
8 Markov chain Monte Carlo

For most probabilistic models of practical interest, exact inference is intractable, and so
we have to resort to some form of approximation. Markov chain Monte Carlo (MCMC)
is another realization of full Bayesian treatment of practical Bayesian solutions (Neal
1993, Gilks, Richardson & Spiegelhalter 1996, Bishop 2006). MCMC is known as a
stochastic approximation which acts differently from the deterministic approximation
based on variational Bayes (VB) as addressed in Chapter 7. Variational inference using
VB approximates the posterior distribution through factorization of the distribution over
multiple latent variables and scales well to large applications. MCMC uses the numerical
sampling computation rather than solving integrals and expectation analytically. Since
MCMC can use any distributions in principle, it is capable of wide applications, and can
be used for Bayesian nonparametric (BNP) learning, which provides highly flexible
models whose complexity grows appropriately with the amount of data. Although, due
to the computational cost, the application of MCMC to speech and language processing
is limited to small-scale problems currently, this chapter describes promising new direc-
tions of Bayesian nonparametrics for speech and language processing by automatically
growing models to deal with speaker diarization, acoustic modeling, language acqui-
sition, and hierarchical language modeling. The strengths and weaknesses using VB
and MCMC are complementary. In what follows, we first introduce the general back-
ground of sampling methods including MCMC and Gibbs sampling algorithms. Next,
the Bayesian nonparametrics are calculated to build a flexible topic model based on the
hierarchical Dirichlet process (HDP) (Teh et al. 2006). Several applications in speech
and language processing areas are surveyed. GMM-based speaker clustering, CDHMM-
based acoustic unit discovery by using MCMC, and the language model based on the
hierarchical Pitman–Yor process (Teh et al. 2006) are described.

The fundamental problem in MCMC involves finding the expectation of some func-
tion f (θ) with respect to a probability distribution p(θ ) where the components of θ might
comprise discrete or continuous variables, which are some factors or parameters to be
inferred under a probabilistic model. In the case of continuous variables, we would like
to evaluate the expectation

E(θ)[f (θ)] =
∫

f (θ)p(θ)dθ , (8.1)

where the integral is replaced by summation in the case of discrete variables. We assume
that such expectations are too complicated to be evaluated analytically. The general
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338 Markov chain Monte Carlo

idea behind sampling methods is to obtain a set of samples {θ (l), l = 1, · · · , L} drawn
independently from the distribution p(θ). We may approximate the integral by a sample
mean of function f (θ) over these samples θ (l):

f̂ = 1

L

L∑
l=1

f (θ (l)). (8.2)

Since the samples θ (l) are drawn from the distribution p(θ ), the estimator f̂ has the cor-
rect mean, i.e., f̂ = E(θ)[f (θ)]. In general, ten to twenty independent samples may suffice
to estimate an expectation. However, the samples {θ (l)}may not be drawn independently.
The effective sample size might be much smaller than the apparent sample size L. This
implies that a relatively large sample size is required to achieve sufficient accuracy.

8.1 Sampling methods

A simple strategy can be designed to generate random samples from a given distribu-
tion. We first consider how to generate random numbers from non-uniform distributions,
assuming that we already have a source of uniformly distributed random numbers. Let
θ be uniformly distributed by p(θ ) = 1 over the interval (0, 1). We transform the values
of θ using some function f (·) by y = f (θ ). The distributions of variables θ and y are
related by

p(y) = p(θ )

∣∣∣∣dθdy

∣∣∣∣ . (8.3)

Taking integrals for both sides of Eq. (8.3), we have

θ = h(y) =
∫ y

−∞
p(̃y)d̃y, (8.4)

which is the indefinite integral of p(y). Thus, y = h−1(θ ), meaning that we have to trans-
form the uniformly distributed random numbers θ using a function h−1(·), which is the
inverse of the indefinite integral of the desired distribution of y. Figure 8.1 depicts the
geometrical interpretation of the transformation method for generating non-uniformly
distributed random numbers. In addition, the generalization to multiple variables is
straightforward and involves the Jacobian of the transform of variables:

p(y1, · · · , yM) = p(θ1, · · · , θM)

∣∣∣∣∂(θ1, · · · , θM)

∂(y1, · · · , yM)

∣∣∣∣ . (8.5)

A similar scheme can be applied to draw a multivariate distribution with M variables.

8.1.1 Importance sampling

The technique of importance sampling provides a framework for approximating the
expectation in Eq. (8.1) directly but does not provide the mechanism for drawing sam-
ples from distribution p(θ ). The finite sum approximation to expectation in Eq. (8.2)
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8.1 Sampling methods 339

Figure 8.1 Transformation method for generating non-uniformly distributed random numbers from
probability distribution p(y). Function h(y) represents the indefinite integral of p(y). Adapted
from Bishop (2006).

depends on being able to draw samples from the distribution p(θ ). One simple strategy
for evaluating expectation function would be to discretize θ -space into a uniform grid,
and to evaluate the integrand as a sum of the form

E(θ)[f (θ)]  
L∑

l=1

p(θ (l))f (θ (l)). (8.6)

However, the problem with this approach is that the number of terms in the summation
grows exponentially with the dimensionality of θ . In many cases, the probability distri-
butions of interest often have much of their mass confined to relatively small regions of
θ space. Accordingly, uniform sampling is very inefficient because in high-dimensional
space, only a very small proportion of the samples make a significant contribution to the
sum. We would like to sample the points falling in regions where p(θ) is large, or where
the product p(θ)f (θ) is large.

Suppose we wish to sample from a distribution p(θ ) that is not simple or a stan-
dard distribution. Sampling directly from p(θ) is difficult. Importance sampling is based
on the use of a proposal distribution q(θ ) from which it is easy to draw samples.
Figure 8.2 illustrates the proposal distribution for importance sampling. The expecta-
tion in Eq. (8.1) is expressed in the form of a finite sum over samples {θ (l)} drawn from
q(θ ):

E(θ)[f (θ)] =
∫

f (θ)p(θ)dθ

=
∫

f (θ)
p(θ)

q(θ)
q(θ )dθ

 1

L

L∑
l=1

p(θ (l))

q(θ (l))
f (θ (l)). (8.7)

The quantities rl = p(θ (l))/q(θ (l)) are known as the importance weights, and they correct
the bias introduced by sampling from the wrong distribution.

Usually, the distribution p(θ ) can only be evaluated up to a normalization constant,
so that p(θ ) = p̃(θ )/Zp, where p̃(θ) can be evaluated easily and Zp is unknown. We may
use the importance sampling distribution q(θ ) = q̃(θ)/Zq to determine the expectation
function:
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340 Markov chain Monte Carlo

Figure 8.2 Proposal distribution q(θ ) for importance sampling in estimation of expectation of function f (θ )
with probability distribution p(θ ). Adapted from Bishop (2006).

E(θ)[f (θ)] = Zq

Zp

∫
f (θ)

p̃(θ)

q̃(θ)
q(θ )dθ

 Zq

Zp

1

L

L∑
l=1

r̃lf (θ (l)), (8.8)

where r̃l = p̃(θ (l))/̃q(θ (l)). We have

Zp

Zq
= 1

Zq

∫
p̃(θ)dθ =

∫
p̃(θ)

q̃(θ)
q(θ )dθ

 1

L

L∑
l=1

r̃l. (8.9)

We then obtain

E(θ )[f (θ)]  
L∑

l=1

wlf (θ (l)), (8.10)

where we define

wl = r̃l∑
m r̃m

= p̃(θ (l))/q(θ (l))∑
m p̃(θ (m))/q(θ (m))

. (8.11)

Clearly, the performance of the importance sampling method highly depends on how
well the sampling distribution q(θ ) matches the desired distribution p(θ ).

8.1.2 Markov chain

One major weakness in evaluation of expectation function based on the importance
sampling strategy is the severe limitation in spaces of high dimensionality. We accord-
ingly turn to a very general and powerful framework called Markov chain Monte Carlo
(MCMC), which allows sampling from a large class of distributions and which scales
well with the dimensionality of the sample space. Before discussing MCMC methods in
more detail, it is useful to study some general properties of Markov chains and investi-
gate under what conditions a Markov chain can converge to the desired distribution. A
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first-order Markov chain is defined for a series of variables θ (1), · · · , θ (M) such that the
following conditional independence holds for m ∈ {1, · · · , M − 1}:

p(θ (m+1)|θ (1), · · · , θ (m)) = p(θ (m+1)|θ (m)). (8.12)

This Markov chain starts from the probability distribution for initial variable p(θ (0)) and
operates with the transition probability p(θ (m+1)|θ (m)). A Markov chain is called homo-
geneous if the transition probabilities are unchanged for all m. The marginal probability
for a variable θ (m+1) is expressed in terms of the marginal probabilities over the previous
variable {θ (1), · · · , θ (m)} in the chain,

p(θ (m+1)) =
∑
θ (m)

p(θ (m+1)|θ (m))p(θ (m)). (8.13)

A distribution is said to be invariant or stationary with respect to a Markov chain if each
step in the chain keeps the distribution invariant. For a homogeneous Markov chain with
transition probability T(θ ′, θ ), the distribution p (θ) is invariant if it has the following
property:

p (θ ) =
∑
θ ′

T(θ ′, θ )p (θ ′). (8.14)

Our goal is to use Markov chains to sample from a given distribution. We can achieve
this goal if we set up a Markov chain such that the desired distribution is invariant. It
is required that for m →∞, the distribution p(θ (m)) converges to the required invariant
distribution p (θ ), which is obtained irrespective of the choice of initial distribution
p(θ (0)). This invariant distribution is also called the equilibrium distribution. A sufficient
condition for an invariant distribution p(θ ) is to choose the transition probabilities to
satisfy the detailed balance, i.e.

p (θ )T(θ , θ ′) = p (θ ′)T(θ ′, θ ), (8.15)

for a particular distribution p (θ).

8.1.3 The Metropolis–Hastings algorithm

As discussed in importance sampling, we keep sampling from a proposal distribution
and maintain a record of the current state θ (τ ). The proposal distribution q(θ |θ (τ ))
depends on this current state. The sequence of samples θ (1), θ (2), · · · forms a Markov
chain. The proposal distribution is chosen to be sufficiently simple to draw samples
directly. At each sampling cycle, we generate a candidate sample θ from the proposal
distribution and then accept the sample according to an appropriate criterion. In a basic
Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth et al. 1953), the proposal
distribution is assumed to be symmetric, namely q(θa|θb) = q(θb|θa) for all values of
θa and θb. The candidate sample is accepted with the probability

A(θ , θ (τ )) = min

(
1,

p̃(θ )

p̃(θ (τ ))

)
, (8.16)
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where p(θ ) = p̃(θ)/Zp with a readily evaluated distribution p̃(θ) and an unknown
normalization value Zp. To fulfil this algorithm, we can choose a random number
u with uniform distribution over the unit interval (0, 1) and accept the sample if
A(θ , θ (τ )) > u. Definitely, if the step from θ (τ ) to θ causes an increase in the
value of p(θ), then the candidate point is accepted. Once the candidate sample is
accepted, then θ (τ+1) = θ , otherwise the candidate sample θ is discarded, θ (τ+1)

is set to θ (τ ). The next candidate sample is drawn from the distribution q(θ |θ (τ+1)).
This leads to multiple copies of samples in the final list of samples. As long as
q(θa|θb) is positive for any values of θa and θb, the distribution of θ (τ ) approaches
p(θ ) as τ →∞.

The basic Metropolis algorithm is further generalized to the Metropolis–Hastings
algorithm (Hastings 1970) which is widely adopted in MCMC inference. This gener-
alization is developed by relaxing the assumption in the Metropolis algorithm that the
proposal distribution is no longer a symmetric function of its arguments. Using this
algorithm, at step τ with current state θ (τ ), we draw a sample θ from the proposal
distribution qk(θ |θ (τ )) and then accept it with the probability

Ak(θ , θ (τ )) = min

(
1,

p̃(θ )qk(θ (τ )|θ )

p̃(θ (τ ))qk(θ |θ (τ ))

)
, (8.17)

where k denotes the members of the set of possible transitions. For the case of a symmet-
ric proposal distribution, the Metropolis–Hastings criterion in Eq. (8.17) is reduced to
the Metropolis criterion in Eq. (8.16). We can show that p(θ) is an invariant distribution
of the Markov chain generated by the Metropolis–Hastings algorithm by investigating
the property of the detailed balance in Eq. (8.15). We find that

p(θ )qk(θ |θ ′)Ak(θ ′, θ ) = min(p(θ )qk(θ |θ ′), p(θ ′)qk(θ ′|θ ))

= min(p(θ ′)qk(θ ′|θ ), p(θ)qk(θ |θ ′))
= p(θ ′)qk(θ ′|θ )Ak(θ , θ ′). (8.18)

The choice of proposal distribution is important in an MCMC algorithm. For continu-
ous state spaces, a common choice is a Gaussian centered on the current state, leading to
an important trade-off in determining the variance parameter of this distribution. If the
variance is small, the proportion of accepted transitions is high, but a slow random walk
is taken through the state space. On the other hand, if the variance parameter is large,
the rejection rate is high because the updated state has low probability p(θ ). Figure 8.3
shows a schematic for selecting an isotropic Gaussian proposal distribution to sample
random numbers from a correlated multivariate Gaussian distribution. In order to keep
the rejection rate low, the scale ρ of the proposal distribution qk(θ |θ (τ )) should be com-
parable to the smallest standard deviation σmin, which leads to a random walk so that the
number of steps for separating states is of order (σmax/σmin)2 where σmax is the largest
standard deviation.
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Figure 8.3 Using an isotropic Gaussian proposal distribution (circle) to sample random numbers for a
correlated bivariate Gaussian distribution (ellipse). Adapted from Bishop (2006).

8.1.4 Gibbs sampling

Gibbs sampling (Geman & Geman 1984, Liu 2008) is a simple and widely applicable
realization of an MCMC algorithm which is a special case of the Metropolis–Hastings
algorithm. Consider the distribution of M random variables p(θ) = p(θ1, · · · , θM) and
suppose that we have some initial state for the Markov chain. Each step of the Gibbs
sampling procedure replaces the value of one of the variables by a value drawn from the
distribution of that variable conditioned on the values of the remaining states. That is to
say, we replace the ith component θi by a value drawn from the distribution p(θi|θ−i),
where θ−i denotes θ1, · · · , θM but with θi omitted. The sampling procedure is repeated
by cycling through the variables in a particular order or in a random order from some
distribution. This procedure samples the required distribution p(θ ), which should be
invariant at each of the Gibbs sampling steps or in the whole Markov chain. This is
because the marginal distribution p(θ−i) is invariant and the conditional distribution
p(θi|θ−i) is correct at each sampling step. Gibbs sampling of M variables for T steps
follows this procedure:

• Initialize {θi : i = 1, · · · , M}.
• For τ = 1, · · · , T:

– Sample θ
(τ+1)
1 ∼ p(θ1|θ (τ )

2 , θ (τ )
3 , · · · , θ (τ )

M ).

