
CHAPTER 4

Statistical Natural
Language Processing

4.0. Introduction

The application of statistical methods to natural language processing has
been remarkably successful over the past two decades. The wide availability
of text and speech corpora has played a critical role in their success since,
as for all learning techniques, these methods rely heavily on data. Many
of the components of complex natural language processing systems, for
example, text normalizers, morphological or phonological analyzers, part-
of-speech taggers, grammars or language models, pronunciation models,
context-dependency models, acoustic Hidden-Markov Models (HMMs),
are statistical models derived from large data sets using modern learning
techniques. These models are often given as weighted automata or weighted
finite-state transducers either directly or as a result of the approximation of
more complex models.

Weighted automata and transducers are the finite automata and finite-
state transducers described in Chapter 1 Section 1.5 with the addition of
some weight to each transition. Thus, weighted finite-state transducers are
automata in which each transition, in addition to its usual input label, is
augmented with an output label from a possibly different alphabet, and
carries some weight. The weights may correspond to probabilities or log-
likelihoods or they may be some other costs used to rank alternatives.
More generally, as we shall see in the next section, they are elements of
a semiring set. Transducers can be used to define a mapping between two
different types of information sources, for example, word and phoneme
sequences. The weights are crucial to modelling the uncertainty of such

Applied Combinatorics on Words, eds. Jean Berstel and Dominique Perrin.
Published by Cambridge University Press. © Cambridge University Press 2005.

210

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.1. Preliminaries 211

Table 4.1. Semiring examples. ⊕log is defined
by: x ⊕log y = − log(e−x + e−y).

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1
Probability R+ + × 0 1
Log R ∪ {−∞, +∞} ⊕log + +∞ 0
Tropical R ∪ {−∞, +∞} min + +∞ 0

mappings. Weighted transducers can be used for example to assign different
pronunciations to the same word but with different ranks or probabilities.

Novel algorithms are needed to combine and optimize large statisti-
cal models represented as weighted automata, or transducers. This chapter
reviews several recent weighted transducer algorithms, including compo-
sition of weighted transducers, determinization of weighted automata, and
minimization of weighted automata, which play a crucial role in the con-
struction of modern statistical natural language processing systems. It also
outlines their use in the design of modern real-time speech recognition sys-
tems. It discusses and illustrates the representation by weighted automata
and transducers of the components of these systems, and describes the use
of these algorithms for combining, searching, and optimizing large com-
ponent transducers of several million transitions to create real-time speech
recognition systems.

4.1. Preliminaries

This section introduces the definitions and notation used in the text that
follows.

A system (K, ⊕, ⊗, 0, 1) is a semiring if (K, ⊕, 0) is a commutative
monoid with identity element 0, (K, ⊗, 1) is a monoid with identity element
1, ⊗ distributes over ⊕, and 0 is an annihilator for ⊗: for all a ∈ K, a ⊗ 0 =
0 ⊗ a = 0. Thus, a semiring is a ring that may lack negation. Table 4.1 lists
some familiar semirings. In addition to the Boolean semiring, and the
probability semiring used to combine probabilities, two semirings often
used in text and speech processing applications are the log semiring which
is isomorphic to the probability semiring via the negative-log morphism,
and the tropical semiring which is derived from the log semiring using
the Viterbi approximation. A left semiring is a system that verifies all the
axioms of a semiring except from the right distributivity. In the following
definitions, K will be used to denote a left semiring or a semiring.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

212 4. Statistical Natural Language Processing

A semiring is said to be commutative when the multiplicative operation
⊗ is commutative. It is said to be left divisible if for any x �= 0 there exists
y ∈ K such that y ⊗ x = 1, that is if all elements of K admit a left inverse.
The system (K, ⊕, ⊗, 0, 1) is said to be weakly left divisible if for any
x and y in K such that x ⊕ y �= 0, there exists at least one z such that
x = (x ⊕ y) ⊗ z. The ⊗-operation is cancellative if z is unique and we can
write: z = (x ⊕ y)−1x. When z is not unique, we can still assume that we
have an algorithm to find one of the possible zs and call it (x ⊕ y)−1x.
Furthermore, we will assume that z can be found in a consistent way, that
is: ((u ⊗ x) ⊕ (u ⊗ y))−1(u ⊗ x) = (x ⊕ y)−1x for any x, y, u ∈ K such
that u �= 0. A semiring is zero-sum-free if for any x and y in K, x ⊕ y = 0
implies x = y = 0.

A weighted finite-state transducer T over a semiring K is an 8-tuple
T = (A,B, Q, I, F, E, λ, ρ) where: A is the finite input alphabet of the
transducer; B is the finite output alphabet; Q is a finite set of states; I ⊆
Q the set of initial states; F ⊆ Q the set of final states; E ⊆ Q × (A ∪
{ε}) × (B ∪ {ε}) × K × Q a finite set of transitions; λ : I → K the initial
weight function; and ρ : F → K the final weight function mapping F

to K. The expression E[q] denotes the set of transitions leaving a state
q ∈ Q. We denote by |T| the sum of the number of states and transitions
of T.

Weighted automata are defined in a similar way by simply omitting the
input or output labels. Let �1(T) (�2(T)) denote the weighted automaton
obtained from a weighted transducer T by omitting the input (resp. output)
labels of T.

Given a transition e ∈ E, let p[e] denote its origin or previous state,
n[e] its destination state or next state, i[e] its input label, o[e] its output
label, and w[e] its weight. A path π = e1 · · · ek is an element of E∗ with
consecutive transitions: n[ei−1] = p[ei], i = 2, . . . , k. The terms n, p, and
w can be extended to paths by setting: n[π] = n[ek] and p[π] = p[e1] and
by defining the weight of a path as the ⊗-product of the weights of its
constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. More generally, w is
extended to any finite set of paths R by setting: w[R] = ⊕

π∈R w[π].
Let P (q, q ′) denote the set of paths from q to q ′ and P (q, x, y, q ′)
the set of paths from q to q ′ with input label x ∈ A∗ and output label
y ∈ B∗. These definitions can be extended to subsets R, R′ ⊆ Q, by:
P (R, x, y, R′) = ∪q∈R, q ′∈R′P (q, x, y, q ′). A transducer T is regulated if
the weight associated by T to any pair of an input-output string (x, y) given
by:

[[T]](x, y) =
⊕

π∈P (I,x,y,F)

λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]] (4.1.1)

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 213

is well defined and in K. Also [[T]](x, y) = 0 when P (I, x, y, F) = ∅. In
particular, when it does not have any ε-cycle, T is always regulated.

4.2. Algorithms

4.2.1. Composition

Composition is a fundamental algorithm used to create complex weighted
transducers from simpler ones. It is a generalization of the composition
algorithm presented in Chapter 1 Section 1.5 for unweighted finite-state
transducers. Let K be a commutative semiring and let T1 and T2 be two
weighted transducers defined over K such that the input alphabet of T2

coincides with the output alphabet of T1. Assume that the infinite sum⊕
z T1(x, z) ⊗ T2(z, y) is well defined and in K for all (x, y) ∈ A∗ × C∗.

This condition holds for all transducers defined over a closed semiring
such as the Boolean semiring and the tropical semiring and for all acyclic
transducers defined over an arbitrary semiring. Then, the result of the com-
position of T1 and T2 is a weighted transducer denoted by T1 ◦T2 and
defined for all x, y by:

[[T1 ◦T2]](x, y) =
⊕

z

T1(x, z) ⊗ T2(z, y). (4.2.1)

Note that we use a matrix notation for the definition of composition as op-
posed to a functional notation. There exists a general and efficient composi-
tion algorithm for weighted transducers. States in the composition T1 ◦T2

of two weighted transducers T1 and T2 are identified with pairs of a state
of T1 and a state of T2. Leaving aside transitions with ε inputs or outputs,
the following rule specifies how to compute a transition of T1 ◦T2 from
appropriate transitions of T1 and T2:

(q1, a, b, w1, q2) and (q ′
1, b, c, w2, q

′
2)

=⇒ ((q1, q
′
1), a, c, w1 ⊗ w2, (q2, q

′
2)). (4.2.2)

The following is the pseudocode of the algorithm in the ε-free case.

