. 2004,
Hashimoto, Zen, Nankaku et al. 2008, Shiota, Hashimoto, Nankaku et al. 2009). Sim-
ilarly to Eq. (6.74), we approximate the Bayes factor in Section 6.2 by selecting an
appropriate question at each split, chosen to increase the variational lower bound/VB
objective function FM in the VB framework, as discussed in Section 7.3.4. When node
n is split into a Yes node (nQ

Y ) and No node (nQ
N) by question Q (we use MQ(n) with this

hypothesized model, obtained from question Q, and Mn with the original model), the
appropriate question Q̃(n) is chosen from a set of questions as follows:

Q̃(n) = arg max
Q

log

(
p(MQ(n)|O)

p(Mn|O)

)
≈ arg max

Q
�FQ(n), (7.174)

where �FQ(n) is the gain in the VB objective function when node n is split by Q, which
is defined as:

�FQ(n) = arg max
Q

F
�(nQ

Y ) + F
�(nQ

N ) − F�(n). (7.175)
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�(n) denotes a set of (non-shared) context-dependent HMM states at node n in a deci-
sion tree. The question is chosen to maximize the gain in FM by splitting. The VB
objective function for decision tree construction is also simply calculated under the
following same constraints as the ML approach:

• Data alignments γ̃t(j, k) and ξ̃t(i, j) for each state are fixed while splitting.
• Emission probability distribution in a state is represented by a single Gaussian

distribution (i.e., K = 1).
• Covariance matrices have only diagonal elements.
• A contribution of state transitions aij and initial weights πj for likelihood is disre-

garded.

By using these conditions, the objective function is obtained without iterative calcula-
tions, which reduces the calculation time. Under conditions of fixed data assignment
and single Gaussian assumptions, the latent variable part of FM can be disregarded, i.e.,
Eq. (7.116) is approximated as

FM ≈ FM
� . (7.176)

In the VB objective function of model parameter FM
� (Eq. (7.126)), the factors of

posterior parameters of state transition φ̃a and mixture component φ̃ω can also be dis-
regarded under the above conditions. Therefore, the objective function F� in node n
(we omit the index n for simplicity) for assigned data set O� = {O(i)|i ∈ �}, where
O(i) = {ot(i) ∈ R

D|t = 1, · · · , T(i)} can be obtained from the modification of FM
� in

Eq. (7.126) as follows:

F� = log

⎛⎜⎜⎝(2π )−
γ̃�D

2

(
φ
μ
�

φ̃
μ
�

)D
2 2

φ̃r
�

D
2

(
�
(
φ̃r
�

2

))D∏D
d=1

(
r0
�d

) φr
�
2

2
φr
�

D
2

(
�
(
φr
�

2

))D∏D
d=1 (̃r�d)

φ̃r
�
2

⎞⎟⎟⎠ , (7.177)

where {φ̃μ
�, μ̃�, φ̃r

�, {̃r�d}Dd=1}( � �̃�) is a subset of the posterior parameters in
Eq. (7.66), and is represented by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̃
μ
� = φ

μ
� + γ̃�,

μ̃� = φ
μ
�μ0

�+γ̃
(1)
�

φ
μ
�+γ̃�

,

φ̃r
� = φr

� + γ̃�,

r̃�d = γ̃
(2)
�d + φ

μ
�(μ0

�d)2 − φ̃
μ
�(μ̃�d)2 + r0

�d.

(7.178)

γ̃�, γ̃ (1)
� and γ̃

(2)
�d are the sufficient statistics of a set of states in node n, as defined as

follows. ⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ̃� �

∑
i∈�
∑T(i)

t=1,

γ̃
(1)
� �

∑
i∈�
∑T(i)

t=1 ot(i),

γ̃
(2)
�d �

∑
i∈�
∑T(i)

t=1(otd(i))2.

(7.179)

Note that since we use the hard aligned data O(i) (based on the Viterbi algo-
rithm), the assignment information γ̃t(i) is included in this representation. Here,
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{φμ
�, μ0

�,φr
�, {r0

�d}Dd=1}( � ��) is a set of prior parameters. One choice of setting the
prior hyperparameters μ0

� and r0
�d would be to set them by using monophone (root

node) HMM state statistics (γ̃root, γ̃
(1)
root and γ̃

(2)
root) as follows:

μ0
� =

γ̃
(1)
root

γ̃root
,

r0
�d = φr

�

(
γ̃

(2)
root, d

γ̃root
−
(
μ0

root,d

)2
)

. (7.180)

The other parameters φ
μ
� and φr

� are set manually. By substituting Eq. (7.178) into

Eq. (7.177), the gain �FQ(n) can be obtained when n is split into nQ
Y , nQ

N by question Q:

�FQ(n) = f (�̃
�(nQ

Y )
)+ f (�̃

�(nQ
N )

)− f (�̃�(n))− f (��(n)). (7.181)

Here, f (�) is defined by:

f (�) � −D

2
logφμ − φr

2

D∑
d=1

log rd + D log�

(
φr

2

)
. (7.182)

The terms that do not contribute to �FQ(n) are disregarded. The final term in Eq. (7.181)
is only computed from the prior hyperparameter �. Similarly to the BIC criterion in
Eq. (6.92), node splitting stops when the condition

�FQ(n) ≤ 0 (7.183)

is satisfied. A model structure based on the VB framework can be obtained by executing
this construction for all trees, resulting in the maximization of total FM . This implemen-
tation based on the decision tree method does not require iterative calculations, and can
construct clustered-state HMMs efficiently. There is another major method for the con-
struction of clustered-state HMMs that uses a successive state splitting algorithm, and
which does not remove latent variables in HMMs (Takami & Sagayama 1992, Ostendorf
& Singer 1997). Therefore, this requires the VB Baum–Welch algorithm and calculation
of the latent variable part of the lower bound/VB objective function for each splitting.
This is realized as the VB SSS algorithm by Jitsuhiro & Nakamura (2004).

The relationship between VB model selection and the conventional BIC model selec-
tion, based on Eqs. (7.181) and (6.89), respectively, is discussed below. Based on
the condition of a sufficiently large amount of data, the posterior hyperparameters in
Eq. (7.178) are approximated as follows:

φ̃
μ
�, φ̃r

� → γ̃�,

μ̃� →
γ̃

(1)
�

γ̃�
,

r̃�d → γ̃
(2)
�d −

(
γ̃

(1)
�d

)2

γ̃�
. (7.184)
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In addition, from Stirling’s approximation, the logarithmic gamma function has the
following relationship:

log�
( x

2

)
→ x

2
log
( x

2

)
− x

2
− 1

2
log
( x

2π

)
, (7.185)

when |x| → ∞. By substituting Eq. (7.184) into Eq. (7.182) and using Eq. (7.185), f (�̃)
is approximated as

f (�̃) →−D

2
log γ̃� − γ̃�

2

D∑
d=1

log

⎛⎜⎝γ̃
(2)
�d −

(
γ̃

(1)
�d

)2

γ̃�

⎞⎟⎠
+ D

(
γ̃�

2
log

(
γ̃�

2

)
− γ̃�

2
− 1

2
log

(
γ̃�

2π

))

= − γ̃�

2

(
D (1+ log(2π ))+

D∑
d=1

log

⎛⎜⎝ γ̃
(2)
�d

γ̃�
−
(
γ̃

(1)
�d

)2

(γ̃�)
2

⎞⎟⎠
︸ ︷︷ ︸

≈log |�ML
� |

)
− D log γ̃�. (7.186)

Then, an asymptotic form of Eq. (7.182) is composed of a log-likelihood gain term and
a penalty term depending on the number of free parameters (2D in this diagonal covari-
ance Gaussian case) and the amount of training data, i.e., the asymptotic form becomes
the BIC-type objective function form, as shown in Eq. (6.88). Therefore, VB theoreti-
cally involves the BIC objective function, and so BIC model selection is asymptotically
equivalent to VB model selection, which demonstrates the advantages of VB, especially
for small amounts of training data.

7.3.7 Determination of HMM topology

Once a clustered-state model structure is obtained, acoustic model selection is com-
pleted by determining the number of mixture components per state. GMMs include
latent variables, and their determination requires the VB Baum–Welch algorithm and
computation of the latent variable part of the variational lower bound, unlike the
clustering triphone HMM states in Section 7.4.5. Therefore, this section deals with
determination of the number of GMM components per state by considering the latent
variable effects. Then, the effectiveness of VB model selection in latent variable models
is confirmed (Jitsuhiro & Nakamura 2004) for the successive state splitting algorithm,
and the effectiveness of VB model selection for GMMs is re-confirmed (Valente &
Wellekens 2003). In general, there are two methods for determining the number of mix-
ture components. With the first method, the number of mixture components per state is
the same for all states. The objective function FM is calculated for each number of mix-
ture components, and the number of mixture components that maximizes the total FM is
determined as being the appropriate one (fixed-number GMM method). With the second
method, the number of mixture components per state can vary by state; here, Gaussians
are split and merged to increase FM and determine the number of mixture components
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in each state (varying-number GMM method). A model obtained by the varying-number
GMM method is expected to be more accurate than one obtained by the fixed-number
GMM method, although the varying-number GMM method requires more computation
time.

We require the variational lower bound for each state to determine the number of
mixture components. In this case, the state alignments vary and states are expressed as
GMMs. Therefore, the model includes latent variables and the component FM

S,V cannot
be disregarded, unlike the case of triphone HMM state clustering. However, since the
number of mixture components is determined for each state and the state alignments do
not change greatly, the contribution of the state transitions to the objective function is
expected to be small, and can be ignored. Therefore, the objective function FM for a
particular state j is represented from Eqs. (7.126) and (7.135) as follows:

(FM)j = (FM
� )j − (FM

V )j, (7.187)

where (FM
� )j is represented by removing the HMM terms in Eq. (7.126) as follows:

(FM
� )j = log

�(
∑

k φ
ω
jk)

�(
∑

k φ̃
ω
jk)

∏
k �(φ̃ω

jk)∏
k �(φω

jk)

+
∑

k

log

⎛⎜⎜⎜⎜⎜⎝(2π )−
γ̃jkD

2
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φ
μ
jk

φ̃
μ
jk

)D
2

(
�

(
φ̃r

jk
2

))D∏
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r0
jkd
2

) φr
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2

(
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(7.188)

Similarly, (FM
V )j is also represented as follows:

(FM
V )j =

∑
k

γ̃jk

(
�
(
φ̃ω

jk

)
−�

(∑
k′
φ̃ω

jk′
))

− 1

2

∑
k

γ̃jk

(
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(
log(2π )+ 1
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μ
jk

−�

(
φ̃r
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2

))
+
∑

d

log
r̃jkd

2

)

− 1

2

∑
k

⎛⎝φ̃r
jk

∑
t,d

γ̃t(j, k)(otd − μ̃jkd)2

r̃jkd

⎞⎠− log

(∑
V

ũ(O, V|M)

)
. (7.189)

Therefore, with the fixed-number GMM method, the total FM is obtained by summing
up all states’ (FM)j, which determines the number of mixture components per state.
With the varying-number GMM method, the change of (FM)j per state is compared
after merging or splitting the Gaussians, which also determines the number of mixture
components. The number of mixture components is also automatically determined by
using the BIC/MDL objective function (Chen & Gopinath 1999, Shinoda & Iso 2001).
However, the BIC/MDL objective function is based on the asymptotic condition and
cannot be applied to latent models in principle. On the other hand, the variational lower
bound derived by VB does not need the asymptotic condition and can determine an
appropriate model structure with latent variables.
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Table 7.2 Automatic determination of acoustic model topology.

Read speech Read speech Isolated word Lecture
(JNAS) (WSJ) (JEIDA) (CSJ)

VB 91.7 % 91.3 % 97.9 % 74.5 %
# states 912 2504 254 1986
# components 40 32 35 32
ML + Dev. Set 91.4 % 91.3 % 98.1 % 74.2 %
# states 1000 7500 1000 3000
# components 30 32 15 32

Table 7.2 shows experimental results for automatic determination of the acoustic
model topology by using VB and the conventional heuristic approach that determines
the model topology by evaluating ASR performance on development sets. Note that VB
was only used for the model topology determination, and the other procedures (e.g.,
training and decoding) were performed by using the conventional (ML) approaches.
Therefore, Table 7.2 simply shows the effectiveness of the model selection. We used
two tasks based on read speech recognition of news articles, JNAS (Shikano, Kawahara,
Kobayashi et al. 1999) and WSJ (Paul & Baker 1992), an isolated word speech recog-
nition task (JEIDA 100 city name recognition), and a lecture speech recognition task,
CSJ (Furui, Maekawa & Isahara 2000). Table 7.2 provides the ASR performance of the
determined model topology with the number of total HMM states and a mixture com-
ponent in an HMM state, where we used the same number of mixture component for all
states. In the various ASR tasks, VB achieved comparable performance to the conven-
tional method by selecting appropriate model topologies without using a development
set. Thus, these experiments proved that the VB model selection method can automati-
cally determine an appropriate acoustic model topology with a comparable performance
to that obtained by using a development set.

7.4 Structural Bayesian linear regression for hidden Markov model

As discussed in Section 3.5, a Bayesian treatment of the affine transformation param-
eters of CDHMM is an important issue to improve the generalization capability of the
model adaptation. While the regression tree used in the conventional maximum likeli-
hood linear regression (MLLR) can be considered one form of prior knowledge, i.e.,
how various Gaussian distributions are related, another approach is to explicitly con-
struct and use prior knowledge of regression parameters in an approximated Bayesian
paradigm.

For example, maximum a-posteriori linear regression (MAPLR) (Chesta, Siohan &
Lee 1999) replaces the ML criterion with the MAP criterion introduced in Chapter 4
in the estimation of regression parameters. Quasi-Bayes linear regression (Chien 2002)
also replaces the ML/MAP criterion with a quasi-Bayes criterion. With the explicit prior
knowledge acting as a regularization term, MAPLR appears to be less susceptible to the
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overfitting problem. The MAPLR is extended to the structural MAP (SMAP) (Shinoda
& Lee 2001) and the structural MAPLR (SMAPLR) (Siohan, Myrvoll & Lee 2002), both
of which fully utilize the Gaussian tree structure used in the model selection approach
to efficiently set the hyperparameters in prior distributions. In SMAP and SMAPLR, the
hyperparameters in the prior distribution in a target node are obtained from the statistics
in its parent node. Since the total number of speech frames assigned to a set of Gaussians
in the parent node is always larger than that in the target node, the statistics obtained in
the parent node are more reliable than those in the target node, and these can be good
prior knowledge for transformation parameter estimation in the target node.

Another extension of MAPLR is to replace MAP approximation by a fully Bayesian
treatment of latent models, using VB. This section employs VB for the linear regres-
sion problem (Watanabe & Nakamura 2004, Yu & Gales 2006, Watanabe, Nakamura
& Juang 2013), but we focus on model selection and efficient prior utilization at the
same time, in addition to estimation of the linear transformation parameters of HMMs
proposed in previous work (Watanabe & Nakamura 2004, Yu & Gales 2006). In partic-
ular, we consistently use the variational lower bound as the optimization criterion for
the model structure and hyperparameters, in addition to the posterior distributions of the
transformation parameters and the latent variables. As we discussed in Section 7.2, since
this optimization leads the approximated variational posterior distributions to the true
posterior distributions theoretically in the sense of minimizing Kullback–Leibler diver-
gence between them, the above consistent approach leads to improved generalization
capability (Neal & Hinton 1998, Attias 1999, Ueda & Ghahramani 2002).

This section provides an analytical solution to the variational lower bound by
marginalizing all possible transformation parameters and latent variables introduced in
the linear regression problem. The solution is based on a variance-normalized represen-
tation of Gaussian mean vectors to simplify the solution as normalized domain MLLR.
As a result of variational calculation, we can marginalize the transformation parameters
in all nodes used in the structural prior setting. This is a part of the solution of the varia-
tional message passing algorithm (Winn & Bishop 2006), which is a general framework
of variational inference in a graphical model. Furthermore, the optimization of the model
topology and hyperparameters in the proposed approach yields an additional benefit in
the improvement of the generalization capability. For example, this approach infers the
linear regression without controlling the Gaussian cluster topology and hyperparameters
as the tuning parameters. Thus linear regression for HMM parameters is accomplished
without excessive parameterization in a Bayesian sense.

