
4 Efficient Data Structures

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

112 Efficient Data Structures

45 List Algorithm for Shortest Cover

A cover of a non-empty word x is one of its factors whose occurrences cover
all positions on x. As such it is a repetitive element akin to a repetition. The
problem shows how to compute the shortest cover of a word using its prefix
table pref , instead of its border table as in Problem 20. The algorithm is simpler
but uses linear extra memory space.

For each length � of a prefix of x, let L(�) = (i : pref [i] = �). Algorithm
ShortestCover computes the length of the shortest cover of its input.

ShortestCover(x non-empty word)

1 L ← (0,1, . . . ,|x|)
2 for � ← 0 to |x| − 1 do
3 remove elements of L(� − 1) from L

4 if maxgap(L) ≤ � then
5 return �

Simulating a run on x = abababaaba, positions in the list L for � = 1,
2,3 are shown on the last lines. The associated values of maxgap(L) are
respectively 2, 3 and 3. The condition of line 4 is first met when � = 3, giving
the shortest cover aba = x[0 . . 2].

i 0 1 2 3 4 5 6 7 8 9

x[i] a b a b a b a a b a
pref [i] 10 0 5 0 3 0 1 3 0 1

L − L[0] 0 2 4 6 7 9 10
L − L[≤ 1] 0 2 4 7 10
L − L[≤ 2] 0 2 4 7 10

Question. Show that Algorithm ShortestCover computes the length of
the shortest cover of its input and if properly implemented runs in linear
time.

Solution
The correctness of ShortestCover is clear: it removes positions with small
pref values, since their prefixes are too short and can be ignored. Eventually
the condition is satisfied when � = |x|.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

46 Computing Longest Common Prefixes 113

If lists L and L[�] are implemented, for example, by double-linked sorted
lists, removing an element and updating maxgap simultaneously takes con-
stant time per element. The overall running time is then linear, since each
element is removed at most once from L and the total size of disjoint lists
L[�] is |x| + 1.

46 Computing Longest Common Prefixes

The Suffix array of a non-empty word y is a light and efficient solution for text
indexing. It consists in using a binary search procedure to locate patterns inside
y. To do so the suffixes of y are first sorted in lexicographic order, producing a
table SA that lists the starting positions of the sorted suffixes.

But this standard technique is not sufficient to get a powerful search method.
This is why the table SA is adjoined to a second table LCP that gives the
length of longest common prefixes between consecutive suffixes in the sorted
list (some more values easy to deduce are also needed). Using both tables,
searching y for a word x is then achieved in time O(|x| + log |y|) instead of
a straightforward O(|x| log |y|) time without the table LCP. Here is the Suffix
array of abaabababbabbb:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a a b a b a b b a b b b

Rank r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA[r] 2 0 3 5 7 10 13 1 4 6 9 12 8 11

LCP[r] 0 1 3 4 2 3 0 1 2 3 4 1 2 2 0

where LCP[r] = |lcp(y[SA[r − 1] . . |y| − 1],y[SA[r] . . |y| − 1])|.
Question. Given the table SA for the word y, show that Algorithm Lcp
computes the associated table LCP in linear time.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

114 Efficient Data Structures

Lcp(y non-empty word)

1 for r ← 0 to |y| − 1 do
2 Rank[SA[r]] ← r

3 � ← 0

4 for j ← 0 to |y| − 1 do
5 � ← max{0,� − 1}
6 if Rank[j] > 0 then
7 while max{j + �,SA[Rank[j] − 1] + �} < |y| and

y[j + �] = y[SA[Rank[j] − 1] + �] do
8 � ← � + 1

9 else � ← 0

10 LCP[Rank[j]] ← �

11 LCP[|y|] ← 0

12 return LCP

Note the solution is counterintuitive, since it looks natural to compute the
values LCP[r] sequentially, that is, by processing suffixes in the increasing
order of their ranks. But this does not readily produce a linear-time algorithm.
Instead, Algorithm Lcp processes the suffixes from the longest to the shortest,
which is its key feature and is more efficient.

Solution
The correctness of the algorithm relies on the inequality

LCP[Rank[j − 1]] − 1 ≤ LCP[Rank[j]]

illustrated by the picture below.

a u a u

0 j − 1 j + � |y| − 1

��
LCP[Rank[j − 1]]

Assume � = LCP[Rank[j − 1]] has just been computed and the longest
common prefix associated with position j −1 is au for a letter a and a word u,
that is, LCP[Rank[j − 1]] = |au|. Then the longest common prefix associated
with position j cannot be shorter than u. Therefore comparisons to compute
LCP[Rank[j]] by extending u can start at position j + �. This is what the
algorithm does at lines 7–8. Line 5 rules out the case when the longest common
prefix is empty.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

47 Suffix Array to Suffix Tree 115

As written the computation requires the table Rank, inverse of the table SA,
which is computed at lines 1–2. It is used to retrieve the suffix immediately
before the suffix y[j . . |y| − 1] in the sorted list of all suffixes.

As for the running time of the procedure, it mostly depends on the number
of tests at line 7. If the letters match, the value of j + � increases and never
decreases later. So, there are no more than |y| such cases. There is at most one
mismatch for each value of the variable j , then again no more than |y| such
cases. This proves the algorithm runs in linear time and executes no more than
2|y| letter comparisons.

Notes
The solution presented here is by Kasai et al. [155]. See also [74], where it is
shown how to compute table SA in linear time on a linear-sortable alphabet.

47 Suffix Array to Suffix Tree

The goal of the problem is to transform the Suffix array of a word x into its
Suffix tree. Despite the fact that both data structures infer essentially the same
types of indexing operations, some come more readily from the Suffix tree
structure.

The interest in designing a linear-time algorithm to do it is interesting when
the alphabet is linearly sortable. Indeed, with this hypothesis, there are many
linear-time algorithms to build the Suffix array of a word, although there
is mostly one method to build its Suffix tree in the same time. Moreover,
techniques used for the former construction are way easier to develop.

Here are tables SA and LCP of the Suffix array of aacab:

r SA LCP

0 0 0 aacab
1 3 1 ab
2 1 1 acab
3 4 0 b
4 2 0 cab

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

116 Efficient Data Structures

Table SA stores the starting position of non-empty suffixes according to their
rank r in lexicographic order. Suffixes themselves are not part of the structure.
Table LCP[r] gives the longest common prefix between rank-r and rank-(r−1)

suffixes.

Question. Show how to build the Suffix tree of a word in linear time given
its Suffix array.

The pictures below illustrate three first steps of a possible Suffix tree
construction for the example aacab. The first picture is when suffixes aacab,
ab and acab have been treated. Labels of nodes are their word depth and
labels of arcs are in the form (i,j) (on the left) representing factors x[i . . j−1]
(on the right) of the word x. Doubly circled nodes are terminal states and thick
paths show last inserted suffixes.

0

1
(0,1)

5
(1,5)

2
(4,5)

4
(2,5)

0

1
a

5
acab

2
b

4
cab

0

1
(0,1)

5
(1,5)

2
(4,5)

4
(2,5)

1
(4,5)

0

1
a

5
acab

2
b

4
cab

1
b

0

1
(0,1)

5
(1,5)

2
(4,5)

4
(2,5)

1
(4,5)

3
(2,5)

0

1
a

5
acab

2
b

4
cab

1
b

3
cab

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

47 Suffix Array to Suffix Tree 117

Solution
SArray2STree(Suffix array of a non-empty word x)

1 � (SA,LCP) Suffix array of x

2 (q,d[q]) ← (New-Terminal-State(),0)

3 Initial ← q

4 S ← ∅
5 Push(S,(q,0,0,q))

6 for r ← 0 to |x| − 1 do
7 do (p,i,j,q) ← Pop(S)

8 while LCP[r] < d[p]

9 if LCP[r] = d[q] then
10 Push(S,(p,i,j,q))

11 s ← q

12 elseif LCP[r] = d[p] then
13 s ← q

14 else (s,d[s]) ← (New-State(),LCP[r])

15 Split(p,i,i + LCP[r] − d[p],s,i + LCP[r] − d[p],j,q)

16 Push(S,(p,i,i + LCP[r] − d[p],s))

17 (t,d[t]) ← (New-Terminal-State(),|x| − SA[r])

18 (s,SA[r] + LCP[r],|x|,t) ← New-Arc()

19 Push(S,(s,SA[r] + LCP[r],|x|,t))
20 return (Initial, nodes and arcs)

Algorithm SArray2STree processes the suffixes of the underlying word in
alphabetic order, that is, according to table SA, and inserts them in the tree.
Recall that arcs are labelled as explained above to ensure the linear space of
the whole structure. Table LCP is used in conjunction with the depth of nodes
d[] (displayed on nodes in the above pictures). At a given step a stack S stores
the arcs along the path associated with the last inserted suffix (thick path in
pictures). The operation Split (line 15) inserts a node s at the middle of an arc
and re-labels the resulting arcs accordingly.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

118 Efficient Data Structures

LCP[r]

UNSTACK

SPLIT

LCP[r]

GRAFT

Instructions in the for loop, illustrated by the above pictures, consist of three
main steps: UNSTACK, an optional SPLIT and GRAFT. Step UNSTACK is
realised by the while loop at lines 7–8. Then, the found arc is split at lines
14–15 if necessary, that is, if the split operation has to be done in the middle
of the arc, not at one extremity. Eventually a new arc is grafted at lines 17–18.
Meanwhile new arcs along the path labelled by the current suffix are pushed
on the stack.

The correctness of the algorithm can be elaborated from the given indica-
tions. For the running time, mostly the analysis of the while loop, the value
relies on the time to traverse the tree, which is realised with the help of the
stack. Since the size of the tree is linear according to the word length the
algorithm runs in linear time. Note there is no condition on the word alphabet.

Notes
The first algorithm to build a Suffix tree in linear time on a linearly sortable
alphabet was developed by Farach [110]. The present algorithm provides
another solution from any Suffix array construction having the same character-
istics. The historically first such construction was by Kärkkäinen and Sanders
[153, 154] (see [74]), then by Ko and Aluru [163] and by Kim et al. [159],
followed by several others.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

48 Linear Suffix Trie 119

48 Linear Suffix Trie

The Suffix trie of a word can be of quadratic size according to the word length.
On the contrary, its Suffix tree requires only a linear amount of space for its
storage, but the space should include the word itself.

The goal is to design a Suffix trie with edges labelled by single letters and
that can be stored in linear space without the word itself. This is done by adding
extra nodes and a few elements to the Suffix tree.

A node of the Suffix trie of y is identified to the factor of y that labels
the path from the root to the node. Nodes in the linear Suffix trie LST (y)

that are not in the Suffix tree ST (y) are of the form au, where a is a letter
and u is a node of ST (y). That is, denoting by s the suffix link of the tree,
s(au) = u. When nodes are added to ST (y) to create LST (y) edges are
relabelled accordingly.

Question. Show the number of extra nodes added to the Suffix tree of a
word y to create its linear Suffix trie is less than |y|.

Labels of edges in LST (y) are reduced to the first letter of the correspond-
ing factor as follows. If v, |v| > 1, labels the edge from u to uv in ST (y), the
label of the associated edge in LST (y) is the first letter of v and the node uv

is marked with the + sign to indicate the actual label is longer.

Question. Design an algorithm that checks if x occurs in y using the linear
Suffix trie LST (y) and runs in time O(|x|) on a fixed alphabet.

[Hint: Edge labels can be recovered using suffix links.]

a

b

a
b

+a

+
a

+b

+

b

b
a

b

+
b

+b

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

120 Efficient Data Structures

The above picture illustrates the linear Suffix trie of aababbab. White-
coloured nodes are those of its Suffix tree (below with explicit edge labels),
doubly circled when they are suffixes. Dotted edges form the suffix links of the
Suffix tree. Grey-coloured nodes are the extra nodes with the dashed edges for
the suffix links from them.

a

b

ababbab

abbab

bab

b
ab

bab

bab

Solution
Few extra nodes. To answer the first question let u be a node of LST (y) that
is not in ST (y). By definition s(u) is a node of ST (y). Any proper suffix of u

is of the form sk(u), which means it is also a node of ST (y). Therefore, two
distinct nodes like u cannot share the same right position and there are no more
than |y| such nodes.

Note that a word whose letters are pairwise distinct has exactly |y|−1 extra
nodes. If a letter has two occurrences (two distinct right positions) at least, it is
a node of ST (y), then there are no more than |y| − 2 extra nodes. Overall the
number of extra nodes is less than |y|.

On the example of LST (aababbab), the right positions of added nodes
(grey-coloured in the picture) are 1 for aa, 2 for aab, 4 for abab, 3 and 6
for ba.

Searching LST (y). Checking if x is a factor of y is done by calling
Search(root,x), where root is the root of LST (y). The main point, dealing
with uncomplete edges, that is, edges whose target has a + sign, relies mostly
on the following observation.

Observation. Let au, a a letter, be a node of LST (y). If auv is also a node
then uv is as well. This means that if v can be read from au in the tree, it can
also be read from s(au) = u. (The converse does not hold.)

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

48 Linear Suffix Trie 121

This leads to the sketch of Algorithm Search that returns true if ux is a factor
of y.

Search(u node of LST (y),x a word)

1 if x = ε then
2 return true

3 elseif no label of edges from u is x[0] then
4 return false

5 else let (u,uv) be the edge whose label v is x[0]

6 if uv has no + sign then
7 return Search(uv,x[1 . . |x| − 1])

8 elseif Search(s(u),v) then
9 return Search(uv,v−1x)

10 else return false

A straight implementation of the above scheme may not run in linear time
due to non-explicit labels of some edges. To cope with it another suffix link,
denoted by s̄, is used.

First note that for any edge (u,uv) of LST (y) the pair (sk(u),sk(uv)) is
defined for 0 ≤ k ≤ |u| but nodes sk(u) and sk(uv) may not be connected by a
single edge. The suffix link s̄ is defined on edges of LST (y) corresponding to
edges of the Suffix tree having a label longer than a unique letter. If (u,uv)

if such an edge of LST (y), that is, |v| > 1, s̄(u,uv) = (sk(u),sk(uv)),
where k is the smallest integer for which nodes sk(u) and sk(uv) are not
connected by an edge. This definition is valid because all words of length 1
are nodes of LST (y) (not necessarily of ST (y)). Note s̄ can be computed in
time proportional to the number of edges of LST (y).