Weighted-Composition(T1,T2)
1 Q ← I1 × I2

2 S ← I1 × I2

3 while S �= ∅ do
4 (q1, q2) ← Head(S)
5 Dequeue(S)
6 if (q1, q2) ∈ I1 × I2 then

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

214 4. Statistical Natural Language Processing

7 I ← I ∪ {(q1, q2)}
8 λ(q1, q2) ← λ1(q1) ⊗ λ2(q2)
9 if (q1, q2) ∈ F1 × F2 then

10 F ← F ∪ {(q1, q2)}
11 ρ(q1, q2) ← ρ1(q1) ⊗ ρ2(q2)
12 for each (e1, e2) ∈ E[q1] × E[q2] such that o[e1] = i[e2] do
13 if (n[e1], n[e2]) �∈ Q then
14 Q ← Q ∪ {(n[e1], n[e2])}
15 Enqueue(S, (n[e1], n[e2]))
16 E ← E ∪ {((q1, q2), i[e1], o[e2], w[e1]

⊗ w[e2], (n[e1], n[e2]))}
17 return T

The algorithm takes as input T1 = (A,B, Q1, I1, F1, E1, λ1, ρ1) and
T2 = (B, C, Q2, I2, F2, E2, λ2, ρ2), two weighted transducers, and outputs
a weighted transducer T = (A, C, Q, I, F, E, λ, ρ) realizing the composi-
tion of T1 and T2. E, I , and F are all assumed to be initialized to the empty
set.

The algorithm uses a queue S containing the set of pairs of states yet
to be examined. The queue discipline of S can be arbitrarily chosen and
does not affect the termination of the algorithm. The set of states Q is
originally reduced to the set of pairs of the initial states of the original
transducers and S is initialized to the same (lines 1–2). Each time through
the loop of lines 3–16, a new pair of states (q1, q2) is extracted from S

(lines 4–5). The initial weight of (q1, q2) is computed by ⊗-multiplying the
initial weights of q1 and q2 when they are both initial states (lines 6–8).
Similar steps are followed for final states (lines 9–11). Then, for each pair
of matching transitions (e1, e2), a new transition is created according to the
rules specified earlier (line 16). If the destination state (n[e1], n[e2]) has not
been found before, it is added to Q and inserted in S (lines 14–15).

In the worst case, all transitions of T1 leaving a state q1 match all those
of T2 leaving state q ′

1, thus the space and time complexity of composition
is quadratic: O(|T1||T2|). However, a lazy implementation of composition
can be used to construct just the part of the composed transducer that
is needed. Figures 4.1(a)–(c) illustrate the algorithm when applied to the
transducers of Figures 4.1(a)–(b) defined over the probability semiring.

More care is needed when T1 admits output ε labels and T2 input ε

labels. Indeed, as illustrated by Figure 4.2, a straightforward generalization
of the ε-free case would generate redundant ε-paths and, in the case of
nonidempotent semirings, would lead to an incorrect result. The weight of
the matching paths of the original transducers would be counted p times,
where p is the number of redundant paths in the result of composition.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 215

0 1

2

3/0.7

a:b/0.1

a:b/0.2

b:b/0.3

b:b/0.4

a:b/0.5

a:a/0.6

0 1

2

3/0.6
b:b/0.1

b:a/0.2
a:b/0.3

a:b/0.4

b:a/0.5

(a) (b)

(0,0) (1,1)

(0,1)

(2,1) (3,1)

(3,2)

(3,3)/.42
a:b/.01

a:a/.04

a:a/.02

b:a/.06

b:a/.08

a:a/.1

a:b/.18

a:b/.24

(c)

Figure 4.1. (a) Weighted transducer T1 over the probability semiring.
(b) Weighted transducer T2 over the probability semiring. (c) Composition
of T1 and T2. Initial states are represented by an incoming arrow, final states
with an outgoing arrow. Inside each circle, the first number indicates the
state number, the second, at final states only, the value of the final weight
function ρ at that state. Arrows represent transitions and are labelled with
symbols followed by their corresponding weight.

To cope with this problem, all but one ε-path must be filtered out of the
composite transducer. Figure 4.2 indicates in boldface one possible choice
for that path, which in this case is the shortest. Remarkably, that filtering
mechanism can be encoded as a finite-state transducer.

Let T̃1 (T̃2) be the weighted transducer obtained from T1 (resp. T2) by
replacing the output (resp. input) ε labels with ε2 (resp. ε1), and let F be the
filter finite-state transducer represented in Figure 4.3. Then T̃1 ◦F ◦ T̃2 =
T1 ◦T2. Since the two compositions in T̃1 ◦F ◦ T̃2 do not involve εs, the
ε-free composition already described can be used to compute the resulting
transducer.

Intersection (or Hadamard product) of weighted automata and compo-
sition of finite-state transducers are both special cases of composition of
weighted transducers. Intersection corresponds to the case where input and
output labels of transitions are identical and composition of unweighted
transducers is obtained simply by omitting the weights.

In general, the definition of composition cannot be extended to the case
of noncommutative semirings because the composite transduction cannot
always be represented by a weighted finite-state transducer. Consider for
example, the case of two transducers T1 and T2 accepting the same set
of strings (a, a)∗, with [[T1]](a, a) = x ∈ K and [[T2]](a, a) = y ∈ K and

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

216 4. Statistical Natural Language Processing

(0,0) (1,1) (1,2)

(2,1)

(3,1)

(2,2)

(3,2)

(4,3)/1

a:d/1

(x:x)

ε:e/1

(ε1:ε1)

b:ε/1
(ε2:ε2)

c:ε/1
(ε2:ε2)

b:ε/1
(ε2:ε2)

c:ε/1
(ε2:ε2)

d:a/1
(ε2:ε1)

ε:e/1

(ε1:ε1)

ε:e/1

(ε1:ε1)

b:e/1
(ε2:ε1) 0 1 2 2 3/1

a:a/1 b:ε/1 c:ε/1 d:d/1

0 1 2 3/1
a:d/1 ε:e/1 d:a/1

Figure 4.2. Redundant ε-paths. A straightforward generalization of the ε-
free case could generate all the paths from (1, 1) to (3, 2) when composing
the two simple transducers on the right-hand side.

0/1

1/1

2/1

x:x/1

ε2:ε1/1
ε1:ε1/1

x:x/1

ε1:ε1/1

ε2:ε2/1

x:x/1

ε2:ε2/1

Figure 4.3. Filter for composition F.

let τ be the composite of the transductions corresponding to T1 and T2.
Then, for any nonnegative integer n, τ (an, an) = xn ⊗ yn which in general
is different from (x ⊗ y)n if x and y do not commute. An argument similar
to the classical Pumping lemma can then be used to show that τ cannot be
represented by a weighted finite-state transducer.

When T1 and T2 are acyclic, composition can be extended to the case of
noncommutative semirings. The algorithm would then consist of matching
paths of T1 and T2 directly rather than matching their constituent transitions.
The termination of the algorithm is guaranteed by the fact that the number
of paths of T1 and T2 is finite. However, the time and space complexity of
the algorithm is then exponential.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 217

The weights of matching transitions and paths are ⊗-multiplied in com-
position. One might wonder if another useful operation, ×, can be used
instead of ⊗, in particular when K is not commutative. The following
proposition proves that that cannot be.

Proposition 4.2.1. Let (K, ×, e) be a monoid. Assume that × is used
instead of ⊗ in composition. Then, × coincides with ⊗ and (K, ⊕, ⊗, 0, 1)
is a commutative semiring.

Proof. Consider two sets of consecutive transitions of two paths: π1 =
(p1, a, a, x, q1)(q1, b, b, y, r1) and π2 = (p2, a, a, u, q2)(q2, b, b, v, r2).
Matching these transitions using × results in the following:

((p1, p2), a, a, x × u, (q1, q2)) and ((q1, q2), b, b, y × v, (r1, r2)).
(4.2.3)

Since the weight of the path obtained by matching π1 and π2 must also
correspond to the ×-multiplication of the weight of π1, x ⊗ y, and the
weight of π2, u ⊗ v, we have:

(x × u) ⊗ (y × v) = (x ⊗ y) × (u ⊗ v). (4.2.4)

This identity must hold for all x, y, u, v ∈ K. Setting u = y = e and v = 1
leads to x = x ⊗ e and similarly x = e ⊗ x for all x. Since the identity
element of ⊗ is unique, this proves that e = 1.

