
Kernel-Induced Feature Spaces

The limited computational power of linear learning machines was highlighted in the
1960s by Minsky and Papert. In general, complex real-world applications require
more expressive hypothesis spaces than linear functions. Another way of viewing
this problem is that frequently the target concept cannot be expressed as a sim-
ple linear combination of the given attributes, but in general requires that more
abstract features of the data be exploited. Multiple layers of thresholded linear
functions were proposed as a solution to this problem, and this approach led to
the development of multi-layer neural networks and learning algorithms such as
back-propagation for training such systems.

Kernel representations offer an alternative solution by projecting the data into
a high dimensional feature space to increase the computational power of the linear
learning machines of Chapter 2. The use of linear machines in the dual repre-
sentation makes it possible to perform this step implicitly. As noted in Chapter
2, the training examples never appear isolated but always in the form of inner
products between pairs of examples. The advantage of using the machines in the
dual representation derives from the fact that in this representation the number of
tunable parameters does not depend on the number of attributes being used. By
replacing the inner product with an appropriately chosen 'kernel' function, one can
implicitly perform a non-linear mapping to a high dimensional feature space with-
out increasing the number of tunable parameters, provided the kernel computes the
inner product of the feature vectors corresponding to the two inputs.

In this chapter we will introduce the kernel technique, which provides one of the
main building blocks of Support Vector Machines. One of the remarkable features of
SVMs is that to a certain extent the approximation-theoretic issues are independent
of the learning-theoretic ones. One can therefore study the properties of the kernel
representations in a general and self-contained way, and use them with different
learning theories, as we will see in Chapter 4.

Another attraction of the kernel method is that the learning algorithms and
theory can largely be decoupled from the specifics of the application area, which
must simply be encoded into the design of an appropriate kernel function. Hence,
the problem of choosing an architecture for a neural network application is replaced
by the problem of choosing a suitable kernel for a Support Vector Machine. In this
chapter we will describe some well-known kernels and show how more complicated
kernels can be constructed by combining simpler ones. We will also mention kernels

26

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.1 Learning in Feature Space 27

that have been developed for discrete structures such as text, showing that the
approach is not restricted only to input spaces that are subsets of Euclidean space,
and hence can be applied even when we were unable to define linear functions over
the input space.

As we will see in Chapters 4 and 7, the use of kernels can overcome the curse
of dimensionality in both computation and generalisation.

3.1 Learning in Feature Space

The complexity of the target function to be learned depends on the way it is
represented, and the difficulty of the learning task can vary accordingly. Ideally
a representation that matches the specific learning problem should be chosen. So
one common preprocessing strategy in machine learning involves changing the
representation of the data:

This step is equivalent to mapping the input space X into a new space, F =
{*(x)|x e X}.

Example 3.1 Consider the target function

f(mi,m2,r) =
r~

giving Newton's law of gravitation, expressing the gravitational force between
two bodies with masses mi,m2 and separation r. This law is expressed in terms
of the observable quantities, mass and distance. A linear machine such as those
described in Chapter 2 could not represent it as written, but a simple change of
coordinates

(mi,m2,r) i—• (x,y,z) = (Inmi,lnm2,lnr)

gives the representation

g(x,y,z) = In/(mi,m2,r) = lnC + lnmi +lnm2 — 21nr = c + x + y — 2z,

which could be learned by a linear machine.

The fact that simply mapping the data into another space can greatly simplify
the task has been known for a long time in machine learning, and has given
rise to a number of techniques for selecting the best representation of data. The
quantities introduced to describe the data are usually called features, while the
original quantities are sometimes called attributes. The task of choosing the most
suitable representation is known as feature selection. The space X is referred to
as the input space, while F = {<̂ (x) :x G X} is called the feature space.

Figure 3.1 shows an example of a feature mapping from a two dimensional
input space to a two dimensional feature space, where the data cannot be

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

28 3 Kernel-Induced Feature Spaces

X

Figure 3.1: A feature map can simplify the classification task

separated by a linear function in the input space, but can be in the feature space.
The aim of this chapter is to show how such mappings can be made into very
high dimensional spaces where linear separation becomes much easier.