– Sample θ
(τ+1)
2 ∼ p(θ2|θ (τ+1)

1 , θ (τ )
3 , · · · , θ (τ )

M ).
...

– Sample θ
(τ+1)
j ∼ p(θj|θ (τ+1)

1 , · · · , θ (τ+1)
j−1 , θ (τ )

j+1, · · · , θ (τ )
M ).

...
– Sample θ

(τ+1)
M ∼ p(θM|θ (τ+1)

1 , θ (τ+1)
2 , · · · , θ (τ+1)

M−1 ).

Gibbs sampling can be shown to be a special case of the Metropolis–Hastings algo-
rithm. Consider the Metropolis–Hastings sampling step involving the variable θk in
which the remaining variables θ−k are fixed. The transition probability from θ to θ is
then given by qk(θ |θ ) = p(θ k |θ−k), because the remaining variables are unchanged by
the sampling step, and (θ )−k = θ−k. By using p(θ) = p(θk|θ−k)p(θ−k), the acceptance
probability in the Metropolis–Hastings algorithm is obtained by
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A(θ , θ ) = p(θ )qk(θ |θ )

p(θ )qk(θ |θ)

= p(θ k |(θ )−k)p((θ )−k)p(θk|(θ )−k)

p(θk|θ−k)p(θ−k)p(θ k |θ−k)
= 1, (8.19)

where (θ )−k = θ−k is applied. This result indicates that the sampling steps in the
Metropolis–Hastings algorithm are always accepted.

Collapsed Gibbs sampling

Collapsed Gibbs sampling (Liu 1994, Griffiths & Steyvers 2004) is a method for using a
marginal conditional distribution where some of variables are integrated out, instead of
sampling. For example, suppose we have a set of variables �, the proposal distribution
in the Gibbs sampling is represented as follows:

p(θi|θ−i) =
∫

p(θi|θ−i,�)p(�)d�. (8.20)

p(�) is a prior distribution. This integral can be analytically solved when we use
a conjugate prior, and the following sections sometimes use a marginal conditional
distribution.

8.1.5 Slice sampling

One weakness in the Metropolis–Hastings algorithm is the sensitivity to step size. If this
is too small, the result has slow decorrelation due to random walk behavior, while if
it is too large, the sampling procedure is not efficient due to a high rejection rate. The
slice sampling approach (Neal 2003) provides an adaptive step size which is automati-
cally adjusted to fit the characteristics of the distribution. Again, it is required that the
unnormalized distribution p̃(θ) is available to be evaluated. Consider the univariate case.
Slice sampling is performed by augmenting θ with an additional variable u and drawing
samples from the joint space of (θ , u). The goal is to sample uniformly from the area
under the distribution given by

p̃(θ , u) =
{

1/Zp if 0 � u � p̃(θ ),
0 otherwise,

(8.21)

where Zp =
∫

p̃(θ )dθ . The marginal distribution of θ is given by∫
p̃(θ , u)du =

∫ p̃(θ)

0

1

Zp
du = p̃(θ )

Zp
= p(θ ). (8.22)

To carry out this scheme, we first sample from p(θ ) by sampling from p̃(θ , u) and
then neglecting the u values. Alternatively sampling θ and u can be achieved. Given the
value of θ , we evaluate p̃(θ ) and then sample u uniformly in the range 0 � u � p̃(θ ).
We then fix u and sample θ uniformly from the “slice” through the distribution defined
by {θ : p̃(θ ) > u}. As illustrated in Figure 8.4(a), for a given value θ (τ ), a value of u
is chosen uniformly in the region 0 � u � p̃(θ (τ )), which defines a slice through the

https://doi.org/10.1017/CBO9781107295360.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.009


8.2 Bayesian nonparametrics 345

Figure 8.4 Slice sampling over a distribution p(θ ) through: (a) finding the slice containing current sample
θ (τ ) with p̃(θ ) > u; and (b) detecting the region of interest with two end points θmin and θmax so
that we can uniformly draw a new sample θ (τ+1) within the slice. Adapted from Bishop (2006).

distribution, shown by solid horizontal lines. Because it is infeasible to sample directly
from a slice, a new sample of θ is drawn from a region θmin � θ � θmax, which contains
the previous value θ (τ ), as illustrated in Figure 8.4(b). We want the region to encompass
as much of the slice as possible so as to allow large moves in θ space while having as
little as possible of this region lying outside the slice, because this makes the sampling
less efficient.

We start with a region of width w which contains current sample θ (τ ) and then judge
if both end points are within the slice. If either end point is within the slice, the region is
extended in this direction by increments of value w until the end point falls outside the
region. A candidate value θ is then chosen uniformly from this region. If it lies inside
the slice, it forms new sample θ (τ+1). If it lies outside the slice, the region is shrunk such
that θ forms an end point. A new candidate point is drawn uniformly from this reduced
region until a value of θ is found that lies within the slice. When applying slice sampling
to multivariate distributions, we repeatedly sample each variable in turn in the manner
of Gibbs sampling based on a conditional distribution p(θi|θ−i).

8.2 Bayesian nonparametrics

The sampling methods mentioned in Section 8.1 are widely employed to infer the
Bayesian nonparametrics (BNP) which are now seen as a new trend in speech and
language processing areas where the data representation is a particular concern and
is extensively studied. The BNP learning aims to deal with the issue that probabilis-
tic methods are often not viewed as sufficiently expressive because of a long list
of limitations and assumptions on probability distribution and fixed model complex-
ity. It is attractive to pursue an expressive probabilistic representation with a less
assumption-laden approach to inference. We would like to move beyond the simple
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fixed-dimensional random variables, e.g., multinomial distributions, Gaussians, and
other exponential family distributions, and to mimic the flexibility in probabilistic rep-
resentations. BNP methods avoid the restrictive assumptions of parametric models by
defining distributions on function spaces.

Therefore, the stochastic process, containing an indexed collection of random vari-
ables, provides the flexibility to define probability distributions on spaces of probability
distributions. We relax the limitation of finite parameterizations and consider the mod-
els over infinite-dimensional objects such as trees, lists, and collections of sets. The
expressive data structures could be explored by computationally efficient reasoning and
learning through the so-called combinatorial stochastic processes (Pitman 2006). BNP
learning is accordingly developed from a Bayesian perspective by upgrading the pri-
ors in classic Bayesian analysis from parametric distributions to stochastic processes.
Prior distributions are then replaced by the prior process in BNP inference. The flexible
Bayesian learning and representation is conducted from the prior stochastic process to
the posterior stochastic process. BNP involves the combinatorics of sums and products
over prior and posterior stochastic processes and automatically learned model structure
from the observed data. The model selection problem could be tackled by BNP learning.

8.2.1 Modeling via exchangeability

Some of the foundation of Bayesian inference is addressed in this section. The concept
of exchangeability is critical in motivating BNP learning. Consider a probabilistic model
with an infinite sequence of random factors or parameters θ = {θ1, θ2, · · · } to be inferred
from observation data x = {x1, x2, · · · }, which could be either continuous such as the
speech features O or discrete such as the word labels W. We say that such a sequence is
infinitely exchangeable if the joint probability distribution of any finite subset of those
random variables is invariant to permutation. For any N, we have

p(θ1, θ2, · · · , θN) = p(θπ (1), θπ (2), · · · , θπ (N)), (8.23)

where π denotes a permutation. The assumption of exchangeability is weaker than that
of independence among random variables. This assumption often better describes the
data we encounter in realization of stochastic processes for BNP learning. De Finetti’s
theorem states that the infinite sequence is exchangeable if and only if for any N random
variables the sequence has the following property (Bernardo & Smith 2009):

p(θ1, θ2, · · · , θN) =
∫ N∏

i=1

p(θi|G)dP(G). (8.24)

There exists an underlying random measure G and a distribution function P such that
random variables θi are conditionally independent given G, which is not restricted to be
a finite-dimensional object.

The Pólya urn model is a probability model for sequentially labeling the balls in an
urn. Consider an empty urn and a countably infinite collection of colors. Randomly pick
a color according to some fixed distribution G0 and place a ball having the same color in
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the urn. For all subsequent balls, either choose a ball from the urn uniformly and return
that ball to the urn with another ball of the same color, or choose a new color from G0

and place a ball of that color k in the urn. We express this process mathematically by

p(θi = k|θ1, · · · , θi−1) ∝
{

ck if θj = k for some j ∈ {1, · · · , i− 1},
α0 otherwise,

(8.25)

where α0 > 0 is a parameter of the process and ck denotes the number of balls of color k.
Even though we define the model by considering a particular ordering of the balls, the
resulting distribution is independent of the order. It can be proved that the joint distribu-
tion p(θ1, θ2, · · · , θN) is written as a product of conditionals given in Eq. (8.25) and the
resulting expression is independent of the order of N random variables. The exchange-
ability in the Pólya urn model is confirmed. Because of this property, by De Finetti’s
theorem, the existence of an underlying probability measure G renders the ball colors
conditionally independent. This random measure corresponds to a stochastic process
known as the Dirichlet process, which is introduced in Section 8.2.2.

The property of exchangeability is essential for an MCMC inference procedure. Let
us consider the joint distribution of θ and x given by

p(θ , x) = p(θ1, θ2, · · · , θN)
N∏

i=1

p(xi|θi), (8.26)

which is viewed as the product of a prior in the first term and a likelihood function in
the second term. The first term p(θ1, θ2, · · · , θN) is modeled by the Pólya urn marginal
distributions. In particular, our goal is to sample θ from observation data x based on the
Gibbs sampling. The problem is to sample a particular component θi while all of the
other components are fixed. Because the joint distribution of {θ1, · · · , θN} is invariant
to permutation, we can freely permute the vector to move θi to the end of the list. The
prior probability of the last component given all of the preceding components is given
by the urn model as given in Eq. (8.25). We multiply each of the distributions by the
likelihood function p(xi|θi) and integrate with respect to θi. We assume that the prior
measure G0 and the likelihood function are conjugate so that the integral can be done
in closed form. For each component, the derived result is the conditional distribution
of θi given the other components and given xi. This is done for different components
{θ1, · · · , θN} and the process iterates. This link between exchangeability and an efficient
inference algorithm is important for BNP learning.

In addition, it is crucial to realize the Pólya urn model for Bayesian speech and lan-
guage processing over a speech and text corpus. The ball means a word wi or a feature
vector ot in the corpus and the ball color indicates the cluster label of this word or feature
vector. This Pólya urn model defines a distribution of acoustic features or word labels
which is not fixed in dimensionality and can be used to induce a distribution on partitions
or clusterings. The distribution on partitions is known as the Chinese restaurant process
(Aldous 1985), which is addressed in Section 8.2.4. The Chinese restaurant process and
the Pólya urn model are viewed as the essentials of the BNP model for clustering where
the random partition provides a prior on clusterings and the color associated with a cell
can be represented by a distribution associated with a given cluster.
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8.2.2 Dirichlet process

The Dirichlet process (DP) (Ferguson 1973) plays a crucial role in BNP learning. It is a
stochastic process for a random probability measure G over a measurable space �,

G ∼ DP(α0, G0), (8.27)

such that, for any finite measurable partition (A1, A2, · · · , Ar), the random vector
(G(A1, · · · , G(Ar)) is distributed as a finite-dimensional Dirichlet distribution with
parameters (α0G0(A1), · · · ,α0G0(Ar)), i.e.

(G(A1, · · · , G(Ar)) ∼ Dir(α0G0(A1), · · · ,α0G0(Ar)), (8.28)

with two parameters, a positive scaling parameter or concentration parameter, α0 > 0,
and a base probability measure, G0 ∈ �. This process is a measure of measures over
space � where G(�) = 1. To realize the Dirichlet process in Eq. (8.27), an infinite
sequence of points {φk} is drawn independently from the base probability measure G0

so that the probability measure of the process is established by

G =
∞∑

k=1

βkδφk (8.29)

with probability 1 (Sethuraman 1994). In Eq. (8.29), δφk is an atom or a unit mass at the
point φk and {βk} are the random weights which depend on the concentration parameter
α0. Note that the Dirichlet process G is random in two ways. One random process is for
weights βk while the other is for locations φk. We can say that Dirichlet process G in
Eq. (8.29) has the Dirichlet marginals as given in Eq. (8.28). According to De Finetti’s
theorem, the DP is seen as the De Finetti mixture distribution underlying the Pólya urn
model as addressed in Section 8.2.1. DP can be presented from the perspectives of the
stick-breaking construction, the Pólya urn scheme, and a limit of finite mixture models
which is detailed in Sections 8.2.3, 8.2.4, and 8.2.5 respectively.

8.2.3 DP: Stick-breaking construction

The stick-breaking construction for DP was presented by Sethuraman (1994). In general,
the DP and the stick-breaking process (SBP) are essential tools in BNP. Consider the
stick-breaking weights {βk}∞k=1 on a countably infinite set. We want to find a distribution
of the non-negative mixture weights β1,β2, · · · having the property

∞∑
k=1

βk = 1. (8.30)

One solution to this problem is provided by a procedure known as “stick-breaking.”
Considering a unit-length stick, we independently draw a proportion β ′k in the kth break
from a Beta distribution with a concentration parameter α0:

β ′k|α0 ∼ Beta(1,α0) k = 1, 2, · · · . (8.31)
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Figure 8.5 The stick-breaking process.