7.4.1 Variational Bayesian linear regression

This section provides an analytical solution for Bayesian linear regression by using a
variational lower bound. The previous section only considers a regression matrix in leaf
node j ∈ JM , but we also consider a regression matrix in leaf or non-leaf node i ∈ IM in
the Gaussian tree given model structure M. Then we focus on a set of regression matrices
in all nodes 
IM = {Wi|i = 1, · · · , |IM|}, instead of 
JM , and marginalize 
IM in a
Bayesian manner. This extension involves the structural prior setting as proposed in
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SMAP and SMAPLR (Shinoda & Lee 2001, Siohan et al. 2002, Yamagishi, Kobayashi,
Nakano et al. 2009).

In this section, we mainly deal with:

• prior distribution of model parameters p(
IM ; M,�);
• true posterior distribution of model parameters and latent variables

p(
IM , Z|O; M,�);
• variational posterior distribution of model parameters and latent variables

q(
IM , Z|O; M,�);
• generative model distribution p(O, Z|
IM ;�).

Note that the prior and generative model distributions are given, as shown in the genera-
tive process of Algorithm 12, and we obtain the variational posterior distribution, which
is an approximation of the true posterior distribution.

7.4.2 Generative model

As discussed in Section 3.5, the generative model distribution with the expectation with
respect to the posterior distributions of latent variables is represented as follows:

E(Z)
[
log p(O, Z|
IM ;�)

] = K∑
k=1

T∑
t=1

γt(k) logN (ot|μad
k , �k), (7.190)

where p(O, Z|
IM ;�) is the generative model distribution of the transformed HMM
parameters with transformed mean vectors μad

k . We use μad
k based on the following

variance normalized representation:

μad
k = CkWjξ k. (7.191)

Ck is the Cholesky decomposition matrix of �k, and ξ k = [1, ((Ck)−1μini
k )ᵀ]ᵀ is

obtained based on the initial mean vector μini
k . This representation makes the calculation

simple.5

7.4.3 Variational lower bound

With regard to variational Bayesian approaches, we first focus on the following marginal
log-likelihood p(O;�, M,�) with a set of HMM parameters �, a set of hyperparameters
�, and a model structure:6,7

log p(O;�, M,�)

= log

(∫ ∑
Z

p(O, Z|
IM ;�)p(
IM ; M,�)d
IM

)
. (7.192)

5 Hahm, Ogawa, Fujimoto et al. (2012) discuss the use of conventional MLLR estimation without the
variance normalization in the VB framework and its application to feature-space MLLR (fVBLR).

6 � and M can also be marginalized by setting their distributions. This section point-estimates � and M by
a MAP approach, similar to the evidence approximation in Chapter 5.

7 We can also marginalize the HMM parameters �. This corresponds to jointly optimizing HMM and linear
regression parameters.
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p(
IM ; M,�) is a prior distribution of transformation matrices 
IM . In the follow-
ing explanation, we omit �, M, and � in the prior distribution and generative model
distribution for simplicity, i.e., p(
IM ; M,�) → p(
IM ), and p(O, Z|
IM ;�) →
p(O, Z|
IM ).

Similarly to Eq. (7.15), since the variational Bayesian approach focuses on the varia-
tional lower bound of the marginal log likelihood F(M,�) with a set of hyperparameters
� and a model structure M, Eq. (7.192) is represented as follows:

log p(O;�, M,�)

= log

(∫ ∑
Z

p(O, Z|
IM )p(
IM )

q(
IM , Z)
q(
IM , Z)d
IM

)

≥ E(
IM ,Z)

[
log

p(O, Z|
IM )p(
IM )

q(
IM , Z)

]
︸ ︷︷ ︸

�F (M,�)

. (7.193)

The inequality in Eq. (7.193) is supported by the Jensen’s inequality in Eq. (7.10).
q(
IM , Z) is an arbitrary distribution, and is optimized by using a variational method
to be discussed later. For simplicity, we omit M, �, and O from the distributions. As
discussed in Section 7.1, the variational lower bound is a better approximation of the
marginal log likelihood than the auxiliary functions of maximum likelihood EM and
maximum a-posteriori EM algorithms that point-estimate model parameters, especially
for small amount of training data. Therefore, the variational Bayes can mitigate the
sparse data problem that the conventional approaches must resolve.

The variational Bayes regards the variational lower bound F(M,�) as an objective
function for the model structure and hyperparameter, and an objective functional for the
joint posterior distribution of the transformation parameters and latent variables (Attias
1999, Ueda & Ghahramani 2002). In particular, if we consider the true posterior distri-
bution p(
IM , Z|O) (we omit conditional variables M and � for simplicity), we obtain
the following relationship:

KL
(
q(
IM , Z)‖p(
IM , Z|O)

) = log p(O;�, M,�)− F(M,�). (7.194)

This equation means that maximizing the variational lower bound F(M,�) with respect
to q(
IM , Z) corresponds to minimizing the KL divergence between q(
IM , Z) and
p(
IM , Z|O) indirectly. Therefore, this optimization leads to finding q(
IM , Z), which
approaches the true posterior distribution.8

8 The following sections assume factorization forms of q(
IM , Z) to make solutions mathematically
tractable. However, this factorization assumption weakens the relationship between the KL divergence and
the variational lower bound. For example, if we assume q(
IM , Z) = q(
IM )q(Z), and focus on the KL
divergence between q(
IM ) and p(
IM |O), we obtain the following inequality:

KL
(
q(
IM )‖p(
IM |O)

) ≤ log p(O;�, M,�)−F (M,�). (7.195)

Compared with Eq. (7.194), the relationship between the KL divergence and the variational lower bound is
less direct due to the inequality relationship. In general, the factorization assumption distances optimal
variational posteriors from the true posterior within the VB framework.
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Figure 7.1 Binary tree structure with transformation matrices. If we focus on node i, the transformation
matrices in the parent node, left child node, and right child node are represented as Wp(i), Wl(i),
and Wr(i), respectively.

Thus, in principle, we can straightforwardly obtain the (sub) optimal model structure,
hyperparameters, and posterior distribution, as follows:

m̃ = arg max
M

F(M,�),

�̃ = arg max
�

F(M,�),

q̃(
IM , Z) = arg max
q(
IM ,Z)

F(M,�). (7.196)

These optimization steps are performed alternately, and finally lead to local optimum
solutions, similar to the EM algorithm. However, it is difficult to deal with the joint
distribution q(
IM , Z) directly, and we propose factorizing them by utilizing a Gaussian
tree structure. In addition, we also set a conjugate form of the prior distribution p(
IM ).
This procedure is a typical recipe of VB to make a solution mathematically tractable
similarly to that of the classical Bayesian adaptation approach.

Structural prior distribution setting in a binary tree

We utilize a Gaussian tree structure to factorize the prior distribution p(
IM ). We con-
sider a binary tree structure, but the formulation is applicable to a general non-binary
tree. We define the parent node of i as p(i), the left child node of i as l(i), and the right
child node of i as r(i), as shown in Figure 7.1, where a transformation matrix is prepared
for each corresponding node i. If we define W1 as the transformation matrix in the
root node, we assume the following factorization for the hierarchical prior distribution
p(
IM ):

p(
IM ) = p(W1, · · · , W|IM |)
= p(W1)p(Wl(1)|W1)p(Wr(1)|W1)

p(Wl(l(1))|Wl(1))p(Wr(l(1))|Wl(1))

p(Wl(r(1))|Wr(1))p(Wr(r(1))|Wr(1)) · · ·
=
∏

i∈IM

p(Wi|Wp(i)). (7.197)
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To make the prior distribution a product form in the last line of Eq. (7.197), we define
p(W1) � p(W1|Wp(1)). As seen, the effect of the transformation matrix in a target node
propagates to its child nodes.

This hierarchical prior setting is based on an intuitive assumption that the statistics in
a target node are highly correlated with the statistics in its parent node. In addition, since
the total number of speech frames assigned to a set of Gaussians in the parent node is
always larger than that in the target node, the statistics obtained in the parent node are
more reliable than in the target node, and these can be good prior knowledge for the
transformation parameter estimation in the target node.

With a Bayesian approach, we need to set a practical form of the above prior distri-
butions. A conjugate distribution in Section 2.1.4 is preferable as far as obtaining an
analytical solution is concerned, and we set a matrix variate Gaussian distribution simi-
lar to maximum a-posteriori linear regression (MAPLR (Chesta et al. 1999)). A matrix
variate Gaussian distribution is defined in Appendix C.9 as follows:

p(Wi) = N (Wi|Mi, �i, �i)

� CN (�i, �i) exp

(
−1

2
tr
[
(Wi −Mi)

ᵀ�−1
i (Wi −Mi)�

−1
i

])
, (7.198)

where CN (�i, �i) is a normalization constant defined as:

CN (�i, �i) � (2π )−
D(D+1)

2 |�i|−D
2 |�i|−D+1

2 . (7.199)

Mi is a D× (D+ 1) location matrix, �i is a (D+ 1)× (D+ 1) symmetric scale matrix,
and �i is a D×D symmetric scale matrix. The term �i represents correlation of column
vectors, and �i represents correlation of raw vectors. These are hyperparameters of the
matrix variate Gaussian distribution. There are many hyperparameters to be set, and this
makes the implementation complicated. In this section, we try to find another conjugate
distribution with fewer hyperparameters than Eq. (7.198). To obtain a simple solution
for the final analytical results, we use a spherical Gaussian distribution that has the
following constraints on �i and �i:

�i ≈ ID,

�i ≈ ρ−1
i ID+1, (7.200)

where ID is the D × D identity matrix and ρi indicates a precision parameter. Then
Eq. (7.198) can be rewritten as follows:

N (Wi|Mi, ID, ρ−1
i ID+1)

= CN (ID, ρ−1
i ID+1) exp

(
−1

2
tr
[
ρi(Wi −Mi)

ᵀ(Wi −Mi)
])

, (7.201)

where CN (ID, ρ−1
i ID+1) is a normalization factor, and is defined as

CN (ID, ρ−1
i ID+1) �

( ρi

2π

)D(D+1)
2

. (7.202)
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This approximation means that matrix elements do not have any correlation with each
other. This can produce simple solutions for Bayesian linear regression.9

Based on the spherical matrix variate Gaussian distribution, the conditional prior
distribution p(Wi|Wp(i)) in Eq. (7.197) is obtaining by setting the location matrix as
the transformation matrix Wp(i) in the parent node with the precision parameter ρi as
follows:

p(Wi|Wp(i)) = N (Wi|Wp(i), ID, ρ−1
i ID+1). (7.204)

Note that in the following sections Wi and Wp(i) are marginalized. In addition, we set
the location matrix in the root node as the deterministic value of Wp(1) = [0, ID]. Since
μad

k = CkWp(1)ξ k = μini
k from Eq. (7.191), this hyperparameter setting means that

the initial mean vectors are not changed if we only use the prior knowledge. This
makes sense in the case of a small amount of data by fixing the HMM parameters
as their initial values; this in a sense also inherits the philosophical background of
Bayesian adaptation, although the objective function has been changed from a-posteriori
probability to a lower bound of the marginal likelihood. Therefore, we just have
{ρi|i = 1, · · · , |IM|} as a set of hyperparameters �, which will also be optimized in
our framework.

Algorithm 12 Generative process of structural Bayesian transformation of CDHMM
Require: � and �

1: Draw 
IM from p(
IM )
2: Update �ad from transformation matrices in leaf nodes 
JM

3: Draw O from CDHMM with �ad

Variational calculus

In VB, we also assume the following factorization form for the posterior distribution
q(Z, 
IM ):

q(Z, 
IM ) = q(Z)q(
IM ) = q(Z)
∏

i∈IM

q(Wi). (7.205)

Then, from the general variational calculation for F(M,�) with respect to q(Wi) based
on Eq. (7.25), we obtain the following (sub) optimal solution for q(Wi):

9 A matrix variate Gaussian distribution in Eq. (7.198) is also represented by the following multivariate
Gaussian distribution (Dawid 1981):

N (Wi|Mi, �i, �i)

∝ exp

(
− 1

2
vec(Wi −Mi)

ᵀ(�i ⊗�i)
−1 vec(Wi −Mi)

−1
)

, (7.203)

where vec(Wi −Mi) is a vector formed by the concatenation of the columns of (Wi −Mi), and ⊗ denotes
the Kronecker product. Based on this form, a VB solution in this section could be extended without
considering the variance normalized representation used (Chien 2002).
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log q̃(Wi)

∝ E(Z,W\i)
[
log p(O, Z, 
IM )

]
∝ E(Z,W\i)

[
log p(O, Z|
IM )

]+ E(W\i)
[
log p(
IM )

]
. (7.206)

W\i means a set of transformation matrices at a set of nodes for IM that does not include
Wi, i.e.,

W\i = {Wi′ |i′ ∈ IM \ i}. (7.207)

Then, by using Eqs. (7.197) for p(
IM ) and (7.205) for q(W\i), we can rewrite the
equation, as follows:

log q̃(Wi)

∝ E(W\i)

⎡⎣log
∏

i′∈IM

p(Wi′ |Wp(i′))

⎤⎦+ E(Z,W\i)
[
log p(O, Z|
IM )

]
∝
∑

i′∈IM

E(W\i)
[
log p(Wi′ |Wp(i′))

]+ E(Z,W\i)
[
log p(O, Z|
IM )

]
. (7.208)

Note that the second term depends on two nodes i′ and p(i′), and the expectation over i′
is not trivial. In this expectation, we can consider the following two cases of variational
posterior distributions:

1) Leaf node
We first focus on the initial term of Eq. (7.208). If i is a leaf node, we can disregard the
expectation with respect to

∏
i′ �=i∈IM

q(Wi′ ) in the nodes other than the parent node p(i)
of the target leaf node. Thus, we obtain the following simple solution:

log q̃(Wi) ∝ E(Wp(i))
[
log p(Wi|Wp(i))

]+ E(Z,W\i)
[
log p(O, Z|
IM )

]
. (7.209)

2) Non-leaf node (with child nodes)
Similarly, if i is a non-leaf node, in addition to the parent node p(i) of the target node, we
also have to consider the child nodes l(i) and r(i) of the target node for the expectation,
as follows:

log q̃(Wi) ∝ E(Wp(i))
[
log p(Wi|Wp(i))

]
(7.210)

+ E(Wl(i))
[
log p(Wl(i)|Wi)

]
(7.211)

+ E(Wr(i))
[
log p(Wr(i)|Wi)

]
(7.212)

+ E(Z,W\i)
[
log p(O, Z|
IM )

]
. (7.213)

In both cases, the posterior distribution of the transformation matrix in the target node
depends on those in the parent and child nodes. Therefore, the posterior distributions
are iteratively calculated. This inference is known as a variational message passing
algorithm (Winn & Bishop 2006), and Eqs. (7.209)–(7.213) are specific solutions of
the variational message passing algorithm to a binary tree structure. The next section
provides a concrete form of the posterior distribution of the transformation matrix.
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Posterior distribution of transformation matrix
We first focus on Eq. (7.213), which is a general form of Eq. (7.209) that has additional
terms based on child nodes to Eq. (7.209). Equation (7.213) is based on the expecta-
tion with respect to

∏
i′ �=i∈IM

q(Wi′ ) and q(Z). The term with q(Z) is represented as the
following expression similar to Eqs. (3.168) and (3.161):

E(Z)
[
log p(O, Z|
IM )

]
=

K∑
k=1

T∑
t=1

γt(k) logN (ot|μad
k , �k)

=
∑
i∈IM

(∑
k∈Ki

γk log CN (�k)− 1

2
tr
[
Wᵀ

i Wi�i − 2Wᵀ
i Zi +

∑
k∈Ki

�−1
k �k

])
. (7.214)

This equation is calculated from the sufficient statistics (γk, Sk, �i, and Zi in
Eqs. (3.169) and (3.167)), that is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γk =
T∑

t=1

γt(k),

γ k =
T∑

t=1

γt(k)ot,

�k =
T∑

t=1

γt(k)oto
ᵀ
t ,

(7.215)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�i �

∑
k∈Ki

ξ kξ
ᵀ
k γk,

Zi �
∑
k∈Ki

(Ck)−1γ kξ
ᵀ
k .