Different approaches to feature selection exist. Frequently one seeks to
identify the smallest set of features that still conveys the essential information
contained in the original attributes. This is known as dimensionality reduction,

x = d<n,

and can be very beneficial as both computational and generalisation performance
can degrade as the number of features grows, a phenomenon sometimes referred
to as the curse of dimensionality. The difficulties with high dimensional feature
spaces are unfortunate, since the larger the set of (possibly redundant) features,
the more likely that the function to be learned can be represented using a stan-
dardised learning machine. We will show how this degradation of performance
can be avoided in the Support Vector Machine.

Example 3.2 Again consider the gravitation law for two bodies, but suppose the
attributes are now the three components of their positions together with their
masses:

x = (px
1,p

y
vplp$,py

2,p
z
2,mum2).

One way to reduce the dimensionality of the problem would be the following
mapping <j> : E 8 1—• R3:

which would retain the essential information.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.1 Learning in Feature Space 29

Another very different feature selection task is the detection of irrelevant
features and their subsequent elimination. In our example, an irrelevant feature
would be the colour of the two bodies, or their temperature, since neither quantity
affects the target output value.

The use of principal components analysis provides a mapping of the data
to a feature space in which the new features are linear functions of the original
attributes and are sorted by the amount of variance that the data exhibit
in each direction. Dimensionality reduction can sometimes be performed by
simply removing features corresponding to directions in which the data have low
variance, though there is no guarantee that these features are not essential for
performing the target classification. We now give an example where additional
feature dimensions can be useful.

Example 3.3 Consider the case of a two dimensional input space, and assume
our prior knowledge about the problem suggests that relevant information is
encoded in the form of monomials of degree 2. Hence we want to represent the
problem in a feature space where such information is made explicit, and is ready
for the learning machine to use. A possible mapping is the following:

In the same way we might want to use features of degree d, giving a feature
space of (n+d

d~
1) dimensions, a number that soon becomes computationally

infeasible for reasonable numbers of attributes and feature degrees. The use of
this type of feature space will require a special technique, introduced in Section
3.2, involving an 'implicit mapping' into the feature space.

The computational problems are not the only ones connected with the size of
the feature space we are using. Another source of difficulties is the generalisation
of the learning machine, which can be sensitive to the dimensionality of the
representation for standard function classes of hypotheses.

It is evident from the previous examples that feature selection should be
viewed as a part of the learning process itself, and should be automated as much
as possible. On the other hand, it is a somewhat arbitrary step, which reflects
our prior expectations on the underlying target function. The theoretical models
of learning should also take account of this step: using too large a set of features
can create overfitting problems, unless the generalisation can be controlled in
some way. It is for this reason that research has frequently concentrated on
dimensionality reduction techniques. However, we will see in Chapter 4 that a
deeper understanding of generalisation means that we can even afford to use
infinite dimensional feature spaces. The generalisation problems will be avoided
by using learning machines based on this understanding, while computational
problems are avoided by means of the 'implicit mapping' described in the next
section.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

30 3 Kernel-Induced Feature Spaces

3.2 The Implicit Mapping into Feature Space

In order to learn non-linear relations with a linear machine, we need to select a
set of non-linear features and to rewrite the data in the new representation. This
is equivalent to applying a fixed non-linear mapping of the data to a feature
space, in which the linear machine can be used. Hence, the set of hypotheses we
consider will be functions of the type

1=1

where </) : X —• F is a non-linear map from the input space to some feature
space. This means that we will build non-linear machines in two steps: first a
fixed non-linear mapping transforms the data into a feature space F, and then a
linear machine is used to classify them in the feature space.

As shown in Chapter 2, one important property of linear learning machines
is that they can be expressed in a dual representation. This means that the
hypothesis can be expressed as a linear combination of the training points, so
that the decision rule can be evaluated using just inner products between the test
point and the training points:

If we have a way of computing the inner product (<£(x,) • <j)(x)) in feature space
directly as a function of the original input points, it becomes possible to merge
the two steps needed to build a non-linear learning machine. We call such a
direct computation method a kernel function.

Definition 3,4 A kernel is a function K, such that for all X , Z G I

where <j> is a mapping from X to an (inner product) feature space F.