Each break decides a proportion β ′k while the proportion of the remaining stick is 1−β ′k.
The mixture weight of the first component is β1 = β ′1 and that of the kth component is
determined by

βk = β ′k
k−1∏
l=1

(1− β ′l ) k = 1, 2, · · · . (8.32)

Under this SBP, it is straightforward to show the property of mixture weights that sum
up to one with probability one. Figure 8.5 illustrates an infinite sequence of segments βk

from SBP. Let us define an infinite sequence of independent random variables {βk}∞k=1
and {φk}∞k=1 where

φk|G0 ∼ G0. (8.33)

Then, the probability measure G defined in Eq. (8.29) can be shown to be the measure
distributed according to DP(α0, G0) (Sethuraman 1994). We may interpret the sequence
β = {βk}∞k=1 as a random probability measure on the positive integers. This measure is
formally denoted by the GEM distribution (Pitman 2002)

β ∼ GEM(α0). (8.34)

8.2.4 DP: Chinese restaurant process

The second perspective on the DP is provided by the Pólya urn scheme (Blackwell &
MacQueen 1973) showing that the draws from DP are both discrete and exhibit a clus-
tering property. Let θ1, θ2, · · · be a sequence of independently and identically distributed
(iid) random factors or parameters drawn from G for individual observations x1, x2, · · ·
under some distribution function. The probability model over the infinite sequence is
written as

θi|G ∼ G

xi|θi ∼ p(xi|θi) for each i. (8.35)

The factors θ1, θ2, · · · are conditionally independent given G, and hence are exchange-
able. Consider the successive conditional distributions of θi of xi given the previous
factors θ1, · · · , θi−1 of observations x1, · · · , xi−1, where G has been integrated out. It
was shown that these conditional distributions have the following form (Blackwell &
MacQueen 1973):
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θi|θ1, · · · , θi−1,α0, G0 ∼
i−1∑
l=1

1

i− 1+ α0
δθl +

α0

i− 1+ α0
G0. (8.36)

We can interpret the conditional distributions as a simple urn model where a ball of
a distinct color is associated with each atom δθl . The balls are drawn equiprobably or
uniformly. As seen in the second term of Eq. (8.36), a new atom is created by drawing
from G0 with probability proportional to α0. A ball of new color is added to the urn.
Equation (8.36) means that θi has a positive probability of being equal to one of the
previous draws θ1, · · · , θi−1. This process results in a reinforcement effect: the more
often a point is drawn, the more probable it is to be drawn in the future. To make the
clustering more explicitly, we introduce a new set of variables that represent distinct
values of atoms. Let φ1, · · · ,φK denote the distinct values taken from previous factors
θ1, · · · , θi−1 and ck be the number of customers or values θi′ that are sitting at or are
associated with φk of table or cluster k. Equation (8.36) is re-expressed by

θi|θ1, · · · , θi−1,α0, G0 ∼
K∑

k=1

ck

i− 1+ α0
δφk +

α0

i− 1+ α0
G0. (8.37)

From this re-expression, we find that the Pólya urn scheme produces a distribution
on partitions which is closely related to the one using a different metaphor called the
Chinese restaurant process (CRP) (Aldous 1985). The metaphor of CRP is addressed
as follows. Consider a Chinese restaurant with an unbounded number of tables. Each θi

corresponds to a customer xi who enters the restaurant. The distinct values φk correspond
to the tables at which the customers sit. The ith customer sits at the table indexed by φk

with probability proportional to the number of customers ck who are already seated there
(in this case we set θi = φk), or sits at a new table with probability proportional to α0

(in this case, we increment K, draw φK ∼ G0, and set θi = φK). Figure 8.6 shows the
scenario of the CRP where the current customer θ11 either chooses an occupied table
from {φ1, · · · ,φ4} or a new table φnew according to

p(occupied table k|previous customers) = ck

i− 1+ α0
,

p(next unoccupied table|previous customers) = α0

i− 1+ α0
. (8.38)

Figure 8.6 The Chinese restaurant process.
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The CRP probability model in Eq. (8.38) is closely related to the Pólya urn model in
Eq. (8.25).

8.2.5 Dirichlet process mixture model

One of the most important applications of the DP is to explore the nonparametric prior
over the parameters of a mixture model. The resulting model is referred to as the DP
mixture model (Antoniak 1974). Consider the probability model of an infinite sequence
of observations x1, x2, · · · in Eq. (8.35), with graphical representation as in Figure 8.7(a).
The probability measure G can be represented by using a stick-breaking construction.
The factors θi take on values φk with probability βk. Here, an indicator value zi is
introduced to reveal the positive integer value or cluster index for factor θi, and it is
distributed according to β. A DP mixture model can be represented by the following
conditional distributions:

β|α0 ∼ GEM(α0),

zi|β ∼ β,

φk|G0 ∼ G0,

xi|zi, {φk}∞k=1 ∼ p(xi|φzi). (8.39)

Therefore, we have the mixture model G =∑∞
k=1 βkδφk and θi = φzi .

Alternatively, the DP mixture model can be derived as the limit of a sequence of
finite mixture models where the number of mixture components is taken to infinity
(Neal 1992). This limiting process provides the third perspective on DP. Suppose that
we have K mixture components. Let β = {β1, · · · ,βK} denote the mixture weights.
In the limit K → ∞, the vectors β are closely related and are equivalent up to a ran-
dom size-biased permutation. We use a Dirichlet prior on β with symmetric parameters
(α0/L, · · · ,α0/L). We thus have the following model:

Figure 8.7 (a) Dirichlet process mixture model; (b) hierarchical Dirichlet process mixture model.
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β|α0 ∼ Dir(α0/L, · · · ,α0/L),

zi|β ∼ β,

φk|G0 ∼ G0,

xi|zi, {φk}Kk=1 ∼ p(xi|φzi). (8.40)

The corresponding mixture model GK =∑K
k=1 βkδφk was shown to have the property∫

f (θ )dGK(θ ) −→
∫

f (θ )dG(θ ), (8.41)

as K → ∞ for every measurable function f (·). The marginal distribution of the
observations x1, · · · , xn approaches that using a DP mixture model.

8.2.6 Hierarchical Dirichlet process

The spirit of the graphical model based on directed graphs, as mentioned in Section 2.2,
is mainly from that of hierarchical Bayesian modeling, while the graphical model lit-
erature has focused almost exclusively on parametric hierarchies where each of the
conditionals is a finite-dimensional distribution. Nevertheless, it is possible to build hier-
archies in which the components are stochastic processes. We illustrate how to do this
based on the Dirichlet process.

In particular, we are interested in finding solutions to the problems in which the
observations are organized into groups, where the observations are assumed to be
exchangeable both within each group and across groups. For example, in document
representation, the words in each document in a text corpus are associated with the data
in each group from a set of grouped data. We want to discover the structures of words
from a set of training documents. It is important to find the clusterings of word labels
for data representation. Let j index the groups or documents and i index the observations
or words within each group. We assume that xj1, xj2, · · · are exchangeable within each
group j and also between groups. The group data xj = {xj1, xj2, · · · } in an infinite set of
groups x1, x2, · · · are exchangeable.

Assuming that each observation is drawn independently from a mixture model, each
observation xji is associated with a mixture component k. Let θji denote a parameter or
factor specifying the mixture component φk associated with the observation xji. The fac-
tors θji are not generally distinct. Let p(xji|θji) denote the distribution of observation xji

given the factor θji. Let Gj denote a distribution for the factors θ j = {θj1, θj2, · · · } asso-
ciated with group j. Due to exchangeability, the factors are conditionally independent
given Gj. The probability model for this stochastic process is expressed by

θji|Gj ∼ Gj,

xji|θji ∼ p(xji|θji) for each j and i. (8.42)

The hierarchical Dirichlet process (HDP) (Teh et al. 2006) was proposed to conduct
BNP learning of grouped data, in which each group is associated with a mixture model
and we wish to link these mixture models. An HDP is a nonparametric prior distribution
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over a set of random probability measures. The process defines a set of probability mea-
sures Gj, one for each group j, and a global probability measure G0 shared for different
groups. The nonparametric priors in HDP are given by the following hierarchy:

G0|γ , H ∼ DP(γ , H),

Gj|α0, G0 ∼ DP(α0, G0) for each j. (8.43)

The prior random measure of jth group Gj is a DP with a shared base measure G0

for grouped data which is itself drawn from the DP with a base measure H. Here, the
hyperparameters γ and α are the concentration parameters and H provides the prior
distribution for the factors θji. Basically, the distribution G0 varies around the prior H
with variations governed by γ while the distribution Gj over the factors in the jth group
deviates from G0 with variations controlled by α0. Analogous to the DP mixture model
mentioned in Section 8.2.5, HDP is feasible to construct the HDP mixture model as
shown graphically in Figure 8.7(b). The HDP mixture model is expressed by:

G0|γ , H ∼ DP(γ , H),

Gj|α0, G0 ∼ DP(α0, G0) for each j,

θji|Gj ∼ Gj,

xji|θji ∼ p(xji|θji) for each j and i. (8.44)

We can see that this model achieves the goal of sharing clusters across groups by
assigning the same parameters or factors to those observations. That is, if θji = θji′ , the
observations xji and xji′ belong to the same cluster. The equality of factors is possible
because both θji and θji′ are possibly drawn from Gj, which is a discrete measure over a
measurable partition (A1, A2, · · · ). Since Gj from different groups shares the atoms from
G0, the observations in different groups j can be assigned to the same cluster. In what
follows, we present the realization of the HDP from the perspectives of a stick-breaking
construction and a Chinese restaurant process.

8.2.7 HDP: Stick-breaking construction

Using a stick-breaking construction, the global measure G0 and the individual measure
Gj in HDP are expressed by the mixture models with the shared atoms {φk}∞k=1 but
different weights β = {βk}∞k=1 and π j = {πjk}∞k=1, respectively, as given by:

G0 =
∞∑

k=1

βkδφk ,

Gj =
∞∑

k=1

πjkδφk , (8.45)

where atom φk is drawn from base measure H and weights β are drawn from the GEM
distribution β ∼ GEM(γ ). Note that the weights π j are independent given β because
the Gjs are independent given G0.
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Let (A1, · · · , Ar) denote a measurable partition and Kr = k : φk ∈ Al for l = 1, · · · , r.
Here, (K1, · · · , Kr) is a finite partition of the positive integers. For each group j, we have

(Gj(Ai), · · · , Gj(Ar))

∼ Dir(α0G0(A1), · · · ,α0G0(Ar))

⇒
⎛⎝∑

k∈K1

πjk, · · · ,
∑
k∈Kr

πjk

⎞⎠
∼ Dir

⎛⎝α0

∑
k∈K1

βk, · · · ,α0

∑
k∈Kr

βk

⎞⎠
⇒ π j ∼ DP(α0, β). (8.46)

Hence, each π j is independently distributed according to DP(α0, β). The HDP mixture
model is then represented by:

β|γ ∼ GEM(γ ),

π j|α0, β ∼ DP(α0, β),

zji|π j ∼ π j,

φk|H ∼ H,

xji|zji, {φk}∞k=1 ∼ p(xji|φzji). (8.47)

We may further show the explicit relationship between the elements of β and π j. The
stick-breaking construction for DP(γ , H) defines the variables βk as

β ′k ∼ Beta(1, γ ),

βk = β ′k
k−1∏
l=1

(1− β ′l ). (8.48)

Also, the stick-breaking construction for a probability measure π j ∼ DP(α0, β) of group
j is performed by

π ′jk ∼ Beta

⎛⎝α0βk,α0

∞∑
l=k+1

βl

⎞⎠
= Beta

(
α0βk,α0

(
1−

k∑
l=1

βl

))
,

πjk = π ′jk
k−1∏
l=1

(1− π ′jl). (8.49)

This completes the stick-breaking construction for the HDP.
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Figure 8.8 A Chinese restaurant franchise containing three restaurants (rectangles) with an infinite number
of tables (circles) and dishes {φk}∞k=1. The term θji denotes the ith customer in restaurant j, and
ψjt is the indicator of a dish on the tth table of restaurant j. Different dishes φ1, φ2, and φ3 are
marked by different shading patterns.

8.2.8 HDP: Chinese restaurant franchise

The Chinese restaurant process for a DP is further extended to the Chinese restaurant
franchise for an HDP, which allows for multiple restaurants sharing a set of dishes,
as depicted in Figure 8.8. The metaphor is as follows. There is a restaurant franchise
which shares the menu across restaurants. At each table of each restaurant, one dish is
ordered from the menu by the first customer who sits there. This dish is shared among
all customers sitting at that table. Different tables in different restaurants can serve the
same dish. In this scenario, the restaurants correspond to the groups while the customers
correspond to the factors θji of observations xji. Let φ1, · · · ,φK denote the dishes in a
global menu which are drawn from H. We introduce the variable, ψjt, that indicates the
dish served at table t in restaurant j. In this restaurant franchise, we first consider the
conditional distribution for a customer θji, given the previous customers θj1, · · · , θj,i−1

in restaurant j, and G0, where the DP Gj is integrated out. From Eq. (8.37), we obtain

θji|θj1, · · · , θj,i−1,α0, G0 ∼
mj·∑
t=1

cjt·
i− 1+ α0

δψjt +
α0

i− 1+ α0
G0. (8.50)

The notation cjtk denotes the number of customers in restaurant j at table t eating dish
k. Marginal count is represented by dot. Thus, cjt· denotes the number of customers in
restaurant j at table t. The notation mjk means the number of tables in restaurant j serving
dish k. Thus, mj· represents the number of tables in restaurant j. This conditional is a
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mixture or a draw, which can be obtained by drawing from the terms on the right-hand-
side of Eq. (8.50) with the probabilities given by the corresponding mixture weights for
the occupied tables and an unoccupied table. If a term in the first summation is chosen,
we increment cjt· and set θji = ψjt. If the second term is chosen, we increment mj·, draw
ψjmj· ∼ G0 and set θji = ψjmj· .

Next, we proceed to integrate out G0, which is a DP, and apply Eq. (8.37) again to
find the conditional distribution of a factor ψjt given the previous factors in the different
restaurants:

ψjt|ψ11,ψ12, · · · ,ψ21, · · · ,ψj,t−1, γ , H ∼
K∑

k=1

m·k
m·· + γ

δφk +
γ

m·· + γ
H. (8.51)

If we draw ψjt by choosing the term in the summation on the right-hand-side of
Eq. (8.51), we set ψjt = φk. If we choose the second term, we increment K, draw a
new φK ∼ H and set ψjk = φK . It is meaningful that the mixture probability of the
first term is proportional to m·k, which represents the number of tables serving dish k,
while the probability of the second term is proportional to the concentration parameter
γ of DP G0. This completes the HDP implementation based on the Chinese restaurant
franchise. To obtain samples θji for each j and i, we first draw θji from Eq. (8.50). If a
new sample from G0 is needed, we use Eq. (8.51) to obtain a new sample ψjt and set
θji = ψjt.

Moreover, the HDP can be derived from the perspective of infinite limit over the
finite mixture models. This is done by considering the collection of finite mixture mod-
els where L-dimensional β and π j are used as the global and group-dependent mixing
probabilities, respectively. The HDP finite mixture model is accordingly expressed by

β|γ ∼ Dir(γ /L, · · · , γ /L),

π j|α0, β ∼ Dir(α0β),

zjiπ j ∼ π j,

φk|H ∼ H,

xji|zji, {φk}Lk=1 ∼ p(xji|φzji). (8.52)

It can be shown that the limit of this model as L → ∞ approaches the HDP mixture
model. The parametric hierarchical prior for β and π in Eq. (8.52) is also seen as the
hierarchical Dirichlet model, which has been applied for language modeling (MacKay
& Peto 1995), as addressed in Section 5.3.