(7.216)

These are computed by the VB-E step (e.g., γt(k) = q(vt = k)), which is described in
the next section. This equation form means that the term can be factorized by node i.
This factorization property is important for the following analytic solutions and algo-
rithm. Actually, by considering the expectation with respect to

∏
i′ �=i∈IM

q(Wi′ ), we can
integrate out the terms that do not depend on Wi, as follows:

E(W\i)
[
E(Z)

[
log p(O, Z|
IM )

]] ∝ −1

2
tr
[
Wᵀ

i Wi�i − 2Wᵀ
i Zi
]

. (7.217)

Thus, we can obtain the simple quadratic form for this expectation.
Next, we consider Eq. (7.210). Since we use a conjugate prior distribution, q(Wp(i))

is also represented by the following matrix variate Gaussian distribution as the same
distribution family with the prior distribution:

q(Wp(i)) = N (Wp(i)|Mp(i), ID, �p(i)). (7.218)

Note that the posterior distribution has a unique form in that the first covariance matrix
is an identity matrix while the second is a symmetric matrix. We discuss this form with
the analytical solution, later.
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By substituting Eqs. (7.197) and (7.218) into Eq. (7.210), Eq. (7.210) is represented
as follows:

E(Wp(i))
[
log p(Wi|Wp(i))

]
=
∫

N (Wp(i)|Mp(i), ID, �p(i)) logN (Wi|Wp(i), ID, ρ−1
i ID+1)dWp(i). (7.219)

To solve the integral, we use the following matrix distribution formula:∫
N (Wp(i)|Mp(i), ID, �p(i))dWp(i) = 1,∫

Wp(i)N (Wp(i)|Mp(i), ID, �p(i))dWp(i) = Mp(i). (7.220)

Then, by using the concrete form of the prior distribution in Eq. (7.201) and by disre-
garding the terms that do not depend on Wi, Eq. (7.219) can be solved as the logarithmic
function of the matrix variate Gaussian distribution that has the posterior distribution
parameter Mp(i) as a hyperparameter:

E(Wp(i))
[
log p(Wi|Wp(i))

]
∝ ρi

∫
tr
[
Wᵀ

i Wp(i)
]N (Wp(i)|Mp(i), ID, �p(i))dWp(i)

− ρi

2

∫
tr
[
Wᵀ

i Wi
]N (Wp(i)|Mp(i), ID, �p(i))dWp(i)

∝ ρitr
[
Wᵀ

i Mp(i)
]− ρi

2
tr
[
Wᵀ

i Wi
]

∝ logN (Wi|Mp(i), ID, ρ−1
i ID+1). (7.221)

Similarly, Eqs. (7.211) and (7.212) are solved as follows:

E(Wl(i))
[
log p(Wl(i)|Wi)

] ∝ logN (Wi|Ml(i), ID, ρ−1
l(i) ID+1),

E(Wr(i))
[
log p(Wr(i)|Wi)

] ∝ logN (Wi|Mr(i), ID, ρ−1
r(i) ID+1). (7.222)

Thus, the expected value terms of the three prior distributions in Eq. (7.210) are
represented as the following matrix variate Gaussian distribution:

E(Wp(i))
[
log p(Wi|Wp(i))

]+ E(Wl(i))
[
log p(Wl(i)|Wi)

]
+ E(Wr(i))

[
log p(Wr(i)|Wi)

]
∝ logN (Wi|Mp(i), ID, ρ−1

i ID+1)+ logN (Wi|Ml(i), ID, ρ−1
l(i) ID+1)

+ logN (Wi|Mr(i), ID, ρ−1
r(i) ID+1)

∝ ρitr
[
Wᵀ

i Mp(i)
]− ρi

2
tr
[
Wᵀ

i Wi
]+ ρl(i)tr

[
Wᵀ

i Ml(i)
]− ρl(i)

2
tr
[
Wᵀ

i Wi
]

+ ρr(i)tr
[
Wᵀ

i Mr(i)
]− ρr(i)

2
tr
[
Wᵀ

i Wi
]
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∝ −ρi + ρl(i) + ρr(i)

2
tr
[
Wᵀ

i Wi
]+ tr

[
Wᵀ

i

(
ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i)

)]
∝ logN

(
Wi

∣∣∣∣ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i)

ρi + ρl(i) + ρr(i)
, ID, (ρi + ρl(i) + ρr(i))

−1ID+1

)
.

(7.223)

It is an intuitive solution, since the location parameter Wi is represented as a linear
interpolation of the location values of the posterior distributions in the parent and child
nodes. The precision parameters control the linear interpolation ratio.

Similarly, we can also obtain the expected value term of the prior term in Eq. (7.209),
and we summarize the prior terms of the non-leaf and leaf node cases as follows:

q̂(Wi) = N (Wi|M̂i, ID, ρ̂−1
i ID+1), (7.224)

where

M̂i =
{

ρiMp(i)+ρl(i)Ml(i)+ρr(i)Mr(i)
ρi+ρl(i)+ρr(i)

Non-leaf node,

Mp(i) Leaf node,

ρ̂i =
{
ρi + ρl(i) + ρr(i) Non-leaf node,

ρi Leaf node.

(7.225)

Thus, the effect of prior distributions becomes different depending on whether the target
node is a non-leaf node or leaf node. The solution is different from our previous solution
(Watanabe, Nakamura & Juang 2011), since the previous solution does not marginalize
the transformation parameters in non-leaf nodes. In the Bayesian sense, this solution is
stricter than the previous solution.

Based on Eqs. (7.214) and (7.224), we can finally derive the quadratic form of Wi as
follows:

log q̃(Wi) ∝ −1

2
tr
[
ρ̂iW

ᵀ
i Wi +Wᵀ

i Wi�i − 2ρ̂iW
ᵀ
i M̂i − 2Wᵀ

i Zi

]
∝ −1

2
tr
[
Wᵀ

i Wi(ρ̂iID+1 +�i)− 2Wᵀ
i (ρ̂iM̂i + Zi)

]
, (7.226)

where we disregard the terms that do not depend on Wi. Thus, by defining the following
matrix variables:

�̃i =
(
ρ̂iID+1 +�i

)−1

=
{(

(ρi + ρl(i) + ρr(i))ID+1 +�i
)−1 Non-leaf node,

(ρiID+1 +�i)
−1 Leaf node,

M̃i =
(
ρ̂iM̂i + Zi

)
�̃

=
{(

ρiMp(i) + ρl(i)Ml(i) + ρr(i)Mr(i) + Zi
)
�̃ Non-leaf node,(

ρiMp(i) + Zi
)
�̃ Leaf node,

(7.227)
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we can derive the posterior distribution of Wi analytically. The analytical solution is
expressed as

q̃(Wi) = N (Wi|M̃i, ID, �̃i)

= CN (ID, �̃i) exp

(
−1

2
tr
[
(Wi − M̃i)

ᵀ(Wi − M̃i)�̃
−1
i

])
, (7.228)

where

CN (ID, �̃i) = (2π )−
D(D+1)

2 |�̃i|−D
2 . (7.229)

The posterior distribution also becomes a matrix variate Gaussian distribution, since we
use a conjugate prior distribution for Wi. From Eq. (7.227), M̃i are linearly interpolated
by hyperparameter M̂i and the first-order statistics of the linear regression matrix Zi. ρ̂i

controls the balance between the effects of the prior distribution and adaptation data.
This solution is the M-step of the VB–EM algorithm, and corresponds to that of the
ML–EM algorithm in Section 3.5.

Compared with Eq. (7.201), Eq. (7.228) keeps the first covariance matrix as a diagonal
matrix, while the second covariance matrix �̃ has off-diagonal elements. This means
that the posterior distribution only considers the correlation between column vectors in
W. This unique property comes from the variance normalized representation introduced
in Section 3.5, which makes multivariate Gaussian distributions in HMMs uncorrelated,
and this relationship is taken over to the VB solutions.

Although the solution for a non-leaf node would make the prior distribution robust by
taking account of the child node hyperparameters, this structure makes the dependency
of the target node on the other linked nodes complex. Therefore, in the implementation
step, we approximate the hyperparameters of the posterior distribution for a non-leaf
node to those for a leaf node by M̂i ≈ Mp(i) and ρ̂i ≈ ρi in the Eq. (7.225), and this
makes an algorithm simple.

The next section explains the E-step of the VB–EM algorithm, which com-
putes sufficient statistics γk, �k, �i, and Zi in Eqs. (3.169) and (3.167). These are
obtained by using q̃(Wi), of which mode M̃i is used for the Gaussian mean vector
transformation.

Posterior distribution of latent variables
From the variational calculation of F(M,�) with respect to q(Z) based on Eq. (7.25),
we also obtain the following posterior distribution:

log q̃(Z) ∝ E(
IM )
[
log p(O, Z|
IM )

]
. (7.230)

By using the factorization form of the variational posterior (Eq. (7.205)), we can dis-
regard the expectation with respect to the variational posteriors other than that of the
target node i. Therefore, to obtain the above VB posteriors of latent variables, we have
to consider the following integral:∫

q̃(Wi) logN (ot|CkWiξ k, �k)dWi. (7.231)
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Since the Gaussian mean vectors are only updated in the leaf nodes, node i in this section
is regarded as a leaf node. By substituting Eqs. (7.228) and (3.162) into Eq. (7.231), the
equation can be represented as:∫

q̃(Wi) logN (ot|CkWiξ k, �k)dWi

= logN (ot|μ̃k, �k)− 1

2
tr
[
ξ kξ

ᵀ
k �̃i

]
. (7.232)

where

μ̃k = CkM̃iξ k. (7.233)

The analytical result is almost equivalent to the E-step of conventional MLLR, which
means that the computation time is almost the same as that of the conventional MLLR
E-step.

We derive the posterior distribution of latent variables q̃(Z), introduced in Sec-
tion 7.4.3, based on the VB framework. In this derivation, we omit indexes i, k, and t for
simplicity. By substituting the concrete form (Eq. (3.162)) of the multivariate Gaussian
distribution into Eq. (7.231), the equation can be represented as:∫

q̃(W) logN (o|CWξ , �)dW

= −D

2
log(2π |�|)− 1

2

∫
q̃(W)

(
(o− CWξ )ᵀ�−1(o− CWξ )

)
︸ ︷︷ ︸

(∗1)

dW,
(7.234)

where we use the following equation for the normalization term:∫
q̃(W)dW = 1. (7.235)

Let us now focus on the quadratic form (∗1) of Eq. (7.234). By considering � = C(C)ᵀ

in Eq. (3.164), (∗1) can be rewritten as follows:

(∗1) = (C−1o−Wξ )ᵀ(C−1o−Wξ )

= tr
[
(C−1o−Wξ )(C−1o−Wξ )ᵀ

]
= tr

[
RWᵀW− 2WYᵀ + U

]
, (7.236)

where we use the fact that the trace of the scalar value is equal to the original scalar
value and the cyclic property of the trace in Appendix B:

a = tr[a], (7.237)

tr[ABC] = tr[BCA]. (7.238)

We also define (D+ 1)× (D+ 1) matrix R, D× (D+ 1) matrix Y, and D×D matrix U
in Eq. (7.236) as follows:

R � ξξᵀ,

Y � C−1oξᵀ,

U � �−1ooᵀ. (7.239)
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The integral of Eq. (7.236) over W can be decomposed into the following three terms:∫
q̃(W)tr

[
RWᵀW− 2WYᵀ + U

]
dW

=
∫

q̃(W)tr
[
RWᵀW

]
dW︸ ︷︷ ︸

(∗2)

−2
∫

q̃(W)tr
[
WYᵀ] dW︸ ︷︷ ︸

(∗3)

+tr [U] , (7.240)

where we use the distributive property of the trace in Appendix B:

tr[A(B+ C)] = tr[AB+ AC], (7.241)

and use Eq. (7.235) in the third term of the second line in Eq. (7.240).
We focus on the integrals (∗2) and (∗3). Since q̃(W) is a scalar value, (∗3) can be

rewritten as follows:

(∗3) =
∫

tr
[
q̃(W)WYᵀ] dW

= tr

[∫
q̃(W)WYᵀdW

]
. (7.242)

Here, we use the following matrix properties:

tr[aA] = a tr[A], (7.243)∫
tr[f (A)]dA = tr

[∫
f (A)dA

]
. (7.244)

Thus, the integral is finally solved as

(∗3) = tr

[(∫
q̃(W)WdW

)
Yᵀ
]

= tr
[
M̃Yᵀ

]
, (7.245)

where we use ∫
q̃(W)WdW = M̃. (7.246)

Similarly, we also rewrite (∗2) in Eq. (7.240) based on Eqs. (7.243) and (7.244) as
follows:

(∗2) =
∫

tr
[
q̃(W)RWᵀW

]
dW

= tr

[∫
q̃(W)RWᵀWdW

]
= tr

[
R
∫

q̃(W)WᵀWdW
]

. (7.247)

Thus, the integral is finally solved as

(∗2) = tr
[
R
(
�̃+ M̃ᵀM̃

)]
, (7.248)
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where we use ∫
q̃(W)WᵀWdW = �̃+ M̃ᵀM̃. (7.249)

Thus, we have solved all the integrals in Eq. (7.240).
Finally, we substitute the integral results of (∗2) and (∗3) (i.e., Eqs. (7.248) and

(7.245)) into Eq. (7.240), and rewrite Eq. (7.240) based on the concrete forms of R,
Y, and U defined in Eq. (7.239) as follows:

Eq. (7.240)

= tr
[
R
(
�̃+ M̃ᵀM̃

)
− 2M̃Yᵀ + U

]
= tr

[
ξξᵀ(�̃+ M̃ᵀM̃)− 2M̃ξoᵀ(C−1)ᵀ +�−1ooᵀ

]
. (7.250)

Then, by using the cyclic property in Eq. (7.238) and � = C(C)ᵀ in Eq. (3.164), we can
further rewrite Eq. (7.240) as follows:

Eq. (7.240)

= tr
[
ξξᵀ�̃+�−1

(
�M̃ξξᵀM̃ᵀ − 2CM̃ξoᵀ + ooᵀ

)]
= tr

[
ξξᵀ�̃+�−1

(
o− CM̃ξ

) (
o− CM̃ξ

)ᵀ]
. (7.251)

Thus, we obtain the quadratic form with respect to o, which becomes a multi-
variate Gaussian distribution form. By recovering the omitted indexes i, k, and t,
and substituting the integral result in Eq. (7.251) into Eq. (7.234), we finally solve
Eq. (7.231) as:∫

q̃(Wi) logN (ot|CkWiξ k, �k)dWi

= −D

2
log(2π |�k|)− 1

2
tr
[
ξ kξ

ᵀ
k �̃i + (�k)−1

(
ot − CkM̃iξ k

) (
ot − CkM̃iξ k

)ᵀ]
= logN (ot|CkM̃iξ k, �k)− 1

2
tr
[
ξ kξ

ᵀ
k �̃i

]
. (7.252)

Here, we use the concrete form of the multivariate Gaussian distribution in Eq. (3.162).
Note that the Gaussian mean vectors are updated in the leaf nodes in this result, while

the posterior distributions of the transformation parameters are updated for all nodes.