The name 'kernel' is derived from integral operator theory, which underpins
much of the theory of the relation between kernels and their corresponding
feature spaces. An important consequence of the dual representation is that the
dimension of the feature space need not affect the computation. As one does
not represent the feature vectors explicitly, the number of operations required to
compute the inner product by evaluating the kernel function is not necessarily
proportional to the number of features. The use of kernels makes it possible
to map the data implicitly into a feature space and to train a linear machine
in such a space, potentially side-stepping the computational problems inherent
in evaluating the feature map. The only information used about the training
examples is their Gram matrix (see Remark 2.11) in the feature space. This
matrix is also referred to as the kernel matrix, and in this context we will use

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.2 The Implicit Mapping into Feature Space 31

the symbol K to denote it. The key to this approach is finding a kernel function
that can be evaluated efficiently. Once we have such a function the decision rule
can be evaluated by at most € evaluations of the kernel:

One of the curious facts about using a kernel is that we do not need to know
the underlying feature map in order to be able to learn in the feature space! The
rest of this chapter will be concerned with the problem of creating such kernel
functions. We will consider the properties that they must satisfy as well as some
of the more recent methods developed for their construction. The concept of a
kernel is central to the development of the book, but it is not an immediately
intuitive idea. First note that the idea of a kernel generalises the standard inner
product in the input space. It is clear that this inner product provides an example
of a kernel by making the feature map the identity

K(x,z) = (x-z).

We can also take the feature map to be any fixed linear transformation x F-> AX,
for some matrix A. In this case the kernel function is given by

K(x,z) = (Ax • Az) = x'A'Az = x'Bz,

where by construction B = A'A is a square symmetric positive semi-definite
matrix. As discussed in the introduction the aim is to introduce non-linearity
into the feature space map. We therefore move to a simple but illustrative example
of such a non-linear map obtained by considering the following relation:

(x-z)2 =

which is equivalent to an inner product between the feature vectors

In this case the features are all the monomials of degree 2 considered in Example
3.3, though note that when i =£ j the feature XjXj occurs twice, giving it double
the weight of the features x?. A more general feature space is obtained by

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

32 3 Kernel-Induced Feature Spaces

considering the kernel

« X - Z > + C) = l ^ X i Z i + C [^ X j Z j + C

whose ("+1) -\-n+ 1 = ("^2) features are all the monomials of degree up to 2, but
with the relative weightings between the degree 1 and 2 features controlled by
the parameter c, which also determines the strength of the degree 0 or constant
feature. Similar derivations can be made for the kernel functions

K(x,z) = (x • z)d and K(x,z) = ((x • z) + c)d,

for d > 2. For the first kernel the (n+d
d~

1) distinct features are all the monomials
of degree d, though again the weighting will vary according to the structure of
the exponents. For the second kernel there are ("Y) distinct features, being all
the monomials up to and including degree d. The decision boundary in the input
space corresponding to a hyperplane in these feature spaces is a polynomial
curve of degree d, so these kernels are frequently called polynomial kernels.

More complex kernels are possible, and the next section is concerned with
the important problem of the construction of kernels. A significant aspect of this
problem is the mathematical characterisation of functions K(x,z) that constitute
kernels. We will see that a theorem from functional analysis provides an answer
to this question.

3.3 Making Kernels

The use of a kernel function is an attractive computational short-cut. If we wish
to use this approach, there appears to be a need to first create a complicated
feature space, then work out what the inner product in that space would be,
and finally find a direct method of computing that value in terms of the original
inputs. In practice the approach taken is to define a kernel function directly,
hence implicitly defining the feature space. In this way, we avoid the feature
space not only in the computation of inner products, but also in the design of
the learning machine itself. We will argue that defining a kernel function for
an input space is frequently more natural than creating a complicated feature
space. Before we can follow this route, however, we must first determine what
properties of a function X(x,z) are necessary to ensure that it is a kernel for
some feature space. Clearly, the function must be symmetric,

X(x,z) = (0(x) • <£(z)) = (0(z) • #x)> = X(z,x),

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.3 Making Kernels 33

and satisfy the inequalities that follow from the Cauchy-Schwarz inequality,

A(z))2<||^(x)||2| |0(z)||2

0(x)) <<£(z) • <t>{z)) = K(x, x)K(z, z).

These conditions are, however, not sufficient to guarantee the existence of a
feature space.