8.2.9 MCMC inference by Chinese restaurant franchise

The MCMC sampling schemes have been developed for inference of the HDP mixture
model. A straightforward Gibbs sampler based on the Chinese restaurant franchise can
be implemented. To do so, the posterior probabilities for drawing tables t = {tji} and
dishes k = {kjt} should be determined. Let tji be the index of the factor ψjt associated
with θji, and let kjt be the index of φk associated with ψjt. In the Chinese restaurant
franchise, the customer i in restaurant j sits at table tji, whereas table t in restaurant j
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serves dish kjt. Let x = {xji}, xjt = {xji, all i with tji = t}, zzji , m = mjk and φ =
{φ1, · · · ,φK}. Notations k−jt = k\kjt and t−ji = t\tji denote the vectors k and t with

the exception of components kjt and tji, respectively, and c−ji
jt· denotes the number of

customers in restaurant j who enjoy the dish ψjt, but leaving out customer xji. Similarly,
we have x−ji = x\xji and x−jt = x\xjt. The concentration parameters γ and α0 of DPs
are assumed to be fixed. When implementing HDP using MCMC sampling, we need
to calculate the conditional distribution of xji under mixture component k given all data
samples except xji,

p(xji|x−ji, k) =
∫

p(xji|φk)
∏

j′i′ �=ji,zj′ i′=k p(xj′i′ |φk)h(φk)dφk∫ ∏
j′i′ �=ji,zj′ i′=k p(xj′i′ |φk)h(φk)dφk

. (8.53)

Here, h(φk) is a prior distribution from H and is conjugate to the likelihood p(x|φk).
We can integrate out the mixture component parameter φk in closed form. Similarly
to Eq. (8.53), the conditional distribution p(xjt|x−jt, k) can be calculated by using xjt,
the customers at restaurant j sitting at table t. In what follows, we derive the posterior
probabilities for sampling tables tji and dishes kjt which are then used to reconstruct θjis
and ψjts based on the φks. The property of exchangeability is employed in Eqs. (8.50)
and (8.51) for θjis and ψjts, or equivalently for tjis and kjts, respectively.

Sampling t: We want to calculate the conditional distribution of tji given the rest of
variables t−ji. This conditional posterior for tji is obtained by combining the conditional
prior for tji with the likelihood of generating xji. Basically, the likelihood function due to
xji given previously occupied table t is expressed by p(xji|x−ji, k), as shown in Eq. (8.53).
The likelihood function for a new table tji = tnew can be calculated by integrating out
all possible values of kjtnew using Eq. (8.51):

p(xji|t−ji, tji = tnew, k)

=
K∑

k=1

m·k
m·· + γ

p(xji|x−ji, k)+ γ

m·· + γ
p(xji|x−ji, knew), (8.54)

where p(xji|x−ji, knew) is a prior density of xji given by

p(xji) =
∫

p(xji|φ)h(φ)dφ. (8.55)

According to Eq. (8.50), the conditional prior probability of taking a previously occu-
pied table tji = t is proportional to c−ji

jt· , while the probability of taking a new table
t = tnew = mj· + 1 is proportional to α0. Thus, the conditional posterior probability for
sampling table tji is derived from

p(tji = t|t−ji, x, k)

∝
{

c−ji
jt· · p(xji|x−ji, kjt) if t previously occupied,
α0 · p(xji|t−ji, tji = tnew, k) if t = tnew.

(8.56)

Sampling k: When the sampled table is a new one, tji = tnew, we need to further
order a new dish kjtnew from the global menu. This is done according to the conditional
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posterior probability, which is combined from a conditional prior for kjt and a likelihood
function due to xji. The conditional posterior probability is then derived from

p(kjtnew = k|t, x, k−jtnew )

∝
{

m·k · p(xji|x−ji, k) if k previously ordered,
γ · p(xji|x−ji, knew) if k = knew. (8.57)

Because changing kjt actually changes the component membership of all customers xjt

at table t, we can calculate the conditional posterior probability of ordering dish kjt = k
from

p(kjt = k|t, x, k−jt)

∝
{

m−jt
·k · p(xjt|x−jt, k) if k previously ordered,

γ · p(xjt|x−jt, knew) if k = knew.
(8.58)

where the likelihood function p(xjt|x−jt, k) due to the customers xjt at table t of restaurant
j is used.

8.2.10 MCMC inference by direct assignment

In the first MCMC procedure based on the Chinese restaurant franchise representation,
the observations are first assigned to some table tji, and the tables are then assigned to
some mixture component kjt. This indirect association with mixture components could
be realized by directly assigning mixture components through a new variable zji which is
the same as kjtji . The variable zji indicates the index of a mixture component correspond-
ing to the customer xji. Using this direct assignment, the tables are represented only in
terms of the number of tables mjk. A bookkeeping scheme is involved. We would like to
instantiate and sample from G0 by using the factorized posterior on G0 across groups.
To do so, an explicit construction for G0 ∼ DP(γ , H) is expressed in the form of

β = (β1, · · · ,βK ,βu) ∼ Dir(m·1, · · · , m·K , γ ),

Gu ∼ DP(γ , H),

p(φk|z) ∝ h(φk)
∏

ji:zji=k

p(xji|φk, zji),

G0 =
K∑

k=1

βkδφk + βuGu, (8.59)

which can be also expressed as

G0 ∼ DP

(
γ + m··,

γH +∑K
k=1 m·kδφk

γ + m··

)
. (8.60)

From the expressions in Eq. (8.59), we can see that the values m·k and γ in the first
MCMC inference based on the Chinese restaurant franchise are replaced by βk and βu in
the second MCMC inference based on the respective direct assignments. In the MCMC
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inference based on direct assignment, we need to sample the indicators of mixture com-
ponents z = {zij} and the numbers of tables m = {mjk}, according to the corresponding
posterior probabilities which are provided in what follows.

Sampling z: The idea of sampling z is to group together the terms associated with
each k in Eqs. (8.54) and (8.56) so as to calculate the conditional posterior probability:

p(zji = k|z−ji, x, m, β)

=
{

(c−ji
j·k + α0βk)p(xji|x−ji, k) if k previously occupied,

α0βup(xji|x−ji, knew) if k = knew.
(8.61)

Note that we have combined Eqs. (8.54) and (8.56) based on a new variable zji and have
replaced m·k with βk and γ with βu. To fulfil the sampling of z in Eq. (8.61), we have to
further sample m and β.

Sampling m: According to the direct assignment of data items to mixture components
z, it is sufficient to sample m and β in place of t and k. To find the conditional distribu-
tion of mjk, we consider the conditional distribution of tji under the condition kjtji = zji.
From Eq. (8.50), the prior probability that data item xji is assigned to some table t such
that kjt = k is

p(tji = t|kjt = k, t−ji, k, β) ∝ c−ji
jt· , (8.62)

while the probability that is assigned to a new table under mixture component k is

p(tji = tnew|kjtnew = k, t−ji, k, β) ∝ α0βk. (8.63)

These probabilities in a Gibbs sampler have the equilibrium distribution, which is
the prior probability over the assignment of cj·k observations to components in a DP
with concentration parameter α0βk. The corresponding distribution over the number of
mixture components is the desired conditional distribution of mjk which is written as
(Antoniak 1974, Teh et al. 2006):

p(mjk = m|z, m−jk, β) = �(α0βk)

�(α0βk + cj·k)
s(cj·k, m)(α0βk)m. (8.64)

Here, s(c, m) denotes the unsigned Stirling numbers of the first kind, which are
calculated from

s(c+ 1, m) = s(c, m− 1)+ cs(c, m), (8.65)

with initial conditions s(0, 0) = s(1, 1) = 1, s(c, 0) = 0 for c > 0 and s(c, m) = 0 for
m > c.

Sampling β: Having the samples m and the fixed hyperparameter γ , the βk parameters
are sampled from a Dirichlet distribution,

(β1, · · · ,βK ,βu)|m, γ ∼ Dir(m·1, · · · , m·K , γ ). (8.66)

This completes the MCMC inference for the HDP, based on the scheme of direct assign-
ment of mixture components. It was shown that MCMC inference with the scheme of
direct assignment is better than the scheme using the Chinese restaurant franchise in
terms of convergence speed.
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8.2.11 Relation of HDP to other methods

In general, HDP can be seen as a building block for a variety of speech and language pro-
cessing applications. An instance of application is the latent Dirichlet allocation (LDA)
model (Blei et al. 2003), where each entity is associated not with a single cluster but
with a set of clusters. In LDA terminology, each document is associated with a set of
topics. As described in Section 7.6, an LDA model is constructed as a Bayesian paramet-
ric model with a fixed number of topics. HDP relaxes the limitation of a finite dimension
in latent topic space in LDA and builds the flexible topic model with infinite clusters or
topics. Multiple DPs are used to capture the uncertainty regarding the number of mixture
components. HDP is viewed as a BNP version of an LDA model. The topics or clusters
φk for the jth document are drawn from the nonparametric prior Gj, while the measures
Gj are drawn from a DP with a base measure G0. This allows the same topics to appear
in multiple documents.

There are some other ways to connect multiple DPs. One idea is based on the nested
Dirichlet process (NDP) (Rodriguez, Dunson & Gelfand 2008), which was proposed to
model a collection of dependent distributions by using random variables as atoms at the
higher level and random distributions as atoms at the lower level. This combinatorial
process borrows information across DPs while also allowing DPs to be clustered. The
simultaneous multilevel clustering can be achieved by such a nested setting. NDP is
characterized by

Gj ∼ Q for each j,

Q ∼ DP(α0, DP(γ , H)). (8.67)

Using HDP, the distributions {Gj} of different j share the same atoms but assign them
with different weights. However, using NDP, these distributions may have completely
different atoms and weights. By marginalizing over the DPs, the resulting urn model
is closely related to the nested Chinese restaurant process (nCRP) (Blei, Griffiths &
Jordan 2010), which is known as a tree model of Chinese restaurants. The scenario of
nCRP is addressed as follows. A customer enters the tree at a root Chinese restaurant
and sits at a table. This table points to another Chinese restaurant, where the customer
goes to dine the next evening. The construction is done recursively. Thus, a given cus-
tomer follows a path through the tree of restaurants. Through BNP inference of topic
hierarchies, a hierarchical topic model is established (Blei, Griffiths, Jordan et al. 2004).
Each document or customer chooses a tree path of topics while each word in the docu-
ment is represented by a mixture model of hierarchical topics along this tree path. In
the following sections, we address some BNP methods which have been successfully
applied for building the speaker diarization system and for developing the solutions of
acoustic and language models to speech recognition systems.

8.3 Gibbs sampling-based speaker clustering

This section describes an application of MCMC techniques for speech features. We
focus on speaker clustering, as discussed in Section 6.6.2 based on a Bayesian
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information criterion (BIC). Section 6.6.2 models a speaker cluster with a single
Gaussian where we assume a stationary property for speech features within a segment.
However, this is actually not correct since it has various temporal patterns based on
linguistic variations, speaking styles, and noises. Therefore, we model these short-term
variations with a GMM, while speaker cluster characteristics are modeled by a mixture
of GMMs to consider the multi-scale properties of speech dynamics (Moraru, Meignier,
Besacier et al. 2003, Valente & Wellekens 2004b, Wooters, Fung, Peskin et al. 2004,
Meignier, Moraru, Fredouille et al. 2006).

An important aspect of this speech modeling technique is the consideration of the
multi-scale property in dynamics within a probabilistic framework. For example, PLSA
(in Section 3.7.3) and LDA (in Section 7.6) are successful approaches in terms of the
multi-scale property. They deal accurately with two types of scales, namely, word-level
and document-level scales (i and m in the complete data likelihood function of the
latent topic model in Eq. (3.293)), based on a latent topic model (Hofmann 1999a). The
approach discussed in this section is inspired by these successful approaches, and aims
to apply a fully Bayesian treatment to the multi-scale properties of speech dynamics.

There have been several studies on Bayesian speech modeling, e.g., by using max-
imum a-posteriori (MAP) in Chapter 4 or variational Bayesian (VB) approaches in
Chapter 7 for speech recognition (Gauvain & Lee 1994, Watanabe et al. 2004), speaker
verification (Reynolds et al. 2000), and speaker clustering (Valente & Wellekens 2004b).
While all of these approaches are based on the EM-type deterministic algorithm, this
section focuses on another method of realizing fully Bayesian treatment, namely sam-
pling approaches based on MCMC. The main advantage of the sampling approaches
is that they can avoid local optimum problems in addition to providing other Bayesian
advantages (mitigation of data sparseness problems and capability of model structure
optimization). While their heavy computational cost could be a problem in realization,
recent improvements in computational power and the development of theoretical and
practical aspects related to the sampling approaches allow us to apply them to practi-
cal problems (e.g., Griffiths & Steyvers (2004), Goldwater & Griffiths (2007), Porteous,
Newman, Ihler et al. (2008) in natural language processing). Therefore, the aim of this
work is to apply a sampling approach to speech modeling considering the multi-scale
properties of speech dynamics.

The following sections formulate the multi-scale GMM by utilizing a Gibbs sampling
approach. In this section, for its educational value, we first describe Gibbs sampling for
a standard GMM. Section 8.3.2 derives the marginal likelihood of the GMM, which
is used for deriving GMM Gibbs samplers in Section 8.3.3. Section 8.3.4 provides
the generative process and a graphical model of multi-scale GMM for speaker cluster-
ing. Based on the analytical results of GMM Gibbs sampling, Section 8.3.5 derives the
marginal likelihood of the multi-scale GMM, which is used for deriving Gibbs samplers
in Section 8.3.6.

8.3.1 Generative model

This section considers the two types of observation vector sequences. One is an
utterance- (or segment-) level sequence and the other is a frame-level sequence. Then, a
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D dimensional observation vector (e.g., MFCC) at frame t in utterance u is represented
as out ∈ R

D. A set of observation vectors in utterance u is represented as

Ou � {out ∈ R
D|t = 1, · · · , Tu}. (8.68)

Tu denotes the number of frames at an utterance u.
Next, we assume that the frame-level sequence is modeled by a GMM as usual, and

the utterance-level sequence is modeled by a mixture of these GMMs. Two kinds of
latent variables are involved in multi-scale GMM for each sequence: utterance-level
latent variable zu and frame-level latent variable vut. Utterance-level latent variables
may represent emotion, topic, and speaking style as well as speakers, depending on the
speech variation. The joint likelihood function of U observation vectors (O � {Ou|u =
1, · · · , U}) with the latent variable sequences (Z � {zu ∈ {1, · · · , S}|u = 1, · · · , U} and
V � {vut ∈ {1, · · · , K}|t = 1, · · · , Tu, u = 1, · · · , U}) can be expressed as follows:

p(O, Z, V|�) =
U∏

u=1

hzu

Tu∏
t=1

wzuvutN (out|μzuvut
, R−1

zuvut
), (8.69)

where hs ∈ [0, 1] denotes the utterance-level mixture weight, and wsk ∈ [0, 1] denotes
the frame-level mixture weight. The terms μsk ∈ R

D and Rsk ∈ R
D×D denote the mean

vector and precision matrix parameters of the Gaussian distribution, s and k denote
utterance-level and frame-level mixture indexes, respectively, and S and K denote the
number of speakers and the number of mixture components, respectively. Therefore, a
set of model parameters � is defined as

� � {hs, wsk, μsk, Rsk|s = 1, · · · , S, k = 1, · · · , K}. (8.70)

Note that this is almost equivalent to the following pdf of the GMM in Section 3.2.4:

p(O, V|�) =
T∏

t=1

wvtN (ot|μvt
, R−1

vt
). (8.71)

The next section first describes Gibbs sampling for the standard GMM.