Variational lower bound
By using the factorization form (Eq. (7.205)) of the variational posterior distribution,
the variational lower bound defined in Eq. (7.193) is decomposed as follows:

F(M,�) = E(Z,
IM )

[
log

p(O, Z|
IM )p(
IM )

q(Z)
∏

i∈IM
q(Wi)

]

= E(Z,
IM )

[
log

p(O, Z|
IM )p(
IM )∏
i∈IM

q(Wi)

]
︸ ︷︷ ︸

�L(M,�)

−E(Z)
[
log q(Z)

]
. (7.253)
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The second term, which contains q(Z), is an entropy value and is calculated at the E-step
in the VB–EM algorithm. The first term (L(M,�)) is a logarithmic evidence term for
M and � = {ρi|i = 1, · · · |IM|}, and we can obtain an analytical solution of L(M,�).
Because of the factorization forms in Eqs. (7.205), (7.197), and (7.214), L(M,�) can
be represented as the summation over i, as follows:

L(M,�) = E(Z,
IM )

[
log

∏
i∈IM

p(O, Z|Wi)p(Wi|Wp(i))∏
i∈IM

q(Wi)

]
=
∑
i∈IM

Li(ρi, ρl(i), ρr(i)), (7.254)

where

Li(ρi, ρl(i), ρr(i)) �
∑
i∈IM

E(Z,
IM )

[
log

p(O, Z|Wi)p(Wi|Wp(i))

q(Wi)

]
. (7.255)

Note that this factorization form has some dependencies from parent and child node
parameters through Eqs. (7.225) and (7.227). To derive an analytical solution, we
first consider the expectation with respect to q(Z) only for cluster i. By substituting
Eqs. (3.168), (7.201), and (7.228) into Li(ρi, ρl(i), ρr(i)), the expectation can be rewritten,
as follows:

E(Z)

[
log

p(O, Z|Wi)p(Wi|Wp(i))

q(Wi)

]

=
∑
k∈Ki

γk log CN (�k)− 1

2
tr

⎡⎣Wᵀ
i Wi�i − 2Wᵀ

i Zi +
∑
k∈Ki

�−1
k �k

⎤⎦
+ log CN (ID, ρ−1

i ID+1)− 1

2
tr
[
ρi(Wi −Wp(i))

ᵀ(Wi −Wp(i))
]

− log CN (ID, �̃i)+ 1

2
tr
[
(Wi − M̃i)

ᵀ(Wi − M̃i)�̃
−1
i

]
=
∑
k∈Ki

γk log CN (�k)+ log
CN (ID, ρ̂−1

i ID+1)

CN (ID, �̃i)
+ (∗). (7.256)

If we consider only the leaf node case, by using Eq. (7.227), the expectation of (∗) part
can be rewritten as:

(∗) in Eq. (7.256)

= −1

2
tr

⎡⎣ρ̂iM̂
ᵀ
i M̂i − M̃ᵀ

i M̃i�̃
−1
i +

∑
k∈Ki

�−1
k �k

⎤⎦ . (7.257)

The result obtained does not depend on Wi. Therefore, the expectation with respect to
q(Wi) can be disregarded in Li(ρi, ρl(i), ρr(i)). Consequently, we can obtain the following
analytical result for the lower bound:
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Li(ρi, ρl(i), ρr(i))

= −D

2
log(2π )

∑
k∈Ki

γk − 1

2

∑
k∈Ki

γk log |�k|

+ D(D+ 1)

2
log ρ̂i + D

2
log |�̃i|

− 1

2
tr

⎡⎣ρ̂iM̂′
iM̂i − M̃′

iM̃i�̃
−1
i +

∑
k∈Ki

�−1
k �k

⎤⎦ . (7.258)

The first line of the result obtained corresponds to the likelihood value given the
amount of data and the covariance matrices of the Gaussians. The other terms con-
sider the effect of the prior and posterior distributions of the model parameters. This
result is used as an optimization criterion with respect to the model structure M and the
hyperparameters �.

Note that the objective function can be represented as a summation over i because
of the factorization form of the prior and posterior distributions. This representation
property is used for our model structure optimization in Section 7.4.5 for a binary tree
structure representing a set of Gaussians used in the conventional MLLR.

7.4.4 Optimization of hyperparameters and model structure

In this section, we describe how to optimize hyperparameters � and model structure M
by using the variational lower bound as an objective function. Once we obtain the varia-
tional lower bound, we can obtain an appropriate model structure and hyperparameters
that maximize the lower bound at the same time as follows:

{�̃, M̃} = arg max
M,�

F(M,�). (7.259)

We use two approximations for the variational lower bound to make the inference algo-
rithm practical. First, we fix latent variables Z during the above optimization. Then,
E(Z)

[
log q(Z)

]
in Eq. (7.253) is also fixed for M and �, and can be disregarded in the

objective function. Thus, we can only focus on L(M,�) in the optimization step, which
reduces computational cost greatly, as follows:

{�̃, M̃} ≈ arg max
M,�

L(M,�). (7.260)

This approximation is widely used in acoustic model selection (likelihood criterion
(Odell 1995) and Bayesian criterion (Watanabe et al. 2004)). Second, as we discussed
in Section 7.4.3, the solution for a non-leaf node (Eq. (7.224)) makes the dependency
of the target node on the other linked nodes complex. Therefore, we approximate
Li(ρi, ρl(i), ρr(i)) ≈ Li(ρi) by ρ̂i ≈ ρi and so on, where Li(ρi) is defined in the next sec-
tion. Therefore, in the implementation step, we approximate the posterior distribution
for a non-leaf node to that for a leaf node to make the algorithm simple.
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7.4.5 Hyperparameter optimization

Even though we marginalize all of transformation matrix (Wi), we still have to set the
precision hyperparameters ρi for all nodes. Since we can derive the variational lower
bound, we can optimize the precision hyperparameter, and can remove the manual tun-
ing of the hyperparameters with the proposed approach. This is an advantage of the
proposed approach with regard to SMAPLR (Siohan et al. 2002), since SMAPLR has
to hand-tune its hyperparameters corresponding to {ρi}i.

Based on the leaf node approximation for variational posterior distributions, in
addition to the fixed latent variable approximation (F(M,�) ≈ L(M,�)), in this sec-
tion the method we implement approximately optimizes the precision hyperparameter
as follows:

ρ̃i = arg max
ρi

L(M,�)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
arg maxρi

(Li(ρi, ρl(i), ρr(i))+ Lp(i)(ρp(i), ρi, ρr(p(i)))
)

i is a left child node of p(i)

arg maxρi

(Li(ρi, ρl(i), ρr(i))+ Lp(i)(ρp(i), ρl(p(i)), ρi)
)

i is a right child node of p(i)

≈ arg max
ρi

Li(ρi), (7.261)

where

Li(ρi) � D(D+ 1)

2
log ρi + D

2
log |�̃i|

− 1

2
tr
[
ρiM

ᵀ
p(i)Mp(i) − M̃ᵀ

i M̃i�̃
−1
i

]
. (7.262)

This approximation makes the algorithm simple because we can optimize the precision
hyperparameter within the target and parent nodes, and do not have to consider the
child nodes. Since we only have one scalar parameter for this optimization step, we
simply used a line search algorithm to obtain the optimal precision hyperparameter. If
we consider a more complex precision structure (e.g., a precision matrix instead of a
scalar precision parameter in the prior distribution setting Eq. (7.200)), the line search
algorithm may not be adequate. In that case, we need to update hyperparameters by
using some other optimization technique (e.g., gradient ascent).

Model selection
The remaining tuning parameter in the proposed approach is how many clusters we
prepare. This is a model selection problem, and we can also automatically obtain the
number of clusters by optimizing the variational lower bound. In the binary tree struc-
ture, we focus on a subtree composed of a target non-leaf node i and its child nodes l(i)
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Algorithm 13 Structural Bayesian linear regression.

1: Prepare an initial Gaussian tree with a set of nodes I
2: Initialize �̃ = {ρ̃i, M̃i|i = 1, · · · |I|}
3: repeat
4: VB E-step
5: L(M, �) = Prune_tree(root node) // prune a tree by model selection
6: # of leaf nodes = Transform_HMM(root node) // Transform HMMs in the pruned

tree
7: until Total lower bound is converged or a specified number of iterations has been

reached.

and r(i). We compute the following difference based on Eq. (7.262) of the parent and
that of the child nodes:10

�Li(ρi) � Ll(i)(ρl(i))+ Lr(i)(ρr(i))− Li(ρi). (7.263)

This difference function is used for a stopping criterion in a top-down clustering strategy.
This difference function similarly appeared in the model selection of the context-
dependent CDHMM topologies in Sections 6.5 and 7.3.6. Then if the sign of �L is
negative, the target non-leaf node is regarded as a new leaf node determined by the
model selection in terms of optimizing the lower bound. Next we prune the child nodes
l(i) and r(i). By checking the signs of �Li for all possible nodes, and pruning the child
nodes when �Li have negative signs, we can obtain the pruned tree structure, which
corresponds to maximizing the variational lower bound locally. This optimization is
efficiently accomplished by using a depth-first search.

Thus, by optimizing the hyperparameters and model structure, we can avoid setting
any tuning parameters. We summarize this optimization in Algorithms 13, 14, and 15.
Algorithm 13 prepares a large Gaussian tree with a set of nodes I, prunes a tree based
on the model selection (Algorithm 14), and transforms HMMs (Algorithm 15). Algo-
rithm 14 first optimizes the precision hyperparameters �, and then the model structure
M. Algorithm 15 transforms Gaussian mean vectors in HMMs at the new root nodes in
the pruned tree IM obtained by Algorithm 14.

Watanabe et al. (2013) compare the VB linear regression method (VBLR) with
MLLR and SMAPLR, as regards the WSJ, for various amounts of adaptation data by
using LVCSR experiments for the Corpus of Spontaneous Japanese (CSJ). With a small
amount of adaptation data, VBLR outperforms the conventional approaches by about
1.0% absolute accuracy improvement, while with a large amount of adaptation data, the
accuracies of all approaches are comparable. This property is theoretically reasonable

10 Since we approximate the posterior distribution for a non-leaf node to that for a leaf node, the contribution
of the variational lower bounds from the non-leaf nodes to the total lower bounds can be disregarded, and
Eq. (7.263) is used as a pruning criterion. If we do not use this approximation, we just compare the
difference between the values Li(ρi, ρl(i), ρr(i)) of the leaf and non-leaf node cases in Eq. (7.258).
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Algorithm 14 Prune_tree(node i)

1: if First iteration then
2: ρ̃i = arg maxρi Li(ρi) // These are used as
3: Update q̃(Wi) // hyperparameters of parent nodes
4: end if
5: if Node i has child nodes then
6: ρ̃i = arg maxρi Li(ρi)
7: Update q̃(Wi)
8: �L = Prune_tree(node left(i)) + Prune_tree(node right(i)) −Li(ρ̃i)
9: if �L < 0 then

10: Prune child nodes // this node becomes a leaf node
11: end if
12: return Li(ρ̃i)
13: else
14: ρ̃i = arg maxρi Li(ρi)
15: Update q(Wi)
16: return Li(ρ̃i)
17: end if

Algorithm 15 Transform_HMM(node i)

1: if Node i has child nodes then
2: return Transform_HMM(node left(i)) + Transform_HMM(node right(i))
3: else
4: Update μ̃k = CkM̃iξ k

5: return 1
6: end if

since the variational lower bound would be tighter than the EM-based objective function
for a small amount of data, while the lower bound would approach it for a large amount
of data asymptotically. Therefore, it can be concluded that this improvement comes from
the optimization of the hyperparameters and the model structure in VBLR, in addition
to mitigation of the sparse data problem arising in the Bayesian approach.

7.5 Variational Bayesian speaker verification

This section describes an application of VB to speaker verification (Zhao, Dong, Zhao
et al. 2009, Kenny 2010, Villalba & Brümmer 2011). The main goal of this approach
is to obtain the feature representation that only holds speaker specific characteristics.
As discussed in Section 4.6.2, state-of-the-art speaker verification systems use the super
vector obtained by the GMM–UBM or MLLR techniques, as a feature. However, the
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super vector still includes various factors other than the speaker characteristics with very
high dimensional representation. Use of factor analysis is critical in speaker verification
to remove these irrelevant factors of the super vector and find the lower dimensional
representation (Kenny 2010, Kinnunen & Li 2010, Dehak et al. 2011). In addition,
a Bayesian treatment of the factor analysis yields robust modeling of the speaker
verification. This section discusses a VB treatment of the factor analysis model by
providing a generative model of the super vector (Section 7.5.1), prior distributions (Sec-
tion 7.5.2), variational posteriors (Section 7.5.3), and variational lower bound (Section
7.5.4).

7.5.1 Generative model

Let O = {on ∈ R
D|n = 1, · · · , N} be a D dimensional feature vector of n recordings.

Note that on is a super vector, and it can be the Gaussian super vector, vectorized form of
the MLLR matrix, or the factor vector obtained after the initial factor analysis process.11

If we use the Gaussian super vector, the number of dimensions D would be the product
of multiplying the number of mixture components in GMM (usually K = 1024) and the
number of speech feature dimensions (usually DMFCC = 39 when we use MFCC and
delta features) when we use GMM–UBM, that is

on = [μᵀ
1 , · · · , μᵀ

k , · · · , μᵀ
K]ᵀ, μk ∈ R

DMFCC . (7.264)

Therefore, D would be 1024×39 ≈ 40 thousands, and it is much larger than the number
of speech feature dimensions that we are dealing with at CDHMMs. Note also that the
feature on is obtained for each recording (utterance), and the frame level process is
performed when super vectors are extracted by GMM–UBM.

The generative model is represented as follows (Kenny, Boulianne, Ouellet et al.
2007, Kenny 2010):

on = m+ U1x1 + U2x2n + εn, (7.265)

where m ∈ R
D is a global mean vector for the feature vectors and can be regarded as a

bias vector of the feature vectors. Vector x1 ∈ R
D1 is a vector having a D1 dimensional

standard Gaussian distribution, which does not depend on the recording n, and it can
represent stationary speaker characteristics across recordings. On the other hand, x2n ∈
R

D2 is a vector having a D2 dimensional standard Gaussian distribution depending on
the recording n, and it denotes channel characteristics changing over a recording. We
also define X2 � {x2n|n = 1, · · · , N}. εn ∈ R

D as a D dimensional vector having a
Gaussian distribution with 0 mean vector, and R ∈ R

D×D precision matrix.
In this book, m, U1 ∈ R

D×D1 , U2 ∈ R
D×D2 , and R (� = {m, U1, U2, R}) are

regarded as non-probabilistic model parameters and assumed to be estimated without

11 A Bayesian treatment of the factor analysis in a state-of-the-art speaker verification system can be
performed after the first step of the factor analysis, called i vector analysis (Dehak et al. 2011). That is,
Bayesian factor analysis is often performed for the first-step factor vector (i vector) for each utterance,
instead of the Gaussian super vector. This book discusses Bayesian factor analysis for the Gaussian super
vector for simplicity.
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the Bayesian framework based on ML/MAP. However, Villalba & Brümmer (2011) deal
with these parameters as probabilistic variables, and provide a fully Bayesian solution
of the factor analysis based speaker modeling by VB. The other probabilistic variables
x1, x2n, and εn are generated from the following Gaussian distributions:

x1 ∼ N (0, u−1
1 ID1 ),

x2n ∼ N (0, u−1
2n ID2 ),

εn ∼ N (0, v−1
n R−1), (7.266)

where we assume a zero mean spherical Gaussian distribution for x1 and x2n. The model
parameters u1 ∈ R>0, u2n ∈ R>0, and vn ∈ R>0 are positive, and the probabilistic
treatment of these parameters is discussed later.

In summary, the conditional distribution of O is represented as follows:

p(O|x1, X2, {vn}Nn=1,�) =
N∏

n=1

N (on|m+ U1x1 + U2x2n, v−1
n R−1). (7.267)

The conditional joint distribution of O, x1, and X2 is represented as follows:

p(O, x1, X2|{vn}Nn=1,�, u1, {u2n}Nn=1)

= p(O|x1, X2, {vn}Nn=1,�)p(x1|u1)
N∏

n=1

p(x2n|u2n), (7.268)

where

p(x1|u1) = N (x1|0, u−1
1 ID1 ),

p(x2n|u2n) = N (x2n|0, u−1
2n ID2 ). (7.269)

The following section regards u1, u2n, and vn as probabilistic variables.