3.3.1 Characterisation of Kernels

Mercer's Theorem

In this subsubsection we will introduce Mercer's theorem, which provides a
characterisation of when a function K(x,z) is a kernel. We begin by considering
a simple case in order to motivate the result. Consider a finite input space
X — {xi,... ,xn}, and suppose X(x,z) is a symmetric function on X. Consider
the matrix

Since K is symmetric there is an orthogonal matrix V such that K = VAV', where
A is a diagonal matrix containing the eigenvalues Xt of K, with corresponding
eigenvectors vf = (tyi)"=1 the columns of V. Now assume that all the eigenvalues
are non-negative and consider the feature mapping

We now have that
n

<*(x,) • 4>(xj)) = ^2^vtivtj = (VAV).. = Kl7=X(Xl-,x;),
t=\

implying that K(x,z) is indeed a kernel function corresponding to the feature
mapping 0. The requirement that the eigenvalues of K be non-negative is
necessary since if we have a negative eigenvalue Xs with eigenvector vs, the point

in the feature space would have norm squared

llzii2 = (z • z) = V;VVAVAV'V S = v;vAvrvs = V;KVS = xs < o,

contradicting the geometry of that space. Hence, we have proved by contradiction
the following proposition.

Proposition 3.5 Let X be a finite input space with X(x,z) a symmetric function on
X. Then K(x,z) is a kernel function if and only if the matrix

is positive semi-definite (has non-negative eigenvalues).

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

34 3 Kernel-Induced Feature Spaces

Motivated by this simple example, we will allow a slight generalisation of
an inner product in a Hilbert space by introducing a weighting X{ for each
dimension,

1=1

so that the feature vector becomes

Mercer's theorem gives necessary and sufficient conditions for a continuous
symmetric function K(x,z) to admit such a representation

1=1

with non-negative /I,, which is equivalent to K(x,z) being an inner product in
the feature space F =2 <I>(X), where F is the li space of all sequences

for which

00

]T kw] < GO-
i=i

This will implicitly induce a space defined by the feature vector and as a
consequence a linear function in F like those described in Chapter 2 will be
represented by

f(x) = ^ Aw&OO + b = ^ 0LjyjK{x9Xj) + b,
i = l y = l

where the first expression is the primal representation of the function, and the
second is the dual, the relation between the two being given by

7 = 1

Note that in the primal representation the number of terms in the summation
is equal to the dimensionality of the feature space, while in the dual there are
t terms (the sample size). According to the size of the feature space being
considered, one or other of the representations can be more convenient. It is
clear from its form that this function is non-linear whenever the kernel function
is non-linear.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.3 Making Kernels 35

The analogy with the finite case is very close. The contribution from func-
tional analysis comes from studying the eigenvalue problem for integral equations
of the form

where K(x,z) is a bounded, symmetric, and positive kernel function and X is a
compact space. We will not go into the details of the analysis but simply quote
the theorem (see Appendix B.3 for the notation and definitions).

Theorem 3.6 (Mercer) Let X be a compact subset ofRn. Suppose K is a contin-
uous symmetric function such that the integral operator TK : L,2(X) —> L2(X),

= [K(,x)f(x)dx,
Jx

is positive, that is

K(x,z)f(x)f(z)dxdz>0,
JXxX

for all f G L,2{X). Then we can expand K(x,z) in a uniformly convergent series
(on X x X) in terms of TK 'S eigen-functions 0;- e Li{X), normalised in such a
way that | |#/ | |L = 1, and positive associated eigenvalues Xj > 0,

7=1

Remark 3.7 The positivity condition

I K(x,z)f(x)f(z)dxdz > 0,V/ e L2(X),
XxX

corresponds to the positive semi-definite condition in the finite case. The finite
matrix condition on a set of points {xi,... ,xn} is recovered by choosing / to be
the weighted sums of delta functions at each Xj. Since such functions are limits
of functions in Li{X), the above condition implies that for any finite subset
of X the corresponding matrix is positive semi-definite. The converse is also
true since if the positivity condition does not hold for some function / , we can
approximate the integral with a finite sum over a mesh of inputs, which if chosen
sufficiently finely will still give a negative value. The values of / on the chosen
mesh {xi,... ,xn} form a vector v, for which the corresponding kernel matrix K
satisfies

v'Kv < 0,

showing that K fails to be positive semi-definite. The conditions for Mercer's
theorem are therefore equivalent to requiring that for any finite subset of X, the

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

36 3 Kernel-Induced Feature Spaces

corresponding matrix is positive semi-definite. This gives a second characteri-
sation of a kernel function, one that will prove most useful when we come to
constructing kernels. We use the term kernel to refer to functions satisfying this
property, but in the literature these are often called Mercer kernels.