8.3.2 GMM marginal likelihood for complete data

We assume a diagonal covariance matrix for the Gaussian distributions as usual, where
the d-d diagonal element of the precision/covariance matrix is expressed as rd/�d.
The following conjugate distributions are used as the prior distributions of the model
parameters:

p(�|�0) :

⎧⎨⎩
w ∼ Dir(φw),
μk ∼ N (μ0

k , (φμ)−1R−1
k ),

rkd ∼ Gam(φr, r0
kd),

(8.72)

where φw, μ0
k ,φμ, r0

kd,φr(� �0) are the hyperparameters. Dir(·) and Gam(·) denote
Dirichlet and gamma distributions in Appendices C.4 and C.11, respectively.
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In a Bayesian inference framework, we focus on the marginal likelihood for the
complete data. In the complete data case, all of the latent variables are treated as obser-
vations, i.e., the assignments of all the latent variables are hypothesized to be given in
advance. Then, p(vu = k|·) � δ(vu, k) return 0 or 1 based on the assignment information,
and the sufficient statistics of the GMM given all latent variables V can be represented
as follows: ⎧⎪⎪⎨⎪⎪⎩

γV ,k =∑t δ(vt, k),

γ
(1)
V ,k =∑t δ(vt, k)ot,

γ
(2)
V ,kd =∑t δ(vt, k)(otd)2.

(8.73)

The quantity γV ,k ∈ Z
+ is a count of frames assigned to k, and γ

(1)
V ,k and γ

(2)
V ,kd are

first-order and second-order sufficient statistics, respectively. We define a set of these
sufficient statistics as

�V ,k � {γV ,k, γ (1)
V ,k, γ (2)

V ,kd|k = 1, · · · , K, d = 1, · · · , D}. (8.74)

The subscript V would be omitted when it is obvious. Note that the statistics γk is a
positive discrete number while those appearing in the EM algorithm (ML in Eq. (3.153),
MAP in Eq. (4.93), and VB in Eq. (7.67)) are positive continuous values since the
occurrences of latent variables in the EM algorithm are expectation values based on
the posterior probabilities of latent variables.

Based on the sufficient statistics representation in Eq. (8.73), the complete data like-
lihood of Eq. (8.71) can be represented by using the product formula of the Kronecker
delta function in Eq. (A.4) (fb =∏a f δ(a,b)

a ) as follows:

p(O, V|�) =
K∏

k=1

T∏
t=1

(
wδ(vt ,k)

k N (ot|μk, R−1
k )
)δ(vt ,k)

=
K∏

k=1

(wk)γk

T∏
t=1

(
N (ot|μk, R−1

k )
)δ(vt ,k)

. (8.75)

Since the likelihood function is represented by the exponential distributions (multi-
nomial and Gaussian distributions), these parameters integrate out, and we can use
collapsed Gibbs sampling, as discussed in Section 8.1.4. The marginal likelihood for the
complete data, p(O, V|�0), is represented by the following expectations by substituting
Eqs. (8.72) and (8.75) into the following integration:

p(O, V|�0)

=
∫

p(O, V|�)p(�|�0)d�

=
(

E(w)

[
K∏

k=1

(wk)γk

])(
K∏

k=1

E(μk ,Rk)

[
T∏

t=1

(
N (ot|μk, R−1

k )
)δ(vt ,k)

])
. (8.76)

Note that this calculation is similar to those of the MAP auxiliary function in Sec-

tion 4.3.5 and variational lower bound in Section 7.3.4. For example, E(w)

[∏K
k=1(wk)γk

]
can be rewritten as
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E(w)

[
K∏

k=1

(wk)γk

]

=
∫

p({wk}Kk=1)
K∏

k=1

(wk)γk dwk

=
∫

exp

(
log
(
Dir({wk}Kk=1|{φw

k }Kk=1)
)+ K∑

k=1

γk log wk

)
K∏

k=1

dwk. (8.77)

This is the same as the MAP auxiliary function of Eq. (4.54), and by analogy, Eq. (8.77)
can be rewritten with the posterior distribution based equation in Eq. (4.54), as follows:

E(w)

[
K∏

k=1

(wk)γk

]

=
∫

exp

(
log
(

Dir({wk}Kk=1|{φ̃w
k }Kk=1)

)
+ log

(
CDir({φw

k }Kk=1)

CDir({φ̃w
k }Kk=1)

))
K∏

k=1

dwk,

(8.78)

where φ̃w
s is a posterior hyperparameter, which is defined as:

φ̃w
k � φw

k + γk. (8.79)

Therefore, the integral is finally solved as follows:

E(w)

[
K∏

k=1

(wk)γk

]
= CDir({φw

k }Kk=1)

CDir({φ̃w
k }Kk=1)

∫
Dir({wk}Kk=1|{φ̃w

k }Kk=1)
K∏

k=1

dwk

= CDir({φw
k }Kk=1)

CDir({φ̃w
k }Kk=1)

. (8.80)

Thus, the integration is calculated analytically, similarly to the calculation of the vari-
ational lower bound. The integral with respect to μk and Rk in Eq. (8.76) is also
analytically calculated by using Eq. (7.124). First, the expectation is rewritten as
follows:

E(μk ,Rk)

[
T∏

t=1

(
N (ot|μk, R−1

k )
)δ(vt ,k)

]

=
∫

exp

( D∑
d=1

log
(
N (μkd|μ̃kd, (φ̃μ

k rkd)−1)Gam2(rkd|r̃kd, φ̃r
k)
)

+
(
−γkD

2
log(2π )+ D

2
log

φμ

φ̃
μ
k

+ log
CGam2 (r0

kd,φr)

CGam2 (r̃kd, φ̃r
k)

))
dμkdRk

= exp

(
−γkD

2
log(2π )+ D

2
log

φμ

φ̃
μ
k

+ log
CGam2(r0

kd,φr)

CGam2(r̃kd, φ̃r
k)

)
, (8.81)
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where posterior hyperparameters φ̃μ
k , μ̃k, φ̃r

k , and r̃kd are defined as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̃
μ
k � φμ + γk,

μ̃k � φμμ0
k+γ

(1)
k

φ̃
μ
k

,

φ̃r
k � φr + γk,

r̃kd � r0
kd + γ

(2)
kd + φμ(μ0

kd)2 − φ̃
μ
k (μ̃kd)2.

(8.82)

Thus, we finally solve all integrals in Eq. (8.76) with use of concrete forms of the nor-
malization constants of the Dirichlet and gamma distributions in Appendices C.4 and
C.11, as follows:

p(O, V|�0)

= �(
∑

k φ
w
k )∏

k �(φw
k )

∏
k �(φ̃w

k )

�(
∑

k φ̃
w
k )

∏
k

(2π )−
γkD

2

(φμ)
D
2

(
�
(
φr

2

))−D
(∏

d
r0
kd
2

) φr

2

(φ̃μ
k )

D
2

(
�

(
φ̃r

k
2

))−D(∏
d

r̃kd
2

) φ̃r
k

2

. (8.83)

Below we summarize the posterior hyperparameters, which are obtained from the
hyperparameters of the prior distributions (�0) and sufficient statistics (Eq. (8.73)) as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃w
k = φw

k + γk,

φ̃
μ
k = φμ + γk,

μ̃k = φμμ0
k+γ

(1)
k

φ̃
μ
k

,

φ̃r
k = φr + γk,

r̃kd = r0
kd + γ

(2)
kd + φμ(μ0

kd)2 − φ̃
μ
k (μ̃kd)2.

(8.84)

The marginal likelihood obtained is quite similar to the model parameter part of the vari-
ational lower bound in Eq. (7.126), since both functions are obtained by integrating out
the Gaussian parameters for complete data likelihood. Based on the marginal likelihood
for these complete data, we can calculate the marginal conditional distribution of vt, as
shown below.

8.3.3 GMM Gibbs sampler

As discussed in Section 8.1.4, a collapsed Gibbs sampler can assign latent variables by
using the marginal conditional distribution. First, from the sum and product rules, the
marginal conditional distribution p(vt = k|O, V\t) is represented as follows:

p(vt = k|O, V\t) = p(O, V\t, vt = k)

p(O, V\t)
∝ p(O, V\t, vt = k|�0). (8.85)

Here, V\t indicates a set that does not include the tth frame element. Therefore, by
considering the normalization constant, the posterior probability can be obtained by
using Eq. (8.83) as follows:
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p(vt = k|O, V\t) = p(O, V\t, vt = k|�0)∑K
k′=1 p(O, V\t, vt = k′|�0)

= g(�̃V\t ,vt=k)∑K
k′=1 g(�̃V\t ,vt=k′ )

, (8.86)

where �̃V\t ,vt=k is a set of posterior hyperparameters computed given latent variables of

V\t, vt = k. Note that the denominators of �̃V\t ,vt=k′ have the same latent variable for all

frames except t. To compute �̃V\t ,vt=k′ , we first need to compute �V\t ,k, which is a set of
sufficient statistics for all frames except t as follows:

�V\t ,k :

⎧⎪⎪⎨⎪⎪⎩
γV\t ,k =∑t′={1,··· ,T}\t δ(vt′ , k),

γ
(1)
V\t ,k =∑t′={1,··· ,T}\t δ(vt′ , k)ot,

γ
(2)
V\t ,kd =∑t′={1,··· ,T}\t δ(vt′ , k)(otd)2.

(8.87)

From Eq. (8.73), �V\t ,k can be computed by simply subtracting the zeroth-, first-, and
second-order values of vt = k as:

�V\t ,k :

⎧⎪⎪⎨⎪⎪⎩
γV\t ,k = γk − δ(vt, k),

γ
(1)
V\t ,k = γ

(1)
k − δ(vt, k)ot,

γ
(2)
V\t ,kd = γ

(2)
kd − δ(vt′ , k)(otd)2.

(8.88)

Thus, �V\t ,vt=k′ can be obtained by simply adding the zeroth-, first-, and second-order
values of vt = k′ for all k′ as:

�V\t ,vt=k′ :

⎧⎪⎪⎨⎪⎪⎩
γV\t ,vt=k′ = γV\t ,k′ + δ(vt, k′),
γ

(1)
V\t ,vt=k′ = γ

(1)
V\t ,k′ + δ(vt, k′)ot,

γ
(2)
V\t ,vt=k′,d = γ

(2)
V\t ,k′d + δ(vt′ , k′)(otd)2.

for all k′ (8.89)

g(·) in Eq. (8.86) is defined as follows:

g(�̃k) � �(φ̃w
k )(φ̃μ

k )−
D
2

(
�

(
φ̃r

k

2

))D(∏
d

r̃kd

2

)− φ̃r
k

2

. (8.90)

This equation is obtained by canceling out the factors in the numerator and denominator
of Eq. (8.83). Thus, we obtain the Gibbs sampler, which assigns mixture component k
at frame t.

Note that if we use multinomial distributions in LDA instead of Gaussian distri-
butions, the numerator and denominator of the Gibbs sampler are further canceled
out (see Griffiths & Steyvers (2004)) based on the formula of the gamma function in
Appendix A.4. Actually, �(φ̃w

k ) in Eq. (8.90) can be similarly canceled out, while the
other factors cannot be canceled out. Therefore, the computational cost of the Gaussian-
based Gibbs sampler is large compared with LDA, since we need to compute Eq. (8.90)
for every k and every frame t.
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8.3.4 Generative process and graphical model of multi-scale GMM

Based on solution of GMM Gibbs sampling in the previous section, we consider the
Bayesian treatment of this multi-scale GMM for speaker clustering, which is an exten-
sion of GMM. For the conditional likelihood equation in Eq. (8.69), we again assume
a diagonal covariance matrix for the Gaussian distributions. We also assume that the
prior hyperparameters of the GMM parameters {wsk}sk, {μsk}sk, and {Rsk}sk for each s
are shared with the parameters of one GMM (universal background model assumption
(Reynolds et al. 2000)), which is used for speaker and speech recognition (subspace
GMM (Povey, Burget, Agarwal et al. 2010)). Then the following conjugate distributions
are used as the prior distributions of the model parameters:

p(�|�0) :

⎧⎪⎪⎨⎪⎪⎩
h ∼ Dir(φh),
ws ∼ Dir(φw),
μsk ∼ N (μ0

k , (φμ)−1R−1
sk ),

rskd ∼ Gam(φr, r0
kd),

(8.91)

where φh, φw, μ0
k ,φμ, r0

kd,φr(� �0) are the hyperparameters.
Based on the likelihood function and prior distributions, the generative process of

multi-scale GMM can be expressed in Algorithm 17. The corresponding graphical
model is shown in Figure 8.9. Now we have introduced multi-scale GMM, the following
sections derive a solution for multi-scale GMM based on Gibbs sampling.

Figure 8.9 Model of multi-scale Gaussian mixture model. The model deals with two time scales based on
frame t and utterance u.
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Algorithm 17 Generative process of multi-scale GMM

Require: �0

1: Draw h from Dir(φh)
2: for each utterance-level mixture component s = 1, · · · , S do
3: Draw ws from Dir(φw)
4: for each frame-level mixture component k = 1, · · · , K do
5: for each dimension d = 1, · · · , D do
6: Draw rskd from Gam(φr, r0

kd)
7: end for
8: Draw μsk from N (μ0

k , (φμ)−1R−1
sk )

9: end for
10: end for
11: for each utterance u = 1, · · · , U do
12: Draw zu from Mult (h)
13: for each frame t = 1, · · · , Tu do
14: Draw vut from Mult (wzu )
15: Draw out from N (μzuvut

, R−1
zuvut

)
16: end for
17: end for

8.3.5 Marginal likelihood for the complete data

Similarly to the GMM Gibbs sampler, we prepare p(vut = k|·) � δ(vut, k) given utter-
ance u, which returns 0 or 1 based on the assignment information. In addition, we also
prepare the assignment information of an utterance-level mixture with p(zu = s|·) �
δ(zu, s). The sufficient statistics of multi-scale GMM can be represented as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξs =∑u δ(zu, s),

γsk =∑u,t δ(zu, s)δ(vut, k),

γ
(1)
sk =∑u,t δ(zu, s)δ(vut, k)out,

γ
(2)
skd =∑u,t δ(zu, s)δ(vut, k)(outd)2.