7.5.2 Prior distributions

We provide the conjugate prior distributions for u1, u2n, and vn that are represented by a
gamma distribution, as we discussed in Section 2.1.3. Kenny (2010) provides a simple
hyperparameter setting for each gamma distribution in Appendix C.11 by using only
one hyperparameter for each distribution, i.e., the model parameters u1, u2n, and vn are
generated from the following prior distributions:

u1 ∼ Gam

(
φ1

2
,
φ1

2

)
,

u2n ∼ Gam

(
φ2

2
,
φ2

2

)
,

vn ∼ Gam

(
φv

2
,
φv

2

)
, (7.270)
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where φ1, φ2, and φv (� �) are hyperparameters in this model. Since the mean and
variance of the gamma distribution Gam(y|α,β) are α

β
and α

β2 , respectively, this param-
eterization means that u1, u2n, and vn have the same mean value with 1, but the variance
values are changed with 2

φ1
, 2
φ2

, and 2
φv

, respectively. Thus, we can provide the following
concrete forms of the prior distributions for u1, u2n, and vn:

p(u1|φ1) = Gam

(
u1

∣∣∣∣φ1

2
,
φ1

2

)
,

p(u2n|φ2) = Gam

(
u2n

∣∣∣∣φ2

2
,
φ2

2

)
,

p(vn|φv) = Gam

(
vn

∣∣∣∣φv

2
,
φv

2

)
. (7.271)

In this model, Z � {x1, u1, {x2n, u2n, vn}Nn=1} is a set of hidden variables, and the poste-
rior distribution of each variable can be obtained by using variational Bayes. Thus, the
joint prior distribution given hyperparameters � is represented as follows:

p(Z|�) = p(x1, u1, {x2n, u2n, vn}Nn=1|�)

= p(x1|u1)p(u1|φ1)
N∏

n=1

p(x2n|u2n)p(u2n|φ2)p(vn|φv). (7.272)

Note that x1 depends on u1, and we cannot fully factorize them. A similar discussion
applies to x2n and u2n.

Now, we can provide the complete data likelihood function given hyperparameters �
and � based on Eqs. (7.267) and (7.272), and this can be used to obtain the variational
posteriors:

p(O, Z|�,�)

= p(O|�, Z)p(Z|�)

= N (x1|0, u−1
1 ID1 )Gam

(
u1

∣∣∣∣φ1

2
,
φ1

2

)
×

N∏
n=1

N (on|m+ U1x1 + U2x2n, v−1
n R−1)N (x2n|0, u−1

2n ID2 )

× Gam

(
u2n

∣∣∣∣φ2

2
,
φ2

2

)
Gam

(
vn

∣∣∣∣φv

2
,
φv

2

)
. (7.273)

These probabilistic distributions are represented by Gaussian and gamma distribu-
tions. In the following sections we simplify the complete data likelihood function
p(O, Z|�, �) to p(O, Z) to avoid complicated equations. Algorithm 16 provides a
generative process for the joint factor analysis speaker model with Eq. (7.273).
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Algorithm 16 Generative process for joint factor analysis speaker model
Require: � = {m, U1, U2, R} and � = {φ1,φ2,φv}

1: Draw u1 from Gam
(

u1

∣∣∣φ1
2 , φ1

2

)
2: Draw x1 from N (x1|0, u−1

1 ID1 )
3: for n = 1, · · · , N do
4: Draw u2n from Gam

(
u2n

∣∣∣φ2
2 , φ2

2

)
5: Draw vn from Gam

(
vn

∣∣∣φv
2 , φv

2

)
6: Draw x2n from N (x2n|0, u−1

2n ID2 )
7: Draw on from N (on|m+ U1x1 + U2x2n, v−1

n R−1)
8: end for

7.5.3 Variational posteriors

To deal with the variational posteriors, we assume the following factorization based on
the VB recipe:

q(Z|O) = q(x1|O)q(u1|O)
N∏

n=1

q(x2n|O)q(u2n|O)q(vn|O). (7.274)

Section 7.1.3 discusses how we can obtain the following general solution for approxi-
mated variational posteriors:

q̃(Zi|O) ∝ exp
(
E(Z\i|O)

[
log p(O, Z)

])
. (7.275)

We focus on the actual solutions for q(x1|O), q(u1|O), q(x2n), q(u2n|O), and q(vn|O).

• q(x1|O): this is calculated by substituting the factors depending on x1 in Eq. (7.273)
into Eq. (7.275) as follows:

log q(x1|O)

∝ E(Z\x1 )[log p(O, Z)]

∝ E(Z\x1 )

[
log

(
N (x1|0, u−1

1 ID1 )
N∏

n=1

N (on|m+ U1x1

+ U2x2n, v−1
n R−1)

)]
∝ E(u1)[logN (x1|0, u−1

1 ID1 )]

+
N∑

n=1

E(x2n,vn)[logN (on|m+ U1x1 + U2x2n, v−1
n R−1)]. (7.276)

Now let us consider the two expectations in the above equation. From the definition of
the multivariate Gaussian distribution in Appendix C.6, we can obtain the following
equation by disregarding the terms that do not depend on x1:
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E(u1)[logN (x1|0, u−1
1 ID1 )] ∝ E(u1)

[
−u1

2
xᵀ

1 x1

]
∝ −E [u1]

2
xᵀ

1 x1, (7.277)

where we omit the subscript (u1) in the expectation, as it is trivial. Similarly, the rest
of the expectations in Eq. (7.276) are also represented as follows:

E(x2n,vn)

[
logN (on|m+ U1x1 + U2x2n, v−1

n R−1)
]

∝ E(x2n,vn)

[
−vn

2
(on − (m+ U1x1 + U2x2n))ᵀ

×R(on − (m+ U1x1 + U2x2n))]

∝ E(x2n,vn)

[
−vn

2

(
xᵀ

1 Uᵀ
1 RU1x1

)+ vn(on −m− U2x2n)ᵀRU1x1

]
∝ −E[vn]

2
xᵀ

1 Uᵀ
1 RU1x1 + E[vn](on −m− U2E[x2n])ᵀRU1x1. (7.278)

Thus, by substituting Eqs. (7.277) and (7.278) into Eq. (7.276), we find that

log q(x1|O)

∝ −E [u1]

2
xᵀ

1 x1 +
N∑

n=1

−E[vn]

2
xᵀ

1 Uᵀ
1 RU1x1

+
N∑

n=1

E[vn](on −m− U2E[x2n])ᵀRU1x1

∝ −1

2
tr

[(
E [u1] ID1 +

N∑
n=1

E[vn]Uᵀ
1 RU1

)
x1xᵀ

1

]

+ tr

[
xᵀ

1

N∑
n=1

E[vn]Uᵀ
1 R(on − U2E[x2n]−m)

]
∝ logN (x1|μ̃x1

, �̃x1 ), (7.279)

where we use the trace form definition of the multivariate Gaussian distribution in
Appendix C.6. Thus, q(x1|O) is represented as a Gaussian distribution, and μ̃x1

and
�̃x1 are posterior hyperparameters obtained as follows:

μ̃x1
�
(

E[u1]ID1 +
N∑

n=1

E[vn]Uᵀ
1 RU1

)−1

×
N∑

n=1

E[vn]Uᵀ
1 R(on − U2E[x2]−m)

�̃x1 �
(

E[u1]ID1 +
N∑

n=1

E[vn]Uᵀ
1 RU1

)−1

. (7.280)

Thus, the hyperparameters obtained are represented with prior hyperparameters �

and the expected values of E[u1] and E[vn].
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• q(x2n|O): this is similarly calculated by substituting the factors depending on x2n in
Eq. (7.273) into Eq. (7.275) as follows:

log q(x2n|O)

∝ E(Z\x2n )[log p(O, Z)]

∝ E(Z\x2n )

[
N∏

n′=1

log (N (on′ |m+ U1x1

+U2x2n′ , v−1
n′ R−1)N (x2n′ |0, u−1

2n′ID2 )
)]

∝ E(x1,vn)

[
N (on|m+ U1x1 + U2x2n, v−1

n R−1)
]

+ E(u2n)

[
N (x2n|0, u−1

2n ID2 )
]

. (7.281)

The expectations are rewritten as follows:

log q(x2n|O)

∝ −1

2
E[vn]tr

[
Uᵀ

2 RU2x2nxᵀ
2n

]
+ 2E[vn]tr

[
xᵀ

2nUᵀ
2 R(on − U2E[x1]−m)

]
− 1

2
E[u2n]tr

[
x2nxᵀ

2n

]
∝ −1

2
tr
[(

E[u2n]ID2 + E[vn]Uᵀ
2 RU2

)
x2nxᵀ

2n

]
+ tr

[
xᵀ

2nE[vn]Uᵀ
2 R(on − U2E[x1]−m)

]
∝ logN (x2n|μ̃x2n

, �̃x2n ). (7.282)

Thus, q(x2n|O) is also represented as a Gaussian distribution, and μ̃x2n
and �̃x2n are

posterior hyperparameters obtained as follows:

μ̃x2n
�
(
E[u2n]ID2 + E[vn]Uᵀ

2 RU2
)−1

E[vn]Uᵀ
2 R(on − U2E[x1]−m),

�̃x2n �
(
E[u2n]ID2 + E[vn]Uᵀ

2 RU2
)−1 . (7.283)

Note that the hyperparameters obtained are represented with prior hyperparameters
� and the expected values of E[u2n], E[vn], and E[x1]. Compared with Eq. (7.280),
Eq. (7.283) has a similar functional form, but it is computed recording by recording,
while Eq. (7.280) is computed with accumulation over every recording n.

• q(u1|O): this is also similarly calculated by substituting the factors depending on u1

in Eq. (7.273) into Eq. (7.275). However, compared with the previous two cases, the
gamma and Gaussian distributions appear in the formulation as follows:

log q(u1|O)

∝ E(Z\u1 )[log p(O, Z)]

∝ E(Z\u1 )

[
N (x1|0, u−1

1 ID1 )Gam

(
u1

∣∣∣∣φ1

2
,
φ1

2

)]
∝ E(x1)[logN (x1|0, u−1

1 ID1 )]+ log

(
Gam

(
u1

∣∣∣∣φ1

2
,
φ1

2

))
. (7.284)
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By using the definition of the gamma distribution in Appendix C.11, this equation can
be rewritten as follows:

log q(u1|O)

∝ log

(∣∣u1ID1

∣∣ 1
2

)
− E[xᵀ

1 x1]

2
u1 + log

(
u

φ1
2 −1

1

)
− φ1

2
u1

∝ log

(
u

φ1+D1
2 −1

1

)
− φ1 + E[xᵀ

1 x1]

2
u1

∝ log

(
Gam

(
u1

∣∣∣∣∣ φ̃1

2
,

r̃1

2

))
. (7.285)

Thus, q(u1|O) is represented as a gamma distribution, and φ̃1 and r̃1 are posterior
hyperparameters obtained as follows:

φ̃1 � φ1 + D1,

r̃1 � φ1 + E[xᵀ
1 x1]. (7.286)

These posterior hyperparameters are obtained with their original prior hyperparameter
φ1 and the second-order expectation value of E[xᵀ

1 x1].
• q(u2n|O): this is similarly calculated by substituting the factors depending on u2n in

Eq. (7.273) into Eq. (7.275):

log q(u2n|O)

∝ E(Z\u2n )[log p(O, Z)]

∝ E(Z\u2n )

[
N∏

n′=1

N (x2n′ |0, u−1
2n′ID2 )Gam

(
u2n′

∣∣∣∣φ2

2
,
φ2

2

)]

∝ E(x2n)[logN (x2n|0, u−1
2n ID2 )]+ log

(
Gam

(
u2n

∣∣∣∣φ2

2
,
φ2

2

))
∝ log

(
Gam

(
u2n

∣∣∣∣∣ r̃2n

2
,
φ̃2n

2

))
. (7.287)

q(u2n|O) is represented as a gamma distribution, and φ̃2n and r̃2n are posterior
hyperparameters, obtained as follows:

φ̃2n � φ2 + D2,

r̃2n � φ2 + E[xᵀ
2nx2n]. (7.288)

These posterior hyperparameters are also obtained with their original prior hyperpa-
rameter φ2 and the second-order expectation value of E[xᵀ

2nx2n], and these are very
similar to the posterior hyperparameters of q(u1|O) in Eq. (7.286).

• q(vn|O): finally, this is also calculated by substituting the factors depending on vn in
Eq. (7.273) into Eq. (7.275) as follows:

log q(vn|O)

∝ E(Z\vn )[log p(O, Z)]
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∝ E(Z\vn )

[
N∏

n′=1

N (on′ |m+ U1x1 + U2x2n′ , v−1
n′ R−1)

×Gam

(
vn′

∣∣∣∣φv

2
,
φv

2

)]
∝ E(x1,x2n)

[
N (on|m+ U1x1 + U2x2n, v−1

n R−1)
]

+ log

(
Gam

(
vn

∣∣∣∣φv

2
,
φv

2

))
∝ log

(
Gam

(
vn

∣∣∣∣∣ r̃vn

2
,
φ̃vn

2

))
. (7.289)

q(vn|O) is represented as a gamma distribution, and φ̃vn and r̃vn are posterior
hyperparameters obtained as follows:

φ̃vn � φv + D,

r̃vn � φv + E[εᵀ
n Rεn], (7.290)

where εn is a residual vector appearing in the basic equation of the joint factor analysis
in Eq. (7.265), and is represented as:

εn = on − (m+ U1x1 + U2x2n) . (7.291)

E[εᵀ
n Rεn] is an expectation over both x1 and x2n, and defined as follows:

E[εᵀ
n Rεn]

� Ex1,x2n [(on −m− U1x1 − U2x2n)ᵀR(on −m− U1x1 − U2x2n)]

= (on −m)ᵀR(on −m)+ tr
[
Uᵀ

1 RU1E
[
x1xᵀ

1

]]+ tr
[
Uᵀ

2 RU2E
[
x2nxᵀ

2n

]]
− 2(on −m)ᵀRU1E [x1]− 2(on −m)ᵀRU2E [x2n]

+ 2tr
[
Uᵀ

1 RU2E [x2n] E
[
xᵀ

1

]]
. (7.292)

This value is computed by the first- and second-order expectation of x1 and x2n.

Thus, we can provide the VB posterior distributions of all hidden variables analytically.
Note that these equations are iteratively performed to obtain the sub-optimal posterior
distributions. That is, all the posterior distribution calculations need the expectation
values of hidden variables Z, which can be computed using the posterior distributions
obtained with the previous iteration. We provide the expectation values of x1 and x2n,
which are easily obtained by reference to the expectation formulas of a multivariate
Gaussian distribution in Appendix C.6 and posterior hyperparameters in Eqs. (7.280)
and (7.283):

E [x1] =
∫

x1q(x1|O)dx1 = μ̃x1
,

E
[
x1xᵀ

1

] = ∫ x1xᵀ
1 q(x1|O)dx1 = �̃x1 ,
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E [x2n] =
∫

x2nq(x2n|O)dx2n = μ̃x2n
,

E
[
x2nxᵀ

2n

] = ∫ x2nxᵀ
2nq(x2n|O)dx2n = �̃x2n . (7.293)

Similarly, we provide the expectation values of u1, u2n, and vn, which are also easily
obtained by reference to the expectation formulas of gamma distribution in Appendix
C.11 and posterior hyperparameters in Eqs. (7.286), (7.288), and (7.290):

E [u1] =
∫

u1q(u1|O)du1 = φ̃1

r̃1
,

E [u2n] =
∫

u2nq(u2n|O)du2n = φ̃2n

r̃2n
,

E [vn] =
∫

vnq(vn|O)dvn = φ̃vn

r̃vn
. (7.294)

Finally, we summarize the analytical results of the posterior distributions q(Z|O), as
follows:

q(Z|O)

= q(x1|O)q(u1|O)
N∏

n=1

q(x2n|O)q(u2n|O)q(vn|O)

= N (x1|μ̃x1
, �̃x1 )Gam

(
u1

∣∣∣∣∣ φ̃1

2
,

r̃1

2

)

×
N∏

n=1

N (x2n|μ̃x2n
, �̃x2n)Gam

(
u2n

∣∣∣∣∣ r̃2n

2
,
φ̃2n

2

)
Gam

(
vn

∣∣∣∣∣ r̃vn

2
,
φ̃vn

2

)
,

(7.295)

where posterior hyperparameters are represented as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ̃x1
�
(
E[u1]ID1 +

∑N
n=1 E[vn]Uᵀ

1 RU1

)−1
,

×∑N
n=1 E[vn]Uᵀ

1 R(on − U2E[x2]−m),

�̃x1 �
(
E[u1]ID1 +

∑N
n=1 E[vn]Uᵀ

1 RU1

)−1
,

μ̃x2n
�
(
E[u2n]ID2 + E[vn]Uᵀ

2 RU2
)−1

E[vn]Uᵀ
2 R(on − U2E[x1]−m),

�̃x2n �
(
E[u2n]ID2 + E[vn]Uᵀ

2 RU2
)−1 ,

(7.296)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃1 � φ1 + D1,

r̃1 � φ1 + E[xᵀ
1 x1],

φ̃2n � φ2 + D2,

r̃2n � φ2 + E[xᵀ
2nx2n],

φ̃vn � φv + D,

r̃vn � φv + E[εᵀ
n Rεn].