Remark 3.8 Following the relaxing of the definition of inner product after Propo-
sition 3.5, the theorem suggests the feature mapping

X = (X i , . . . , Xn) I • 0(X) j

into the Hilbert space defined by the weighted inner product given by

since the inner product of two feature vectors then satisfies

These features have the special property that they are orthonormal functions
in L2(X). This choice of mapping is sometimes referred to as Mercer features.
The compactness of the input domain is required in order to ensure that the
spectrum is a countable set. Note that we do not need the features to form an
orthonormal set. In the finite input space example given above they have been
rescaled by the square root of the eigenvalues. In general we can rescale each
coordinate,

x = (xi,... ,xn) i — j j

into the Hilbert space defined by the weighted inner product given by

since again the inner product of two feature vectors then satisfies

7 = 1 J

In this case and in the finite input space example the features are still orthogonal.
Orthogonality is, however, also not required. For instance in the case of polyno-
mial kernels, the features given in Example 3.3 will not in general be orthogonal.
The features could be chosen to be orthogonal, but the particular polynomials
needed would depend on the subset of R2 taken as the input domain and the
measure of integration chosen.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.3 Making Kernels 37

Mercer features provide a representation of the input points by means of
their image in the feature space with the inner product defined by the potentially
infinite number of eigenvalues of the kernel. The sub-manifold formed by the
image of the input space is defined by the eigenvectors of the kernel operator.
Although the images of the points </>(x) e F will not be computed, their inner
products can be calculated using the kernel function.

Example 3.9 Consider the kernel function K(x,z) = K(x — z). Such a kernel is
said to be translation invariant, since the inner product of two inputs is un-
changed if both are translated by the same vector. Consider the one dimensional
case in which K is defined on the interval [0,2TC] in such a way that K(u) can be
extended to a continuous, symmetric, periodic function on R. Such a function
can be expanded in a uniformly convergent Fourier series:

oo

K{u) = V^ an cos(nw).
n=0

In this case we can expand K(x — z) as follows:

K(x — z) = ao + ^2 an sin(rcx) sin(rcz) + J ^ an cos(nx) cos(nz).

Provided the an are all positive this shows K(x,z) as the inner product in the
feature space defined by the orthogonal features

{0j(x)}£o = (1, sin(x), cos(x), sin(2x), cos(2x),... , sin(nx), cos(nx),...),

since the functions, 1, cos(nw) and sin(rcw) form a set of orthogonal functions
on the interval [0,2n]. Hence, normalising them will provide a set of Mercer
features. Note that the embedding is defined independently of the an, which
subsequently control the geometry of the feature space.

Example 3.9 provides some useful insight into the role that the choice of
kernel can play. The parameters an in the expansion of K(u) are its Fourier
coefficients. If for some n, we have an = 0, the corresponding features are
removed from the feature space. Similarly, small values of an mean that the
feature is given low weighting and so will have less influence on the choice of
hyperplane. Hence, the choice of kernel can be seen as choosing a filter with a
particular spectral characteristic, the effect of which is to control the influence
of the different frequencies in determining the optimal separation. In the next
subsection we introduce a view of the feature space that will elucidate its role in
encoding a learning bias.

Given a feature space representation with countably many linearly indepen-
dent features (not necessarily orthogonal or of unit norm) given by the mapping

X = (X i , . . . , Xn) ' > 0(X)

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

38 3 Kernel-Induced Feature Spaces

into the \i space F defined by the weighted inner product

7=1

we can define a space of functions Jf on the input space to be the image of F
under the mapping

7 = 1

Note that if F is finite dimensional, J f is the function class on the input space
we are effectively using by applying linear functions in the feature space since it
is the set of all linear combinations of the basis functions. For infinite feature
spaces, 34? may not contain all the possible hypothesis functions, as they may be
images of points that do not have a finite norm in F9 or equally 3f may have
too many functions. In the next subsection we consider a particular choice of
the feature mapping that ensures 3tf does contain exactly the set of hypotheses
and at the same time has a number of additional special properties.