Using s̄ the implementation runs in linear time. Indeed, each time s̄(u,uv)

is used to find the explicit label v of the edge, a letter of v is recovered. Then
it cannot be used more than |v| times, which yields a linear amortised running
time. On a general alphabet A the implementation runs in time O(|x| log |A|).
Notes
The linear Suffix trie of a word and the associated searching techniques are
described in [71]. The linear Suffix trie can be built by a mere post-processing
of the Suffix tree of the word.

Hendrian et al. designed a right-to-left online construction of LST (y)

running in time O(|y| log |A|) in [140]. They also produced a left-to-right
online construction running in time O(|y|(log |A| + log |y|/ log log |y|)).

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

122 Efficient Data Structures

49 Ternary Search Trie

Ternary search tries provide an efficient data structure to store and search a set
of words. It figures a clever implementation of the trie of the set in the same
way as the Suffix array does for the set of suffixes of a word.

Searching a trie for a pattern starts at the initial state (the root) and proceeds
down following the matching arcs until the end of the pattern is met or until
no arc matches the current letter. When the alphabet is large, representing arcs
outgoing a state can lead to either a waste of space because many arcs have no
target, or to a waste of time if linear lists are used. The goal of ternary search
tries is to represent them by binary search trees on the outgoing letters.

To do so, each node of the trie has three outgoing arcs: left and right (up
and down on the picture) for the binary search tree at the current trie node, and
a middle arc to the next trie node. Below are the ternary search trie (left) and
the trie (right) of the set
{large,long,pattern,sequence,short,string}.

s

l

p

a rge

o ng

attern

h

e quence

ort

t ring

p attern

l

a rge
o

ng

s
e

quence

h
ortt

ring

Question. Describe the data structure to implement a ternary search trie
storing a set of n words and show how to search it for a word of length m.
Analyse the running time.

[Hint: Note the analogy with searching a Suffix array.]
Notice on the above example that the binary search tree corresponding to

the arcs outgoing the initial node of the trie has its root labelled s and not the
middle letter p. Indeed, to make the search more efficient binary search trees
are weight balanced. The weight corresponds to the number of elements in the
subtree. This is why the s starting letter of the majority of words is chosen for
the root of the binary search tree.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

49 Ternary Search Trie 123

Solution
The data structure of a ternary search tree T is composed of nodes linked in a
tree manner. Each node q stores three pointers to other nodes, denoted by q.left,
q.right and q.mid, which have the functions described above. Some nodes are
terminal (no outgoing arc). Each node also stores in q.val either a suffix of a
word in T if q is terminal or a letter.

TST-Search(T a TST and x a non-empty word)

1 q ← initial node of T

2 for i ← 0 to |x| − 1 do
3 if q is a terminal node then
4 if x[i . . |x| − 1] = q.val then
5 return true

6 else return false

7 q ← BST-Search((q,x[i]))

8 if q undefined then
9 return false

10 q ← q.mid

11 return false � x prefix of a word in T

The BST search at line 7 is done in the subtree rooted at q using only the
pointers left and right, and the field val compared to x[i].

Let n > 0 be the number of words stored in T . A rough worst-case analysis
shows the running time is O(|x| log n). But the role of the TST search is
analogous to the binary search in a Suffix array to locate the current letter
x[i], leading to a tighter O(|x| + log n) time. More accurately, each negative
letter comparison done during the TST search reduces the interval of words
to be searched, which gives O(log n) such comparisons. And each positive
comparison ends instructions in the for loop, thus a total of O(|x|) such
comparisons. Then overall there are O(|x| + log n) comparisons, including
those at line 4, which is representative of the running time.

Notes
The notion of a ternary search trie is by Bentley and Sedgewick [31]. Clément
et al. [57] give a thorough analysis of the structure according to several
probabilistic conditions.

Applied to the suffixes of a word, the ternary search trie is the data structure
that corresponds to algorithms associated with the Suffix array of the word.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

124 Efficient Data Structures

50 Longest Common Factor of Two Words

The problem deals with common factors of two words. It serves as a basis to
compare texts and extends to applications such as bio-sequence alignment or
plagiarism detection.

Let LCF(x,y) denote the maximal length of factors that appear in two
given words x and y drawn from the alphabet A. A straightforward solution to
compute it is to build the common Suffix tree of x and y. Nodes are prefixes
of their suffixes. A deepest node whose subtree contains both suffixes of x and
suffixes of y gives the answer, its depth. This can also be done with the Suffix
tree of x#y, where # is a letter that does not appear in x nor in y.

The time to compute the tree is O(|xy| log |A|), or O(|xy|) on linearly
sortable alphabets (see Problem 47), and the required space is O(|xy|).

Below is the common Suffix tree of x = aabaa and y = babab. Grey
(resp. white) doubly circled nodes are non-empty suffixes of x (resp. y). The
node aba gives LCF(aabaa,babab) = |aba| = 3.

i 0 1 2 3 4

x[i] a a b a a

j 0 1 2 3 4

y[j] b a b a b

4a

3a 0
baa

3

b
a 1a

1

b

4

b

a 2a

2

b
0

ab

The goal of the problem is to reduce the size of the data structure to that of
only one word, contrary to the above solution.

Question. Design an algorithm to compute LCF(x,y) using the Suffix
automaton (or the Suffix tree) of only one word. Analyse the time and space
complexity of the whole computation.

[Hint: Use the indexing structure as a search machine.]

Solution
We assume |x| ≤ |y| and consider the Suffix automaton S(x) of x. Its size is
known to be O(|x|) independently of the alphabet. In addition to its states and

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

50 Longest Common Factor of Two Words 125

labelled arcs, the automaton is equipped with two functions defined on states:
failure link fail and maximal depth L. For a state q associated with a non-
empty word v (i.e., q = goto(initial,v)), fail[v] is the state p �= q associated
with the longest possible suffix u of v. And L[q] is the maximal length of
words associated with q.

Below is the Suffix automaton of the example word aabaa with the failure
links (dotted arcs) on its states.

a a b

b
b

a a

Algorithm Lcf solves the question by using S(x) as a search engine.

Lcf(S(x) Suffix automaton of x,y non-empty word)

1 (m,�,q) ← (0,0,initial state of S(x))

2 for j ← 0 to |y| − 1 do
3 if goto(q,y[j]) defined then
4 (�,q) ← (� + 1,goto(q,y[j]))

5 else do q ← fail[q]

6 while q defined and goto(q,y[j]) undefined

7 if q defined then
8 (�,q) ← (L[q] + 1,goto(q,y[j]))

9 else (�,q) ← (0,initial state of S(x))

10 m ← max{m,�}
11 return m

At each step, the algorithm computes the length � of the longest match
between a factor of x and a suffix of y[0 . . j]. To do so, it proceeds like string-
matching algorithms based on the use of a failure link. The only details specific
to the algorithm is the faculty to reset properly the length � to L[q] + 1 after
following a series of links (see notes).

As for the whole running time, it is linear on a linearly sorted alphabet.
Indeed, building the Suffix automaton of x can be done in linear time; and
the above algorithm also runs in the same time because any computation of
goto(q,y[j]) leads to an increase of either the variable j or the expression
j − �, quantities that vary from 0 to |y|.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

126 Efficient Data Structures

Note that, in fact, the algorithm finds the longest factor of x that ends at any
position on y.

Notes
The method developed in the problem is by Crochemore [68] (see also [74,
Chapter 6]. A similar method using a Suffix tree is by Hartman and Rodeh
[138]. The technique adapts to locate a conjugate of x inside y with the Suffix
automaton of xx.

51 Subsequence Automaton

Subsequences (or subwords) occurring in a word are useful elements to filter
series of texts or to compare them. The basic data structure for developing
applications related to subsequences is an automaton accepting them due to its
reasonable size.

For a non-empty word y, let SM(y) be the minimal (deterministic)
automaton accepting the subsequences of y. It is also called the Deterministic
Acyclic Subsequence Graph (DASG). Below is the subsequence automaton of
abcabba. All its states are terminal and it accepts the set

{a,b,c,aa,ab,ac,ba,bb,bc,ca,cb,aaa,aab,aba,abb,abc, . . .}.

0 1 2 3 4 5 6 7
a

b

c

b

a

c

c

a

b

a

b

b

a

b

a

a

Question. Show how to build the subsequence automaton of a word and
analyse the time and space complexity of the construction according to the
size of the automaton.

Subsequence automata are an essential structure to find words that discrim-
inate two words because they provide a direct access to all their subsequences.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

51 Subsequence Automaton 127

A word u distinguishes two distinct words y and z if it is a subsequence of
only one of them, that is, if it is in the symmetric difference of their associated
sets of subsequences.

Question. Show how to compute a shortest subsequence distinguishing two
different words y and z with the help of their automata SM(y) and SM(z).

To design the algorithm it is interesting to note the following property of the
subsequence automaton of y: if there is a path from state 0 to state i labelled
by the word u, then y[0 . . i − 1] is the shortest prefix of y containing u as a
subsequence.

Solution
Subsequence automaton construction. States of automaton SM(y) are
0, 1, . . . ,|y| and its transition table is goto. Let us assume that the alphabet
of the word y is fixed, of size σ , and that it indexes a table t storing states.
Algorithm Dasg below processes y online. When its non-empty prefix w

has just been processed, t[a] − 1 is the rightmost position on w of letter a.
Equivalently, it is also the rightmost state target of an arc labelled by letter a.

Dasg(y)

1 for each letter a ∈ alph (y) do
2 t[a] ← 0

3 for i ← 0 to |y| − 1 do
4 for j ← t[y[i]] to i do
5 goto(j,y[i]) ← i + 1

6 t[y[i]] ← i + 1

Since the automaton is deterministic, its number of arcs is less than σ |y|. In
fact it is no more than σ |y| − σ(σ − 1)/2. Therefore the instruction at line 5 is
executed less than σ |y| times, which shows that the running time is O(σ |y|).
The extra space used by table t is O(σ).

If the alphabet is not fixed, letters occurring in y can be first sorted in
O(alph (y) log alph (y)) time to get the above hypothesis. This adds to the total
running time.

Distinguishing words. To find the shortest subsequence distinguishing two
different words, one can use the general algorithm to test the equivalence of
two deterministic finite automata. The algorithm is a standard application of

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

128 Efficient Data Structures

the UNION-FIND data structure and runs in time O(n log∗ n), where n is the
smaller length of the two words.

Notes
The notion of a subsequence automaton was first introduced by Baeza-Yates
[21] and later on called a DASG by Troníček and Melichar [231]. Baeza-
Yates’s construction processes the word from right to left contrary to the above
algorithm. The extension of the automaton to a finite set of words can be found
in [21, 100]. The size of a DASG is analysed in [232].

Testing the equivalence of deterministic automata is by Hopcroft and Karp
(1971), see [4], as an application of the UNION-FIND data structure. Another
description and analysis of the structure appears in [63].

52 Codicity Test

Sets of words, especially binary words, are used to encode information. They
may be related to transmission protocols, to data compression or mere texts.
Streams of data need to be parsed according to the set to retrieve the original
information. Parsing is a simple operation when codewords have the same
length, like ASCII and UTF-32 codes for characters, and gives a unique
factorisation of encoded data.

A code is a set of words that features a uniquely decipherable property. The
question of having a unique parsing concerns mostly variable-length codes.
The goal of the problem is to test whether a set of words is a code.

More precisely, a set C ={w1,w2, . . . ,wn} of words drawn from an alpha-
bet A is a code if for every two sequences (noted as words) i1i2 . . . ik and
j1j2 . . . j� of indices from {1,2, . . . ,n} we have

i1i2 . . . ik �= j1j2 . . . j� ⇒ wi1wi2 . . . wik �= wj1wj2 . . . wj�
.

In other words, if we define the morphism h from {1,2, . . . ,n}∗ to A∗ by h(i) =
wi , for i ∈ {1,2,n}, the condition means h is injective.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

52 Codicity Test 129

The set C0 = {ab,abba,baccab,cc} is not a code because the word
abbaccab ∈ C∗

0 has two factorisations, ab · baccab and abba · cc · ab,
on the words of C0. On the contrary, the set C1 = {ab,bacc,cc} is a code
because a word in C∗

1 can start by only one word in C1. It is said to be a prefix
code (no u ∈ C is a proper prefix of v ∈ C).

To test if C2 = {ab,abba,baaabad,aa,badcc,cc,dccbad,badba} is
a code we can try to build a word in C∗

2 with a double factorisation. Here is a
sequence of attempts:

a b b a a b b a a a b a d a b b a a a b a d

a b b a a a b a d c c a b b a a a b a d c c

At each step we get a remainder, namely ba, aabad, bad and cc, that we
try to eliminate. Eventually we get a double factorisation because the last
remainder is the empty word. Then C2 is not a code.

The size N of the codicity testing problem for a finite set of words is the
total length ||C|| of all words of C.

Question. Design an algorithm that checks if a finite set C of words is a
code and that runs in time O(N2).

Solution
To solve the question, testing the codicity of C is transformed into a problem
on a graph G(C). Nodes of G(C) are the remainders of attempts at a double
factorisation, and as such are suffixes of words in C (including the empty
word).

Nodes of G(C) are defined in a width-first manner. Initial nodes at level 0
are those of the form u−1v for two distinct words u,v ∈ C. Their set may be
empty if C is a prefix code. Then nodes at level k + 1 are words of C−1Dk ∪
D−1

k C, where Dk are nodes at level k. The set of nodes includes the empty
word called the sink. There is an edge in G(C) from u to v when v = z−1u or
when v = u−1z, for z ∈ C.

The picture below shows the graph G(C2) in which there is only one initial
node and where columns correspond to node levels. The set C2 is not a code
because there is a path from the initial node to the sink. The middle such path
corresponds to the above double factorisation. In fact, there is an infinity of
words with a double factorisation due to the loop in the graph.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

130 Efficient Data Structures

ba

dcc

aabad

dba

bad cc ε

Observation. The set C is a code if and only if there is no path in G(C) from
an initial node to the sink.