(7.297)

Once we obtain the VB posterior distributions, we can also calculate the variational
lower bound, which is discussed in the next section.
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7.5.4 Variational lower bound

As discussed in Section 4.6, speaker verification can be performed by using the
likelihood ratio (Eq. (4.129)):

p(O|H0)

p(O|H1)
, (7.298)

where H0 means that O is from the hypothesized speaker, while H1 means that O is
not from the hypothesized speaker. Instead of using the likelihood of p(O) where we
neglect the hypothesis index H, using the lower bound, we can treat speaker verification
in a Bayesian sense. That is, we use the variational lower bound equation (in Eq. (7.5)):

p(O) =
∫

log p(O, Z)dZ ≥ F[q(Z|O)]. (7.299)

Then we use F[q(Z|O)] instead of p(O). From the definition of the variational lower
bound in Eq. (7.4), Eq. (7.299) can be decomposed into the following terms as follows:

F[q(Z|O)] � E(Z)

[
log

p(O, Z)

q(Z|O)

]
= E(Z)

[
log

p(O|Z)p(Z)

q(Z|O)

]
= E(Z)

[
log p(O|Z)

]− KL(q(Z|O)‖p(Z)), (7.300)

where the second term is the Kullback–Leibler divergence between the variational
posterior and prior distributions.

Let us focus on the first term of the variational lower bound. The conditional
likelihood p(O|Z) is represented as the following Gaussian by using Eq. (7.267):

p(O|Z) =
N∏

n=1

N (on|m+ U1x1 + U2x2n, v−1
n R−1). (7.301)

By using Eq. (7.301), E(Z)
[
log p(O|Z)

]
is represented as follows:

E(Z)
[
log p(O|Z)

]
= E(Z)

[
log

N∏
n=1

N (on|m+ U1x1 + U2x2n, v−1
n R−1)

]

=
N∑

n=1

E(x1,x2n,vn)

[
logN (on|m+ U1x1 + U2x2n, v−1

n R−1)
]

. (7.302)

This expectation is calculated by using the definition of multivariate Gaussian distribu-
tion in Appendix C.6 and the residual vector εn in Eq. (7.291), as follows:

E(x1,x2n,vn)

[
logN (on|m+ U1x1 + U2x2n, v−1

n R−1)
]

= E(x1,x2n,vn)

[
log CN (v−1

n R−1))− vn

2
εᵀ

n Rεn

]
= D

2
E[log vn]− D

2
log(2π )+ 1

2
log |R| − 1

2
E[vn]E[εᵀ

n Rεn]. (7.303)
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Therefore, Eq. (7.302) is calculated as:

E(Z)
[
log p(O|Z)

]
=

N∑
n=1

(
D

2
E[log vn]− D

2
log(2π )+ 1

2
log |R| − 1

2
E[vn]E[εᵀ

n Rεn]

)
. (7.304)

Now, let us focus on the KL divergence in Eq. (7.301), which is decomposed into the
following terms based on the factorization forms of Eqs. (7.272) and (7.274):

KL(q(Z|O)‖p(Z)) = KL(q(x1, u1|O)‖p(x1, u1))

+
N∑

n=1

KL(q(x2n, u2n|O)‖p(x2n, u2n))+
N∑

n=1

KL(q(vn|O)‖p(vn)). (7.305)

The KL divergence is decomposed into the three KL divergence terms. Now, consider
KL(q(x1, u1|O)‖p(x1, u1)), which can be further factorized as follows:

KL(q(x1, u1|O)‖p(x1, u1))

= Eq(u1|O)
[
KL(q(x1|O)‖p(x1|u1))

]+ KL(q(u1|O)‖p(u1)). (7.306)

Thus, we need to compute the KL divergences of Gaussian and gamma distributions,
respectively. We use the following formulas, which are the analytical result of the KL
divergence between Gaussian and gamma distributions:

KL(N (x|μ̃, �̃)‖N (x|μ, �))

= −D

2
− 1

2
log |�−1�̃| + tr

[
�−1 (� + (μ̃− μ)(μ̃− μ)ᵀ

)]
, (7.307)

and

KL(Gam(y|α̃, β̃)‖Gam(y|α,β))

= log
�(α)

�(α̃)
+ α̃ log β̃ − α logβ + (α̃ − α)(ψ(α̃)− log β̃)+ α̃

β − β̃

β̃
. (7.308)

Therefore, by using Eq. (7.307), Eq(u1|O)
[
KL(q(x1|O)‖p(x1|u1))

]
can be rewritten as

follows:

Eq(u1|O)
[
KL(q(x1|O)‖p(x1|u1))

]
= Eq(u1|O)

[
KL(N (x1|μ̃x1

, �̃x1‖N (x1|0, u−1
1 ID1 ))

]
= Eq(u1|O)

[
−D1

2
− 1

2
log |u1�̃x1 | + tr

[
u1

(
u−1

1 ID1 + (μ̃x1
− μ)(μ̃x1

− μ)ᵀ
)]]

= −D1

2
− D1

2
E[log u1]− 1

2
log |�̃x1 | +

1

2
E[log u1]E[xᵀ

1 x1]. (7.309)

Similarly, other terms can be obtained by using VB analytically.
Thus, we can obtain the variational lower bound for the joint factor analysis. This can

be used as an objective function of the likelihood test, as discussed before, and is also
used to optimize the hyperparameters � and � based on the evidence approximation,
as discussed in Chapter 5.
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7.6 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) (Blei et al. 2003) is known as the popular machine
learning approach which was proposed to build the latent topic model for information
retrieval, document modeling, text categorization, and collaborative filtering. LDA has
been successfully applied for image modeling, music retrieval, speech recognition, and
many others. In general, LDA is an extended study from a topic model based on prob-
abilistic latent semantic analysis (PLSA) (Hofmann 1999b, Hofmann 2001), which was
addressed in Section 3.7.3. PLSA extracts the latent semantic information and estimates
the topic parameters according to maximum likelihood (ML) estimation, which suffers
from the over-trained problem. In addition, PLSA could not represent the unseen words
and documents. The number of PLSA parameters increases remarkably with the num-
ber of collected documents. To compensate these weaknesses, LDA incorporates the
Dirichlet priors to characterize the topic mixture probabilities. The marginal likelihood
over all possible values of topic mixture probabilities is calculated and maximized so
as to construct the LDA-based topic model for document representation. Unseen doc-
uments are generalized by using the LDA parameters, which are estimated according
to the variational Bayes inference procedure. The model complexity is controlled as
the training documents become larger. PLSA and LDA extract the topic information at
document level, and this could be combined in a language model for speech recognition.
In what follows, we first address the construction of an LDA model from a set of train-
ing documents. The optimization objective is formulated for model training. Then the
variational Bayes (VB) inference is detailed. The variational distribution over multiple
latent variables is introduced to find a VB solution to the LDA model.

7.6.1 Model construction

LDA provides a powerful mechanism to discover latent topic structure from a bag of M
documents with a bag of words w = {w1, · · · , wN}, where wn ∈ V . The text corpus is
denoted by D = {w1, · · · , wM}. Figure 7.2 is a graphical representation of LDA. Using
LDA, each of the n words wn is represented by a multinomial distribution conditioned
on the topic zn:

wn|zn, β ∼ Multi(β), (7.310)

Figure 7.2 Representation of latent Dirichlet allocation.
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where β ∈ R
|V |×K denotes the multinomial parameters. The topic zn of word wn is also

generated by a multinomial distribution given parameters θ ∈ R
K :

zn|θ ∼ Multi(θ ), (7.311)

where θk ≥ 0,
∑K

k=1 θk = 1 and K topics are assumed. Importantly, the latent topics
of each document are treated as random variables. We assume that the multinomial
parameters θ of K topics are drawn from a Dirichlet distribution,

θ |α ∼ Dir(α)

= �(
∑K

k=1 αk)∏K
k=1 �(αk)

θ
α1−1
1 · · · θαK−1

K , (7.312)

where �(·) is the gamma function and α is a K-vector parameter with component αk > 0.
This K-dimensional Dirichlet random variable θ lies in the (K−1)-simplex. Thus, LDA
parameters {α, β} contain the K-dimensional Dirichlet parameters α = [α1, · · · ,αK]ᵀ

for K topic mixtures θ and the topic-dependent unigram parameters β = {βkv} =
{p(w = v|k)}. The parameters α and β are estimated by maximizing the marginal like-
lihood of a text corpus D or an N-word document w over the topic mixtures θ and the
topic labels z = {zn}:

{αML2, βML2} = arg max
{α,β}

p(w|α, β), (7.313)

where

p(w|α, β) =
∫

p(θ |α)

( N∏
n=1

K∑
k=1

p(zn = k|θ )× p(wn = v|zn = k, β)

)
dθ . (7.314)

The marginal likelihood is calculated by integrating over continuous variable θ and dis-
crete variable z. Note that LDA parameters {αML2, βML2} are estimated according to the
type-2 maximum likelihood method, as addressed in Section 5.1.2, because the likeli-
hood function considers all possible values of topic mixtures in different topics. Latent
variables in LDA include topic mixtures and topic labels {θ , z}. Strictly speaking, the
LDA model parameters � contain {θ , β} while the hyperparameters � should contain
α. But, using LDA, only the parameters θ are integrated out. Without loss of generality,
we treat both α and β as LDA parameters to be optimized from training data w.

However, in model inference, we should apply the EM algorithm which involves a
calculation of posterior distribution of latent variables {θ , z} given a document w:

p(θ , z|w, α, β) = p(θ , z, w|α, β)

p(w|α, β)
. (7.315)

Unfortunately, this distribution is intractable because the normalization term

p(w|α, β) = �(
∑K

k=1 αk)∏K
k=1 �(αk)

∫ ( K∏
k=1

θ
αk−1
k

)
×
⎛⎝ N∏

n=1

K∑
k=1

|V |∏
v=1

(θkβkv)wv
n

⎞⎠ dθ (7.316)

is an intractable function due to the coupling between θ and β in the summation over
latent topics. Here, the superscript v in wv

n denotes the component index, i.e., wv
n = 1
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and wj
n = 0 for j �= v. Next, we address the variational Bayes (VB) inference procedure,

which is divided into three steps, namely finding the lower bound, finding the variational
parameters, and finding the model parameters.

7.6.2 VB inference: lower bound

Although the posterior distribution is intractable for exact inference, a variety of approx-
imate inference algorithms can be used for LDA including a Laplace approximation,
variational approximation, and Markov chain Monte Carlo. In this section, a simple
convexity-based variational inference is introduced to implement an LDA model by
using Jensen’s inequality. A variational distribution,

q(θ , z|γ , φ) = q(θ |γ )
N∏

n=1

q(zn|φn), (7.317)

is used as a surrogate for the posterior distribution p(θ , z|w, α, β), where the variational
parameters γ and φ are estimated via an optimization. According to Jensen’s inequality
using the convex function − log(·), we have

log p(w|α, β) = log
∫ ∑

z

p(θ , z, w|α, β)dθ

= log
∫ ∑

z

p(θ , z, w|α, β)q(θ , z)

q(θ , z)
dθ

≥
∫ ∑

z

q(θ , z) log p(θ , z, w|α, β)dθ

−
∫ ∑

z

q(θ , z) log q(θ , z)dθ

= E(θ ,z)[log p(θ , z, w|α, β)]− E(θ ,z)[log q(θ , z)]

� L[γ , φ; α, β] � F[q(θ |γ ), q(z|φ)], (7.318)

where E[·] denotes the expectation operation and variational parameters γ and φ are
omitted for simplicity. Jensen’s inequality provides us with a lower bound L[γ , φ; α, β]
on the logarithm of marginal likelihood, given an arbitrary variational distribution
q(θ , z|γ , φ). It can be easily verified that the difference between the left-hand-side and
the right-hand-side of Eq. (7.318) is the KL divergence between the variational posterior
distribution and the true posterior distribution. We have

log p(w|α, β) = L(γ , φ; α, β)+ KL(q(θ , z|γ , φ)‖p(θ , z|w, α, β)). (7.319)

Therefore, maximizing the lower bound L[γ , φ; α, β] with respect to γ and φ is
equivalent to finding the optimal variational distribution q(θ , z|γ̂ , φ̂) with variational
parameters γ̂ and φ̂, which is closest to the true posterior distribution p(θ , z|w, α, β). To
do so, the lower bound is expanded by

L(γ , φ; α, β) = E(θ)[log p(θ |α)]+ E(θ ,z)[log p(z|θ )]

+ E(z)[log p(w|z, β)]− E(θ)[log q(θ)]− E(z)[log q(z)]. (7.320)
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Using the fact that the expectation of the sufficient statistics is equivalent to the deriva-
tive of the log normalization factor with respect to the natural parameter, we obtain (Blei
et al. 2003)

E(θ )[log θk|α] = �(αk)−�

(
K∑

i=1

αi

)
, (7.321)

where � is the first derivative of the log gamma function, also called the di-gamma
function, as used in Eqs. (5.82) and (7.81). The lower bound is further expanded in
terms of variational parameters {γ , φ} and model parameters {α, β} by

L(γ , φ; α, β) = log�

(
K∑

k=1

αk

)
−

K∑
k=1

log�(αk)

+
K∑

k=1

(αk − 1)

(
�(γk)−�

(
K∑

i=1

γi

))

+
N∑

n=1

K∑
k=1

φnk

(
�(γk)−�

(
K∑

i=1

γi

))

+
N∑

n=1

K∑
k=1

|V |∑
v=1

φnkwv
n logβkv − log�

(
K∑

k=1

γk

)

+
K∑

k=1

log�(γk)−
K∑

k=1

(γk − 1)

(
�(γk)−�

(
K∑

i=1

γi

))

−
N∑

n=1

K∑
k=1

φnk logφnk. (7.322)

Typically, finding the lower bound of marginal likelihood in VB inference is equivalent
to performing the VB E-step. However, we need to estimate the optimal variational
parameters γ and φ to finalize the VB E-step.

7.6.3 VB inference: variational parameters

The variational Dirichlet parameters γ and variational multinomial parameters φ are
estimated by maximizing the lower bound in Eq. (7.322). The terms related to γ are
collected and arranged thus:

L(γ ) =
K∑

k=1

(
�(γk)−�

(
K∑

i=1

γi

))(
αk +

N∑
n=1

φnk − γk

)

− log�

(
K∑

k=1

γk

)
+

K∑
k=1

log�(γk).

(7.323)
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Differentiating with respect to the individual parameter γk, we have

∂L(γ )

∂γk
= � ′(γk)

(
αk +

N∑
n=1

φnk − γk

)

−� ′
(

K∑
i=1

γi

)
K∑

i=1

(
αi +

N∑
n=1

φni − γi

)
. (7.324)

Setting this equation to zero yields the optimal variational parameters

γ̂k = αk +
N∑

n=1

φnk 1 ≤ k ≤ K. (7.325)

Note that the variational Dirichlet parameters γ̂ = {γ̂k} are seen as the surrogate
of the Dirichlet model parameters α, which sufficiently reflect the topic mixture
probabilities θ .