With u = y = 1, Identity (4.2.4) can be rewritten as: x ⊗ v = x × v

for all x and v, which shows that × coincides with ⊗. Finally, setting
x = v = 1 gives u ⊗ y = y × u for all y and u which shows that ⊗ is
commutative.

4.2.2. Determinization

This section describes a generic determinization algorithm for weighted
automata. It is thus a generalization of the determinization algorithm for
unweighted finite automata. When combined with the (unweighted) deter-
minization for finite-state transducers presented in Chapter 1 Section 1.5,
it leads to an algorithm for determinizing weighted transducers.1

A weighted automaton is said to be deterministic or subsequential if it
has a unique initial state and if no two transitions leaving any state share
the same input label. There exists a natural extension of the classical subset

1 In reality, the determinization of unweighted and that of weighted finite-state transducers can
both be viewed as special instances of the generic algorithm presented here but, for clarity
purposes, we will not emphasize that view in what follows.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

218 4. Statistical Natural Language Processing

construction to the case of weighted automata over a weakly left divisible
left semiring called determinization.2 The algorithm is generic: it works
with any weakly left divisible semiring. The pseudocode of the algorithm
is given below with Q′, I ′, F ′, and E′ all initialized to the empty set.

Weighted-Determinization(A)
1 i ′ ← {(i, λ(i)) : i ∈ I }
2 λ′(i ′) ← 1
3 S ← {

i ′
}

4 while S �= ∅ do
5 p′ ← Head(S)
6 Dequeue(S)
7 for each x ∈ i[E[Q[p′]]] do
8 w′ ← ⊕{

v ⊗ w : (p, v) ∈ p′, (p, x, w, q) ∈ E
}

9 q ′ ← {(q,
⊕ {

w′−1 ⊗ (v ⊗w) : (p, v) ∈ p′, (p, x, w, q) ∈E
}
):

q = n[e], i[e] = x, e ∈ E[Q[p′]]}
10 E′ ← E′ ∪ {

(p′, x, w′, q ′)
}

11 if q ′ �∈ Q′ then
12 Q′ ← Q′ ∪ {

q ′}
13 if Q[q ′] ∩ F �= ∅ then
14 F ′ ← F ′ ∪ {

q ′}
15 ρ ′(q ′) ← ⊕ {

v ⊗ ρ(q) : (q, v) ∈ q ′, q ∈ F
}

16 Enqueue(S, q ′)
17 return T′

A weighted subset p′ of Q is a set of pairs (q, x) ∈ Q × K. The
term Q[p′] denotes the set of states q of the weighted subset p′. The
term E[Q[p′]] represents the set of transitions leaving these states, and
i[E[Q[p′]]] the set of input labels of these transitions.

The states of the output automaton can be identified with (weighted)
subsets of the states of the original automaton. A state r of the output
automaton that can be reached from the start state by a path π is identified
with the set of pairs (q, x) ∈ Q × K such that q can be reached from
an initial state of the original machine by a path σ with i[σ] = i[π] and
λ[p[σ]] ⊗ w[σ] = λ[p[π]] ⊗ w[π] ⊗ x. Thus, x can be viewed as the
residual weight at state q. When it terminates, the algorithm takes as input
a weighted automaton A = (A, Q, I, F, E, λ, ρ) and yields an equivalent
subsequential weighted automaton A′ = (A, Q′, I ′, F ′, E′, λ′, ρ ′).

2 We assume that the weighted automata considered are all such that for any string x ∈ A∗,
w[P (I, x, Q)] �= 0. This condition is always satisfied with trim machines over the tropical
semiring or any zero-sum-free semiring.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 219

The algorithm uses a queue S containing the set of states of the result-
ing automaton A′, yet to be examined. The queue discipline of S can be
arbitrarily chosen and does not affect the termination of the algorithm. The
automaton A′ admits a unique initial state, i ′, defined as the set of initial
states of A augmented with their respective initial weights. Its input weight
is 1 (lines 1–2). The queue S originally contains only the subset i ′ (line 3).
Each time through the loop of lines 4–16, a new subset p′ is extracted from
S (lines 5–6). For each x labelling at least one of the transitions leaving a
state p of the subset p′, a new transition with input label x is constructed.
The weight w′ associated to that transition is the sum of the weights of all
transitions in E[Q[p′]] labelled with x pre-⊗-multiplied by the residual
weight v at each state p (line 8). The destination state of the transition is
the subset containing all the states q reached by transitions in E[Q[p′]]
labelled with x. The weight of each state q of the subset is obtained by
taking the ⊕-sum of the residual weights of the states p ⊗-times the weight
of the transition from p leading to q and by dividing that by w′. The new
subset q ′ is inserted in the queue S when it is a new state (line 15). If any
of the states in the subset q ′ is final, q ′ is made a final state and its final
weight is obtained by summing the final weights of all the final states in q ′,
pre-⊗-multiplied by their residual weight v (line 14).

Figure 4.4(a)–(b) illustrates the determinization of a weighted automa-
ton over the tropical semiring. The worst case complexity of determiniza-
tion is exponential even in the unweighted case. However, in many practical
cases such as for weighted automata used in large-vocabulary speech recog-
nition, this blow-up does not occur. It is also important to notice that just like
composition, determinization admits a natural lazy implementation which
can be useful for saving space.

Unlike the unweighted case, determinization does not halt on all input
weighted automata. In fact, some weighted automata, non subsequentiable
automata , do not even admit equivalent subsequential machines. But even

0

1

2

3

a/1

a/2

c/5

d/6

b/3

b/3 (0,0) (1,0),(2,1) (3,0)/0
a/1

c/5

d/7

b/3

0

1

2

3

a/1

a/2

c/5

d/6

b/3

b/4

(a) (b) (c)

Figure 4.4. Determinization of weighted automata. (a) Weighted automa-
ton over the tropical semiring A. (b) Equivalent weighted automaton
B obtained by determinization of A. (c) Nondeterminizable weighted
automaton over the tropical semiring, states 1 and 2 are non-twin siblings.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

220 4. Statistical Natural Language Processing

for some subsequentiable automata, the algorithm does not halt. We say that
a weighted automaton A is determinizable if the determinization algorithm
halts for the input A. With a determinizable input, the algorithm outputs an
equivalent subsequential weighted automaton.

There exists a general twins property for weighted automata that pro-
vides a characterization of determinizable weighted automata under some
general conditions. Let A be a weighted automaton over a weakly left di-
visible left semiring K. Two states q and q ′ of A are said to be siblings if
there exist two strings x and y in A∗ such that both q and q ′ can be reached
from I by paths labelled with x and there is a cycle at q and a cycle at q ′
both labelled with y. When K is a commutative and cancellative semiring,
two sibling states are said to be twins if and only if for any string y:

w[P (q, y, q)] = w[P (q ′, y, q ′)] (4.2.5)

The automaton A has the twins property if any two sibling states of A are
twins. Figure 4.4(c) shows an unambiguous weighted automaton over the
tropical semiring that does not have the twins property: states 1 and 2 can
be reached by paths labelled with a from the initial state and admit cycles
with the same label b, but the weights of these cycles (3 and 4) are different.

Theorem 4.2.2. Let A be a weighted automaton over the tropical semir-
ing. If A has the twins property, then A is determinizable.

With trim unambiguous weighted automata, the condition is also necessary.

Theorem 4.2.3. Let A be a trim unambiguous weighted automaton over
the tropical semiring. Then the three following properties are equivalent:

1. A is determinizable.
2. A has the twins property.
3. A is subsequentiable.

There exists an efficient algorithm for testing the twins property for
weighted automata, which cannot be presented briefly in this chapter. Note
that any acyclic weighted automaton over a zero-sum-free semiring has the
twins property and is determinizable.

4.2.3. Weight pushing

The choice of the distribution of the total weight along each successful
path of a weighted automaton does not affect the definition of the function
realized by that automaton, but this may have a critical impact on the
efficiency in many applications, for example, natural language processing
applications, when a heuristic pruning is used to visit only a subpart of
the automaton. There exists an algorithm, weight pushing, for normalizing

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 221

the distribution of the weights along the paths of a weighted automaton or
more generally a weighted directed graph. The transducer normalization
algorithm presented in Chapter 1 Section 1.5 can be viewed as a special
instance of this algorithm.