(8.92)

Here ξs ∈ Z
+ is a count of utterances assigned to speaker cluster s, and γsk ∈ Z

+ is a
count of frames assigned to mixture component k in s. γ

(1)
sk and γ

(2)
skd are first-order and

second-order sufficient statistics, respectively.
Based on the sufficient statistics representation in Eq. (8.92), the complete data like-

lihood of Eq. (8.69) can be represented by using the product formula of the Kronecker
delta function in Eq. (A.4) (fb =∏a f δ(a,b)

a ) as follows:

p(O, Z, V|�)

=
S∏

s=1

U∏
u=1

(
hzu

K∏
k=1

Tu∏
t=1

(
wzuvutN (out|μzuvut

, R−1
zuvut

)
)δ(vut ,k)

)δ(zu,s)

=
S∏

s=1

(hs)
ξs

K∏
k=1

(wsk)γsk

U∏
u=1

Tu∏
t=1

(
N (out|μsk, R−1

sk )
)δ(zu,s)δ(vut ,k)

. (8.93)
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The marginal likelihood for the complete data, p(O, Z, V|�0), is represented by
the following expectations by substituting Eqs. (8.91) and (8.93) into the following
integration:

p(O, Z, V|�0)

=
∫

p(O, Z, V|�)p(�|�0)d�

= E(h)

[
S∏

s=1

(hs)
ξs

](
S∏

s=1

E(ws)

[
K∏

k=1

(wsk)γsk

])

×
(

S∏
s=1

K∏
k=1

E(μsk ,Rsk)

[
U∏

u=1

Tu∏
t=1

(
N (out|μsk, R−1

sk )
)δ(zu,s)δ(vut ,k)

])
. (8.94)

By following the derivations in Section 8.3.2, the expectations are calculated analyti-
cally. This section simply provides the analytical results of the expectations. By using

Eq. (4.45), E(h)

[∏S
s=1(hs)ξs

]
is solved as:

E(h)

[
S∏

s=1

(hs)
ξs

]
= CDir({φh

s }Ss=1)

CDir({φ̃h
s }Ss=1)

, (8.95)

where φ̃h
s is a posterior hyperparameter, which is defined as:

φ̃h
s � φh

s + ξs. (8.96)

The other integral with respect to ws in Eq. (8.94) is also calculated as follows:

E(ws)

[
K∏

k=1

(wsk)γsk

]
= CDir({φw

k }Kk=1)

CDir({φ̃w
sk}Kk=1)

, (8.97)

where φ̃w
sk is a posterior hyperparameter, which is defined as:

φ̃w
sk � φw

k + γsk. (8.98)

The integral with respect to μsk and Rsk in Eq. (8.94) is also analytically calculated as
follows:

E(μsk ,Rsk)

[
U∏

u=1

Tu∏
t=1

(
N (out|μsk, R−1

sk )
)δ(zu,s)δ(vut ,k)

]

= exp

(
−γskD

2
log(2π )+ D

2
log

φμ

φ̃
μ
sk

+ log
CGam2 (r0

kd,φr)

CGam2(r̃skd, φ̃r
sk)

)
, (8.99)

where posterior hyperparameters φ̃μ
sk, μ̃sk, φ̃r

sk, and r̃skd are defined as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̃
μ
sk � φμ + γsk,

μ̃sk � φμμ0
k+γ

(1)
sk

φ̃
μ
sk

,

φ̃r
sk � φr + γsk,

r̃skd � r0
kd + γ

(2)
skd + φμ(μ0

kd)2 − φ̃
μ
sk(μ̃skd)2.

(8.100)
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Thus, we finally solve all the integrals in Eq. (8.94) as follows:

p(O, Z, V|�0) = �(
∑

s φ
h
s )∏

s �(φh
s )

∏
s �(φ̃h

s )

�(
∑

s φ̃
h
s )

∏
s

�(
∑

k φ
w
k )∏

k �(φw
k )

∏
k �(φ̃w

sk)

�(
∑

k φ̃
w
sk)

×
∏
s,k

(2π )−
γskD

2

(φμ)
D
2

(
�
(
φr

2

))−D
(∏

d
r0
kd
2

) φr

2

(φ̃μ
sk)

D
2

(
�

(
φ̃r

sk
2

))−D(∏
d

r̃skd
2

) φ̃r
sk
2

. (8.101)

We summarize below the posterior hyperparameters, which are obtained from the
hyperparameters of the prior distributions (�0) and sufficient statistics (Eq. (8.92)) as
follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ̃h
s = φh

s + ξs,

φ̃w
sk = φw

k + γsk,

φ̃
μ
sk = φμ + γsk,

μ̃sk = φμμ0
k+γ

(1)
sk

φ̃
μ
sk

,

φ̃r
sk = φr + γsk,

r̃skd = r0
kd + γ

(2)
skd + φμ(μ0

kd)2 − φ̃
μ
sk(μ̃skd)2.

(8.102)

Based on the marginal likelihood for these complete data, we can calculate the marginal
conditional distribution of vut and zu, as shown below.

8.3.6 Gibbs sampler

We provide a collapsed Gibbs sampler p(vut = k|O, V\t, Z\u, zu = s) for a frame-
level mixture component k, which has similarities with the GMM Gibbs sampler
in Section 8.3.3. In addition, we also provide a collapsed Gibbs sampler p(vu,t =
k′|O, V\t, Z\u, zu = s) for utterance-level mixture component s, which is a result of
speaker clustering.

Frame-level mixture component

The Gibbs sampler assigns frame-level mixture component k at frame t by using the
following equation:

p(vut = k|O, V\t, Z\u, zu = s) ∝ p(O, V\t, vut = k, Z\u, zu = s)

∝ g(�̃V\t ,vut=k,Z\u,zu=s), (8.103)

where g(·) is defined as follows:

g(�̃sk) � �(φ̃w
sk)
(
φ̃
μ
sk

)−D
2

(
�

(
φ̃r

sk

2

))D (∏
d

r̃sd

2

)− φ̃r
sk
2

. (8.104)
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Algorithm 18 Gibbs sampling-based multi-scale mixture model.

1: Initialize �0

2: repeat
3: for u = shuffle (1 · · ·U) do
4: for t = shuffle (1 · · · Tu) do
5: Sample vu,t by using Eq. (8.105)
6: end for
7: end for
8: for u = shuffle (1 · · ·U) do
9: Sample zu by using Eq. (8.107)

10: end for
11: until some condition is met

Therefore, by considering the normalization constant, the posterior probability can be
obtained as follows:

p(vu,t = k|O, V\t, Z\u, zu = s) = g(�̃V\t ,vut=k,Z\u,zu=s)∑
k=1K g(�̃V\t ,vut=k′,Z\u,zu=s)

. (8.105)

This equation is analytically derived by using the marginal likelihood for complete data
(Eq. (8.101)).

Utterance-level mixture component

As with the frame-level mixture component case, the Gibbs sampler assigns utterance-
level mixture s at utterance u by using the following equation:

p(zu = s|O, V , Z\u) ∝ p(O, V , Z\u, zu = s)

∝ �(
∑

k w̃s\u,k)

�(
∑

k w̃s,k)

∏
k

g(�̃sk). (8.106)

The value of �̃s\u,k is computed by the sufficient statistics using O\u and V\u. Therefore,
the posterior probability can be obtained as follows:

p(zu = s′|O, V , Z\u)

=
exp
(

log
�(
∑

k w̃s′\u,k)
�(
∑

k w̃s′ ,k) +
∑

k gs′,k(�̃s′,k)− gs′,k(�̃s′\u,k)
)

∑
s,k exp

(
log

�(
∑

k w̃s\u,k)
�(
∑

k w̃s,k) + gs,k(�̃s,k)− gs,k(�̃s\u,k)
) . (8.107)

Thus, we can derive a solution for the multi-scale mixture model based on Gibbs
sampling, which jointly infers the latent variables by interleaving frame-level and
utterance-level samples. Algorithm 18 provides a sample code for the proposed
approach.

https://doi.org/10.1017/CBO9781107295360.009 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107295360.009


372 Markov chain Monte Carlo

Table 8.1 Comparison of MCMC and VB for speaker clustering. ACP: average cluster purity, ASP:
average speaker purity, and K value: geometric mean of ACP and ASP.

Evaluation data Method ACP ASP K value

CSJ-1 MCMC 0.808 0.898 0.851
(# spkr10, # utt 50) VB 0.704 0.860 0.777
CSJ-2 MCMC 0.852 0.892 0.871
(# spkr10, # utt 100) VB 0.695 0.846 0.782
CSJ-3 MCMC 0.866 0.892 0.879
(# spkr10, # utt 200) VB 0.780 0.870 0.823
CSJ-4 MCMC 0.784 0.694 0.738
(# spkr10, # utt 2,491) VB 0.773 0.673 0.721
CSJ-5 MCMC 0.740 0.627 0.681
(# spkr10, # utt 2,321) VB 0.693 0.676 0.684

MCMC-based acoustic modeling for speaker clustering was investigated with respect
to the difference in the MCMC and VB estimation methods by Tawara, Ogawa, Watan-
abe et al. (2012). Table 8.1 shows speaker clustering results in terms of the average
cluster purity (ACP), average speaker purity (ASP), and geometric mean of those val-
ues (K value) with respect to the evaluation criteria in speaker clustering. We used the
Corpus of Spontaneous Japanese (CSJ) dataset (Furui et al. 2000) and investigated the
speaker clustering performance for MCMC and VB for various amounts of data. Table
8.1 shows that the MCMC-based method outperformed the VB method by avoiding
local optimum solutions, especially when only a few utterances could be used. These
results also supported the importance of the Gibbs-based Bayesian properties.

Since the mixture of GMM is trained by MCMC, it is a straightforward extension to
deal with a Dirichlet process mixture model, as discussed in Section 8.2.5, for speaker
clustering, where the number of speaker clusters is jointly optimized based on this
model. There are several studies of applying the Dirichlet process mixture model to
speaker clustering (Fox et al. 2008, Tawara, Ogawa, Watanabe et al. 2012b). The next
section introduces the application of an MCMC-based Dirichlet process mixture model
to cluster HMMs (mixture of HMMs).

8.4 Nonparametric Bayesian HMMs to acoustic unit discovery

This section describes an application of Bayesian nonparametrics in Section 8.2 to
acoustic unit discovery based on HMMs (Lee & Glass 2012, Lee, Zhang & Glass 2013,
Torbati, Picone & Sobel 2013, Lee 2014). Acoustic unit discovery aims to automat-
ically find an acoustic unit (e.g., phoneme) from speech data without transcriptions,
and this is used to build ASR or spoken term detection systems with limited language
resources (Schultz & Waibel 2001, Lamel, Gauvain & Adda 2002, Jansen, Dupoux,
Goldwater et al. 2013). One of the powerful advantages of Bayesian nonparametrics
is to find the model structure appropriately, and it is successfully applied to word unit
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discovery in natural language processing (Goldwater, Griffiths & Johnson 2009, Mochi-
hashi, Yamada & Ueda 2009) and in spoken language processing (Neubig, Mimura,
Mori & Kawahara 2010). This section regards sub-word units as latent variables in
one nonparametric Bayesian model. More specifically, it formulates a Dirichlet pro-
cess mixture model where each mixture is an HMM used to model a sub-word unit and
to generate observed segments of that unit. This model seeks the set of sub-word units,
segmentation, clustering, and HMMs that best represents the observed data through an
iterative inference process. This inference process can be performed by using Gibbs
sampling.

To realize this acoustic unit discovery, the approach deals with the following
variables:

• D dimensional speech feature on
t ∈ R

D at frame t in utterance n.
• Binary boundary variable bn

t ∈ {0, 1} that has value 1 when the speech frame t is at
the end point of a segment, and 0 otherwise.

• Boundary index gn
q = {1, · · · , t, · · · , Tn} returns the frame index of the qth boundary

in utterance n. The initial boundary gn
0 = 0.

• Segment of features On
t:t′ = {on

t , · · · , on
t′ }.

• Unit label cn
t:t′ ∈ {1, · · · , u, · · · , U} to specify the unit label of On

t:t′ . U is the number
of the cluster, and u is a unit index. In addition, cn

t ∈ {1, · · · , u, · · · , U} indicates a
unit label at frame t and utterance n.

• HMM �u that represents one cluster unit u with a standard continuous density HMM
(Section 3.2.3) that has state transition auij ∈ [0, 1] from HMM state i to j, mixture
weight ωujk ∈ [0, 1] at mixture component k in state j, and the mean vector μujk ∈ R

D

and (diagonal) precision matrix Rujk ∈ R
D×D.

• HMM state and GMM component sn
t ∈ {1, · · · , j, · · · , J} and vn

t ∈ {1, · · · , k,
· · · , K}.

The difference between this HMM and the conventional CDHMM in Section 3.2.3 given
a phoneme unit is that this approach regards unit label cn

t:t′ and the number of units U
as a latent variable, which is obtained by a Dirichlet process. Therefore, the notation is
similar to that in Section 3.2.3 except that it includes the cluster index u explicitly. A
similar model is used in Gish, Siu, Chan et al. (2009) and Siu, Gish, Chan et al. (2014)
based on an ML-style iterative procedure instead of Bayesian nonparametrics. In this
section, the numbers of HMM states J and mixture components K are assumed to be
the same fixed values for all units, but they can also be optimized by using Bayesian
nonparametrics (Rasmussen 2000, Beal, Ghahramani & Rasmussen 2002, Griffiths &
Ghahramani 2005).

8.4.1 Generative model and generative process

Since we use a fully Bayesian approach, the variables introduced in this model are
regarded as probabilistic variables. For simplicity we consider that the boundary vari-
able bn

t is given in this formulation. The Bayesian approach first provides a generative
process for complete data. We define latent variable Z as
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Z � {C, S, V , {γu}∞u=1, {�u}∞u=1}. (8.108)

Here, we assume the number of units is infinite, i.e., U = ∞, and latent variables will
be generated based on the Dirichlet process. The other variables are defined as

C � {cn
t |t = 1, · · · , Tn, n = 1, · · · , N}

= {cn
(gq+1):gq+1

|q = 0, · · · , Qn, n = 1, · · · , N},
S � {sn

t |t = 1, · · · , Tn, n = 1, · · · , N},
V � {vn

t |t = 1, · · · , Tn, n = 1, · · · , N}. (8.109)

Qn is the number of units appearing in utterance n, and ζu ∈ [0, 1] is a weight parameter
of unit u. Then, the conditional distribution is represented as follows:

p(O, C, S, V|{ζu}∞u=1, {�u}∞u=1)

=
Qn∏

q=0

p(cn
(gq+1):gq+1

= u|{ζu}∞u=1)p(on
gq+1, sn

gq+1, vn
gq+1|u,�u)

×
gq+1∏

t=gq+2

p(on
t , sn

t−1, sn
t , vn

t |u,�u), (8.110)

where each likelihood function can be represented as follows:

p(cn
(gq+1):gq+1

= u|{ζu}∞u=1) = ζu, (8.111)

and{
p(on

t , sn
t = j, vn

t = k|u,�u) = aujωujkN (on
t |μujk�ujk) (t = gq + 1),

p(on
t , sn

t−1 = i, sn
t = j, vn

t = k|u,�u) = auijωujkN (on
t |μujk�ujk) Otherwise.

(8.112)
auj is an initial weight in an HMM. For p({ζu}∞u=1, {�u}∞u=1), we use the Dirichlet process
mixture model, described in Section 8.2.5.