The size of graph G(C) is O(N2), since nodes are suffixes of words in C.
Therefore the observation leads to an effective test of codicity. And since
building the graph and exploring it can be done in time proportional to the
size of the graph the solution runs in O(N2) time.

Notes
The algorithm to test the codicity of a finite set of words has been invented
by Sardinas and Paterson [217]. A formal proof of the observation appears in
[175, chapter 1] and in [36, chapter 1].

The algorithm can be implemented with the trie of the set, equipped with
appropriate links, to obtain a O(nN) running time, where n is the maximal
length of words; see [15].

53 LPF Table

The problem deals with yet another table on words called abusively the longest
previous factor table. It is a useful tool to factorise words for data compression
(see Problem 97) and more generally to design efficient algorithms for finding
repeats in texts.

For a non-empty word y, its table LPF stores lengths of repeating factors.
More precisely, for a position j on y, LPF[j] is the maximal length of factors
that starts both at position j and at a previous (i.e., smaller) position. Here is
the table for abaabababbabbb.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

53 LPF Table 131

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a a b a b a b b a b b b

LPF[j] 0 0 1 3 2 4 3 2 1 4 3 2 2 1

The next algorithm computes the table LPF for its input word y. It utilises
the Suffix array of y and the table Rank that gives ranks of its suffixes in
lexicographic order. Tables prev and next are links for a list representation of
suffix ranks.

Lpf(y non-empty word)

1 for r ← 0 to |y| − 1 do
2 (prev[r],next[r]) ← (r − 1,r + 1)

3 for j ← |y| − 1 downto 0 do
4 r ← Rank[j]

5 LPF[j] ← max{LCP[r],LCP[next[r]]}
6 LCP[next[r]] ← min{LCP[r],LCP[next[r]]}
7 if prev[r] ≥ 0 then
8 next[prev[r]] ← next[r]

9 if next[r] < |y| then
10 prev[next[r]] ← prev[r]

11 return LPF

Question. Show that Algorithm Lpf correctly computes the table LPF and
works in linear time.

Looking accurately at the algorithm proves more than what it is designed
for: lengths in LPF form a permutation of lengths in LCP.

Question. Show both that values in the LPF table are permuted from values
in the LCP table and that the LCP table can be transformed into the LPF
table.

Solution
The analysis of Algorithm Lpf becomes obvious when the Suffix array of its
input is displayed graphically. The Suffix array of abaabababbabbb and
the ranks of its suffixes are as follows.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

132 Efficient Data Structures

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a a b a b a b b a b b b

Rank[j] 1 7 0 2 8 3 9 4 12 10 5 13 11 6

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA[r] 2 0 3 5 7 10 13 1 4 6 9 12 8 11
LCP[r] 0 1 3 4 2 3 0 1 2 3 4 1 2 2 0

The display (below top) shows a graphic representation of the Suffix array of
the above word. Positions are displayed according to their ranks (x-axis) and
of their values (y-axis). The link between positions at ranks r − 1 and r is
labelled by LCP[r].

Observation. The LCP length between the position at rank r − 1 (resp. r) and
any position of higher (resp. smaller) rank is not larger than LCP[r].

A straight consequence of the observation gives the clue of the technique.
When the position j at rank r occurs at a peak on the graphic, its associated

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

53 LPF Table 133

LPF length is the larger value of LCP[r] and LCP[r + 1]. And the LCP length
between its previous and next positions is the smaller of the two values. This
is exactly the role of comparisons at lines 5–6.

It also explains why positions are treated from the largest to the smallest
because then each position appears at a graphic peak in turn.

Next instructions of LPF manage the list of positions like a doubly linked
list thanks to prev and next. The role of instructions at lines 8 and 10 is to
remove the position j , of rank r , from the list.

The picture (above bottom) illustrates the situation just after positions 13 to
10 (in grey) have been treated. Dotted links are still labelled by LCP values.

This shows Algorithm Lpf correctly computes the sought LPF table.

Solution to the second question. The above argument also shows that the
values in the LPF table are permuted values of those in the LCP table of the
Suffix array of y.

To transform the LCP table into the LPF table of the input, lines 5–6 of
Algorithm Lpf are changed to:

5 if LCP[r] < LCP[next[r]] then
6 (�,LCP[r],LCP[next[r]]) ← (LCP[r],LCP[next[r]],�)

where line 6 exchanges two values of the table. The algorithm produces the
table LCP′ corresponding to LPF, since LPF[SA[r]] = LCP′[r], or equiv-
alently LPF[j] = LCP′[Rank[j]]. Sorting pairs (SA[r],LCP′[r]) according
to their first component produces values of the table LPF as their second
component.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SA[r] 2 0 3 5 7 10 13 1 4 6 9 12 8 11
LCP′[r] 1 0 3 4 2 3 1 0 2 3 4 2 1 2 0

In the example, the algorithm produces the above table LCP′ from which
we deduce for example LPF[2] = 1 (corresponding to the second occurrence
of a) because 2 and 1 are aligned at rank r = 0.

Notes
The first linear-time algorithm for computing the LPF table of a word from its
Suffix array appears in [76]. More efficient algorithms are designed in [78],
where it is shown the computation can be done time–space optimally with an
algorithm that runs in linear time with only O(

√|y|) extra memory space used
for a stack.

Three variants of the LPF table are presented in [87] with their correspond-
ing construction algorithms; see also [50, 52, 99].

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

134 Efficient Data Structures

54 Sorting Suffixes of Thue–Morse Words

Thue–Morse words with their special structure provide examples in which
some algorithms running in linear time or more can be optimised to run in
logarithmic time instead. The problem shows such an example related to the
Suffix array of words.

The infinite Thue–Morse word results from the iteration of the Thue–Morse
morphism μ from {0,1}∗ to itself defined by{

μ(0) = 01

μ(1) = 10

The Thue–Morse word τn is μn(0), for a natural integer n. This type of descrip-
tion of Thue–Morse words is suitable to describe recursively the array SAn

that lists the starting positions of non-empty suffixes of τn sorted according
to the lexicographic order of the suffixes. For example, τ3 = 01101001 and
SA3 = [5,6,3,0,7,4,2,1].

Question. Given integers n and k, 0 ≤ k < n, show how to compute SAn[k]
in time O(n) for the word τn of length 2n.

Solution
Let us start with two observations on word τn.

Observation 1. Let i be an even position on τn. Then τn[i] �= τn[i + 1].
For c ∈ {0,1}, I c

odd, resp. I c
even, is the set of odd, resp. even, positions i for

which τn[i] = c. The justification of Observation 2, in which suf i is τn[i . . 2n−
1], follows from Observation 1.

Observation 2.
(a) If i ∈ I0odd, j ∈ I0even and suf i �= 01, then suf i < suf j .

(b) If i ∈ I1even, j ∈ I1odd and suf j �= 1, then suf i < suf j .
An alternative formulation of Observation 2 is

I0odd < I0even < I1even < I1odd .

For a sequence S of integers and two integers p and q, p · S and S + q

denote the sequences of elements of S multiplied by p and increased by q

respectively. For example, 2 · [1,2,3] = [2,4,6] and [1,2,3] + 3 = [4,5,6].
The solution is split into two parts according to the parity of n.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

54 Sorting Suffixes of Thue–Morse Words 135

The case of even n. When n is an even integer the table SAn is related to
SAn−1 in the following way. Let α and β be the two halves of SAn−1 (SAn−1 =
[α,β]); then

(∗) SAn = [2 · β + 1,2 · α,2 · β,2 · α + 1].

Proof Let sorted(X), for a set X of suffix starting positions on a word, denote
the sorted list of positions according to the lexicographic order of the suffixes.
Let also

γ1 = sorted(I0odd), γ2 = sorted(I0even),

γ3 = sorted(I1even), γ3 = sorted(I1odd).

Then, due to Observation 2, SAn = [γ1,γ2,γ3,γ4].
Fortunately, for even n we do not have bad suffixes 01 nor 1 in τn. We

can use the morphic representation of Thue–Morse words. First observe that
the morphism μ preserves the lexicographic order (u < v ⇔ μ(u) < μ(v)).
Each suffix at position i on τn−1 is mapped by μ to a suffix at position 2i on
τn. Hence 2 · SAn−1 = [2 · α,2 · β] is the sequence of sorted suffixes at even
positions in τn.

Then due to the previous observation SAn = [γ1,γ2,γ3,γ4], where γ1

corresponds to sorted suffixes starting at second positions of suffixes associated
with 2 · β. Similarly for γ4 and 2 · α. Therefore we get SAn = [2 · β + 1,2 ·
α,2 · β,2 · α + 1], as required.

Computing SA4 from SA3. SA3 = [5,6,3,0,7,4,2,1] is composed of α =
[5,6,3,0] and β = [7,4,2,1]. We have 2·β = [14,8,4,2], 2·β+1 = [15,9,5,3],
2 · α = [10,12,6,0] and 2 · α + 1 = [11,13,7,1], which gives

SA4 = [15,9,5,3, 10,12,6,0, 14,8,4,2, 11,13,7,1].

The case of odd n. When n is odd we can also apply the formula (∗) except that
the bad suffixes 01 and 1 should be specially placed at their correct places: the
suffix 1 should be placed in front of all other suffixes starting with 1. The suffix
01 should be placed immediately after the whole sequence of suffixes starting
with 00. Hence the correction reduces to the computation of the number p(n)

of occurrences of 00 in τn.
The numbers p(n) for n = 2,3, . . . ,10 are 0,1,2,5,10,21,42,85,170. These

numbers satisfy the recurrence

(∗∗) p(1) = 0, p(2k + 1) = 4 · p(2k − 1) + 1, p(2k + 2) = 2 · p(2k + 1).

Consequently p(2k + 1) = (4k − 1)/3.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

136 Efficient Data Structures

Computing SA5 from SA4. To do it, first apply the transformation (∗) to get
the four blocks:

29,17,9,5,23,27,15,3 30,18,10,6,20,24,12,0,

28,16,8,4,22,26,14,2 31,19,11,7,21,25,13,1.

The bad suffixes 01 and 1 start at positions 30, 31. The number 31 should be
moved after the 5th element 23, since p(5) = 5. The number 31 corresponding
to a one-letter suffix should be moved to the beginning of the third quarter (it
is the smallest suffix starting with letter 1). We get the final value of the suffix
table SA5 by concatenating:

29,17,9,5,23,30,27,15 3,18,10,6,20,24,12,0,

31,28,16,8,4,22,26,14 2,19,11,7,21,25,13,1.

Conclusion. To answer the question, computing quickly SAn[k], let us
summarise how it can be done:

• Identify in which quarter of SAn the number k is located.

• Reduce the problem to the computation of SAn−1[j], where the corre-
sponding position j (around half of k) is computed using the formula (∗)
backwards.

• If n is odd, take into account the relocation of the two bad suffixes in SAn.
The value of p(n) given by (∗∗) is used for the relocation.

• Iterate such reductions until coming to a constant-sized table.

Altogether O(n) steps are sufficient to compute SAn[k], which is logarithmic
with respect to the size of the table SAn.

Notes
It seems there is a possible different approach using a compact factor automa-
ton for Thue–Morse words, as described in [204]. However, this leads to an
even more complicated solution.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

55 Bare Suffix Tree 137

55 Bare Suffix Tree

Suffix trees provide a data structure for indexing texts. Optimal-time con-
structions of them suffer from a rather high memory requirement, larger than
for Suffix arrays with the same usage. The problem deals with a moderately
efficient but not completely naive and very simple construction of Suffix trees.

The Suffix tree T of a word x ending with a unique end marker is the
compacted trie of suffixes of x. A leaf corresponds to a suffix and an internal
node to a factor having at least two occurrences followed by different letters.
Each edge is labelled by a factor x[i . . j] of x, represented by the pair (i,j).
Its word-length is |x[i . . j]| = j − i + 1. The word-length of a path in T is the
sum of word-lengths of its edges, while the length of the path is its number of
edges. Let depth(T) be the maximum length of a path in T from the root to a
leaf. Let li be the leaf ending the branch labelled by x[i . . n − 1].

Question. Design a construction of the Suffix tree T of a word x using no
additional array and running in time O(|x|depth(T)) on a fixed-size alphabet.

Solution
The main scheme of the solution is to insert iteratively the suffixes in the tree,
from the longest to the shortest suffix of x.

Let Ti−1 denote the compacted trie of suffixes starting at positions
0,1, . . . ,i − 1 on x. We show how to update Ti−1 to get the tree Ti .

root

v

w

li−1 li

αi−1

tail(αi−1)

γi−1

FASTFIND

SLOWFIND

The ith suffix can be split into αiγi where αi = x[i . . i + di − 1]) and γi =
x[i+di . . n−1]. The word αi is the path-label from the root to w = parent(li)
(see picture). In particular αi = ε if parent(li) = root.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

138 Efficient Data Structures

When a is the first letter of the word au, tail(au) = u. Note the word αk �= ε

has an occurrence starting at k and at some smaller position. Consequently
tail(αk) has occurrences at k + 1 and at a smaller position. This implies the
following crucial fact.

Observation. Assume αi−1 �= ε. Then there is a path in Ti−1 spelling the word
tail(αi−1)γi−1 (see picture). In other words, a great part of the suffix x[i . . n]
that is being inserted is already present in the tree.

The algorithm uses two types of tree traversal:

• FastFind(α) assumes that α is present in the current tree (as a path-label).
It finds the node v by spelling the word α. If the spelling ends in the middle
of an edge-label, the node v is created.

The traversal is guided by the length d of α. It uses the edges of the tree
as shortcuts, reading only the first symbol and the length of each edge. The
cost of the traversal is O(depth(T)).

• SlowFind(v,γ) finds the lowest descendant w of v in the current tree
following the path labelled by the longest possible prefix β of γ . As above,
node w may have to be created.

The traversal goes symbol by symbol, updating the value of d. Its cost is
O(|β|).

The whole algorithm starts with the tree composed of a single edge labelled by
the whole word x[0 . . n− 1] and executes the following scheme for suffixes at
positions i = 1,2, . . . ,n − 1.