Let A be a weighted automaton over a semiring K. Assume that K is
zero-sum-free and weakly left divisible. For any state q ∈ Q, assume that
the following sum is well defined and in K:

d[q] =
⊕

π∈P (q,F)

(w[π] ⊗ ρ[n[π]]). (4.2.6)

The value d[q] is the shortest-distance from q to F , and is well defined
for all q ∈ Q when K is a k-closed semiring. The weight pushing algo-
rithm consists of computing each shortest-distance d[q] and of reweighting
the transition weights, initial weights, and final weights in the following
way:

∀e ∈ E s.t. d[p[e]] �= 0, w[e] ← d[p[e]]−1 ⊗ w[e] ⊗ d[n[e]] (4.2.7)
∀q ∈ I, λ[q] ← λ[q] ⊗ d[q] (4.2.8)
∀q ∈ F, s.t. d[q] �= 0, ρ[q] ← d[q]−1 ⊗ ρ[q] (4.2.9)

Each of these operations can be assumed to be done in constant time,
thus reweighting can be done in linear time O(T⊗|A|), where T⊗ denotes
the worst cost of an ⊗-operation. The complexity of the computation of
the shortest-distances depends on the semiring. In the case of k-closed
semirings such as the tropical semiring, d[q], q ∈ Q, can be computed
using a generic shortest-distance algorithm. The complexity of the algo-
rithm is linear in the case of an acyclic automaton: O(Card(Q) + (T⊕ +
T⊗) Card(E)), where T⊕ denotes the worst cost of an ⊕-operation. In
the case of a general weighted automaton over the tropical semiring, the
complexity of the algorithm is O(Card(E) + Card(Q) log Card(Q)).

In the case of closed semirings such as (R+, +, ×, 0, 1), a generalization
of the Floyd–Warshall algorithm for computing all-pairs shortest-distances
can be used. The complexity of the algorithm is �(Card(Q)3(T⊕ +
T⊗ + T∗)) where T∗ denotes the worst cost of the closure operation.
The space complexity of these algorithms is �(Card(Q)2). These com-
plexities make it impractical to use the Floyd–Warshall algorithm for
computing d[q], q ∈ Q, for relatively large graphs or automata of sev-
eral hundred million states or transitions. An approximate version of a
generic shortest-distance algorithm can be used instead to compute d[q]
efficiently.

Roughly speaking, the algorithm pushes the weights of each path as
much as possible towards the initial states. Figure 4.5(a)–(c) illustrates the

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

222 4. Statistical Natural Language Processing

0

1

2

3

a/0

b/1
c/5

d/0

e/1

e/0

f/1

e/4

f/5

0/0

1

2

3/0

a/0

b/1
c/5

d/4

e/5

e/0

f/1

e/0

f/1

0/15

1

2

3/1

a/0

b/ 1
15

c/ 5
15

d/0

e/ 9
15

e/0

f/1

e/4
9

f/5
9

0/0 1 3/0

a/0

b/1

c/5

e/0

f/1

(a) (b) (c) (d)

Figure 4.5. Weight pushing algorithm. (a) Weighted automaton A.
(b) Equivalent weighted automaton B obtained by weight pushing in the
tropical semiring. (c) Weighted automaton C obtained from A by weight
pushing in the probability semiring. (d) Minimal weighted automaton over
the tropical semiring equivalent to A.

application of the algorithm in a special case both for the tropical and
probability semirings.

Note that if d[q] = 0, then, since K is zero-sum-free, the weight of all
paths from q to F is 0. Let A be a weighted automaton over the semiring
K. Assume that K is closed or k-closed and that the shortest-distances d[q]
are all well defined and in K − {

0
}
. Note that in both cases we can use the

distributivity over the infinite sums defining shortest-distances. Let e′ (π ′)
denote the transition e (path π) after application of the weight pushing algo-
rithm. The transition e′ (π ′) differs from e (resp. π) only by its weight. Let λ′
denote the new initial weight function, and ρ ′ the new final weight function.

Proposition 4.2.4. Let B = (A, Q, I, F, E′, λ′, ρ ′) be the result of the
weight pushing algorithm applied to the weighted automaton A, then

1. the weight of a successful path π is unchanged after application of
weight pushing:

λ′[p[π ′]] ⊗ w[π ′] ⊗ ρ ′[n[π ′]] = λ[p[π]] ⊗ w[π] ⊗ ρ[n[π]],
(4.2.10)

2. the weighted automaton B is stochastic, that is

∀q ∈ Q,
⊕

e′∈E′[q]

w[e′] = 1 (4.2.11)

Proof. Let π ′ = e′
1, . . . , e

′
k . By definition of λ′ and ρ ′,

λ′[p[π ′]] ⊗ w[π ′] ⊗ ρ ′[n[π ′]] = λ[p[e1]] ⊗ d[p[e1]] ⊗ d[p[e1]]−1

⊗ w[e1] ⊗ d[n[e1]] ⊗ · · · ⊗ d[p[ek]]−1

⊗ w[ek] ⊗ d[n[ek]] ⊗ d[n[ek]]−1 ⊗ ρ[n[π]]

= λ[p[π]] ⊗ w[e1] ⊗ · · · ⊗ w[ek] ⊗ ρ[n[π]]

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 223

which proves the first statement of the proposition. Let q ∈ Q,⊕
e′∈E′[q]

w[e′] =
⊕

e∈E[q]

d[q]−1 ⊗ w[e] ⊗ d[n[e]]

= d[q]−1 ⊗
⊕

e∈E[q]

w[e] ⊗ d[n[e]]

= d[q]−1 ⊗
⊕

e∈E[q]

w[e] ⊗
⊕

π∈P (n[e],F)

(w[π] ⊗ ρ[n[π]])

= d[q]−1 ⊗
⊕

e∈E[q],π∈P (n[e],F)

(w[e] ⊗ w[π] ⊗ ρ[n[π]])

= d[q]−1 ⊗ d[q] = 1

where we used the distributivity of the multiplicative operation over infinite
sums in closed or k-closed semirings. This proves the second statement of
the proposition.

These two properties of weight pushing are illustrated by Figure 4.5(a)–(c):
the total weight of a successful path is unchanged after pushing; at each
state of the weighted automaton of Figure 4.5(b), the minimum weight of
the outgoing transitions is 0, and at each state of the weighted automaton of
Figure 4.5(c), the weights of outgoing transitions sum to 1. Weight pushing
can also be used to test the equivalence of two weighted automata.

4.2.4. Minimization

A deterministic weighted automaton is said to be minimal if there exists
no other deterministic weighted automaton with a smaller number of states
that realizes the same function. Two states of a deterministic weighted
automaton are said to be equivalent if exactly the same set of strings with the
same weights label paths from these states to a final state, the final weights
being included. Thus, two equivalent states of a deterministic weighted
automaton can be merged without affecting the function realized by that
automaton. A weighted automaton is minimal when it admits no two distinct
equivalent states after any redistribution of the weights along its paths.

There exists a general algorithm for computing a minimal deterministic
automaton equivalent to a given weighted automaton. It is thus a generaliza-
tion of the minimization algorithms for unweighted finite automata. It can
be combined with the minimization algorithm for unweighted finite-state
transducers presented in Chapter 1 Section 1.5 to minimize weighted finite-
state transducers.3 It first applies the weight pushing algorithm to normalize

3 In reality, the minimization of both unweighted and weighted finite-state transducers can be
viewed as special instances of the algorithm presented here, but, for clarity purposes, we will not
emphasize that view in what follows.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

224 4. Statistical Natural Language Processing

the distribution of the weights along the paths of the input automaton, and
then treats each pair (label, weight) as a single label and applies the classical
(unweighted) automata minimization.

Theorem 4.2.5. Let A be a deterministic weighted automaton over a
semiring K. Assume that the conditions of application of the weight pushing
algorithm hold, then the execution of the following steps:

1. weight pushing,
2. (unweighted) automata minimization,

lead to a minimal weighted automaton equivalent to A.

The complexity of automata minimization is linear in the case of acyclic
automata O(Card(Q) + Card(E)) and in O(Card(E) log Card(Q)) in the
general case. Thus, in view of the complexity results given in the previous
section, in the case of the tropical semiring, the total complexity of the
weighted minimization algorithm is linear in the acyclic case O(Card(Q) +
Card(E)) and in O(Card(E) log Card(Q)) in the general case.