The model parameters are sampled from a base distribution with hyperparameter
�0, and we use a conjugate prior distribution of CDHMM p(�u|�0) with diagonal
covariance matrices, as we discussed in Section 4.3.2, which is represented as

p(�u)

= p({auj}Jj=1)

(
J∏

i=1

p({auij}Jj=1)

)⎛⎝ J∏
j=1

p({ωujk}Kk=1)

⎞⎠⎛⎝ J∏
j=1

K∏
k=1

p(μujk, �ujk)

⎞⎠
= Dir({auj}Jj=1|φπ )

(
J∏

i=1

Dir({auij}Jj=1|φa)

)⎛⎝ J∏
j=1

Dir({ωujk}Kk=1|φω)

⎞⎠
×
⎛⎝ J∏

j=1

K∏
k=1

D∏
d=1

N (μjkd|μ0
d, (φμrjkd)−1)Gam(rjkd|r0

d,φr)

⎞⎠ . (8.113)
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φa, φω, φμ, φr, μ0, and r0 are the prior hyperparameter (� �0). μ0 and r0 can be
obtained using the Gaussian mean and precision parameters of all data.

Algorithm 19 provides a generative process of a nonparametric Bayesian HMM. A
Dirichlet process mixture model (DPM) can sample the acoustic unit u from existing
clusters or a new cluster for every speech segment. Thus, the model finally generates a
sequence of speech features without fixing an acoustic unit explicitly.

Algorithm 19 Generative process of a nonparametric Bayesian HMM
Require: Concentration parameter γ , Base distribution of DP �0, Boundary bn

t .
1: for every utterance n = 1, · · · , N do
2: for every segment q = 1, · · · , Qn do
3: Draw u and �u from DPM(cn

(gq+1):gq+1
,�u|γ ,�0) (from existing clusters or a

new one)
4: Draw au from Dir(φπ

u )
5: Draw aui from Dir(φa

ui)
6: Draw ωuj from Dir(φω

uj)
7: for every feature dimension d = 1, · · · , D do
8: Draw rujkd from Gam(φr, r0

d)
9: Draw μujkd from N (μ0

d, (φμrujkd)−1)
10: end for
11: Draw j from Mult(sn

gq+1|{auj′ }Jj′=1)

12: Draw k from Mult(vn
gq+1|{ωujk′ }Kk′=1)

13: Draw o from N (on
gq+1|μujk, �ujk)

14: for every frame t = gq + 2, · · · , gq+1 do
15: Draw j from Mult(sn

t |{aust−1j′ }Jj′=1)

16: Draw k from Mult(vn
t |{ωujk′ }Kk′=1)

17: Draw o from N (on
t |μujk, �ujk)

18: end for
19: end for
20: end for

8.4.2 Inference

The approach infers all latent variables by using Gibbs sampling, as discussed in Section
8.1.4, which samples a target latent variable z from the following conditional posterior
distribution:

z ∼ p(z|Z\z, O), (8.114)

where Z\z denotes a set of all hidden variables in Z except for z. In this section we
provide conditional distributions for cluster label cn

t:t′ , HMM state sequence Sn
t:t′ , GMM

component sequence Vn
t:t′ , and HMM parameters �u so that we can perform the Gibbs

sampling of these latent variables.
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• Cluster label cn
t:t′ :

Let U be the set of distinctive cluster units. The conditional posterior distribution of
ct:t′ = u ∈ U is represented as follows:

p(cn
t:t′ = u| · · · ) ∝ p(cn

t:t′ = u|U\u, γ )p(On
t:t′ |�u)

= nu

Nu − 1+ γ
p(On

t:t′ |�u), (8.115)

where γ is a hyperparameter of the DP prior, nu represents the number of cluster
labels in U\u taking the value u, and Nu is the number of speech segments. In this
formulation, we do not marginalize �u unlike Section 8.3, but use the sampled values,
as discussed below.

If cn
t:t′ belongs to a new cluster that has not existed before, the conditional

posterior distribution for this new cluster is represented as

p(cn
t:t′ �= u, u ∈ U | · · · ) ∝ γ

Nu − 1+ γ

∫
p(On

t:t′ |�)G(�|�0)d�, (8.116)

where the integral is approximated by a Monte Carlo estimation (Rasmussen 1999,
Neal 2000, Tawara, Ogawa, Watanabe et al. 2012b). Note that Eqs. (8.115) and
(8.116) are a typical solution of the Dirichlet process in Eq. (8.38). The Gibbs sam-
pler for existing clusters p(cn

t:t′ = u| · · · ) depends on the number of occurrences nu

and their likelihood, while that for a new cluster p(cn
t:t′ �= u, u ∈ U | · · · ) depends on

the concentration parameter γ and the marginalized likelihood.
The likelihood values of p(On

t:t′ |�u) and p(On
t:t′ |�) can be computed by consid-

ering all possible HMM states Sn
t:t′ and mixture components Vn

t:t′ based on the forward
algorithm in Section 3.3.1. However, since the following Gibbs samplers can sample
Sn

t:t′ and Vn
t:t′ , we can use the following conditional likelihood values:

p(On
t:t′ |�) ≈ p(On

t:t′ |Sn
t:t′ , Vn

t:t′ ,�). (8.117)

This is easily computed by accumulating all Gaussian likelihood values given Sn
t:t′ and

Vn
t:t′ .

• HMM state sn
t :

The conditional posterior distribution of HMM state sn
t is obtained from the following

distribution, given the previous state sn
t−1 and the succeeding state sn

t+1:

p(sn
t = j| · · · )
∝ p(sn

t = j|sn
t−1)p(on

t |�u, sn
t = j)p(sn

t+1|sn
t = j)

=
⎧⎨⎩auj

(∑K
k=1 ωujkN (on

t |μujk�ujk)
)

aujst+1 (t = gq + 1)

aust−1j

(∑K
k=1 ωujkN (on

t |μujk�ujk)
)

aujst+1 otherwise.

(8.118)

Note that this algorithm does not require the forward–backward algorithm in Sec-
tion 3.3.1 to obtain the occupation probability, compared with the conventional HMM.
There is an alternative algorithm to sample a state sequence similar to the forward-
backward algorithm, called the forward filtering backward sampling algorithm of an
HMM (Scott 2002, Mochihashi et al. 2009) in the MCMC framework.
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Given vn
t = k, which is also obtained by the Gibbs sampler, we can also

approximate Eq. (8.118) as

p(sn
t = j| · · · ) ≈ p(sn

t = j|vn
t = k, · · · )

∝
{

aujωujkN (on
t |μujk�ujk)au,j,st+1 (t = gq + 1)

aust−1jωujkN (on
t |μujk�ujk)au,j,st+1 otherwise.

(8.119)

This avoids computing the Gaussian likelihoods for all mixture components.
• GMM component vn

t :
The conditional posterior distribution of GMM component vn

t = k at cluster u and
state sn

t = j is obtained from the following distribution:

p(vn
t = k| · · · ) ∝ p(vn

t = k|�u, sn
t = j)p(on

t |�u, sn
t = j, vn

t = k)

= ωujkN (on
t |μujk, �ujk). (8.120)

Thus, the Gibbs samplers of p(cn
t:t′ | · · · ), p(sn

t | · · · ), and p(vn
t | · · · ) can provide the latent

variable sequences of C, S, and V . Once we have C, S, and V , we can compute the
sufficient statistics for the CDHMM, as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ξui =∑n,q δ(cn
(gq+1):gq+1

, u)δ(sn
gq+1, i),

ξuij =∑n,t δ(cn
t , u)δ(sn

t−1, i)δ(sn
t , j),

γujk =∑n,t δ(cn
t , u)δ(sn

t , j)δ(vn
t , k),

γ
(1)
ujk =∑n,t δ(cn

t , u)δ(sn
t , j)δ(vn

t , k)on
t ,

γ
(2)
ujkd =∑n,t δ(cn

t , u)δ(sn
t , j)δ(vn

t , k)(on
td)2.

(8.121)

Thus, we can obtain the posterior distribution analytically based on the conjugate analy-
sis, as we have shown in Sections 2.1.4 and 4.3. This section only provides the analytical
solutions for the posterior distributions of CDHMM parameters, which are used to
sample CDHMM parameters.

• HMM parameters �u:
– Initial weight

p(au| · · · ) ∝ Dir(au|φπ
u ), (8.122)

where

φ̃π
ui = φπ + ξui. (8.123)

– State transition

p(aui| · · · ) ∝ Dir(aui|φa
ui), (8.124)

where

φ̃a
uij = φa + ξuij. (8.125)

– Mixture weight

p(ωuj| · · · ) ∝ Dir(ωuj|φω
uj), (8.126)
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where

φ̃ω
ujk = φω + γujk. (8.127)

– Mean vector and covariance matrix at dimension d

p(μujkd, rujkd| · · · )
∝ N (μujkd|μ̃ujkd, (φ̃μ

ujkrujkd)−1)Gam(rujkd)|φ̃r
ujk, r̃ujkd), (8.128)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φ̃
μ
ujk = φμ + γujk,

μ̃ujk = φμμ0+γ
(1)
ujk

φμ+γujk
,

φ̃r
ujk = φr + γujk,

r̃ujkd = γ
(2)
ujkd + φμ(μ0

d)2 − φ̃
μ
ujk(μ̃ujkd)2 + r0

d.

(8.129)

Note that compared with the collapsed Gibbs sampling solutions in Section 8.3, this
samples the Gaussian parameters, as well as the other variables. Therefore, the Gibbs
samplers for latent variables become rather simple equations.

Thus, we can obtain the nonparametric Bayesian HMMs for acoustic unit discovery
given cluster boundaries. The MCMC is performed by sampling latent variables C, S,
and V , and model parameters {�u}Uu=1, iteratively. Note that the number of clusters U
is changing according to the Dirichlet process, and finally becomes a fixed number.
This clustering corresponds to automatically obtaining the acoustic unit in a Bayesian
nonparametric manner.

Lee & Glass (2012) also considered cluster boundaries as latent variables which can
be obtained by Gibbs sampling. In addition, to provide an appropriate initialization of
the boundaries, the approach uses a pre-segmentation technique based on Glass (2003).
The model obtained was compared with the other acoustic unit discovery method based
on the dynamic time warping technique using the distance between GMM posteri-
ors (Zhang & Glass 2009). The nonparametric Bayesian HMM achieved comparable
results to the dynamic time warping technique in terms of the spoken term detection
measures, which shows the effectiveness of the nonparametric Bayesian acoustic unit
discovery. The approach carries a huge computational cost compared with the other
EM type approaches (based on ML, MAP, and VB), and its scalability for the amount
of data and the difficulty of parallelization remain serious problems. However, this is
one of a few successful approaches using Bayesian nonparametrics for speech data, and
it potentially has various advantages over the conventional EM type approaches (e.g., it
could mitigate the local optimum problem and use any other distributions than conjugate
distributions).

8.5 Hierarchical Pitman–Yor language model

In an LVCSR system, in addition to an acoustic model based on HMMs, the other key
component is a language model based on n-grams. In recent years, BNP learning has
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been substantially developed for language modeling (Teh et al. 2006) and successfully
applied for several LVCSR tasks in Huang & Renals (2008). In this section, we introduce
a hierarchical Bayesian interpretation for language modeling, based on a nonparamet-
ric prior called the Pitman–Yor (PY) process. The motivation of conducting Bayesian
learning of n-gram language models is to tackle the limitations such as overfitting of
maximum likelihood estimation and the lack of rich contextual knowledge sources. The
PY process offers a principled approach to language model smoothing which produces
a power-law distribution for natural language. The Bayesian language model based on
Bayesian nonparametrics is a realization of a full Bayesian solution according to the
MCMC inference procedure. Such a model is a distribution estimate, which is different
from the Bayesian language model based on maximum a-posteriori (MAP) estimation
as addressed in Section 4.7. A MAP-based language model is known as a point estimate
of language model. A BNP-based language model integrates the values of parameters
into a marginalized language model. It is interesting to note that the resulting hierarchi-
cal PY language model is a direct generalization of the hierarchical Dirichlet language
model.

In what follows, we first survey the PY process and explain the importance of the
power-law property in language modeling. Then we revisit language model smoothing
based on Kneser–Ney smoothing and find the clue for connection to BNP learning. Next
the hierarchical PY process is constructed to estimate a language model which provides
the hierarchical Bayesian interpretation for a Kneser–Ney smoothed language model.
The relation to the hierarchical Dirichlet language model will be illustrated. Lastly, the
MCMC inference for the hierarchical PY language model is addressed.

8.5.1 Pitman–Yor process

The PY process (Pitman & Yor 1997) is known as the two-parameter Poisson–Dirichlet
process PY(d,α0, G0), which is expressed as a three-parameter distribution over distri-
butions where 0 ≤ d < 1 is a discount parameter, α0 is a strength parameter and G0 is a
base distribution. Base distribution G0 can be understood as the mean of draws from the
PY process. This process can be used to draw the unigram language model. Let G(w)
denote the unigram probability of a word w ∈ V and G = [G(w)]w∈V denote the vector
of unigram probabilities, which is drawn from a PY process:

G ∼ PY(d,α0, G0). (8.130)

Here, G0 = [G0(w)]w∈V is a mean vector where G0(w) is the a-priori probability of word
w. In practice, this base measure is usually set to be uniform G0 = 1/|V| for all w ∈ V .
The parameters d and α0 both control the degree of variability around G0 in different
ways. When d = 0, the PY process reverts to the DP, which is denoted by DP(α0, G0).
The PY process is seen as a generalization of the DP.

Basically, there is no analytic form for distribution of the PY process. We would like
to work out the nonparametric distribution over sequences of words from the PY pro-
cess. Let {w1, w2, · · · } be a sequence of words drawn independently and identically from
G given the mean distribution G0. The procedure of generating draws from a PY process
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that can be described according to the metaphor of the “Chinese restaurant process” (Pit-
man 2006). As introduced in Section 8.2.4, imagine a Chinese restaurant containing an
infinite number of tables, each with infinite seating capacity. Customers enter the restau-
rant and seat themselves. The first customer sits at the first table while each subsequent
customer sits at an occupied table with probability proportional to the number of cus-
tomers who are already sitting there ck−d, or at a new unoccupied table with probability
proportional to α0 + dm· where m· is the current number of occupied tables. That is, if
zi is the index of the table chosen by the ith customer, this customer sits at the table k
given the seating arrangement of the previous i − 1 customers, z−i = {z1, · · · , zi−1},
with probability

p(zi = k|z−i, d,α0) =
{

ck−d
α0+c· 1 ≤ k ≤ m·,
α0+dm·
α0+c· k = m· + 1,

(8.131)

where ck denotes the number of customers sitting at table k and c· = ∑k ck is the total
number of customers. The above generative procedure produces a sequence of words
drawn independently from G with G marginalized out.