One iteration, from Ti−1 to Ti:

if αi−1 = ε then v ← root else v ← FastFind(tail(αi−1)),
w ← SlowFind(v,γi−1),
a new leaf li and new edge w → li are created.

Running time of the algorithm. There are n−1 iterations. In each iteration the
cost of FastFind is O(depth(T)). The total cost of SlowFinds is O(n), since
each of their single moves decreases the length of the word γi . Altogether the
time cost is O(n · depth(T)).

Note the algorithm requires no additional array as required.

Notes
The algorithm described here is a simplified version of McCreight’s Suffix
tree construction [187] that runs on linear time but requires additional arrays
to work. The present variant is slightly slower but significantly simpler than

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

56 Comparing Suffixes of a Fibonacci Word 139

McCreight’s algorithm. It can be viewed as a first step towards understanding
the complete algorithm. Moreover, for many types of words, the coefficient
depth(T) is logarithmic.

Ukkonen’s algorithm [234] can be modified in a similar way, which gives
another simple but not naive construction of Suffix trees.

56 Comparing Suffixes of a Fibonacci Word

The structure of Fibonacci words like that of Thue–Morse words, is an example
of a situation in which some algorithms can be optimised to run in logarithmic
time with respect to the length of words. The problem is concerned with a
fast lexicographic comparison between two suffixes of a finite Fibonacci word,
which shows such a phenomenon.

We deal with a slightly shortened version of Fibonacci words to simplify
arguments. Let gn be the nth Fibonacci word fibn with the last two letters
deleted, that is, gn = fibn{a,b}−2, for n ≥ 2. Let also suf (k,n) be the kth
suffix gn[k . . |gn| − 1] of gn. For example, g2 = a, g3 = aba, g4 = abaaba,
g5 = abaababaaba and suf (3,5) = ababaaba.

The comparison between suffixes of gn is efficiently reduced to the
comparison of their compact representation of logarithmic length implied
by their logarithmic-size decomposition (property below). Factors of the
decomposition are the reverse Rn = fibR

n of Fibonacci words. The first factors
are R0 = a, R1 = ba, R2 = aba and R3 = baaba. Observe that
Rn+2 = Rn+1Rn and Rn starts with the letter a if and only if n is even.

Property. For n > 2, suf (k,n) uniquely factorises as Ri0Ri1 . . . Rim , where
i0 ∈ {0,1} and it ∈ {it−1 + 1, it−1 + 2} for t = 1, . . . ,m.

Related to the factorisation let Rn(k) = (i0,i1, . . . ,im). For example,
suf (3,5) = ababaaba = R0 ·R1 ·R3 = a ·ba ·baaba and R5(3) = (0,1,3).

Question. (A) Show how to compare any two suffixes of gn = fibn{a,b}−2

in time O((log |fibn|)2).
(B) Improve the running time to O(log |fibn|).

[Hint: For (A) use the algorithm of Problem 6.]

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

140 Efficient Data Structures

Solution
Associated with Rn(k) = (i0,i1, . . . ,im) let

�n(k) = first(Ri0)first(Ri1) . . . first(Rim),

where first(w) denotes the first letter of w. It can be verified that

Observation. suf (p,n) < suf (q,n) ⇐⇒ �n(p) < �n(q).

Example. For g5 = abaababaaba, we have suf (3,5) = a · ba · baaba =
R0R1R3 and suf (5,5) = a · ba · aba = R0R1R2. Then �5(3) = abb and
�5(5) = aba. Therefore suf (5,5) < suf (3,5), since aba < abb.

The observation reduces the problem to the fast computation of the decom-
position in the above property and of the function R.

Point (A). Rn(k) can be computed as follows, scanning the suffix suf (n,k)

from left to right. If gn[k] = a we know that i0 = 0; otherwise i0 = 1.
Then in each iteration t > 0 the current position on gn is increased by the
length Fit−1+2 = |Rit−1 | to point to the next letter of gn. Depending on
this letter we know whether it = it−1 + 1 or it = it−1 + 2. In this way
Rn(k) = (i0,i1, . . . ,im) is computed and the process has a logarithmic number
of iterations.

Accessing each letter in gn is done in time O(log |fibn|) using the algorithm
of Problem 6.

Overall this gives an algorithm running in time O((log |fibn|)2) and
solves (A).

Point (B). It does not come as a surprise that Fibonacci words are closely
related to the Fibonacci numeration system (see Problem 6). Here we show
they are related to a dual version of this system in the context of lexicographic
sorting.

Lazy Fibonacci numeration system. Let LazyF ib(k) be the lazy Fibonacci
representation of the natural number k, starting with least significant digits. In
this system a natural number N is represented in a unique way as the sequence
of bits (b0,b1,b2, . . .) for which N = ∑

biFi+2, where Fj s are consecutive
Fibonacci numbers, and in which no two consecutive zeros appear. This
corresponds to the condition it+1 ∈ {it + 1, it + 2} stated in the factorisation
property.

For example, LazyF ib(9) = (1011) and LazyF ib(23) = (011101),
since 9 = F2 + F4 + F5 and 23 = F3 + F4 + F5 + F7.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

57 Avoidability of Binary Words 141

Fast computation of the decomposition. Let (b0,b1,b2, . . .) be the represen-
tation of the length |suf (k,n)| in the lazy Fibonacci system. Then Rn(k) =
(i0,i1, . . . ,im), where ij s are the positions of bit 1 in (b0,b1,b2, . . .).

Since the lazy Fibonacci representation can be computed in logarithmic time
with respect to the length of fibn, this solves (B).

Notes
The proof of the factorisation property can be found in [213, 238].

If we want to compare two suffixes of length larger than 2 of standard (not
shortened) Fibonacci words fibn then the same function � can be used if n is
odd. But if n is even we have to replace �(k) by �(k) · b. It is also known
that for even n the table SA of the Suffix array of Fibonacci words contains
an arithmetic progression (modulo the length of the array) and this gives an
alternative comparison test for the case of an even n.

The lazy Fibonacci system allows computation in logarithmic time of the
rank of the kth suffix (its position in SA) of a Fibonacci word.

57 Avoidability of Binary Words

Some patterns occur in all long enough words. They are said to be unavoidable.
The notion obviously depends on the alphabet size and in the problem we
consider binary patterns.

A word w is said to avoid a set X of words if no factor of w belongs to X.
The set X is said to be avoidable if there is an infinite word avoiding it, or
equivalently on a finite alphabet, if there are infinitely many words avoiding it.
The goal is to test if a set of words drawn from the binary alphabet B = {a,b}
is avoidable.

For example, {aa,abab,bb} cannot be avoided by a word of length at
least 5. On the contrary, {aa,bb} is avoided by the infinite word (ab)∞.

To design the test we define two reductions on a set X ⊆ B+.

reduce1 (remove super-word): If x,y ∈ X and x is a factor of y remove y

from X.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

142 Efficient Data Structures

reduce2 (chop last letter): If x is a suffix of y �= ε and xā,ya ∈ X substitute
y for ya in X (the bar morphism exchanges a and b).

Avoidable(X non-empty set of binary words)

1 while reduce1 or reduce2 are applicable to X do
2 X ← reduce1(X) or reduce2(X)

3 if X �= {a,b} return true else return false

Example. Set X = {aaa,aba,bb} is unavoidable because the sequence
of reductions yields B (changed words are underlined): {aaa,aba,bb} →
{aaa,ab,bb} → {aa,ab,bb} → {aa,a,bb} → {a,bb} → B.

Question. Show that a set X of binary words is avoidable if and only if
Avoidable(X) = true.

Question. Show that a set X ⊆ B≤n is avoidable if and only if it is avoided
by a word of length larger than 2n−1 + n − 2 and that the bound is optimal.

Solution
Correctness of Avoidable. It is a consequence of the following two
properties.

Property 1. If Y = reduce1(X) or Y = reduce2(X), X is avoidable if and
only if Y is avoidable.

Proof It is clear that a word that avoids Y also avoids X. To prove the
converse, let w be an infinite word avoiding X. We show that w also avoids Y .
This is obvious if Y = reduce1(X). If Y = reduce2(X), there are two words
xā,ya ∈ X, x a suffix of y and Y = X \ {ya} ∪ {y}.

It is then enough to show that w avoids y. If not, yb is a factor of w. Letter
b cannot be a because w avoids ya. But it cannot be ā either because w avoids
xā suffix of yā. Then y is not a factor of w.

Property 2. If no reduction is applicable to X and X �= B, X is avoidable.

Proof To show the conclusion we construct incrementally an infinite word w

avoiding X. Let v be a finite word avoiding X (v can be just a letter because
X �= B). We claim that v can be extended by a single letter to va that also
avoids X. Indeed, if it cannot, there are two suffixes x and y of v for which

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

57 Avoidability of Binary Words 143

xā ∈ X and ya ∈ X. Since one of the words is a suffix of the other, reduction2
applies to X, in contradiction of the hypothesis. Hence v can be extended
eventually to an infinite word w, avoiding X.

Length bound on avoiding words. The next property is used to answer the
second question.

Property 3. X ⊆ B≤n is avoidable if and only if it is avoided by a word having
a border in Bn−1.

In fact, if X is avoidable, an infinite word avoiding it has a factor satisfying
the condition. Conversely, let w = uv = v′u, avoiding X with u ∈ Bn−1. Since
uvi = v′uvi−1 = · · · = v′iu, i > 0, it is clear that any length-n factor of uvi

is a factor of w. Therefore uv∞ also avoids X.
To answer the second question, just the converse of the if-and-only-if needs

to be proved. If a word of length larger than 2n−1 + n− 2 avoids X it contains
at least two occurrences of some word in Bn−1 and thus a factor as in property
3 that avoids X. Therefore X is avoidable.

The optimality of the bound relies on de Bruijn (binary) words of order
n − 1. Such a word w contains exactly one occurrence of each word in Bn−1

and has length 2n−1 +n− 2. The word avoids the set X of length-n words that
are not factors of it. This achieves the proof, since X is unavoidable.

Notes
Algorithm Avoidable is certainly not the most efficient algorithm to test set
avoidability in the binary case but it is probably the simplest one. References
on the subject may be found in [175]. The solution of the second question is
from [90].

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

144 Efficient Data Structures

58 Avoiding a Set of Words

For a finite set F of words on a finite alphabet A, F ⊆ A∗, let L(F) ⊆ A∗ be
the language of words that avoids F ; that is, no word in F appears in words of
L(F). The aim is to build an automaton accepting L(F).

Note that if w avoids u it also avoids any word u is a factor of. Thus we
can consider that F is an anti-factorial (factor code) language: no word in F

is a proper factor of another word in F . On the contrary, F(L) is a factorial
language: any factor of a word in F(L) is in F(L).

Examples. For F0 = {aa,bb} ⊆ {a,b}∗ we get L(F0) = (ab)∗ ∪ (ba)∗.
For F1 = {aaa,bbab,bbb} ⊆ {a,b,c}∗ we have (ab)∗ ⊆ L(F1) as well as
(bbaa)∗ ⊆ L(F1) and c∗ ⊆ L(F1).

Question. Show that L(F) is recognised by a finite automaton and design
an algorithm to build, from the trie of F , a deterministic automaton that
accepts it.

[Hint: Use the Aho–Corasick technique.]
The set F is said to be unavoidable if no infinite word avoids it (see Problem

57). For example, the set F1 is avoidable on the alphabet {a,b} because it is
avoided by the infinite word (ab)∞.

Question. Show how to test if the set F is unavoidable.

Solution
Assume F is non-empty and anti-factorial (in particular it does not contain the
empty word) and consider the automaton accepting A∗FA∗, words having a
factor in F . States of the automaton are (or can be identified with) the prefixes
of words in F . Indeed, any such prefix can be extended to produce a word of F

and these latter words form sink states. Below left is an automaton accepting
{a,b}∗F1{a,b}∗, in which doubly circled nodes correspond to words with a
factor in F1.

a

a a
a,b

b

b b
a

b b
a,b

a

a

b
a,b

a

a

b

b b
a

b

a

a

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

58 Avoiding a Set of Words 145

The language L(F) = A∗\A∗FA∗, the complement of A∗FA∗, is accepted
by the automaton accepting A∗FA∗ after exchanging the role of terminal and
non-terminal nodes. This shows L(F) is accepted by a finite automaton. Above
right is an automaton accepting L(F1).

Algorithm Avoiding follows closely the construction of the dictionary
matching automaton of F and eventually reverses the status of states and
deletes useless states.

Avoiding(trie of F, alphabet A)

1 q0 ← initial state (root) of the trie

2 Q ← ∅ � empty queue

3 for each letter a ∈ A do
4 if goto(q0,a) undefined then
5 add arc (q0,a,q0)

6 else append (goto(q0,a),q0) to Q

7 while Q not empty do
8 remove (p,r) from Q

9 if r terminal then
10 set p a terminal state

11 for each letter a ∈ A do
12 s ← goto(r,a)

13 if goto(p,a) undefined then
14 add arc (p,a,s)

15 else append (goto(p,a),s) to Q

16 remove all terminal states and their associated arcs

17 set all remaining states as terminal states

18 return transformed automaton

The algorithm runs in time O(|A|∑{|w| : w ∈ F }) with an appropriate
implementation of the goto function. But instead of setting all possible arcs
out of each state, a failure link can be created from state p to state r when
(p,r) is in the queue. This is the usual technique to implement this type of
automaton, reducing its size to O(

∑{|w| : w ∈ F }).
To test if F is unavoidable, it remains to check if the graph formed by nodes

of the output automaton contains a cycle. This can be done in linear time with
a topological sorting algorithm. The above right automaton contains a cycle,
which shows again that F1 is unavoidable.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

146 Efficient Data Structures

Notes
The construction of a dictionary-matching automaton, also called an Aho–
Corasick automaton is by Aho and Corasick [3] and described in most
textbooks on text algorithms. The automaton is usually implemented with a
notion of failure links to save space.

59 Minimal Unique Factors

The topic of this problem has the same flavour as the notion of minimal absent
words. It can also be used to identify, to filter or to distinguish files. But
the corresponding algorithms and the underlying combinatorial properties are
simpler.

A minimal unique factor of a word x is a factor that occurs once in x and
whose proper factors are repeats, that is, have at least two occurrences in x.
A minimal unique factor x[i . . j] is stored in the table MinUniq by setting
MinUniq[j] = i.