Figure 4.5(a), (b), and (d) illustrates the application of the algorithm
in the tropical semiring. The automaton of Figure 4.5(a) cannot be further
minimized using the classical unweighted automata minimization since
no two states are equivalent in that machine. After weight pushing, the
automaton (Figure 4.5(b)) has two states (1 and 2) that can be merged by
the classical unweighted automata minimization.

Figure 4.6(a)–(c) illustrates the minimization of an automaton defined
over the probability semiring. Unlike the unweighted case, a minimal
weighted automaton is not unique, but all minimal weighted automata
have the same graph topology, they only differ by the way the weights are
distributed along each path. The weighted automata B′ and C′ are both
minimal and equivalent to A′. The automaton B′ is obtained from A′ using

0

1

2

3/1

a/1

b/2
c/3

d/4

e/5

e/.8

f/1

e/4

f/5

0/459
5 1 2/1

a/ 1
51

b/ 2
51

c/ 3
51

d/ 20
51

e/ 25
51

e/ 4
9

f/ 5
9

0/25 1 2/1

a/.04

b/.08

c/.12

d/.80

e/1.0

e/0.8

f/1.0

(a) (b) (c)

Figure 4.6. Minimization of weighted automata. (a) Weighted automaton
A′ over the probability semiring. (b) Minimal weighted automaton B′

equivalent to A′. (c) Minimal weighted automaton C′ equivalent to A′.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.2. Algorithms 225

the algorithm described above in the probability semiring and it is thus a
stochastic weighted automaton in the probability semiring.

For a deterministic weighted automaton, the first operation of the semir-
ing can be arbitrarily chosen without affecting the definition of the function
it realizes. This is because, by definition, a deterministic weighted automa-
ton admits at most one path labelled with any given string. Thus, in the
algorithm described in Theorem 4.2.5, the weight pushing step can be exe-
cuted in any semiring K′ whose multiplicative operation matches that of K.
The minimal weighted automata obtained by pushing the weights in K′ is
also minimal in K since it can be interpreted as a (deterministic) weighted
automaton over K.

In particular, A′ can be interpreted as a weighted automaton over the
semiring (R+, max, ×, 0, 1). The application of the weighted minimization
algorithm to A′ in this semiring leads to the minimal weighted automaton
C′ of Figure 4.6(c). The weighted automaton C′ is also stochastic in the
sense that, at any state, the maximum weight of all outgoing transitions is
one.

This fact leads to several interesting observations. One is related to the
complexity of the algorithms. Indeed, we can choose a semiring K′ in which
the complexity of weight pushing is better than in K. The resulting automa-
ton is still minimal in K and has the additional property of being stochastic
in K′. It only differs from the weighted automaton obtained by pushing
weights in K in the way weights are distributed along the paths. They
can be obtained from each other by application of weight pushing in the
appropriate semiring. In the particular case of a weighted automaton over
the probability semiring, it may be preferable to use weight pushing in the
(max, ×)-semiring since the complexity of the algorithm is then equivalent
to that of classical single-source shortest-paths algorithms. The correspond-
ing algorithm is a special instance of the generic shortest-distance algorithm.

Another important point is that the weight pushing algorithm may not be
defined in K because the machine is not zero-sum-free or for other reasons.
But an alternative semiring K′ can sometimes be used to minimize the input
weighted automaton.

The results just presented were all related to the minimization of the
number of states of a deterministic weighted automaton. The following
proposition shows that minimizing the number of states coincides with
minimizing the number of transitions.

Proposition 4.2.6. Let A be a minimal deterministic weighted automaton,
then A has the minimal number of transitions.

Proof. Let A be a deterministic weighted automaton with the minimal
number of transitions. If two distinct states of A were equivalent, they could

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

226 4. Statistical Natural Language Processing

be merged, thereby strictly reducing the number of its transitions. Thus, A
must be a minimal deterministic automaton. Since, minimal deterministic
automata have the same topology, in particular the same number of states
and transitions, this proves the proposition.

4.3. Application to speech recognition

Many of the statistical techniques now widely used in natural language
processing were inspired by early work in speech recognition. This section
discusses the representation of the component models of an automatic
speech recognition system by weighted transducers and describes how they
can be combined, searched, and optimized using the algorithms described
in the previous sections. The methods described can be used similarly in
many other areas of natural language processing.

4.3.1. Statistical formulation

Speech recognition consists of generating accurate written transcriptions
for spoken utterances. The desired transcription is typically a sequence of
words, but it may also be the utterance’s phonemic or syllabic transcription
or a transcription into any other sequence of written units.

The problem can be formulated as a maximum-likelihood decoding
problem, or the so-called noisy channel problem. Given a speech utterance,
speech recognition is to determine its most likely written transcription.
Thus, if we let o denote the observation sequence produced by a signal
processing system, w a (word) transcription sequence over an alphabet A,
and P(w | o) the probability of the transduction of o into w, the problem
consists of finding ŵ as defined by:

ŵ = argmax
w∈A∗

P(w | o) (4.3.1)

Using Bayes’ rule, P(w | o) can be rewritten as: (P(o | w)P(w))/P(o). Since
P(o) does not depend on w, the problem can be reformulated as:

ŵ = argmax
w∈A∗

P(o | w) P(w) (4.3.2)

where P(w) is the a priori probability of the written sequence w in the
language considered and P(o | w) the probability of observing o given that
the sequence w has been uttered. The probabilistic model used to estimate
P(w) is called a language model or a statistical grammar. The genera-
tive model associated to P(o | w) is a combination of several knowledge
sources, in particular the acoustic model, and the pronunciation model.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 227

The conditional probability P(o | w) can be decomposed into several in-
termediate levels, for example, that of phones, syllables, or other units. In
most large-vocabulary speech recognition systems, it is decomposed into
the following probabilistic models that are assumed to be independent:

• P(p | w), a pronunciation model or lexicon transducing word
sequences w to phonemic sequences p;

• P(c | p), a context-dependency transduction mapping phonemic
sequences p to context-dependent phone sequences c;

• P(d | c), a context-dependent phone model mapping sequences of
context-dependent phones c to sequences of distributions d; and

• P(o | d), an acoustic model applying distribution sequences d to
observation sequences.4

Since the models are assumed to be independent,

P(o | w) =
∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w). (4.3.3)

Equation (4.3.2) can thus be rewritten as:

ŵ = argmax
w

∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w). (4.3.4)

The following sections discuss the definition and representation of each
of these models and that of the observation sequences in more detail. The
transduction models are typically given either directly or as a result of an
approximation as weighted finite-state transducers. Similarly, the language
model is represented by a weighted automaton.

4.3.2. Statistical grammar

In some relatively restricted tasks, the language model for P(w) is based on
an unweighted rule-based grammar. But, in most large-vocabulary tasks,
the model is a weighted grammar derived from large corpora of several
million words using statistical methods. The purpose of the model is to
assign a probability to each sequence of words, thereby assigning a rank-
ing to all sequences. Thus, the parsing information it may supply is not
directly relevant to the statistical formulation described in the previous
section.

The probabilistic model derived from corpora may be a probabilistic
context-free grammmar. But, in general, context-free grammars are com-
putationally too demanding for real-time speech recognition systems. The

4 P(o | d)P(d | c) or P(o | d)P(d | c)P(c | p) is often called an acoustic model.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

228 4. Statistical Natural Language Processing

amount of work required to expand a recognition hypothesis can be un-
bounded for an unrestricted grammar. Instead, a regular approximation of a
probabilistic context-free grammar is used. In most large-vocabulary speech
recognition systems, the probabilistic model is in fact directly constructed
as a weighted regular grammar and represents an n-gram model. Thus, this
section concentrates on a brief description of these models.5

Regardless of the structure of the model, using the Bayes’ rule, the
probability of the word sequence w = w1 · · · wk can be written as the
following product of conditional probabilities:

P(w) =
k∏

i=1

P(wi | w1 · · ·wi−1). (4.3.5)

An n-gram model is based on the Markovian assumption that the probability
of the occurrence of a word only depends on the n − 1 preceding words,
that is, for i = 1, . . . , n:

P(wi | w1 · · · wi−1) = P(wi | hi) (4.3.6)

where the conditioning history hi has length at most n − 1: |hi | ≤ n − 1.
Thus,

P(w) =
k∏

i=1

P(wi | hi). (4.3.7)

Let c(w) denote the number of occurrences of a sequence w in the cor-
pus. The counts c(hi) and c(hiwi) can be used to estimate the conditional
probability P(wi | hi). When c(hi) �= 0, the maximum likelihood estimate
of P(wi | hi) is:

P̂(wi | hi) = c(hiwi)

c(hi)
. (4.3.8)

But, a classical data sparsity problem arises in the design of all n-gram
models: the corpus, no matter how large, may contain no occurrence of hi

(c(hi) = 0). A solution to this problem is based on smoothing techniques.
This consists of adjusting P̂ to reserve some probability mass for unseen
n-gram sequences.