It is important to investigate the behaviors of drawing the sequence of words from
the PY process. Firstly, the rich-gets-richer clustering property can be observed. That
is, the more words have been assigned to a draw from G0, the more likely subsequent
words will be assigned to the draw. Secondly, the more we draw from G0, the more
likely a new word will be assigned to a new draw from G0. Combining these two behav-
iors produces the so-called power-law distribution where many unique or distinct words
are observed, most of them rarely. This distribution resembles the distribution of words
which is seen in natural language. The power-law distribution has been found to be one
of the most striking statistical properties of word frequencies in natural language. Fig-
ure 8.10 demonstrates the power-law behavior of the PY process which is controlled by
parameters d and α0, showing the average number of unique words among 25 sequences
of words drawn from G, as a function of the number of words, for various values of α0

and d. We find that α0 controls the total number of unique words while d adjusts the
asymptotic growth of the number of unique words. Figure 8.11 displays the proportion
of words appearing only once among the unique words. These figures indicate the pro-
portion of words that occur rarely. We can see that larger d and α0 produce more rare
words. This phenomenon is reflected by the probability of producing a new unoccupied
table

p(zi = knew|z−i, d,α0) = α0 + dm·
α0 + c·

. (8.132)

8.5.2 Language model smoothing revisited

A key issue in a language model is to handle the sparseness of training data for train-
ing n-gram parameters under the conditions of a large n-gram window size n and large
dictionary size |V|. As addressed in Section 3.6, a series of language model smoothing
methods has been developed to tackle the data sparseness issue in a statistical n-gram
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Figure 8.10 Power-law distribution: (a) the number of unique words as a function of the number of words,
drawn on a log–log scale with d = 0.6 and α0 = 100 (dashdot line), 20 (solid line), and 1
(dashed line); (b) the same as (a) with α0 = 20 and d = 0.9 (dashdot line), 0.6 (solid line), and 0
(dashed line).

model. One important trick in these methods is to incorporate an absolute discount
parameter d in the count of an observed n-gram event wi

i−n+1 = {wi wi−1
i−n+1} � {w u} of

a word w = wi and its preceding history words u = wi−1
i−n+1. Owing to this discount, we

modify the counts for lower order n-gram probabilities so as to construct the interpolated
Kneser–Ney smoothing (Kneser & Ney 1995):

pKN(w|u) = max{cuw − d|u|, 0}
cu·

+ d|u|mu·
cu·

pKN(w|π (u)), (8.133)
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Figure 8.11 Power-law distribution: (a) the proportion of words appearing only once, as a function of the
number of words drawn with d = 0.6 and α0 = 100 (dashdot line), 20 (solid line), and 1 (dashed
line); (b) the same as (a) with α0 = 20 and d = 0.9 (dashdot line), 0.6 (solid line), and 0 (dashed
line).

which is rewritten from Eq. (3.232) with an order-dependent discount parameter
d → d|u| and a new notation N1+(wi−1

i−n+1, •) � mu· = |{w′|cuw′ > 0}|, expressing
the number of unique words that follow the history words u. The term π (u) denotes the
backoff context of u. If u = wi−1

i−n+1, then π (u) = wi−1
i−n+2.

We would like to investigate the relation between language model smoothing and
Bayesian learning. Such a relation is crucial to developing a BNP-based language model.
In a standard Bayesian framework for language modeling, a prior distribution is placed
over the predictive distribution for the language model. The predictive distribution is
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estimated by marginalizing out the latent variables from the posterior distribution. The
problem of zero-probability can be avoided by taking advantage of knowledge expressed
by the priors. A smoothed language model can be obtained. In Yaman et al. (2007),
the n-gram smoothing was conducted under a framework called the structural maxi-
mum a-posteriori (MAP) adaptation where the interpolation of n-gram statistics with an
n− 1-gram model was performed in a hierarchical and recursive fashion. As mentioned
in Chapter 4, such a MAP approximation only finds a point estimate of a language model
without considering the predictive distribution. To pursue a full Bayesian language
model, the hierarchical Dirichlet language model (MacKay & Peto 1995) in Section 5.3
calculates the hierarchical predictive distribution of an n-gram by marginalizing the
Dirichlet posterior over the Dirichlet priors.

However, the PY process was shown to be more fitted as a prior distribution than
a Dirichlet distribution to the applications in natural language processing (Goldwater,
Griffiths & Johnson 2006). It is because the power-law distributions of word frequencies
produced by the PY process are more likely to be close to the heavy-tailed distributions
observed in natural language. But, the PY process, addressed in Section 8.5.1, is only
designed for a unigram language model. In what follows, we extend the hierarchical
Dirichlet language model, which adopts the Dirichlet prior densities, to the hierarchi-
cal PY language model, which utilizes the PY process as nonparametric priors and
integrates out these prior measures.

8.5.3 Hierarchical Pitman–Yor language model

Similarly to the extension from the Dirichlet process to the hierarchical Dirichlet process
for representation of multiple documents, in this section, we address the extension from
the PY process to the hierarchical PY (HPY) process which is developed to realize the
probability measure for the smoothed n-gram language model. Let G∅ = [G∅(w)]w∈V
represent the vector of word probability estimates for unigrams of all words w in a
vocabulary V . A PY process prior for unigram probabilities is expressed by

G∅ ∼ PY(d0,α0, G0), (8.134)

where G0 is a global mean vector in the form of a noninformative base distribution or
uniform distribution:

G0(w) = 1

|V| for all w ∈ V . (8.135)

This PY process can be used to calculate the predictive unigram of a word w according
to the metaphor of the Chinese restaurant process. The customers or word tokens enter
the restaurant and seat themselves at either an occupied table or a new table with the
probabilities in Eq. (8.131). Each table is labeled by a word w ∈ V initialized by the
first customer sitting on it. The next customer can only sit on those tables with the same
label w. That is, those cw customers corresponding to the same word label w can sit
at different tables, with mw being the number of tables with label w. In our notation,
m· = ∑k mk means the total number of tables. The number of customers at table k is
denoted by ck, and the total number of customers is expressed by c· = ∑

k ck. Given
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the seating arrangement of customers S, the discount parameter d0, and the strength
parameter α0, the predictive unigram probability of a new word w is given by

p(w|S, d0,α0) =
m·∑

k=1

ck − d0

α0 + c·
δ(k, w)+ α0 + d0m·

α0 + c·
G0(w)

= cw − d0mw

α0 + c·
+ α0 + d0m·

α0 + c·
G0(w), (8.136)

where δ(k, w) = 1 if table k has the label w, δ(k, w) = 0 otherwise. This equation is
derived similarly to the metaphor of the Chinese restaurant process designed for the
Dirichlet process, as mentioned in Section 8.2.4. The key difference of the PY process
compared to the Dirichlet process is the discount parameter d0 which is used to adjust
the power-law distribution of unigrams based on the PY process. By averaging over
seating arrangements and hyperparameters (S, d0,α0), we obtain the probability p(w)
for a unigram language model.

Interestingly, if we set d0 = 0, the PY process is reduced to a DP which produces the
Dirichlet distribution Dir(α0G0). In this case, the predictive unigram probability based
on the PY process prior in Eq. (8.136) is accordingly reduced to

p(w|S,α0) = cw

α0 + c·
+ α0G0(w)

α0 + c·

= cw + α0|V |∑
w∈V [cw + α0|V | ]

, (8.137)

where G0(w) = 1/|V| is used for all w. This equation is equivalent to the hierarchical
Dirichlet unigram model as given in Eq. (5.70). The only difference here is to adopt a
single shared hyperparameter α0 for all word labels w ∈ V .

Next, we extend the unigram language model to the n-gram language model based on
the HPY process. An n-gram language model is defined as a probability measure over
the current word w = wi given a history context u = wi−1

i−n+1. Let Gu = [Gu(w)]w∈V be
the vector of the target probability distributions of all vocabulary words w ∈ V given the
history context u. We use a PY process as the prior for Gu[Gu(w)]w∈V in the form of

Gu ∼ PY(d|u|,α|u|, Gπ (u)), (8.138)

with the hyperparameters d|u| and α|u| specific to the length of context |π (u)|. However,
Gπ (u) is still an unknown base measure. A PY process is recursively placed over it:

Gπ (u) ∼ PY(d|π (u)|,α|π (u)|, Gπ (π (u))), (8.139)

with parameters which are functions of |π (π (u))|. This is repeated until we reach the
PY process prior G∅ for a unigram model. Figure 8.12 is a schematic diagram showing
the hierarchical priors for the smoothed language model based on the HPY process.
This process enables us to generalize from the unigram language model to the n-gram
language model. The resulting probability distribution is called the hierarchical Pitman–
Yor language model (HPYLM).

A hierarchical Chinese restaurant process can be used to develop a generative pro-
cedure for drawing words from the HPYLM with all Gu marginalized out. The context
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Figure 8.12 Hierarchical Pitman–Yor process for n-gram language model.

u corresponds to a restaurant. This procedure gives us a representation of HPYLM for
efficient inference using an MCMC algorithm, and easy computation of the predictive
probability distribution from new test words. Through this representation, the corre-
spondence between the Kneser–Ney language model and HPYLM can be illustrated.
In the metaphor of hierarchical CRP, there are multiple hierarchical restaurants or PY
processes, with each corresponding to one context. Different orders of n-gram mod-
els share information with each other through the interpolation of higher-order n-grams
with lower-order n-grams. We draw words from Gu of the PY process by using the
CRP as discussed in Section 8.5.1. Further, we draw words from another CRP to sample
the parent distribution Gπ (u), which is itself sampled according to a PY process. This is
recursively applied until we need draws from the global mean distributions G0. By refer-
ring to the predictive unigram probability from the PY process as shown in Eq. (8.136),
the predictive n-gram probability p(w|u, S, d|u|,α|u|) under a particular combination of
seating arrangement S and the hyperparameters d|u| and α|u| can be obtained from

p(w|u, S, d|u|,α|u|) = cuw· − d|u|muw

α|u| + cu··

+ α|u| + d|u|mu·
α|u| + cu··

p(w|π (u), S, d|π (u)|,α|π (u)|), (8.140)

where cuwk is the number of customers sitting at table k with label w, cuw· = ∑k cuwk

and muw is the number of occupied tables with label w. It is interesting to see that the
Kneser–Ney language model (KN–LM) in Eq. (8.133) is closely related to the HPYLM
in Eq. (8.140). HPYLM is a generalized realization of KN–LM with an additional con-
centration parameter α|u|. We can interpret the interpolated KN–LM as an approximate
inference scheme for the HPYLM.

8.5.4 MCMC inference for HPYLM

An MCMC algorithm can be used to infer the posterior probability of seating arrange-
ment S. Given some training data D, we count the number of occurrences cuw· of each
word w appearing after each context u of length n − 1. This means that there are cuw·
samples drawn from the PY process Gu. We are interested in the posterior probability
over the latent variables G = {Gu | all contexts u} and the parameters � = {dm,αm} of
all lower-order models with 0 ≤ m ≤ n−1. Because the hierarchical Chinese restaurant
process marginalizes out each Gu, we can replace G by the seating arrangement in the
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corresponding restaurant using S = {Su | all contexts u}. The posterior probability is
then obtained from

p(S,�|D) = p(S,�,D)

p(D)
. (8.141)

Given this posterior probability, we can calculate the predictive n-gram probability of a
test word w after observing a context u:

p(w|u,D) =
∫

p(w|u, S,�)p(S,�|D)d(S,�)

= E(S,�)[p(w|u, S,�)]

≈ 1

L

L∑
l=1

p(w|u, S(l),�(l)), (8.142)

which is an expectation of predictive probability under a particular set of seating
arrangements S and PY parameters �. The overall predictive probability in the integral
of Eq. (8.142) is approximated by using the L samples {S(l),�(l)} drawn from posterior
probability p(S,�|D).

In the implementation of Teh et al. (2006) and Huang & Renals (2008), the dis-
count parameter and concentration parameter were drawn by a beta distribution and
a gamma distribution, respectively. Here, we address the approach to sampling the seat-
ing arrangement Su corresponding to Gu. We employ Gibbs sampling to keep track of
the current state of each variable of interest in the model, and iteratively re-sample the
state of each variable given the current states of all other variables. After a sufficient
number of iterations, the states of variables in the seating arrangement S converge to
the required samples from the posterior probability. The variables consist of, for each
context (restaurant) u and each word (customer) xul drawn from Gu, the index kul of the
draw from Gπ (u) assigned xul. In the Chinese restaurant metaphor, this is the table index
of where the lth customer sat at the restaurant corresponding to Gu. If xul has value w,
it can only be assigned to draws from Gπ (u) that have the same value w. The posterior
probability of drawing a table kul for the last word xul from Gu is given below:

p(kul = k|S−ul,�) ∝ max(0, c−ul
uxulk

− d)

α + c−ul
u··

, (8.143)

p(kul = knew|S−ul,�) ∝ α + dm−ul
u·

α + c−ul
u··

p(xul|π (u), S−ul,�), (8.144)

where the superscript −ul means the corresponding set of variables or counts with xul

excluded.
One other key difference between the KN–LM in Eq. (8.133) and the HPYLM in

Eq. (8.140) is that the KN–LM adopts a fixed discount d|u| while HPYLM produces
different discounts d|u|muw for different words w due to the values of muw, which counts
the number of occupied tables labeled by w. In general, muw is on average larger if cuw is
larger. The actual amount of discount grows gradually as the count cuw grows. The phys-
ical meaning of discounting in the smoothed n-grams based on HPYLM is consistent
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with the discount scheme in the modified Kneser–Ney language model (MKN–LM),
which specifies three discounts d1, d2, and d3+ for those n-grams with one (c = 1), two
(c = 2), and three or more (c ≥ 3) counts, as addressed in Section 3.6.6. The discounts
{d1, d2, d3+} in MKN–LM are empirically determined while the discounts d|u|muw in
HPYLM are automatically associated with each word w. In particular, if we restrict
muw· to be at most 1,

muw = min(1, cuw·), (8.145)

we get the same discount value so long as cuw· > 0, or equivalently we conduct absolute
discounting. We also have the relationships among the cuws and muw:

cuw =
∑

u′:π (u′)=u

mu′w. (8.146)

If we further assume α|u| = αm = 0 for all model orders 0 ≤ m ≤ n− 1, the predictive
probability of HPYLM in Eq. (8.140) is directly reduced to that given by the interpolated
Kneser–Ney model.

8.6 Summary

Due to the high computational cost and lack of scalability for data and model sizes,
MCMC approaches are still in a development stage for speech and language process-
ing applications that essentially need to deal with large-scale data. However, the recent
advance in computational powers (CPU speed, memory size, many cores, and GPU)
and algorithm development make it possible to realize middle-scale data processing of
MCMC, especially for language processing based on multinomial and Dirichlet distri-
butions, as discussed in this chapter. One of the most attractive features of MCMC is
that we can handle any types of expectation calculation by the Monte Carlo approxi-
mations, which can realize all Bayesian approaches in principle. Therefore, we expect
further development of computational powers and algorithms to widen the applications
of MCMC to large-scale problems, and enable fully Bayesian speech and language
processing based on MCMC in the near future.
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