Reproducing Kernel Hilbert Spaces

Assume we have a feature space given by the map

x = (xu... , xn) i—• 0(x) = (0i(x),.. . , <j)j(x)9...),

into the l2 space F defined by the weighted inner product

7 = 1

where

1=1

Now consider introducing a weighting proportional to the factor \x{, so that the
image has the form

The appropriate weighted inner product is then given by

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

S3 Making Kernels 39

so that

We denote with 3tf the image of F under the mapping T defined by equation
(3.1). This particular weighting has a number of special properties. For two
functions

oo oo

/(x) = ^xpj^jix) and g(x) =

we define an inner product in J f by

7 = 1 ^

hence making the map T an isometry. First observe that if we map an input
point to the feature space and then apply T to its image, we obtain

j=\ 7=1

so that K(z, •) e 3tf. As a consequence functions in the dual representation

are in the space &C Furthermore, if we take the inner product of a general
function /(x) = Y%=\ aj4>j(x) e & w i t r i K(z,x), we obtain

known as the reproducing property of the kernel K. This also implies that
coincides with the closure of the subspace

) : / G N , (Xl,. . . ,X,) e X'9 a,- 6

since if / € 3f satisfies / _L X then for all z eX,

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

40 3 Kernel-Induced Feature Spaces

implying / = 0. Hence Jf is contained in the closure of Jf and so does not
contain functions that cannot be arbitrarily well approximated in the dual repre-
sentation. For two functions /(x) = Y?i=i <x,iK(Xi,x) and g(x) = Y?j=i otjK(xj,x),
in the dual representation the inner product is given by

showing that the definition of the inner product is independent of the particular
representation of the function (changing the representation of g does not change
the value of g(x{)). In addition we also obtain that \\f\\2^ = X)f=i a*/(x0>
showing that for / to have a bounded norm, it must have bounded value and
coefficients. Finally, note that the reproducing property (/(•) -X(z,-))^ = /(z)
implies that the evaluation functionals defined by Fx [f] = f (x) (V/ € tff) are
linear and bounded, that is there exist Uz = \\K(z,-)\\^ e R+ such that by the
Cauchy-Schwarz inequality

\F*\f]\ = \M\ = (/(')' K(z, •)>* < Uz H/n^

for all f GJtr.

For a Hilbert space Jf of functions defined over the input domain X c Rd,
the bounded linearity of the evaluation functionals is the defining property for
a reproducing kernel Hilbert space (RKHS). Hence, we have demonstrated the
following result.

Theorem 3.10 For every Mercer kernel K(x,z) defined over the domain X c M.d,
there exists an RKHS J4? of functions defined over X for which K is the repro-
ducing kernel.

Remarkably the converse of this theorem also holds. That is, for any Hilbert
space of functions in which the evaluation functionals are bounded and linear,
there exists a reproducing kernel function. That a reproducing kernel is also a

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

33 Making Kernels 41

Mercer kernel follows from the fact that for /(x) = YM=I ajK(Xi,x),

1=1 j=l

implying X is positive semi-definite for every finite subset of X, sufficient to
imply the positivity of the operator K by Remark 3.7.

The following example suggests some of the power and insight that the
RKHS construction affords.

Example 3.11 Suppose we wish to perform regression based on as set of training
points

S = ((xi,yi),(x2,y2),... ,(x*)v)) c (X x Yf C (RW X R)',

generated from the target function t(x). If we assume a dual representation of
the form

we can seek to minimise the norm

11/ " t* = (i>K(x; ,x) - r(x) • ^a^Cx^x) - t(x)

= -2 A(x) • ^a^Cx^x)) + n/ll^ +

which can be solved by setting the derivatives with respect to the parameters
equal to zero, since \\t\\^ does not depend on them. We will discuss this further
in Chapter 5 in Example 5.6. Notice again how the Gram matrix in the feature
space appears if we view X a s a Mercer kernel.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

42 3 Kernel-Induced Feature Spaces

3.3.2 Making Kernels from Kernels

The key to verifying that a new symmetric function is a kernel will be the
conditions outlined in Remark 3.7, that is the requirement that the matrix
defined by restricting the function to any finite set of points is positive semi-
definite. We apply this criterion to confirm that a number of new kernels can be
created. The following proposition can be viewed as showing that kernels satisfy
a number of closure properties, allowing us to create more complicated kernels
from simple building blocks.