Let P̃(wi | hi) denote the adjusted conditional probability. A smoothing
technique widely used in language modelling is the Katz back-off tech-
nique. The idea is to “back-off” to lower order n-gram sequences when

5 Similar probabilistic models are designed for biological sequences (see Chapter 6).

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 229

c(hiwi) = 0. Define the back-off sequence of hi as the lower order n-
gram sequence suffix of hi and denote it by h′

i . The history hi = uh′
i for

some word u. Then, in a Katz back-off model, P(wi | hi) is defined as
follows:

P(wi | hi) =
{

P̃(wi | hi) if c(hiwi) > 0
αhi

P(wi | h′
i) otherwise

(4.3.9)

where αhi
is a factor ensuring normalization. The Katz back-off model ad-

mits a natural representation by a weighted automaton in which each state
encodes a conditioning history of length less than n. As in the classical de
Bruijn graphs, there is a transition labelled with wi from the state encoding
hi to the state encoding h′

iwi when c(hiwi) �= 0. A so-called failure tran-
sition can be used to capture the semantic of “otherwise” in the definition
of the Katz back-off model and keep its representation compact. A failure
transition is a transition taken at state q when no other transition leaving q

has the desired label. Figure 4.7(a) illustrates that construction in the case
of a trigram model (n = 3).

It is possible to give an explicit representation of these weighted
automata without using failure transitions. However, the size of the re-
sulting automata may become prohibitive. Instead, an approximation of
that weighted automaton is used where failure transitions are simply

wi−2wi−1 wi−1wi

wi−1 wi

ε

wi

wi

wi−1

0

1/8.318

2/1.386

3

bye/8.318

hello/7.625

ε/-0.287

ε/-1.386 bye/0.693

hello/1.386

bye/7.625

ε/-0.693

(a) (b)

Figure 4.7. Katz back-off n-gram model. (a) Representation of a trigram
model with failure transitions labelled with
. (b) Bigram model derived
from the input text hello bye bye. The automaton is defined over the log
semiring (the transition weights are negative log-probabilities). State 0 is
the initial state. State 1 corresponds to the word bye and state 3 to the word
hello. State 2 is the back-off state.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

230 4. Statistical Natural Language Processing

0 1 2 3 4/1
d:ε/1.0

ey:ε/0.8

ae:ε/0.2

dx:ε/0.6

t :ε/0.4

ax:data/1.0

Figure 4.8. Section of a pronunciation model of English, a weighted
transducer over the probability semiring giving a compact representation
of four pronunciations of the word data due to two distinct pronunciations
of the first vowel a and two pronunciations of the consonant t (flapped or
not).

replaced by ε-transitions. This turns out to cause only a very limited loss in
accuracy.6

In practice, for numerical instability reasons negative-log probabilities
are used and the language model weighted automaton is defined in the log
semiring. Figure 4.7(b) shows the corresponding weighted automaton in a
very simple case. We will denote by G the weighted automaton representing
the statistical grammar.

4.3.3. Pronunciation model

The representation of a pronunciation model P(p | w) (or lexicon) with
weighted transducers is quite natural. Each word has a finite number of
phonemic transcriptions. The probability of each pronunciation can be esti-
mated from a corpus. Thus, for each word x, a simple weighted transducer
Tx mapping x to its phonemic transcriptions can be constructed.

Figure 4.8 shows that representation in the case of the English word
data. The closure of the union of the transducers Tx for all the words x

considered gives a weighted transducer representation of the pronunciation
model. We will denote by P the equivalent transducer over the log semiring.

4.3.4. Context-dependency transduction

The pronunciation of a phone depends on its neighbouring phones. To
design an accurate acoustic model, it is thus beneficial to model a context-
dependent phone, that is a phone in the context of its surrounding phones.
This has also been corroborated by empirical evidence. The standard mod-
els used in speech recognition are n-phonic models. A context-dependent

6 An alternative when no offline optimization is used is to compute the explicit representation
on-the-fly, as needed for the recognition of an utterance. There exists also a complex method for
constructing an exact representation of an n-gram model which cannot be presented in this short
chapter.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 231

phone is then a phone in the context of its n1 previous phones and n2 follow-
ing phones, with n1 + n2 + 1 = n. Remarkably, the mapping P(c | d) from
phone sequences to sequences of context-dependent phones can be repre-
sented by finite-state transducers. This section illustrates that construction
in the case of triphonic models (n1 = n2 = 1). The extension to the general
case is straightforward.

Let P denote the set of context-independent phones and let C denote the
set of triphonic context-dependent phones. For a language such as English or
French, Card(P) ≈ 50. Let p1pp2 denote the context-dependent phone cor-
responding to the phone p with the left context p1 and the right context p2.

The construction of the context-dependency transducer is similar to
that of the language model automaton. As in the previous case, for nu-
merical instability reasons, negative log-probabilities are used, thus the
transducer is defined in the log semiring. Each state encodes a history lim-
ited to the last two phones. There is a transition from the state associated to
(p, q) to (q, r) with input label the context-dependent phone pqr and out-
put label q. More precisely, the transducer T = (C,P, Q, I, F, E, λ, ρ) is
defined by:

• Q = {(p, q) : p ∈ P, q ∈ P ∪ {ε}} ∪ {(ε, C)};
• I = {(ε, C)} and F = {(p, ε) : p ∈ P};
• E ⊆ {((p, Y),pqr , q, 0, (q, r)) : Y = q or Y = C}

with all initial and final weights equal to zero. Figure 4.9 shows that trans-
ducer in the simple case where the phonemic alphabet is reduced to two
phones (P = {p, q}). We will denote by C the weighted transducer repre-
senting the context-dependency mapping.

4.3.5. Acoustic model

In most modern speech recognition systems, context-dependent phones
are modelled by three-state Hidden Markov Models (HMMs). Figure 4.10
shows the graphical representation of that model for a context-dependent
model pqr . The context-dependent phone is modelled by three states (0, 1,
and 2) each modelled with a distinct distribution (d0, d1, d2) over the input
observations. The mapping P(d | c) from sequences of context-dependent
phones to sequences of distributions is the transducer obtained by taking the
closure of the union of the finite-state transducers associated to all context-
dependent phones. We will denote by H that transducer. Each distribution di

is typically a mixture of Gaussian distributions with mean µ and covariance
matrix σ :

P(ω) = 1

(2π)N/2|σ |1/2
e− 1

2 (ω−µ)T σ−1(ω−µ) (4.3.10)

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

232 4. Statistical Natural Language Processing

(ε,C)

(p,p)

(q,q)

(p,q)

(q,p)

(p,ε)

(q,ε)

εpp:p/0

εqp:q/0

εqq :q/0

εpq :p/0
εpε:p/0

εqε:q/0

ppp:p/0

qqq :q/0

ppq :p/0

qqp:q/0

ppε:p/0

qqε:q/0

pqq :q/0

pqp:q/0

pqε:q/0

qpp:p/0

qpq :p/0

qpε:p/0

Figure 4.9. Context-dependency transducer restricted to two phones p

and q.

0 1 2 3

d1:ε d2:ε d3:ε

d1:ε d2:ε d3:pqr

Figure 4.10. Hidden Markov Model transducer.

where ω is an observation vector of dimension N . Observation vectors
are obtained by local spectral analysis of the speech waveform at regular
intervals, typically every 10 ms. In most cases, they are 39-dimensional
feature vectors (N = 39). The components are the 13 cepstral coefficients,
that is the energy and the first 12 components of the cepstrum and their first-
order (delta cepstra) and second-order differentials (delta–delta cepstra).
The cepstrum of the (speech) signal is the result of taking the inverse-
Fourier transform of the log of its Fourier transform. Thus, if we denote by
x(ω) the Fourier transform of the signal, the first 12 coefficients cn in the
following expression:

log |x(ω)| =
∞∑

n=−∞
cne

−inω (4.3.11)

are the coefficients used in the observation vectors. This truncation of the
Fourier transform helps smooth the log magnitude spectrum. Empirically,

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 233

t0 t1 t2 tk
o1 o2 . . . ok

Figure 4.11. Observation sequence O = o1 · · · ok . The time stamps ti ,
i = 0, . . . , k, labelling states are multiples of 10 ms.

cepstral coefficients have been shown to be excellent features for represent-
ing the speech signal.7 Thus the observation sequence O = o1 · · · ok can
be represented by a sequence of 39-dimensional feature vectors extracted
from the signal every 10 ms. This can be represented by a simple automaton
as shown in Figure 4.11, that we will denote by O.