Example. Minimal unique factors of x = abaabba are aba = x[0 . . 2],
aa = x[2 . . 3] and bb = x[4 . . 5], and MinUniq[2] = 0, MinUniq[3] = 2 and
MinUniq[5] = 4 (other values are set to −1).

0 1 2 3 4 5 6
x a b a a b b a

Algorithm MinUnique applies to a singleton-free word (each letter appear
at least twice in it).

MinUnique(non-empty singleton-free word x)

1 (SA,LCP) ← Suffix array of x

2 for i ← 0 to |x| do
3 MinUniq[i] ← −1

4 for r ← 0 to |x| − 1 do
5 � ← max{LCP[r],LCP[r + 1]}
6 MinUniq[SA[r] + �] ← max{MinUniq[SA[r] + �],SA[r]}
7 return MinUniq[0 . . |x| − 1]

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

59 Minimal Unique Factors 147

Question. Show that the algorithm MinUnique computes the table
MinUniq associated with its singleton-free input word x.

There is a duality between minimal unique factors and maximal occurrences
of repeats in the word x.

Question. Show that a minimal unique factor induces two maximal occur-
rences of repeats in a singleton-free word.

Question. How many minimal unique factors are there in a de Bruijn word
of order k?

Solution
Sketch of the proof of correctness. The notion of minimal unique factor
of a word is close to the notion of identifier of a position on the word. The
identifier of a position i on x# (# is an end-marker) is the shortest prefix of
x#[i . . |x|] that occurs exactly once in x#. Then if the factor ua with letter a

is the identifier of i, u occurs at least twice in x, corresponding to length �

computed at line 5 in MinUnique.
The algorithm implicitly uses identifiers because a minimal unique factor

is the shortest identifier among all those ending at a given position, say j .
This is done at line 6, where j = SA[r] + � and MinUniq[j] is updated
accordingly.

The computation of minimal unique factors of abaabba is illustrated
below. The value MinUniq[7]= 6 is discarded when there is no end-marker.
When r = 3, MinUniq[5] is set to 3, which is eventually updated to 4 when
r = 6. The three non-negative values, 0, 2 and 4, correspond to factors given
before.

r 0 1 2 3 4 5 6 7

SA[r] 6 2 0 3 5 1 4
LCP[r] 0 1 1 2 0 2 1 0

j 0 1 2 3 4 5 6 7
MinUniq[j] −1 −1 −1/ −1/ −1 −1/ −1 −1/

0 2 3/ 6
4

Maximal repeats. A minimal unique factor in the singleton-free word x is of
the form aub, for a word u and letters a, b, because it cannot be reduced to a

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

148 Efficient Data Structures

single letter. Then au and ub both occur at least twice in x, that is, are repeats.
The occurrence of au (determined by the occurrence of aub) can be extended
to the left to a maximal occurrence of a repeat. Similarly, the occurrence of ub

can be extended to the right to a maximal occurrence of a repeat. This answers
the second question.

De Bruijn words. In a de Bruijn word of order k on the alphabet A, each
word of length k appears exactly once. Shorter words are repeats. Then there
are exactly |A|k minimal unique factors in the de Bruijn word whose length is
|A|k + k − 1.

Notes
The elements in this problem are by Ilie and Smyth [148]. The computation of
shortest unique factors is treated in [233]. The computation of minimal unique
factors in a sliding window is discussed in [189].

The computation of identifiers is a straight application of Suffix trees (see
[98, chapter 5]). Minimal unique factors can be left-extended to produce all
identifiers of the word positions.

In genomics, a minimal unique factor, called a marker, has a known location
on a chromosome and is used to identify individuals or species.

60 Minimal Absent Words

Words that do not occur in files provide a useful technique to discard or
discriminate files. They act like the set of factors of a file but admit a more
compact trie representation as factor codes.

A word w, |w| > 1, is said to be absent or forbidden in a word x if it does
not occur in x. It is said to be minimal with this property if in addition both
w[0 . . |w| − 2] and w[1 . . |w| − 1] do occur in x.

Minimal absent words of ababbba are aa, abba, baba, bbab and
bbbb. In their trie below, they are each associated with a leaf (double-circled)
because no minimal absent word is a factor of another one.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

60 Minimal Absent Words 149

0

1

2

3 4

5

6

7
8

9

10

11

12

13

14

a

b

a
b

b

b a

a

b

b

a

b a
b

A natural method to compute the minimal words absent in x is to start with
its Factor automaton F(x), smallest deterministic automaton accepting all its
factors. Each factor is spelt out along a path starting from the initial state and
all states are terminal. Below is the Factor automaton of ababbba with its
failure links (dotted edges).

0 1 2 3 4 5 6 7

8 9

a

b

b a

b

b b b a

a

b

b

a

Question. Design a linear-time algorithm to compute the trie of minimal
absent words of a word x from its Factor automaton F(x).

[Hint: Use failure links of the automaton.]

Question. Design a linear-time algorithm to recover the Factor automaton
of a word x from the trie of its minimal absent words.

[Hint: Use the Aho–Corasick technique.]

Solution
Computing minimal absent words. The algorithm below works on the Factor
automaton F(x) of its input. The automaton on the alphabet A comprises a set
of states Q with initial state i and the transition function goto, represented by
arcs on the above picture. The algorithm detects absent words by considering
undefined arcs.

The algorithm traverses the automaton in a width-first way to ensure the
minimality of an absent words. It checks at line 3 if some proper suffix of
a candidate is not already absent using the failure link of the automaton

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

150 Efficient Data Structures

(a by-product of efficient algorithms that build the automaton). The link
refers to the longest suffix of the word associated with another state. The
algorithm transform the automaton by adding new states and computing the
new transition function goto′.

MinimalAbsentWords(x non-empty word)

1 (Q,A,i,Q,goto) ← F(x) Factor automaton of x

and its failure function fail

2 for each p ∈ Q in width-first traversal from i and each a ∈ A do
3 if goto(p,a) undefined and goto(fail(p),a) defined then
4 goto′(p,a) ← new final state

5 elseif goto(p,a) = q and q not already reached then
6 goto′(p,a) ← q

7 return (Q ∪ {new final states},A,i,{new final states},goto′)

Applied to the above example ababbba, the algorithm produces the trie of
minimal absent words, drawn differently below to show the similarity with the
automaton structure.

0 1 2 3 4 5 6 7

8 9

10 11 12 13 14

a

b

b

a b

b

a a b b

a

b

b

a

Running times. The construction of the Factor automaton of a word is
known to be achievable in linear time, mostly due to the fact that the size
of the structure is linear according to the length of the word independently
of the alphabet size. The rest of instructions in the algorithm clearly takes
O(|A| × |x|) time if the goto function and the failure links are implemented in
arrays.

Computing a Factor automaton. From the trie (Q,A,i,T ′,goto′) of minimal
absent words of a single word x, the algorithm below builds its Factor
automaton. The construction relies on the failure link fail on states of the trie.
The process is similar to the construction of a dictionary-matching machine
that builds the automaton accepting all words in which appear a word from a
finite set.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

60 Minimal Absent Words 151

FactorAutomaton((Q,A,i,T ′,goto′) trie of minimal absent words)

1 for each a ∈ A do
2 if goto′(i,a) defined and not in T ′ then
3 goto(i,a) ← goto′(i,a)

4 fail(goto(i,a)) ← i

5 for each p ∈ Q \ {i} in width-first traversal and each a ∈ A do
6 if goto′(p,a) defined then
7 goto(p,a) ← goto′(p,a)

8 fail(goto(p,a)) ← goto(fail(p),a)

9 elseif p not in T ′ then
10 goto(p,a) ← goto(fail(p),a)

11 return (Q \ T ′,A,i,Q \ T ′,goto)

The next picture displays the Factor automaton of ababbba, drawn
differently to show the relation with the first picture of the trie.

0

1

2

3 4

5

6

7
8

9

a

b

b

a

b

b
b

b

a

a

b a
b

Notes
The notion of a minimal absent or forbidden word was introduced by Béal
et al. in [28]. The design and analysis of the present algorithms are in [92]. An
extension to regular languages appears in [30].

The linear-time construction of a Factor automaton appears in [67]. It can
be obtained by minimising the DAWG introduced by Blumer et al. (see [38])
or the Suffix automaton (see [74, 96, 98]).

The second algorithm is similar to the construction of a pattern-matching
machine by Aho and Corasick [3]. Applied to the trie of minimal absent words
of several words, the method does not always produce a (minimal) Factor
automaton.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

152 Efficient Data Structures

Antidictionaries, sets of absent words, are used in the data compression
method in [93]; see more in [198–200] and references therein. Computation in
a sliding window is discussed in [75, 189].

Absent words are also used in bioinformatics to detect avoided patterns in
genomic sequences or to help build phylogenies; see, for example, [51, 224].

61 Greedy Superstring

A superstring of a set of words can be used to store the set in a compact way.
Formally, a common superstring of a set X of words is a word z in which all
elements of X occur as factors, that is, X ⊆ Fact(z). The shortest common
superstring of X is denoted by SCS(X).

The greedy paradigm leads to a simple algorithm that produces a fairly good
approximation of SCS(X). The goal of the problem is to show an efficient
implementation of the method.

For two words u and v, Overlap(u,v) is the longest suffix of u that is a
prefix of v. If w = Overlap(u,v), u = u′w and v = wv′, u ⊗ v is defined as
the word u′wv′. Note that SCS(u,v) is either u ⊗ v or v ⊗ u. Also note that
a word in X factor of another word in X can be discarded without changing
SCS(X). Then X is supposed to be factor free.

GreedySCS(X non-empty factor-free set of words)

1 if |X| = 1 then
2 return x ∈ X

3 else let x,y ∈ X,x �= y, with |Overlap(x,y)| maximal

4 return GreedySCS(X \ {x,y} ∪ {x ⊗ y})

Question. For a set X of words drawn from the alphabet {1,2, . . . ,n}
show how to implement the algorithm so that GreedySCS(X) runs in time
O(�{|x| : x ∈ X}).

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

61 Greedy Superstring 153

Example. The superstring fbdiachbgegeakhiacbd is produced by
GreedySCS from the set {egeakh,fbdiac,hbgege,iacbd,bdiach}.

f b d i a c h b g e g e a k h i a c b d

f b d i a c
b d i a c h

h b g e g e
e g e a k h

i a c b d

Solution
The overlap between two words u and v is the border of the word v#u, where
does not occur in the words. Hence, methods for computing borders in linear
time (e.g. in Problem 19) lead to a direct implementation running in time
O(n · |X|), where n = �{|x| : x ∈ X}. We show how to design a O(n)-time
implementation.

If words in the above example are denoted by x1, x2, x3, x4 and x5 the
superstring produced by the algorithm is x2 ⊗x5 ⊗x3 ⊗x1 ⊗x4. It is identified
by the corresponding permutation (2,5,3,1,4) of word indices.

Let us first design an iterative version of the algorithm that produces the
permutation of word indices associated with the sought superstring. It is
implemented as a doubly linked list whose elements are linked by the tables
prev and next, and that starts at some index. During the computation, for a
(partial) list starting with index p and ending with q we have head[q] = p and
tail[p] = q.

Here is the scheme of an iterative version of the algorithm.

IterGreedy({x1,x2, . . . ,xm} non-empty factor-free set of words)

1 for i ← 1 to m do
2 (prev[i],next[i]) ← (i,i)

3 (head[i],tail[i]) ← (i,i)

4 for m − 1 times do
5 let i,j , next[i] = i, prev[j] = j , head[i] �= j

with |Overlap(xi,xj)| maximal

6 (next[i],prev[j]) ← (j,i)

7 head[tail[j]] ← head[i]

8 tail[head[i]] ← tail[j]

9 let i with prev[i] = i

10 return (i,next)

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

154 Efficient Data Structures

Condition next[i] = i on line 5 ensures that i is the tail of its list, and
similarly condition prev[j] = j that j is the head of its list. Condition
head[i] �= j attests that i and j are on different lists, which instructions at
line 6 concatenate. The next instructions update heads and tails.

From the output (i,next), the permutation of indices associated with the
superstring of {x1,x2, . . . ,xm} is i, next[i], next[next[i]], etc.

Algorithm IterGreedy is made efficient by introducing several useful data
structures Last and First: for each u ∈ Pref ({x1, . . . ,xm})
• Last(u) is the list of indices of words in {x1, . . . ,xm} having u as a suffix,

• First(u) is the list of indices of words in {x1, . . . ,xm} having u as a prefix.

In addition, for each index of a word we keep all its locations in the lists to be
able to delete it from the lists. Let n = �m

i=1|xi |.
Observation. The total length of all lists is O(n).
Indeed, index i is on the list First(u), for each proper prefix u of wi . Hence it
is on |wi | lists, which sums up to O(n) globally. The same holds for Last.

Algorithm IterGreedy rewrites as Algorithm EffiGreedy that processes
all potential overlaps u in order of decreasing length, and merges words having
such overlaps if they are eligible for merge. Testing eligibility is done as in
Algorithm IterGreedy.

EffiGreedy({x1,x2, . . . ,xm} non-empty factor-free set of words)

1 for i ← 1 to m do
2 (head[i],tail[i]) ← (i,i)

3 for each u ∈ Pref ({x1, . . . ,xm}) in decreasing length order do
4 for each i ∈ Last(u) do
5 let j be the first element of First(u) with j �= head[i]

6 � it is the first or second element, or nil

7 if j �= nil then � u is an overlap of xi and xj

8 remove j from all lists First

9 remove i from all lists Last

10 next[i] ← j

11 head[tail[j]] ← head[i]

12 tail[head[i]] ← tail[j]

13 let i word index for which i �= next[j] for all j = 1, . . . ,m

14 return (i,next)

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

62 Shortest Common Superstring of Short Words 155

Algorithm EffiGreedy runs in time O(n) if all lists are preprocessed, since
their total size is O(n).