On the other hand, when optimizing the lower bound L(γ , φ; α, β) with respect to
variational multinomial parameters φ, a constrained maximization problem should be
tackled under the constraint

K∑
k=1

φnk = 1. (7.326)

Therefore, we collect the terms in the lower bound related to the individual variational
parameter φnk and form the Lagrangian with the Lagrange multiplier λn:

L(φnk) = φnk

(
�(γk)−�

(
K∑

i=1

γi

))

+ φnk logβkv − φnk logφnk + λn

(
K∑

i=1

φni − 1

)
, (7.327)

where the unique word v is selected for wn such that wv
n = 1 and wj

n = 0 for j �= v.
Differentiating this Lagrangian with respect to φnk yields

∂L(φnk)

∂φnk
= �(γk)−�

(
K∑

i=1

γi

)
+ logβkv − logφnk − 1+ λn. (7.328)

We set this differentiation to zero and derive the variational parameter φnk which is
written as a function of Lagrange multiplier λn. By substituting the derived variational
parameter φnk into the constraint given in Eq. (7.326), we can estimate the multiplier
and then obtain the optimal variational parameters:

φ̂nk =
βkv exp

(
�(γk)−�

(∑K
i=1 γi

))
∑K

j=1 βjv exp
(
�(γj)−�

(∑K
i=1 γi

)) (7.329)

1 ≤ n ≤ N, 1 ≤ k ≤ K.
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7.6.4 VB inference: model parameters

After finding the optimal variational parameters {γ , φ}, we fix these parameters and
substitute the optimal variational distribution q(θ , z|γ̂ , φ̂) to calculate the updated lower
bound L(γ̂ , φ̂; α, β). The VB M-step treats the variational lower bound L(γ̂ , φ̂; α, β) as
a surrogate of the intractable marginal log likelihood log p(w|α, β), and estimates the
LDA parameters by

{α̂, β̂} = arg max
{α,β}

L(γ̂ , φ̂; α, β). (7.330)

First, we deal with the optimization over the conditional multinomial distributions
β = {βkv} = {p(wn = v|zn = k)}. The lower bound is hereafter calculated from a
text corpus D = {w1, · · · , wM}. The terms containing model parameters β are collected
and the constraints

|V |∑
v=1

βkv = 1 (7.331)

are imposed, so as to form the Lagrangian with Lagrange multipliers {λk}:

L(β) =
M∑

d=1

Nd∑
n=1

K∑
k=1

|V |∑
v=1

φ̂dnkwv
dn logβkv

+
K∑

k=1

λk

⎛⎝ |V |∑
v=1

βkv − 1

⎞⎠ . (7.332)

We differentiate this Lagrangian with respect to individual βkv and set it to zero to find
the optimal conditional multinomial distributions:

β̂kv =
∑M

d=1
∑Nd

n=1 φ̂dnkwv
dn∑|V |

m=1

∑M
d=1
∑Nd

n=1 φ̂dnkwm
dn

(7.333)

1 ≤ k ≤ K, 1 ≤ v ≤ |V|.
To deal with the optimization over the Dirichlet parameters α = {αk}, we collect the

terms in the lower bound which contain α and give

L(α) =
M∑

d=1

[
log�

(
K∑

k=1

αk

)
−

K∑
k=1

log�(αk)

+
K∑

k=1

(αk − 1)

(
�(γ̂dk)−�

(
K∑

i=1

γ̂di

))]
. (7.334)

Differentiating with respect to individual αk gives

∂L(α)

∂αk
= M

(
�

(
K∑

i=1

αi

)
−�(αk)

)

+
M∑

d=1

(
�(γ̂dk)−�

(
K∑

i=1

γ̂di

))
. (7.335)
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There is no closed-form solution to the optimal Dirichlet parameter αk, since the right-
hand-side of Eq. (7.335) depends on αi where i �= k. We should use an iterative
algorithm to find the K × 1 optimal parameter vector α. Here, the Newton–Raphson
optimization is applied to find the optimal parameters by iteratively performing

α(τ+1) = α(τ ) − (H(α(τ )))−1∇L(α(τ )), (7.336)

where τ is the iteration index, ∇L is the K × 1 gradient vector and H is the K × K
Hessian matrix consisting of the second-order differentiations in different entries:

∂L(α)

∂αkαj
= δ(k, j)M� ′(αk)−� ′

(
K∑

i=1

αi

)
, (7.337)

where δ(k, j) denotes a Kronecker delta function. The inverse of Hessian matrix
(H(α(τ )))−1 can be obtained by applying the Woodbury matrix inversion. As a result,
LDA model parameters {α̂, β̂} are estimated in a VB M-step. The VB inference based on
an EM algorithm is accordingly completed by maximizing the variational lower bound
of marginal likelihood L(γ , φ; α, β) through performing a VB E-step for updating vari-
ational parameters {γ , φ} and a VB M-step for estimating model parameters {α, β}. The
increase of the lower bound is assured by VB–EM iterations.

7.7 Latent topic language model

LDA is established as a latent topic model which is designed for document representa-
tion by using a bag of words in the form of document w or text corpus D. LDA has been
successfully extended for language modeling and applied for continuous speech recog-
nition in Tam & Schultz (2005) and Chien & Chueh (2011). However, before the LDA
language model, the topic model based on PLSA was constructed and merged in the
n-gram language model (Gildea & Hofmann 1999), as addressed in Section 3.7.3. But,
the PLSA-based topic model suffers from the weaknesses of poor generalization and
redundant model complexity. The performance of the resulting PLSA language model
is limited. Compared to the PLSA language model, we are more interested in the LDA
language model and its application in speech recognition. In the literature, the LDA-
based topic model is incorporated into the n-gram language model based on an indirect
method (Tam & Schultz 2005) and a direct method (Chien & Chueh 2011), which are
introduced in Section 7.7.1 and Section 7.7.2, respectively.

7.7.1 LDA language model

LDA is generally indirect for characterizing the n-gram regularities of a current word wi

given its history words wi−1
i−n+1. The word index n in the document model differs from i

in the language model. A document w has N words while a sentence has T words. The
hierarchical Dirichlet language model in Section 5.3 was presented as an alternative
to language model smoothing (MacKay & Peto 1995). In Yaman, Chien & Lee (2007),
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the hierarchical Dirichlet priors were estimated by a maximum a-posteriori method for
language model adaptation. These two methods have adopted the Dirichlet priors to
explore the structure of a language model from lower-order n-gram to higher-order n-
gram. There was no topic-based language model involved. In Wallach (2006), the LDA
bi-gram was proposed by considering a bag of bi-gram events from the collected docu-
ments in construction of an LDA. This LDA bi-gram was neither derived nor specifically
employed for speech recognition. The basic LDA model ignores the word order and is
not in accordance with sentence generation in speech recognition. In Tam & Schultz
(2005, 2006), the LDA model parameters {α̂, β̂} were calculated from training doc-
uments D and then used to estimate the online topic probabilities or the variational
Dirichlet parameters γ̂ = {γ̂k}. The online parameters γ̂ were estimated by treating all
history words in a sentence wi−1

1 (Tam & Schultz 2005), or even the transcription of a
whole sentence wT

1 (Tam & Schultz 2006) as a single document w.
Similarly to the PLSA n-gram as illustrated in Section 3.7.3, the LDA n-gram is

formed as a soft-clustering model or a topic mixture model, which is calculated by
combining the topic probabilities p(zi = k|wi−1

1 ) driven by history words wi−1
1 and the

topic-dependent unigrams β = {βkv} = {p(wi = v|zi = k)} of current word wi. The
combination is marginalized over different topics:

pLDA(wi = v|wi−1
1 ) =

K∑
k=1

p(wi = v|zi = k)p(zi = k|wi−1
1 )

≈
K∑

k=1

βkv
γ̂k∑K
j=1 γ̂j

. (7.338)

Here, the topic multinomial distributions can be driven either by the history words
p(zi = k|wi−1

1 ) or by the whole sentence words p(zi = k|wT
1 ). These multinomial

distributions are approximated and proportional to the variational Dirichlet parameters
γ̂ as calculated in Eq. (7.325). In this implementation, the pre-trained model parame-
ters {α̂, β̂} and the online estimated variational parameters {γ̂ , φ̂} should be calculated
to determine the LDA n-gram pLDA(wi|wi−1

1 ) in an online fashion. In Tam & Schultz
(2005), the LDA language model was improved by further adapting the standard ML-
based n-gram model using the LDA n-gram according to a linear interpolation scheme
with a parameter 0 < λ < 1:

p̂(wi|wi−1
1 ) = λpML(wi|wi−1

i−n+1)+ (1− λ)pLDA(wi|wi−1
1 ). (7.339)

In Tam & Schultz (2006), the language model adaptation based on the unigram rescaling
was implemented by

p̂(wi|wi−1
1 ) = pML(wi|wi−1

i−n+1)
pLDA(wi|wi−1

1 )

pML(wi)
. (7.340)

Typically, the model parameters {α̂, β̂} in the LDA language model are inferred at
the document level, catching the long-distance topic information but only indirectly
representing the n-gram events.
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7.7.2 Dirichlet class language model

LDA (Blei et al. 2003) builds a hierarchical Bayesian topic model and extracts the latent
topics or clusters from a collection of M documents D = {wm}. The bag-of-words
scheme is adopted without considering the word sequence, and so it is not directly
designed for speech recognition where the performance is seriously affected by the prior
probability of a word string W = wT

1 � {w1, · · · , wT} or the language model p(W). In
Bengio, Ducharme, Vincent et al. (2003), the neural network language model was pro-
posed to deal with the data sparseness problem in language modeling by projecting the
ordered history vector into a continuous space and then calculating the n-gram language
model based on the multilayer perceptron. MLP involves the error back-propagation
training algorithm based on the least-squares estimation, which is vulnerable to the
overfitting problem (Bishop 2006). Considering the topic modeling in LDA and the con-
tinuous representation of history word sequence wi−1

i−n+1 in a neural network language
model, the Dirichlet class language model (DCLM) (Chien & Chueh 2011) is presented
to build a direct LDA language model for speech recognition. For a vocabulary with
|V| words, the n − 1 history words wi−1

i−n+1 are first represented by a (n − 1)|V| × 1

vector hi−1
i−n+1 consisting of n − 1 block subvectors. Each block is represented by the

1-to-|V| coding scheme with a |V| dimensional vector where the vth word of vocabu-
lary is encoded by setting the vth entry of the vector to be one and all the other entries
to be zero. The order of history words is considered in hi−1

i−n+1. Figure 7.3 shows the

system architecture of calculating a DCLM pDC(wi = v|wi−1
i−n+1). A global projection is

involved to project the ordered history vector hi−1
i−n+1 into a latent topic or class space

where the projection g(hi−1
i−n+1) could be either a linear function or a non-linear func-

tion. In the case of a linear function, a projection matrix A = [a1, · · · , aC] consisting of

Figure 7.3 System architecture for Dirichlet class language model.
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Figure 7.4 Representation of a Dirichlet class language model.

C basis vectors {ac} is involved. The class structure of all n-gram events from training
corpus D = {wi, wi−1

i−n+1} is represented by Dirichlet distributions. The class uncertainty
is compensated by marginalizing the likelihood function over the Dirichlet priors. The
latent structure in the DCLM reflects the class of an n-gram event rather than the topic
in an LDA model. A DCLM is regarded as a kind of class-based language model, which
is inferred by the variational Bayes (VB) procedure by maximizing the variational lower
bound of a marginal likelihood of training data.

7.7.3 Model construction

A DCLM acts as a Bayesian class-based language model, which involves the prior dis-
tribution of the class variable. Figure 7.4 is a graphical representation of a DCLM from
a training set of current words and history words D = {wi, wi−1

i−n+1} = {wi, hi−1
i−n+1}. The

training corpus has H history events in {wi−1
i−n+1}. Each history event h = wi−1

i−n+1 has
Nh possible predicted words {wi}. Note that the (n− 1)|V|-dimensional discrete history
vector is projected to a C-dimensional continuous class space using the class-dependent
linear discriminant function

gc(hi−1
i−n+1) = aᵀ

c hi−1
i−n+1. (7.341)

This function is used as the hyperparameter of a Dirichlet prior for the class mixture
probability θc or equivalently the class posterior probability of latent variable zi = c
given history vector hi−1

i−n+1:

θc � p(zi = c|θ , hi−1
i−n+1). (7.342)

Thus, the uncertainty of class posterior probabilities g(hi−1
i−n+1) = {gc(hi−1

i−n+1)} is
characterized by a Dirichlet prior distribution:

θ = [θ1, · · · , θC]ᵀ|hi−1
i−n+1, A ∼ Dir(g(hi−1

i−n+1))

= Dir(Aᵀhi−1
i−n+1), (7.343)

subject to the constraint gc(hi−1
i−n+1) > 0 or ac > 0. Each word wi = v is generated

by the conditional probability βcv � p(wi = v|zi = c) given a latent class zi = c.
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The n-gram probability obtained using DCLM is calculated by marginalizing the joint
likelihood over the latent variables including class mixtures θ and C latent classes:

pDC(wi = v|hi−1
i−n+1, A, β) =

C∑
c=1

p(wi = v|zi = c, β)p(zi = c|hi−1
i−n+1, A)

=
C∑

c=1

p(wi = v|zi = c, β)

×
∫

p(θ |hi−1
i−n+1, A)p(zi = c|θ)dθ

=
C∑

c=1

βcvE(θ)[p(zi = c|θ , hi−1
i−n+1, A)]

=
C∑

c=1

βcvE(θ)[θc|hi−1
i−n+1, A]

=
C∑

c=1

βcv
aᵀ

c hi−1
i−n+1∑C

j=1 aᵀ
j hi−1

i−n+1

. (7.344)

In Eq. (7.344), the integral is calculated over a multinomial variable p(zi =
c|θ , hi−1

i−n+1, A)) with Dirichlet prior distribution p(θ |hi−1
i−n+1, A) and is equivalent to the

distribution mean. This integral is seen as a marginalization over different classes c, and
is also obtained as a class mixture model with the class-dependent unigram probabilities
{βcv|1 ≤ c ≤ C} weighted by the class mixture probabilities {p(zi = c|hi−1

i−n+1, A)|1 ≤
c ≤ C} driven by the ordered history vector hi−1

i−n+1. However, we should estimate
DCLM parameters {A, β} and substitute them into Eq. (7.344) to calculate the Dirichlet
class (DC) n-gram probabilities.

7.7.4 VB inference: lower bound

Similarly to LDA, DCLM parameters {A, β} are estimated according to the type-2
maximum likelihood method where the marginal likelihood over latent variables is max-
imized. As seen in Figure 7.4, the latent variables in DCLM include the continuous
values of class mixture probabilities θ = {θc} and the discrete values of class labels
z = {zi}. The optimization problem is formulated as

{AML2, βML2} = arg max
A,β

log p(D|A, β), (7.345)

where

log p(D|A, β) =
∑

{wi,h
i−1
i−n+1}∈D

log p(wi|hi−1
i−n+1, A, β)

=
∑

hi−1
i−n+1

log p(wh|hi−1
i−n+1, A, β)
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=
∑

hi−1
i−n+1

log

( Nh∏
i=1

p(wi|hi−1
i−n+1, A, β)

)

=
∑

hi−1
i−n+1

log

(∫
p(θ |hi−1

i−n+1, A)

×
( Nh∏

i=1

C∑
c=1

p(wi = v|zi = c, β)p(zi = c|θ )

)
dθ

)
. (7.346)

The log marginal likelihood is calculated by integrating over the continuous θ and sum-
ming the discrete {zi = c|1 ≤ c ≤ C}. However, directly optimizing Eq. (7.346)
is intractable because of the coupling between θ and β in the summation over latent
classes. The posterior distribution

p(θ , z|wh, hi−1
i−n+1, A, β) = p(θ , z, wh|hi−1

i−n+1, A, β)

p(wh|hi−1
i−n+1, A, β)

(7.347)

becomes intractable for model inference. This posterior distribution is calculated from
the n-gram events with the Nh predicted words occurring after the fixed history words
h � wi−1

i−n+1,

wh � {wi|c(hwi) > 0}, (7.348)

where c(·) denotes the count of an n-gram event. The variational Bayes (VB) inference
procedure is involved to construct the variational DCLM where the lower bound of
marginal likelihood in Eq. (7.346) serves as the surrogate to be maximized to find the
optimal {AML2, βML2}.