We will denote by O �H the weighted transducer resulting from the
application of the transducer H to an observation sequence O. The weighted
transducer O �H maps O to sequences of context-dependent phones, where
the weights of the transitions are the negative log of the value associated by
a distribution di to an observation vector Oj, − log di(Oj).

4.3.6. Combination and search

The previous sections described the representation of each of the compo-
nents of a speech recognition system by a weighted transducer or weighted
automaton. This section shows how these transducers and automata can be
combined and searched efficiently using the weighted transducer algorithms
previously described, following Equation (4.3.4).

A so-called Viterbi approximation is often used in speech recognition.
It consists of approximating a sum of probabilities by its dominating term:

ŵ = argmax
w

∑
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w) (4.3.12)

≈ argmax
w

max
d,c,p

P(o | d)P(d | c)P(c | p)P(p | w)P(w). (4.3.13)

This has been shown to be empirically a relatively good approximation
although, most likely, its introduction was originally motivated by algorith-
mic efficiency. For numerical instability reasons, negative-log probabilities
are used, thus the equation can be reformulated as:

ŵ = argmin
w

min
d,c,p

− log P(o | d) − log P(d | c) − log P(c | p)

− log P(p | w) − log P(w).

7 Most often, the spectrum is first transformed using the Mel Frequency bands, which is a nonlinear
scale approximating the human perception.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

234 4. Statistical Natural Language Processing

HMM Transducer H CD Transducer C Pron. Model P Grammar G
observations O CD phones CI phones words words

Figure 4.12. Cascade of speech recognition transducers.

As discussed in the previous sections, these models can be represented
by weighted transducers. Using the composition algorithm for weighted
transducers, and by definition of the �-operation and projection, this is
equivalent to:8

ŵ = argmin
w

�2(O �H ◦C ◦P ◦G) (4.3.14)

Thus, speech recognition can be formulated as a cascade of compositions
of weighted transducers illustrated by Figure 4.12. The term ŵ labels the
path of W = �2(O �H ◦C ◦P ◦G) with the lowest weight. The problem
can be viewed as a classical single-source shortest-paths algorithm over the
weighted automaton W. Any single-source shortest-paths algorithm could
be used to solve it. In fact, since O is finite, the automaton W could be
acyclic, in which case the classical linear-time single-source shortest-paths
algorithm based on the topological order could be used.

However, this scheme is not practical. This is because the size of W
can be prohibitively large even for the recognition of short utterances. The
number of transitions of O for 10 s of speech is 1000. If the recognition
transducer T = H ◦C ◦P ◦G had in the order of just 100M transitions, the
size of W would be in the order of 1000 × 100M transitions, that is about
100 billion transitions!

In practice, instead of visiting all states and transitions, a heuristic prun-
ing is used. A pruning technique often used is the beam search. This consists
of exploring only states with tentative shortest-distance weights within a
beam or threshold of the weight of the best comparable state. Comparable
states must roughly correspond to the same observations, thus states of T
are visited in the order of analysis of the input observation vectors, that
is chronologically. This is referred to as a synchronous beam search. A
synchronous search restricts the choice of the single-source shortest-paths
problem or the relaxation of the tentative shortest-distances. The specific
single-source shortest-paths algorithm then used is known as the Viterbi
Algorithm, which is presented in Problem 1.3.1.

The �-operation, the Viterbi algorithm, and the beam pruning tech-
niques are often combined into a decoder. Here is a brief description of

8 Note that the Viterbi approximation can be viewed simply as a change of semiring, from the
log semiring to the tropical semiring. This does not affect the topology or the weights of the
transducers but only their interpretation or use. Also, note that composition does not make use of
the first operation of the semiring, thus compositions in the log and tropical semiring coincide.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 235

the decoder. For each observation vector oi read, the transitions leaving the
current states of T are expanded, the �-operation is computed on-the-fly to
compute the acoustic weights given by the application of the distributions to
oi . The acoustic weights are added to the existing weight of the transitions
and out of the set of states reached by these transitions those with a ten-
tative shortest-distance beyond a predetermined threshold are pruned out.
The beam threshold can be used as a means to select a trade-off between
recognition speed and accuracy. Note that the pruning technique used is
nonadmissible. The best overall path may fall out of the beam due to local
comparisons.

4.3.7. Optimizations

The characteristics of the recognition transducer T were left out of the
previous discussion. They are however key parameters for the design of
real-time large-vocabulary speech recognition systems. The search-and-
decoding speed critically depends on the size of T and its nondeterminism.
This section describes the use of the determinization, minimization, and
weight pushing algorithm for constructing and optimizing T.

The component transducers described can be very large in speech recog-
nition applications. The weighted automata and transducers we used in the
North American Business (NAB) news dictation task with a vocabulary of
just 40 000 words (the full vocabulary in this task contains about 500 000
words) had the following attributes:

• G: a shrunk Katz back-off trigram model with about 4M transitions;9

• P: pronunciation transducer with about 70 000 states and more than
150 000 transitions;

• C: a triphonic context-dependency transducer with about 1500 states
and 80 000 transitions.

• H: an HMM transducer with more than 7000 states.
A full construction of T by composition of such transducers without any

optimization is not possible even when using very large amounts of memory.
Another problem is the nondeterminism of T. Without prior optimization,
T is highly nondeterministic, thus, a large number of paths need to be
explored at the search and decoding time, thereby considerably slowing
down recognition.

Weighted determinization and minimization algorithms provide a gen-
eral solution to both the nondeterminism and the size problem. To construct
an optimized recognition transducer, weighted transducer determinization

9 Various shrinking methods can be used to reduce the size of a statistical grammar without
affecting its accuracy excessively.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

236 4. Statistical Natural Language Processing

and minimization can be used at each step of the composition of each pair
of component transducers. The main purpose of the use of determinization
is to eliminate nondeterminism in the resulting transducer, thereby substan-
tially reducing recognition time. But, its use at intermediate steps of the
construction also helps improve the efficiency of composition and reduce
the size of the resulting transducer. We will see later that it is in fact possible
to construct offline the recognition transducer and that its size is practical
for real-time speech recognition!

However, as pointed out earlier, not all weighted automata and transduc-
ers are determinizable, for example, the transducer P ◦G mapping phone
sequences to words is in general not determinizable. This is clear in the pres-
ence of homophones. But even in the absence of homophones, P ◦G may
not have the twins property and be nondeterminizable. To make it possible
to determinize P ◦G, an auxiliary phone symbol denoted by #0 marking
the end of the phonemic transcription of each word can be introduced.
Additional auxiliary symbols #1, . . . , #k−1 can be used when necessary to
distinguish homophones as in the following example:

r eh d #0 read
r eh d #1 red

At most, D auxiliary phones, where D is the maximum degree of homo-
phony, are introduced. The pronunciation transducer augmented with these
auxiliary symbols is denoted by P̃. For consistency, the context-dependency
transducer C must also accept all paths containing these new symbols. For
further determinizations at the context-dependent phone level and distri-
bution level, each auxiliary phone must be mapped to a distinct context-
dependent phone. Thus, self-loops are added at each state of C mapping
each auxiliary phone to a new auxiliary context-dependent phone. The
augmented context-dependency transducer is denoted by C̃.

Similarly, each auxiliary context-dependent phone must be mapped to
a new distinct distribution. A total of D self-loops are added at the initial
state of H with auxiliary distribution input labels and auxiliary context-
dependency output labels to allow for this mapping. The modified HMM
transducer is denoted by H̃.