The preprocessing of Pref and of other lists is done with the trie of the set
{x1,x2, . . . ,xm} and with a Suffix tree. The only tricky part is the computation
of lists Last(u). To do it, let T ′ be the Suffix tree of x1#1x2#2 . . . xm#m,
where #i are new distinct symbols. Then for each word xi , T ′ is traversed
symbol by symbol along the path labelled by xi and, for each prefix u of xi ,
if the corresponding node in T ′ has k outgoing edges whose labels start with
#i1, . . . ,#ik respectively then indices i1, . . . ,ik are inserted into Last(u). This
results in a O(n) preprocessing time if the alphabet is linearly sortable.

Notes
Computing a shortest common superstring is a problem known to be NP-
complete. Our version of Algorithm GreedySCS derives from the algorithm
by Tarhio and Ukkonen in [230].

One of the most interesting conjectures on the subject is whether
GreedySCS produces a 2-approximation of a shortest common superstring of
the input. This is true for words of length 3 and is quite possibly always true.

62 Shortest Common Superstring of Short Words

A common superstring of a set X of words is a word in which all elements
of X occur as factors. Computing a shortest common superstring (SCS) is an
NP-complete problem but there are simple cases that can be solved efficiently,
like the special case discussed in the problem.

For example, 1263923757 is a shortest common superstring for the
set of seven words {12,23,26,57,63,75,92}.
Question. Show how to compute in linear time the length of a shortest
common superstring of a set X of words of length 2 over an integer alphabet.

[Hint: Transform the question into a problem on graphs.]

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

156 Efficient Data Structures

Solution
The problem translates into a question on (directed) graphs as follows. From
the set X we consider the graph G whose vertices are letters (integers) and
whose edges correspond to words in X. The picture corresponds to the above
example.

1

2

3 56

79

i 1 2 3 5 6 7 9

outdegree(i) 1 2 0 1 1 1 1
indegree(i) 0 2 2 1 1 1 0

A directed graph is said to be weakly connected if every two nodes are
connected by an undirected path, after discarding edge orientations. The
observation sketches the road map to build a shortest superstring.

Observation. Let G be a weakly connected graph associated to a set of length-
2 words and let Z be the smallest set of (directed) edges to be added to G so
that it contains an Eulerian cycle. Then the length of a shortest superstring for
X is |X| + 1 if Z is empty and |X| + |Z| otherwise.

The problem switches to the question of building an appropriate set Z to
get an Eulerian graph. Recall that a directed graph is Eulerian if it is weakly
connected and each vertex v is balanced, that is, indegree(v) = outdegree(v).
Each weakly connected component of the graph G is processed separately. So
to start we can assume that G itself is weakly connected.

To add a minimum number of directed edges to make each vertex v balanced
we proceed as follows. If D(v) = outdegree(v) − indegree(v) > 0, D(v)

incoming edges are added to v; if D(v) < 0, D(v) outgoing edges are added
from v. The point is that when adding an edge it is always from a vertex that
needs an outgoing edge to a vertex that requires an incoming edge. Since each
edge contribute to both an incoming edge and an outgoing edge, we cannot be
left with only one vertex v with D(v) �= 0 and the process continues until all
vertices are balanced. This implies also that the total number of added edges is
exactly |Z| = 1

2

∑
v |D(v)|.

Computing Z is done easily using the tables outdegree and indegree and
runs in linear time. Worst cases are when no two words of X overlap. When
the transformed graph has an Eulerian cycle, deleting one of the added edges

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

63 Counting Factors by Length 157

v → w provides an Eulerian path from w to v. If the original graph is already
Eulerian, a path starting from any vertex and ending to it gives a solution. Paths
corresponds to shortest superstrings.

Finally, if the graph G is not weakly connected, each weakly connected
component is treated as above and the resulting words are concatenated to get
a shortest superstring.

On the above example, only two edges, 3 → 1 and 3 → 9, are added to
the left component, giving the new tables:

i 1 2 3 5 6 7 9

outdegree(i) 1 2 2 1 1 1 1
indegree(i) 1 2 2 1 1 1 1

Removing the first added edge give the word 1263923 for the first
component and 757 for the second component. The resulting superstring is
1263923757.

Notes
The method presented in the problem is by Gallant et al. [126]. If the input set
consists of words of length 3 the problem becomes NP-complete.

63 Counting Factors by Length

Let factx[�] denote the number of (distinct) factors of length � occurring in a
word x.

Question. Show how to compute in linear time all numbers factx[�], � =
1, . . . ,|x|, related to a word x, assuming a constant-size alphabet.

[Hint: Exploit the Suffix tree of the word.]

Solution
Let T = ST (x) be the Suffix tree of x. Recall its internal nodes are factors of
x having at least two occurrences in x. They are followed either by at least two
different letters or possibly by just one letter when one occurrence is a suffix
occurrence.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

158 Efficient Data Structures

With a non-root node v of T whose parent is node u is associated the interval
of lengths

Iv = [|u| + 1 . . |v|].

Observation. factx[�] is the number of intervals Iv containing the number �.
Indeed, each non-root node v of the Suffix tree corresponds to a set of

factors sharing the same set of occurrences. Their lengths are distinct and form
the interval Iv . Hence the total number of (distinct) factors of length � is the
number of all intervals Iv containing �.

The observation reduces the problem to an interval covering problem: given
a family I(x) of subintervals of [1 . . |x|] compute the number of intervals
containing �, for each �, 1 ≤ � ≤ |x|.

NumbersOfFactors(I(x) for a non-empty word x)

1 Count[1 . . |x| + 1] ← [0,0, . . . ,0]

2 for each [i . . j] ∈ I(x) do
3 Count[i] ← Count[i] + 1

4 Count[j + 1] ← Count[j + 1] − 1

5 prefix_sum ← 0

6 for � ← 1 to n do
7 prefix_sum ← prefix_sum + Count[�]

8 factx[�] ← prefix_sum

9 return factx

Algorithm NumbersOfFactors computes factx from the family I(x) of
intervals defined from the Suffix tree of x. To do it, an auxiliary array
Count[1 . . n + 1] that initially contains null values is used.

Example. Let x = abaababaaba. The intervals in I(x) are labels of nodes
in the picture below showing the Suffix tree of x. The algorithm computes the
table Count = [2,1,1,1,0,0,0, − 1, − 1, − 1, − 1] (discarding the value at
position |x| + 1) and outputs the sequence of prefix sums of the table Count:

factx = [2,3,4,5,5,5,5,4,3,2,1].

For instance, the value factx[3] = 4 corresponds to the four factors of length 3
occurring in x: aab, aba, baa and bab.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

63 Counting Factors by Length 159

[1 . . 1] [1 . . 2]

[2 . . 4] [2 . . 3] [3 . . 5] [3 . . 7]

[5 . . 9] [4 . . 6] [4 . . 8] [6 . . 10]

[7 . . 11]

(0,0) (1,2)

(3,5) (1,2) (3,5) (6,10)

(6,10)
(3,5) (6,10)

(6,10)

(6,10)

It is clear Algorithm NumbersOfFactors runs in linear time mainly
because the number of nodes in the Suffix tree of x is O(|x|).
Notes
An alternative algorithm can be achieved using the Factor automaton of x. In
the automaton each non-initial state v is labelled by the interval [s(v) . . l(v)],
where s(v) and l(v) are respectively the length of the shortest and of the longest
path from the root to v.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

160 Efficient Data Structures

64 Counting Factors Covering a Position

A factor of a word x covers a position k on x if it has an occurrence x[i . . j]
that satisfies i ≤ k ≤ j .

Let C(x,k) denote the number of (distinct) factors of x covering the position
k and let N (x,k) denote the number of factors having an occurrence that does
not cover k.

Question. Show how to compute in linear time C(x,k) and N (x,k) for a
given position k on x, assuming a constant-size alphabet.

Solution
Nodes of the Suffix tree ST (w) of a word w are factors of w. For an edge
(u,v) of the tree let weight(v) = |v| − |u|, the length of its label.

Computing N (x,k). Let # be a letter that does not occur in x and let x′ be the
word obtained from x by changing its letter x[k] to #. Then, using the Suffix
tree ST (x′) the number N of distinct factors of x′ is computed as the sum of
weights of all non-root nodes.

Observation. N (x,k) = N − M , where M is the number of (distinct) factors
of x′ containing the letter #.

This leads to an evaluation of N (x,k) since M = (k + 1) × (n − k).

Computing C(x,k). Assume x ends with special end-marker and each leaf of
ST (x) is labelled with the starting position of the corresponding suffix of x.
For each node v let LeftLeaves(v,k) be the set of leaves i in the subtree rooted
at v satisfying both i ≤ k and k − i < |v|.

Let V be the set of nodes v with a non-empty set LeftLeaves(v,k). In other
words, V is the set of nodes corresponding to factors covering the position k.
For v ∈ V let Dist (v,k) = min{k − i : i ∈ LeftLeaves(v,k)}.
Observation. C(x,k) = ∑

v∈V min{|v| − Dist (v,k),weight(v)}.
Computing C(x,k) reduces to the computation of all Dist (v,k), which is

done during a bottom-up traversal of the Suffix tree.
On constant-size alphabets all computations run in linear time.

Notes
Interesting versions of the problem are when factors are to cover all positions
of a set of positions. An attractor, a related notion introduced by Prezza [202]
(see also [157, 183]), is a set K of positions on x whose factors have at least
one occurrence covering an element of K . Attractors provide a framework to
analyse dictionary text compressors and are used in [193] to develop universal
compressed self-indexes.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

65 Longest Common-Parity Factors 161

65 Longest Common-Parity Factors

For a word v ∈ {0,1}+ we denote by parity(v) the sum modulo 2 of letter 1
occurring in v. For two words x,y ∈ {0,1}+ we denote by lcpf (x,y), the
longest common-parity factor , the maximal common length of two factors
u and v of x and y respectively with parity(u) = parity(v). Surprisingly this
problem essentially amounts to computing all periods of words.

Question. Show how to compute in linear time lcpf (x,y) for two binary
words x and y.

Solution
The solution uses a data structure called the parity table. For a word x,
Parity[�,x] is the set of distinct parities of factors of length � of x. If two
factors of length � have different parities Parity[�,x] = {0,1}.
Observation. The length lcpf (x,y) derives from the parity tables of x and of
y: lcpf (x,y) = max{� : Parity[�,x] ∩ Parity[�,y] �= ∅}.
Fast computation of the table Parity. The problem reduces to the computation
of Parity, which relies on the following simple fact.

Observation. Parity[�,x] �= {0,1} if and only if � is a period of x.
Indeed, if � is a period of x then obviously the parity of all factors of

length � is the same. Conversely, assume all factors of length � have the same
parity. Then whenever the next sum is defined we get the equality

∑i+�−1
j=i x[j]

(mod 2) = ∑i+�
j=i+1 x[j] (mod 2), which implies x[i + �] = x[i] and

completes the proof.
All the periods of x are computed, for example, as by-products of the

border table computation (see Problem 19). Next, when � is a period of
x, Parity[�,x] is the parity of the prefix of length � of x, which results
from a prefix-sum computation for all �’s. If � is not a period of x, by the
observation, Parity[�,x] = {0,1}. In this way the entire parity tables for x and
y are computed in linear time, which gives a linear-time solution to compute
lcpf (x,y).

Notes
The problem extends to words on a larger alphabet {0,1, . . . ,k−1} considering
sums modulo k. A similar algorithm gives a solution.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

162 Efficient Data Structures

66 Word Square-Freeness with DBF

The dictionary of Basic Factors (DBF in short) is a useful elementary data
structure to produce efficient algorithmic solutions to many problems on
words. It is used here to test the square-freeness of a word.

The DBF of a word w consists of a logarithmic number of tables Namek ,
0 ≤ k ≤ log |w|. Tables are indexed by positions on w and Namek[j] intends
to identify w[j . . j + 2k − 1], factor of length 2k starting at position j on w.
Identifiers have the following property, for i �= j : Namek[i] = Namek[j] if
and only if

i + 2k − 1,j + 2k − 1 < |w| and w[i . . i + 2k − 1] = w[j . . j + 2k − 1].

It is known that the DBF of w can be computed in time O(|w| log |w|).
To test the square-freeness of w, let Predk , 0 ≤ k < log |w|, denote the

table indexed by positions on w and defined by

Predk[j] = max{i < j : Namek[i] = Namek[j]} ∪ {−1}

and let Candw denote the set of pairs of positions (i,2j − i) on w, candidates
for a square occurrence w[i . . 2j − i − 1] in w:

Candw = {(i,2j − i) : 2j − i ≤ |w| and i = Predk[j] �= −1 for some k}.

Question. Show that a word w contains a square if w[p . . q − 1] is a square
for some (p,q) ∈ Candw. Deduce an algorithm checking if the word w is
square-free in time O(|w| log |w|).

Example. Here are the tables Pred for the word w = abacbaca:

j 0 1 2 3 4 5 6 7

x[j] a b a c b a c a

Pred0[j] −1 −1 0 −1 1 2 3 5
Pred1[j] −1 −1 −1 −1 1 2 −1
Pred2[j] −1 −1 −1 −1 −1

The associated set Candw is {(0,4),(1,7),(2,8)}. Only the pair (1,7) corre-
sponds to a square, namely w[1 . . 6] = bacbac.

Solution
To answer the first part of the question, let i be the starting position of an
occurrence of a shortest square occurring in w. Let 2� be its length and

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

66 Word Square-Freeness with DBF 163

j = i + �. The square factor is w[i . . i + 2� − 1] and u = w[i . . i + � − 1] =
w[j . . j + � − 1]. Let us show that (i,i + 2�) belongs to Candw, that is,
i = Predk[j] for some integer k.

Let k be the largest integer for which 2k ≤ �. As prefix of u we have
v = w[i . . i + 2k − 1] = w[j . . j + 2k − 1], that is, Namek[i] = Namek[j].

w u u
i i′ j 2j − i

v v v ��
2k

By contradiction, assume i < Predk[j], that is, there is an occurrence of
v starting at position Predk[j] (i′ on picture). This occurrence is distinct from
the occurrences of v prefixes of u (see picture) and overlaps at least one of
them due to its length. But this yields a shorter square, a contradiction. Thus
Predk[j] = i, which means (i,i + 2�) ∈ Candw as expected.

Algorithm SquareFree applies the above property by searching Candw for
a pair of positions corresponding to a square.