To do so, a decomposed variational distribution,

q(θ , z|γ h, φh) = q(θ |γ h)
Nh∏
i=1

q(zi|φh,i), (7.349)

is introduced to approximate the true posterior distribution p(θ , z|wh, hi−1
i−n+1, A, β). A

graphical representation of the variational DCLM is illustrated in Figure 7.5. Here,
γ h = {γh,c} and φh = {φh,ic} denote the history-dependent variational Dirichlet and
multinomial parameters, respectively. By referring to Section 7.6.2, the lower bound
on the log marginal likelihood is derived by applying the Jensen’s inequality and is
expanded by

Figure 7.5 Representation of a variational Dirichlet class language model.
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L(γ h, φh; A, β) =
∑

hi−1
i−n+1

{
E(θ ) [log p(θ |hi−1

i−n+1, A)]+ E(θ ,z) [log p(z|θ )]

+ E(z)[log p(wh|z, β)]− E(θ)[log q(θ |γ h)]− E(z)[log q(z|φh)]

}
=
∑

hi−1
i−n+1

{
log�

(
C∑

c=1

aᵀ
c hi−1

i−n+1

)
−

C∑
c=1

log�
(

aᵀ
c hi−1

i−n+1

)

+
C∑

c=1

(
aᵀ

c hi−1
i−n+1 − 1

)⎛⎝�(γh,c)−�

⎛⎝ C∑
j=1

γh,j

⎞⎠⎞⎠
+

Nh∑
i=1

C∑
c=1

φh,ic

⎛⎝�(γh,c)−�

⎛⎝ C∑
j=1

γh,j

⎞⎠⎞⎠
+

Nh∑
i=1

C∑
c=1

|V |∑
v=1

φh,icwv
i logβcv − log�

(
C∑

c=1

γh,c

)
+

C∑
c=1

log�(γh,c)

−
C∑

c=1

(γh,c − 1)

⎛⎝�(γh,c)−�

⎛⎝ C∑
j=1

γh,j

⎞⎠⎞⎠− Nh∑
i=1

C∑
c=1

φh,ic logφh,ic

}
.

(7.350)

We have applied Eq. (7.321) to find the variational lower bound for DCLM.

7.7.5 VB inference: parameter estimation

A VB–EM algorithm has been developed for inference of DCLM parameters. In this
VB–EM procedure, we first conduct the VB E-step to find the optimal expectation
function or lower bound L(γ̂ h, φ̂h; A, β) in Eq. (7.350), or equivalently to estimate the
optimal variational Dirichlet parameters γ̂ h and variational multinomial parameters φ̂h.
Similarly to Section 7.6.3, we collect the terms in Eq. (7.350) that are related to γ h

and maximize these terms, expressed by L(γ h), with respect to γ h to find the optimal
variational Dirichlet parameters:

γ̂h,c = aᵀ
c hi−1

i−n+1 +
Nh∑
i=1

φh,ic 1 ≤ c ≤ C. (7.351)

In addition, when maximizing the lower bound L(γ h, φh; A, β) with respect to the vari-
ational multinomial parameters φh, we need to collect all terms related to φh and solve a
constrained optimization problem subject to a constraint for multinomial distributions:

C∑
c=1

φh,ic = 1. (7.352)

https://doi.org/10.1017/CBO9781107295360.008 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.008


7.7 Latent topic language model 331

The Lagrangian L(φ) given the history-dependent Lagrange multipliers {λh,i} is
arranged and maximized so as to find the optimal variational multinomial distributions:

φ̂h,ic =
βcv exp

(
�(γh,c)−�

(∑C
j=1 γh,j

))
∑C

l=1 βlv exp
(
�(γh,l)−�

(∑C
j=1 γh,j

)) , (7.353)

1 ≤ i ≤ T , 1 ≤ c ≤ C

where the unique word v is selected for wi such that wv
i = 1 and wl

i = 0 for
l �= v. The variational lower bound is updated with the optimal variational parameters
L(γ̂ h, φ̂h; A, β).

On the other hand, in a VB M-step, we fix the variational parameters γ̂ h, φ̂h and
optimize the updated lower bound to estimate the DCLM model parameters:

{Â, β̂} = arg max
{A,β}

L(γ̂ h, φ̂h; A, β). (7.354)

In estimating the conditional multinomial distributions β = {βcv} = {p(wi = v|zi = c)},
the terms containing model parameters β are collected and the constraints

|V |∑
v=1

βcv = 1 (7.355)

are imposed to arrange the Lagrangian L(β) with C Lagrange multipliers {λc}. By
solving

∂L(β)

∂βcv
= 0 (7.356)

and considering the constraints, we estimate the optimal conditional multinomial
distributions

β̂cv =
∑

hi−1
i−n+1

∑Nh
i=1 φ̂h,icwv

i∑|V |
l=1

∑
hi−1

i−n+1

∑Nh
i=1 φ̂h,icwl

i

(7.357)

1 ≤ c ≤ C, 1 ≤ v ≤ |V|

by substituting the updated variational multinomial distributions φ̂h = {φ̂h,ic}. However,
there is no closed-form solution to optimal DCLM parameter A = [a1, · · · , aC]. This
parameter is used to project the ordered history vector hi−1

i−n+1 into latent class space.
The projected parameter is treated as the Dirichlet class parameter. We may apply the
Newton–Raphson algorithm or simply adopt the gradient descent algorithm

a(τ+1)
c = a(τ )

c − η∇L(a(τ )
c ) 1 ≤ c ≤ C (7.358)

to derive the optimal Dirichlet class parameter Â by using the gradient
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∇acL(γ̂ , φ̂; A, β) =
∑

hi−1
i−n+1

{
�

⎛⎝ C∑
j=1

aᵀ
j hi−1

i−n+1

⎞⎠
−�

(
aᵀ

c hi−1
i−n+1

)
+�(γ̂h,c)−�

⎛⎝ C∑
j=1

γ̂h,j

⎞⎠} · hi−1
i−n+1.

(7.359)

Given the estimated model parameters {Â, β̂}, the DCLM n-gram pDC(wi =
v|hi−1

i−n+1, A, β) in Eq. (7.344) is implemented. The DCLM n-gram could be improved
by interpolating with the modified Kneser–Ney (MKN) language model, as discussed
in Eq. (3.251). However, the performance of DCLM is limited due to the modeling of
Dirichlet classes only inside the n-gram window.

7.7.6 Cache Dirichlet class language model

In general, the long-distance information outside the n-gram window is not captured.
This weakness can be compensated in the cache DCLM (Chien & Chueh 2011). The
cache DCLM treats all history words wi−1

1 as cache memory and incorporates their class
information zi−1

1 = {z1, · · · , zi−1} into language modeling as

p(wi = v|hi−1
i−n+1, A, β, wi−1

1 )

=
∑
zi−1
1

p(zi−1
1 |wi−1

1 )p(wi|zi−1
1 , hi−1

i−n+1, A, β)

=
∑
zi−1
1

p(zi−1
1 |wi−1

1 )
C∑

c=1

p(wi = v|zi = c, β)

×
∫

p(θ |hi−1
i−n+1, A, zi−1

1 )p(zi = c|θ )dθ , (7.360)

where the marginalization over latent classes c and class mixtures θ is performed. We
have the posterior distribution

p(θ |hi−1
i−n+1, A, zi−1

1 ) = p(θ |hi−1
i−n+1, A)p(zi−1

1 |θ , hi−1
i−n+1, A)

p(zi−1
1 |hi−1

i−n+1, A)
, (7.361)

where

p(zi−1
1 |θ , hi−1

i−n+1, A) = p(zi−1
1 |θ)

=
C∏

c=1

θ

∑i−1
j=1 δ(zj,c)

c . (7.362)

The denominator term of this posterior distribution is independent of wi and could be
ignored in calculating the cache DCLM in Eq. (7.360). For practical purposes, the sum-
mation over zi−1

1 is simplified by adopting a single best class sequence ẑi−1
1 , where the
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best class ẑi−1 of word wi−1 is detected from the previous n−1 words wi−2
i−n and the best

classes ẑi−2
1 corresponding to previous i− 1 words, namely

ẑi−1 = arg max
zi−1

p(wi−1 = v, zi−1|ẑi−2
1 , wi−2

i−n, A, β)

= arg max
c

βcv
aᵀ

c hi−2
i−n +

∑i−2
j=1 δ(ẑj, c)∑C

l=1

[
aᵀ

l hi−2
i−n +

∑i−2
j=1 δ(ẑj, l)

] . (7.363)

A detailed derivation is given in Chien & Chueh (2011).
As a result, the recursive detection from ẑ1 to ẑi−1 is done and applied to approximate

the cache DCLM as

p(wi = v|hi−1
i−n+1, A, β, wi−1

1 )

≈
C∑

c=1

p(wi = v|ẑi = c, β)
∫

p(θ |hi−1
i−n+1, A)

×
C∏

m=1

θ

∑i−1
j=1 δ(ẑj,m)

m p(zi = c|θ )dθ

≈
C∑

c=1

βcv
aᵀ

c hi−1
i−n+1 + ρ

∑i−1
j=1 τ

i−j−1δ(ẑj, c)∑C
l=1

[
aᵀ

l hi−1
i−n+1 + ρ

∑i−1
j=1 τ

i−j−1δ(ẑj, l)
] . (7.364)

Here, the product of the Dirichlet distribution p(θ |hi−1
i−n+1, A) and the multinomial

distribution
∏C

m=1 θ

∑i−1
j=1 δ(ẑj,m)

m is a new Dirichlet distribution. Taking the integral in
Eq. (7.364) is equivalent to finding the mean of the new Dirichlet distribution. In this
cache DCLM, we introduce a weighting factor 0 < ρ ≤ 1 to balance two terms in the
numerator and the denominator and a forgetting factor o < τ ≤ 1 to discount the distant
class information. A graphical representation of the cache DCLM is given in Figure 7.6.
The best classes {ẑ1, · · · , ˆzi−1} corresponding to all history words {w1, · · · , wi−1} are
recursively detected and then merged in prediction of the next word wi.

Figure 7.6 Representation of a cache Dirichlet class language model.
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Table 7.3 Comparison of frequently used words of the latent variables extracted by LDA LM and DCLM.

Topic/class Frequently used words in latent topics or classes

LDA LM

Family
toy, kids, theater, event, season, shoe, teen, children’s, plays,
films, sports, magazines, Christmas, bowling, husband,
anniversary, girls, festival, couple, parents,wife, friends

Election
candidates, race, voters, challenger, democrat, state’s,
selection, county, front, delegates, elections, reverend,
republicans, polls, conventions, label, politician, ballots

War
troops, killed, Iraqi, attack, ship, violence, fighting, soldiers,
mines, Iranian, independence, marines, revolution, died,
nation, protect, armed, democracy, violent, commander

DCLM

Quantity
five, seven, two, eight, cents, six, one, nine, four, three,
zero, million, point, percent, years, megabyte, minutes,
milligrams, bushels, miles, marks, pounds, yen, dollars

Business
exchange, prices, futures, index, market, sales, revenue,
earnings, trading, plans, development, business, funds,
organization, traders, ownership, holdings, investment

In+
addition, the, fact, American, October, recent, contrast,
Europe, June, Tokyo, July, March, turn, other, my,
Washington, order, Chicago, case, China, general, which

7.7.7 System performance

The Wall Street Journal (WSJ) corpus was utilized to evaluate different language models
for continuous speech recognition (CSR). The SI-84 training set was adopted to estimate
the HMM parameters. The feature vector consisted of 12 MFCCs and one log energy
and their first and second derivatives. Triphone models were built for 39 phones and
one background silence. Each triphone model had three states with eight Gaussian com-
ponents. The 1987-1989 WSJ corpus with 38M words was used to train the baseline
backoff trigrams. A total of 86K documents and 3M trigram histories were used. The
20K non-verbalized punctuation, closed vocabularies were adopted. A total of 333 test
utterances were sampled from the November 1992 ARPA CSR benchmark test data.
In the implementation, the baseline tri-gram was used to generate 100-best lists. Vari-
ous language models were interpolated with a baseline tri-gram using an interpolation
weight, and were employed for N-best rescoring. The neural network LM (NNLM)
(Bengio et al. 2003), class-based LM (Brown et al. 1992), PLSA LM (Gildea & Hof-
mann 1999), LDA LM (Tam & Schultz 2005, Tam & Schultz 2006), DCLM, and cache
DCLM (Chien & Chueh 2011) were evaluated in the comparison.

Table 7.3 lists some examples of latent topics and classes, and the corresponding
frequently used words. The three topics and classes were selected from LDA LM with
K = 100 and DCLM with C = 100, respectively. The frequently used words were
identified according to the likelihood of the words given target topics or classes. We
can see that the frequently used words within a topic or class are semantically close to
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Table 7.4 Comparison of word error rates for different methods with different sizes of training data and
numbers of classes.

Size of training data
6M 12M 18M 38M

Baseline LM 39.2% 21.3% 15.8% 12.9%
NNLM 35.5% 19.6% 15.0% 12.4%
Class-based LM 35.5% 19.7% 15.0% 12.4%
PLSA LM 36.0% 19.8% 15.0% 12.3%
LDA LM 35.9% 19.7% 14.7% 12.2%
DCLM (C=200) 35.9% 19.6% 14.6% 12.0%
Cache DCLM (C=200) 34.2% 19.3% 14.5% 11.9%
DCLM (C=500) 35.2% 19.2% 14.3% 11.7%
Cache DCLM (C=500) 33.9% 19.0% 14.2% 11.6%

each other. For some cases, the topically related words from LDA LM appear indepen-
dently. These topics are not suitable for generating natural language. In contrast, DCLM
extracts the class information from n-gram events and performs the history clustering
based on sentence generation. For example, the latent class “In+” denotes the category
of words that follow the preposition “in.” The words “fact,” “addition,” and ”June” usu-
ally follow the word “in,” and appear as frequent words of the same class. The word
order is reflected in the clustering procedure. Table 7.4 reports the word error rates for
baseline LM, NNLM, class-based LM, PLSA LM, LDA LM, DCLM and cache DCLM
with C = 200 and C = 500 under different sizes of training data. The issue of small
sample size is examined. It is consistent that the word error rate is reduced when the
amount of training data is increased. In the case of sparse training data (6M), the topic-
based and class-based methods work well. In particular, the cache DCLM with C = 200
achieved an error rate reduction of 12.9% which outperforms the other related methods.
When the number of classes is increased to C = 500, the improvement is obvious for
the case of large training data (38M).

7.8 Summary

This chapter has introduced various applications of VB to speech and language pro-
cessing, including CDHMM-based acoustic modeling, acoustic model adaptation, latent
topic models, and latent topic language models. Compared with the previous inference
approximations based on MAP, evidence, and asymptotic approximations, VB deals
with Bayesian inference based on a distribution estimation without considering the
asymptotic property, which often provides better solutions in terms of consistently using
the Bayesian manner. In addition, the inference algorithm obtained can be regarded as an
extension of the conventional EM type iterative algorithm. This makes implementation
easier as we can utilize existing source codes based on the ML and MAP–EM
algorithms. One of the difficulties in VB is that obtaining the analytical solutions of VB
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posterior distributions and variational lower bound is hard due to the complicated expec-
tation and integral calculations. However, the solutions provided in this chapter (general
formulas and specific solutions for acoustic and language modeling issues) would cover
most of the mathematical analysis in the other VB applications in speech and language
processing. Actually, there have been various other aspects of VB including speech
feature extraction (Kwon, Lee & Chan 2002, Valente & Wellekens 2004a), voice activ-
ity detection (Cournapeau, Watanabe, Nakamura et al. 2010), speech/speaker GMM
(Valente 2006, Pettersen 2008), speaker diarization (Valente, Motlicek & Vijayasenan
2010, Ishiguro, Yamada, Araki et al. 2012), and statistical speech synthesis (Hashimoto,
Nankaku & Tokuda 2009, Hashimoto, Zen, Nankaku et al. 2009). Readers who are inter-
ested in these topics could follow these studies and develop new techniques with the
solutions provided in this chapter.

Although VB provides a fully Bayesian treatment, VB still cannot overcome the prob-
lem of local optimum solutions based on the EM style algorithm, and VB also cannot
provide analytical solutions for non-exponential family distributions. The next chap-
ter deals with MCMC-based Bayesian approaches, which potentially overcome these
problems with a fully Bayesian treatment.
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