It can be shown that the use of the auxiliary symbols guarantees the de-
terminizability of the transducer obtained after each composition. Weighted
transducer determinization is used at several steps of the construction. An
n-gram language model G is often constructed directly as a deterministic
weighted automaton with a back-off state – in this context, the symbol ε is
treated as a regular symbol for the definition of determinism. If this does
not hold, G is first determinized. The transducer P̃ is then composed with

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

4.3. Application to speech recognition 237

G and determinized: det(P̃ ◦G). The benefit of this determinization is the
reduction of the number of alternative transitions at each state to at most the
number of distinct phones at that state (≈ 50), while the original transducer
may have as many as V outgoing transitions at some states where V is the
vocabulary size. For large tasks where the vocabulary size can be more than
several hundred thousand, the advantage of this optimization is clear.

The inverse of the context-dependency transducer might not be deter-
ministic.10 For example, the inverse of the transducer shown in Figure 4.9
is not deterministic since the initial state admits several outgoing transi-
tions with the same input label p or q. To construct a small and efficient
integrated transducer, it is important to first determinize the inverse of C.11

Transducer C̃ is then composed with the resulting transducer and deter-
minized. Similarly H̃ is composed with the context-dependent transducer
and determinized. This last determinization increases sharing among HMM
models that start with the same distributions: at each state of the resulting
integrated transducer, there is at most one outgoing transition labelled with
any given distribution name. This leads to a substantial reduction of the
recognition time.

As a final step, the auxiliary distribution symbols of the resulting trans-
ducer are simply replaced by εs. The corresponding operation is denoted
by �ε. The sequence of operations just described is summarized by the
following construction formula:

N = �ε(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦G)))) (4.3.15)

where parentheses indicate the order in which the operations are performed.
Once the recognition transducer has been determinized, its size can be
further reduced by minimization. The auxiliary symbols are left in place,
the minimization algorithm is applied, and then the auxiliary symbols are
removed:

N = �ε(min(det(H̃ ◦ det(C̃ ◦ det(P̃ ◦G))))). (4.3.16)

Weighted minimization can also be applied after each determinization step.
It is particularly beneficial after the first determinization and often leads to a
substantial size reduction. Weighted minimization can be used in different
semirings. Both minimization in the tropical semiring and minimization
in the log semiring can be used in this context. The results of these two
minimizations have exactly the same number of states and transitions and

10 The inverse of a transducer is the transducer obtained by swapping the input and output labels
of all transitions.

11 Triphonic or more generally n-phonic context-dependency models can also be constructed
directly with a deterministic inverse.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

238 4. Statistical Natural Language Processing

only differ in how weight is distributed along paths. The difference in
weights arises from differences in the definition of the key pushing operation
for different semirings.

Weight pushing in the log semiring has a very large beneficial impact
on the pruning efficacy of a standard Viterbi beam search. In contrast,
weight pushing in the tropical semiring, which is based on lowest weights
between paths described earlier, produces a transducer that may slow down
beam-pruned Viterbi decoding many fold.

The use of pushing in the log semiring preserves a desirable property of
the language model, namely that the weights of the transitions leaving each
state be normalized as in a probabilistic automaton. Experimental results
also show that pushing in the log semiring makes pruning more effective.
It has been conjectured that this is because the acoustic likelihoods and
the transducer probabilities are then synchronized to obtain the optimal
likelihood ratio test for deciding whether to prune. It has been further
conjectured that this reweighting is the best possible for pruning. A proof
of these conjectures will require a careful mathematical analysis of pruning.

The result N is an integrated recognition transducer that can be con-
structed even in very large-vocabulary tasks and leads to a substantial reduc-
tion of the recognition time as shown by our experimental results. Speech
recognition is thus reduced to the simple Viterbi beam search described in
the previous section applied to N.

In some applications such as for spoken-dialog systems, one may wish
to modify the input grammar or language model G as the dialog proceeds
to exploit the context information provided by previous interactions. This
may be to activate or deactivate certain parts of the grammar. For example,
after a request for a location, the date subgrammar can be made inactive to
reduce alternatives.

The offline optimization techniques just described can sometimes be
extended to the cases where the changes to the grammar G are pre-defined
and limited. The grammar can then be factored into subgrammars and an
optimized recognition transducer is created for each. When deeper changes
are expected to be made to the grammar as the dialog proceeds, each
component transducer can still be optimized using determinization and
minimization and the recognition transducer N can be constructed on-
demand using an on-the-fly composition. States and transitions of N are
then expanded as needed for the recognition of each utterance.

This concludes our presentation of the application of weighted trans-
ducer algorithms to speech recognition. There are many other applications
of these algorithms in speech recognition, including their use for the opti-
mization of the word or phone lattices output by the recognizer that cannot
be covered in this short chapter.

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

Notes 239

We presented several recent weighted finite-state transducer algorithms
and described their application to the design of large-vocabulary speech
recognition systems where weighted transducers of several hundred million
states and transitions are manipulated. The algorithms described can be
used in a variety of other natural language processing applications such as
information extraction, machine translation, or speech synthesis to create
efficient and complex systems. They can also be applied to other domains
such as image processing, optical character recognition, or bioinformatics,
where similar statistical models are adopted.

Notes

Much of the theory of weighted automata and transducers and their
mathematical counterparts, rational power series, was developed several
decades ago. Excellent reference books for that theory are Eilenberg (1974),
Salomaa and Soittola (1978), Berstel and Reutenauer (1984) and Kuich and
Salomaa (1986).

Some essential weighted transducer algorithms such as those presented
in this chapter, for example, composition, determinization, and minimiza-
tion of weighted transducers are more recent and raise new questions,
both theoretical and algorithmic. These algorithms can be viewed as the
generalization to the weighted case of the composition, determinization,
minimization, and pushing algorithms described in Chapter 1 Section 1.5.
However, this generalization is not always straightforward and has required
a specific study.

The algorithm for the composition of weighted finite-state transducers
was given by Pereira and Riley (1997) and Mohri, Pereira, and Riley (1996).
The composition filter described in this chapter can be refined to exploit
information about the composition states, for example, the finality of a state
or whether only ε-transitions or only non ε-transitions leave that state, to
reduce the number of noncoaccessible states created by composition.

The generic determinization algorithm for weighted automata over
weakly left divisible left semirings presented in this chapter as well as
the study of the determinizability of weighted automata are from Mohri
(1997). The determinization of (unweighted) finite-state transducers can be
viewed as a special instance of this algorithm. The definition of the twins
property was first formulated for finite-state transducers by Choffrut (see
Berstel 1979 for a modern presentation of that work). The generalization
to the case of weighted automata over the tropical semiring is from Mohri
(1997). A more general definition for a larger class of semirings, includ-
ing the case of finite-state transducers, as well as efficient algorithms for

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

240 4. Statistical Natural Language Processing

testing the twins property for weighted automata and transducers under
some general conditions is presented by Allauzen and Mohri (2003).

The weight pushing algorithm and the minimization algorithm for
weighted automata were introduced by Mohri (1997). The general defi-
nition of shortest-distance and that of k-closed semirings and the generic
shortest-distance algorithm mentioned appeared in Mohri (2002). Efficient
implementations of the weighted automata and transducer algorithms de-
scribed as well as many others are incorporated in a general software library,
AT&T FSM Library, whose binary executables are available for download
for noncommercial use (Mohri et al. (2000)).

Bahl, Jelinek, and Mercer (1983) gave a clear statistical formulation of
speech recognition. An excellent tutorial on Hidden Markov Models and
their application to speech recognition was presented by Rabiner (1989).
The problem of the estimation of the probability of unseen sequences was
originally studied by Good (1953) who gave a brilliant discussion of the
problem and provided a principled solution. The back-off n-gram statistical
modelling is due to Katz (1987). See Lee (1990) for a study of the benefits
of the use of context-dependent models in speech recognition.

The use of weighted finite-state transducers representations and algo-
rithms in statistical natural language processing was pioneered by Pereira
and Riley (1997) and Mohri (1997). Weighted transducer algorithms, in-
cluding those described in this chapter, are now widely used for the design of
large-vocabulary speech recognition systems. A detailed overview of their
use in speech recognition is given by Mohri, Pereira, and Riley (2002).
Sproat (1997) and Allauzen, Mohri, and Riley (2004) describe the use of
weighted transducer algorithms in the design of modern speech synthesis
systems. Weighted transducers are used in a variety of other applications.
Their recent use in image processing is described by Culik II and Kari
(1997).

https://doi.org/10.1017/CBO9781107341005.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781107341005.005