SquareFree(w non-empty word of length n, DBF of w)

1 for k ← 0 to �log n� do
2 compute Predk from DBF of w

3 compute Candw from Predk tables

4 for each pair (p,q) ∈ Candw do
5 k ← �log(q − p)/2�
6 if Namek[p] = Namek[(p + q)/2] and

Namek[(p + q)/2 − 2k] = Namek[q − 2k] then
7 return false

8 return true

Correctness of SquareFree. The correctness of the algorithm is an exten-
sion of the previous proof that justifies the choice of k at line 5. Testing if a pair
(p,q) corresponds to a square, that is, checking if the two factors w[p . . (p +
q)/2 − 1] and w[(p + q)/2 . . q − 1] are equal, then amounts to checking both
that their prefixes of length 2k match and that their suffixes of length 2k also
match. This is exactly what is done at line 6 in the algorithm.

Running time of SquareFree. For a given k the table Predk can be com-
puted in linear time, scanning the table Namek from left to right. Computing
the set Candw by traversing the �log |x|� tables Pred takes O(|x| log |x|) time.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

164 Efficient Data Structures

The same bound holds for lines 5-7 thanks to Name from the DBF structure.
Thus SquareFree runs in time O(|x| log |x|).
Notes
There are many algorithms testing the square-freeness of a word with similar
running time. But this one is especially simple when the DBF structure is
available. It is a version of an algorithm published in [84].

67 Generic Words of Factor Equations

The problem deals with an algorithm to build words from factor equations.
A factor equation is of the form w[p . . q]=w[p′ . . q ′] and has length q−p+1.
In short, the equation is written as a triple (p,p′,q − p + 1).

We say that a word w of length n is a solution to a system of factor equations
E if it satisfies each equation of the system. We are interested in generic
solutions containing the largest number of different letters. Such a solution of
length n can be used to describe all other solutions of the system. It is denoted
by �(E,n) and defined up to a renaming of letters.

Example. For the system of equations

E = {(2,3,1), (0,3,3), (3,5,3)},

the generic solution �(E,8) is w = abaababa. Indeed, w[2] = w[3] = a,
w[0 . . 2] = w[3 . . 5] = aba and w[3 . . 5] = w[5 . . 7] = aba. In other
words, we have an equivalence on the set of positions on w comprising
two equivalence classes {0,2,3,5,7} and {1,4,6}. It is the finest equivalence
satisfying the equations in E. Note that �(E,11) = abaababacde.

Question. Describe how to build a generic solution �(E,n) for a given
system of factor equations E in time O((n + m) log n), where m = |E|.

[Hint: Use spanning forests to represent sets of equivalent positions.]

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

67 Generic Words of Factor Equations 165

Solution
For k ≥ 0, let Ek be the subset of equations of length �, 2k−1 < � ≤ 2k , in E.
In particular, E0 is its subset of equations of length 1.

Operation REDUCE. Let k > 0. For a set X of equations of length �, 2k−1 <

� ≤ 2k , the operation REDUCE(X) produces an equivalent set of equations of
shorter length as follows.

• Split. Each equation (p,p′,�) in X is replaced by two equations

(p,p′,2k−1) and (p + � − 2k−1,p′ + � − 2k−1,2k−1).

p p + � − 2k−1 p + � − 1 p′ p′ + � − 2k−1 p′ + � − 1

��
2k−1

��
2k−1

��
2k−1

��
2k−1

After the operation, X is transformed into an equivalent system of size
O(n + m) of equations of the same length.

• Then we create the graph G whose vertices are starting positions of equa-
tions of the same length 2k−1 and whose edges correspond to equations. If
there is a cycle in G then we can remove one of its edges together with the
corresponding equation without changing equivalence classes.

• Shrink. A spanning tree is built for each connected component of G. Trees
form a spanning forest of the whole graph. Eventually, REDUCE(X) is the
set of equations corresponding to edges of the spanning forest.

Key observation. Since there are O(n) edges in the spanning forest, the size
of the set of equations |REDUCE(X)| is O(n).

Main algorithm. The whole algorithm consists in applying a logarithmic
number of iterations executing operation REDUCE. After each iteration the
obtained equivalent system contains equations of much smaller length.

Eventually we get a system E0 with equations of length 1, from which
�(E0,n) = �(E,n) is easily computed in linear time.

Psi(E set of equations,n positive length)

1 � E = ⋃�log n
i=0 Ei

2 for k ← �log n downto 1 do
3 Ek−1 ← Ek−1 ∪ REDUCE(Ek)

4 � invariant: system
⋃k−1

i=0 Ei is equivalent to E

5 return �(E0,n)

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

166 Efficient Data Structures

The last system E0 concerns only single positions and gives equivalence
classes of positions. All positions in the same equivalence class are assigned
the same letter, unique for the class. The resulting word is the required word
�(E,n). Since the operation REDUCE runs in time O(n + m), the whole
algorithm runs in time O((n + m) log n), as expected.

Notes
The present algorithm is a version of the algorithm by Gawrychowski et al.
presented in [127]. In fact, the algorithm is transformed in [127] into a linear-
time algorithm using intricate data structures. It can be used to construct a word
having a given set of runs, if there are any.

68 Searching an Infinite Word

The goal is to design an algorithm for matching a pattern in an infinite word.
Since there is no answer for general infinite words, we restrict the question to
a pure morphic word. It is an infinite word obtained by iterating a morphism
θ from A+ to itself, where A = {a,b, . . .} is a finite alphabet. To do so, we
assume that θ is prolongable over the letter a, that is, θ(a) = au for u ∈ A+.
Then � = θ∞(a) exists and is auθ(u)θ2(u). . .. The infinite word � is a fixed
point of θ , that is, θ(�) = �.

To avoid trivial cases, like that of the morphism η defined by η(a) = ab,
η(b) = c, η(c) = b and η(d) = d where the letter d is useless and the letter
a appear only once in �, we assume that θ is irreducible. It means that any
letter is accessible from any letter: for any distinct letters c,d ∈ A the letter d

appears in θk(c) for some integer k.
Thue–Morse morphism μ and Fibonacci morphism φ (see Chapter 1) are

both irreducible morphisms.

Question. Show how to test if a morphism is irreducible.

Question. Design an algorithm to compute the set of factors of length
m occurring in the infinite word � = θ∞(a), where θ is an irreducible
morphism.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

68 Searching an Infinite Word 167

When the set of length-m factors of � is represented by a (deterministic)
trie, testing if a pattern of length m appears in � becomes a mere top-down
traversal of the trie.

Solution
To test the irreducibility of the morphism θ we build its accessibility graph
on letters. Vertices of the graph are letters and, for any two different letters c

and d, there is an arc from c to d if d appears in θ(c). Irreducibility holds if the
graph contains a cycle going through all alphabet letters, which can be tested
in polynomial time.

For example, the graph of the morphism ζ satisfies the property⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζ(a) = ab

ζ(b) = c

ζ(c) = cad

ζ(d) = a

a b

cd

To solve the second question, one can extract length-m factors from words
θk(a) by iterating the morphism from a. Indeed it is rather clear that after a
finite number of iterations all length-m factors are captured.

Instead, the algorithm below handles only words that are images by θ of
factors of � having length at most m. Its correctness is a consequence of the
irreducibility of the morphism because it implies that any factor of θk(a) is a
factor of θ�(b) for any letter b and some integer �.

The sought set of length-m factors of � is the set of length-m words stored
in the trie T produced by the algorithm.

Factors(irreducible morphism θ,a ∈ A,positive integer m)

1 initialise T to the empty trie

2 Queue ← A

3 while Queue not empty do
4 v ← extract the first word in Queue

5 w ← θ(v)

6 for each length-m factor z of w do
7 if z not in T then
8 insert z into T and append z to Queue

9 if |w| < m and w not in T then
10 insert w into T and append w to Queue

11 return T

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

168 Efficient Data Structures

Depending on the properties of the morphism, the algorithm can be tuned
to get a faster execution. This is the case if, for example, the morphism is
k-uniform: |θ(c)| = k for any letter c. Then only factors of length �m/k� + 1
need to be appended to the queue, which reduces dramatically the number of
words put in the queue.

The insertion into the trie at line 8 can be implemented carefully to avoid
useless operations. In fact, after inserting the factor z = cy (for some letter c)
it is natural to continue with the next factor of the form yd (for some letter d). If
the trie is equipped with suffix links (same links as in a Suffix tree) the
operation takes constant time (or at most log |A|). Then the insertion of all
factors z of w takes O(|w|) time (or O(|w| log |A|)).
Notes
A stronger hypothesis on the morphism is to be primitive, which means that
there is an integer k for which the letter d appears in θk(c) for any c,d ∈ A (k
is independent of the pair of letters). For primitive morphisms there is another
solution to the problem. It consists in considering return words in the infinite
word x: a return word to a factor w of x is a shortest (non-empty) word r for
which rw has border w and is a factor of x. Durand and Leroy [104] prove, for
a primitive morphism θ , that there is a constant K for which both |r| ≤ K|w|
and all length-m factors of � appear in factors of length (K + 1)m. Moreover
they are able to bound the constant K by max{θ(c) : c ∈ A}4|A|2 . This leads to
another algorithm for finding the set of length-m factors of �.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

69 Perfect Words 169

69 Perfect Words

A word of length is called dense if it has the largest number of (distinct) factors
among words of the same length on the same alphabet. A word is said to be
perfect if all its prefixes are dense. Note that each prefix of a perfect word is
also perfect.

Example. The word 0110 is dense but 0101 is not. The longest binary perfect
words are 011001010 and its complement 100110101, they have length 9.
However, on the ternary alphabet the word 0120022110 of length 10 is
perfect.

There are only finitely many binary perfect words, but the situation changes
dramatically for larger alphabets.

Question. Show how to construct in linear time a ternary perfect word of
any given length. Prove also the existence of an infinite perfect ternary word.

[Hint: Consider Hamiltonian and Eulerian cycles in de Bruijn automata.]

Solution
Let A = {0,1,2} be the alphabet and consider the length �n = 3n + n − 1
of a de Bruijn word of order n over A. It is enough to show how to construct
perfect words having these particular lengths, since their prefixes are perfect.

Any perfect ternary word of length �n is a de Bruijn word. Hence the
problem reduces to the construction of perfect de Bruijn words.

Our basic data structure is the de Bruijn graph Gn of order n (graph structure
of de Bruijn automaton) over the alphabet A. Vertices of Gn are ternary words
of length n − 1. The label of an Eulerian cycle is a circular de Bruijn word of
order n, which produces a (linear) de Bruijn word of the same order when its
prefix of length n − 1 is appended to it.

Our first goal is to extend such a de Bruijn word w of order n to a de Bruijn
word of order n + 1. Let u be the border of length n− 1 of w and ua its prefix
of length n. Let ŵ = wa.

Observation. In the graph Gn+1 whose vertices are the words of An, ŵ is the
label of a Hamiltonian cycle, denoted Cyclen(ŵ), starting and ending at vertex
ua, prefix of length n of w.

Example. The word w = 0122002110 is a de Bruijn word of order 2 on A.
It is associated with the Eulerian cycle in G2:

Cycle1(w) = 0 → 1 → 2 → 2 → 0 → 0 → 2 → 1 → 1 → 0.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

170 Efficient Data Structures

Hence the word ŵ = 01220021101 corresponds to the Hamiltonian cycle H

in G3 (see picture where loops at nodes 00, 11 and 22 are omitted for clarity):
Cycle2(ŵ)= 01 → 12 → 22 → 20 → 00 → 02 → 21 → 11 → 10→ 01.

00

02 10

20 01

22

12

11

21

G3

00

02 10

20 01

22

12

11

21

H

Drawing on the observation, the cycle is concatenated to a disjoint cycle
to create an Eulerian cycle in Gn+1 yielding a de Bruijn word of order n + 1
prefixed by w.

The next goal is to extend a perfect de Bruijn word of order n to a perfect
de Bruijn word of order n+ 1. To do so, we construct a sequence of perfect de
Bruijn words w1,w2, . . . that satisfies: wi is a prefix of wi+1. The limit is then
a perfect infinite word, as expected.

Let EulerExtn(h) be an Eulerian cycle in Gn extending a Hamiltonian cycle
h in Gn, if this is possible. Let also Wordn(e) be the word associated with an
Eulerian cycle e in Gn.

PerfectWord(N positive length,{0,1,2} alphabet)

1 (w,n) ← (012,1)

2 while |w| < N do
3 n ← n + 1

4 h ← Cyclen(ŵ)

5 e ← EulerExtn(h)

6 w ← Wordn(e)

7 return prefix of length N of w

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

69 Perfect Words 171

Informal explanation of the construction. The word wn after extending it
by one letter to ŵn corresponds to a Hamiltonian cycle h = Cyclen(ŵn) in
Gn+1. We extend it to an Eulerian cycle e in Gn+1, and finally we define
wn+1 as the word representation of e. The interesting point in this construction
is that we treat cycles as words and words as cycles, and, in the main step,
for computing an Eulerian extension we use graph-theoretic tools rather than
stringologic arguments.

Example. For the perfect word w2 = 0120022110 of length 10 we have
ŵ2 = 01200221101, which corresponds in G3 to the cycle H (see above
picture):

01 → 12 → 20 → 00 → 02 → 22 → 21 → 11 → 10 → 01.

H is extended to an Eulerian cycle E by concatenating it with the following
Eulerian cycle in G3 − H :

01 → 11 → 11 → 12 → 21 → 12 → 22 → 22 → 20 → 02
→ 21 → 10 → 02 → 20 → 01 → 10 → 00 → 00 → 01.

Finally we get from E:

w3 = Word(E) = 01200221101112122202102010001.

Before showing the word produced by the algorithm is perfect, we need to
be sure it is possible to get an Eulerian cycle in Gn − H .

Lemma 5 If H is a Hamiltonian cycle in Gn then after removing the edges of
H the graph Gn remains Eulerian.

Proof We use the following obvious but useful property of de Bruijn graphs
shown schematically in the figure below: a special configuration of 3 edges
implies the existence of the 4th edge. More formally:

(∗) If u → v,u → y,x → v are edges of Gn then x → y is an edge.

u y

v x

u y

v x

We are to show that Gn − H is Eulerian. Clearly each node of Gn − H has
the same in-degree and out-degree. Hence it is enough to show it is strongly
connected. However, weak connectivity (disregarding directions of edges) is
sufficient due to well-known property (a graph is regular when its vertices have
the same degree).

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

172 Efficient Data Structures

Property. A regular weakly connected directed graph is also strongly con-
nected.

Hence it is enough to show that, for any edge u → v ∈ H , nodes u and v are
weakly connected in Gn −H (there is a path between them not using edges of
H and disregarding directions of edges). Indeed, since each node has in-degree
and out-degree 3, there are nodes x, x′, y for which the edges

u → y, x → v, x′ → v

are in Gn −H . Now property (∗) implies the existence in Gn of two additional
edges x → y and x′ → y (see the figure), and at least one of them is not
in H . Removing directions of these edges, we deduce there is an undirected
path from u to v, not using edges of H .

Consequently, Gn − H is weakly connected and is Eulerian (as a directed
graph), which completes the proof.

Correctness of PerfectWord. Let wn be the value of w immediately
before instruction at line 3. By induction, all the prefixes of length at most
|wn−1| of wn are dense since wn−1 is perfect. A longer prefix of wn contains
all words of length n− 1 and no repeat of words of length n, since it is a prefix
of a de Bruijn word. Consequently it is also dense. Hence each prefix of wn is
dense, so wn is perfect.

Complexity. The algorithm runs in linear time since Eulerian cycles can be
found in linear time, and in de Bruijn graphs finding a Hamiltonian cycle
reduces to the computation of an Eulerian cycle.

Notes
Perfect words are also called super complex and their construction is presented
in [237]. In case of binary words the notion of perfect words is weakened to
semi-perfect words whose existence is shown in [206].

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

70 Dense Binary Words 173

70 Dense Binary Words

A word is called dense if it has the largest number of (distinct) factors among
words of the same length on the same alphabet.

Over an alphabet with at least three letters, generating dense words for any
given length is solved by the generation of perfect words (see Problem 69). But
the solution does not apply to binary words and the present problem shows how
to deal efficiently with this case.

Question. Show how to construct in O(N) time a dense binary word of any
given length N .

[Hint: Consider Hamiltonian and Eulerian cycles in de Bruijn automata.]

Solution
Let A = {0,1} be the alphabet. Let us fix N and let n be such that �n−1 <

N ≤ �n, where �n = 2n+n−1. Our basic data structure is the de Bruijn graph
Gn of order n (graph structure of de Bruijn automaton) over the alphabet A.
Vertices of Gn are binary words of length n − 1.

We say that a path π in Gn is an Eulerian chain if it contains all nodes of
Gn, possibly many times, and no repeating edge. Let Wordn(π) be the word
associated with the Eulerian cycle π in Gn.

Property 1. When π is an Eulerian chain of length N−(n−1) in Gn, Wordn(π)

is a dense word of length N .

Proof Any binary word of length N , where �n−1 < N ≤ �n, contains at
most 2n−1 (distinct) factors of length n − 1 and at most N − n + 1 factors
of length n. Hence a word achieving these bounds is dense. In particular, if π

is an Eulerian chain, Wordn(π) contains all words of length n − 1 and all its
factors of length n are distinct since they correspond to distinct edges of the
Eulerian chain in Gn. Consequently Wordn(π) is dense.

Following property 1, the answer to the question lies in the next property.

Property 2. An Eulerian chain of a length N − (n−1) in Gn can be computed
in linear time.

Proof To do it we first compute a Hamiltonian cycle H of size 2n−1 in
Gn, given by an Eulerian cycle of Gn−1. The graph Gn − H consists of
disjoint simple cycles C1,C2, . . . ,Cr , called ear-cycles. Then we choose a

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

174 Efficient Data Structures

subset C′
1,C

′
2, . . . ,C

′
t of ear-cycles for which

∑t−1
i=1 |C′

i | < M ≤ ∑t
i=1 |C′

i |.
Then we add a prefix subpath c′t of C′

t to get

t−1∑
i=1

|C′
i | + |c′t | = M .

It is clear that H ∪C′
1 ∪C′

2 ∪· · ·∪C′
t−1 ∪ c′t can be sequenced into an Eulerian

chain of length M . It starts at any node of c′t , then goes around H and around
each encountered ear-cycle C′

i . After coming back it traverses the path c′t .

0

1 8

2 4

9

3 5 10 12

6

11 13

7 14

15

3

7
1413

11

6

12

9

2
5 10

4

8

1

10

13
639

4

2

1

0

8
12 14 15

7

11

5start HC3

C1

C2

Example. The above picture displays G5 (left) whose vertices are binary words
of length 4, shown in decimal to shorten the display. The picture (right) shows
the decomposition of G5 into the edge-disjoint ear-cycles H , C1, C2 and C3.
Cycle H is the Hamiltonian cycle of length 16, C1 and C2 are loops and C3 is
the big ear-cycle of length 14. The three last ear-cycles cover the dotted edges
(left) in G5, those that are not in H .

To compute a dense binary word of length N = 33, we first construct an
Eulerian chain π of length 21 = 25 − 4. We can start at node 1, go around the
Hamiltonian cycle additionally traversing the two loops, then come back to 1,
and follow a path of 4 edges on the big ear-cycle C3. In this case t = 3, C′

1,C
′
2

are loops and c′3 = 1 → 3 → 7 → 14. We get the path

π = (1,2,4,9,3,6,13,10,5,11,7,15,15,14,12,8,0,0,1,3,7,14)

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

71 Factor Oracle 175

whose label is the binary word

0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0.

The final dense word of length 25 results by prepending to it the binary
representation 0 0 0 1 of the first node 1:

Word5(π) = 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0.

Notes
The first efficient and quite different algorithm for constructing dense words
was by Shallit [222]. Observe that in our example, for n = 5, the graph G5

decomposes into four edge disjoint simple cycles: a Hamiltonian cycle H , two
loops and one big ear-cycle of length 2n−1 − 2. If we disregard the loops then
G5 is decomposed into two edge-disjoint simple cycles. In fact, such a special
decomposition of any binary graph Gn, for n > 3, can be found using so-called
complementary Hamiltonian cycles, see [206]. Nevertheless any other decom-
position is sufficient to compute dense words.

71 Factor Oracle

The Factor oracle is an indexing structure similar to the Factor or Suffix
automaton (or DAWG) of a word x. It is a deterministic automaton with |x|+1
states, the minimum number of states the Suffix automaton of x can have. This
makes it a well-suited data structure in many applications that require a simple
indexing structure and leads both to a space-economical data structure and to
an efficient online construction. The drawback is that the oracle of x accepts
slightly more words than the factors of x.

For a factor v of y, let pocc(v,y) be the position on y following the first
occurrence of v in y, that is, pocc(v,y) = min{|z| : z = wv prefix of y}. The
following algorithm may be viewed as a definition of the Factor oracle O(x)

of a word x. It computes the automaton in which Q is the set of states and E

the set of labelled edges.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

176 Efficient Data Structures

Oracle(x non-empty word)

1 (Q,E) ← ({0,1, . . . ,|x|},∅)

2 for i ← 0 to |x| − 1 do
3 u ← shortest word recognised in state i

4 for a ∈ A do
5 if ua ∈ Fact(x[i − |u| . . |x| − 1]) then
6 E ← E ∪ {(i,a,pocc(ua,x[i − |u| . . |x| − 1]))}
7 return (Q,E)

Actually the structure has several interesting properties. Its |x|+1 states are
all terminal states. Every edge whose target is i + 1 is labelled by x[i]. There
are |x| edges of the form (i,x[i],i + 1), called internal edges. Other edges, of
the form (j,x[i],i + 1) with j < i, are called external edges. The oracle can
thus be represented by x and its set of external edges without their labels.

Example. The oracle O(aabbaba) accepts all the factors of aabbaba but
also abab, which is not. It is determined by its external unlabelled edges (0,3),
(1,3) and (3,5).

0 1
a

2
a

3

b
b

b
4

b
5

a

a
6

b
7

a

Question. Show that the Factor oracle of a word x has between |x| and
2|x| − 1 edges.

Solution
First note the bounds are met. Indeed, O(an) has n edges for any letter a, and
O(x) has 2|x| − 1 edges when the letters of x are pairwise distinct, that is,
|alph (x)| = |x|.
Fact. Let u be a shortest word among the words recognised in state i of O(x).
Then i = pocc(u,x) and u is unique. Let sh(i) denote it.

To answer the question, since there are |x| internal edges, we have to show
there are less than |x| external edges. To do so, let us map each external edge
of the form (i,a,j) with i < j − 1 to the proper non-empty suffix sh(i)ax[j +
1 . . |x| − 1] of x. We show the mapping is injective.

Assume there are edges (i1,a1,j1) and (i2,a2,j2) with

sh(i1)a1x[j1 + 1 . . |x| − 1] = sh(i2)a2x[j2 + 1 . . |x| − 1]

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

71 Factor Oracle 177

and w.l.o.g. that i1 ≤ i2.

• If j1 < j2 then sh(i1)a1 is a proper prefix of sh(i2). Setting d = |sh(i2)| −
|sh(i1)a1| we get j1 = j2 − d − 1. An occurrence of sh(i2) ends in i2 then
an occurrence of sh(i1)a1 ends in i2 − d < j2 − d − 1 = j1. But this is a
contradiction with the construction of the Factor oracle of x.

• If j1 > j2 the word sh(i2) is a proper prefix of sh(i1). Consequently there
is an occurrence of sh(i2) ending before i1 ≤ i2, a contradiction again with
the construction of the Factor oracle.

Therefore j1 = j2, which implies a1 = a2, sh(i1) = sh(i2), i1 = i2 and
eventually (i1,a1,j1) = (i2,a2,j2).

Since the mapping is injective and since there are |x| − 1 proper non-empty
suffixes of x, adding internal and external edges gives the maximum of 2|x|−1
edges in the Factor oracle, as expected.

Question. Design an online construction of the Factor oracle of a word x

running in linear time on a fixed alphabet with linear space.

[Hint: Use suffix links.]

Solution
Since the oracle is deterministic, let δ denote its transition function, that is,
δ(i,a) = j ⇔ (i,a,j) ∈ E. Let S be the suffix link defined on states as
follows: S[0] = −1 and, for 1 ≤ i ≤ |x|, S[i] = δ(0,u) where u is the longest
(proper) suffix of x[0 . . i] for which δ(0,u) < i. For the above example we get

i 0 1 2 3 4 5 6 7

x[i] a a b b a b a

S[i] −1 0 1 0 3 1 3 5

Fact. Let k < i be a state on the suffix path of state i of the Factor oracle of
x[0 . . i]. If δ(k,x[i + 1]) is defined then the same holds for all the states on the
suffix path of k.

Following the fact, step i, for 0 ≤ i ≤ |x| − 1, of the online construction of
the Factor oracle makes a standard use of the suffix link and consists of

• adding state i + 1 and setting δ(i,x[i]) = i + 1;

• following the suffix path of i to set δ(Sk[i],x[i]) = i + 1 whenever
necessary; and

• setting S[i + 1].

The following algorithm implements this strategy.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

178 Efficient Data Structures

OracleOnline(x non-empty word)

1 (Q,δ,S[0]) ← ({0},undefined, − 1)

2 for i ← 0 to |x| − 1 do
3 Q ← Q ∪ {i + 1}
4 δ(i,x[i]) ← i + 1

5 j ← S[i]

6 while j > −1 and δ(j,x[i]) undefined do
7 δ(j,x[i]) ← i + 1

8 j ← S[j]

9 if j = −1 then
10 S[i + 1] ← 0

11 else S[i + 1] ← δ(j,x[i])

12 return (Q,δ)

The correctness of OracleOnline comes mainly from the equality
(S[i],x[i],i + 1) = (S[i],x[i],S[i] + pocc(sh(S[i]),x[i − S[i] . . |x| − 1])).

The time linearity comes from the fact that at each iteration of the while
loop of lines 6–8 an external transition is created and there can be only |x| − 1
such transitions in O(x). The loop of lines 2–11 runs exactly |x| − 1 times and
all the other instructions take constant time.

The space linearity comes from the fact that the Factor oracle needs linear
space, so does the array S.

Question. Show the Factor oracle O(x) can be used for locating all the
occurrences of x in a text, despite the oracle may accept words that are not
factors of x.

[Hint: The only word of length |x| recognised by O(x) is x itself.]

Solution
A solution mimicking KMP algorithm is possible but a more time-efficient
solution use the Boyer–Moore strategy. To do so, we use the Factor oracle of
xR, the reverse of x. A window of length |x| slides along the text and when the
whole window is accepted by the oracle a match is detected, since the window
contains x as said in the hint.

When a mismatch occurs, that is, when a factor au of the text is not accepted
by the oracle, au is not either a factor of x. Then a shift of length |x−u| can be
safely performed. The following algorithm implements this strategy. It outputs
the starting positions of all the occurrences of x in y.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

71 Factor Oracle 179

BackwardOracleMatching(x,y non-empty words)

1 (Q,δ) ← OracleOnline(xR)

2 j ← 0

3 while j ≤ |y| − |x| do
4 (q,i) ← (0,|x| − 1)

5 while δ(q,y[i + j]) is defined do
6 (q,i) ← (δ(q,y[i + j]),i − 1)

7 if i < 0 then
8 report an occurrence of x at position j on y

9 j ← j + 1

10 else j ← j + i + 1

Notes
The notion of Factor oracle and its use for text searching is by Allauzen
et al. [5] (see also [79]). Improvements given in [109, 111] lead to the fastest
string-matching algorithms in most common applications.

The exact characterisation of the language of words accepted by the Factor
oracle is studied in [182] and its statistical properties are presented in [40].

The oracle is used to efficiently find repeats in words for designing data
compression methods in [173].

The data structure is well suited for computer-assisted jazz improvisation
in which states stand for notes as it has been adapted by Assayag and
Dubnov [17]. See further developments of the associated OMax project at
recherche.ircam.fr/equipes/repmus/OMax/.

https://doi.org/10.1017/9781108835831.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.005