Proposition 3.12 Let K{ and K2 be kernels over X x X, X c R», a <E R+, /(•) a
real-valued function on X,

q> : X —> K

with KT> a kernel over Rm x Rm, and B a symmetric positive semi-definite n x n
matrix. Then the following functions are kernels:

1. K(x,z)=K{(x,z)+K2(x,z),

2. K(xfz) = aK{(x,z),

3. K(x,z)=K1(x,z)K2(x,z),

4. K(x,z)=/(x)/(z),

5.

6.

Proof Fix a finite set of points {xi,... ,x/}, and let Ki and K2, be the corre-
sponding matrices obtained by restricting K\ and K2 to these points. Consider
any vector a GR .̂ Recall that a matrix K is positive semi-definite if and only if
a'Ka >0, for all a.

1. We have

a' (K! + K2) a = a'Kia + arK2a >0,

and so Ki + K2 is positive semi-definite and K\ + K2 a kernel function.

2. Similarly a'aKi<x =a<x'Ki<x >0, verifying that aK\ is a kernel.

3. Let

be the tensor product of the matrices Ki and K2. The tensor product
of two positive semi-definite matrices is positive semi-definite since the
eigenvalues of the product are all pairs of products of the eigenvalues of
the two components. The matrix corresponding to the function K\K2 is

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.3 Making Kernels 43

known as the Schur product H of Ki and K2 with entries the products
of the corresponding entries in the two components. The matrix H is a
principal submatrix of K defined by a set of columns and the same set of
rows. Hence for any a eMf, there is a corresponding aieR/ 2, such that

and so H is positive semi-definite as required.

4. We can rearrange the bilinear form as follows

i = l 7 = 1

as required.

5. Since X3 is a kernel, the matrix obtained by restricting K3 to the points
... ,<^(x/) is positive semi-definite as required.

6. Consider the diagonalisation of B = V'AV by an orthogonal matrix V,
where A is the diagonal matrix containing the non-negative eigenvalues.
Let >/A be the diagonal matrix with the square roots of the eigenvalues
and set A = -^JAY. We therefore have

X(x,z) - x'Bz = xVAVz = X V V A N / A V Z = x
rA'Az = (Ax • Az),

the inner product using the feature mapping A.

•
Corollary 3.13 Let K\(x9z) be a kernel over X x X, x, z € X, and p(x) a
polynomial with positive coefficients. Then the following functions are also
kernels:

1. K(x,z) =p(K1(x,z)l

2.

3.

Proof We take the three parts in turn:

1. For a polynomial the result is immediate by combining the parts of the
proposition. Note that the constant is covered by part 4 of the proposition.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

44 3 Kernel-Induced Feature Spaces

2. The exponential function can be arbitrarily closely approximated by poly-
nomials with positive coefficients and hence is a limit of kernels. Since
kernels are clearly closed under taking pointwise limits, the result follows.

3. We can decompose the Gaussian function as follows:

exp(- ||x - z||2 /a2) = exp(- ||x||2 /a2) exp(- ||z||2 /a2) exp(2 (x • z) /a2).

The first two factors together form a kernel by part 4 of the proposition,
while the third factor is a kernel by part 2 of this corollary.

•
Remark 3.14 The final kernel of the corollary is known as the Gaussian kernel.
This function forms the core of a radial basis function network and hence, using
this kernel will mean the hypotheses are radial basis function networks.

3.3.3 Making Kernels from Features

Another way to obtain a kernel is of course to start from the features, and to
obtain it by working out their inner product. In this case there is no need to
check for positive semi-definiteness since this will follow automatically from the
definition as an inner product. The first example we gave of polynomial kernels
followed this route. We now give a more unusual example of a kernel over a
discrete space, in this case finite strings in order to illustrate the potential of the
method for non-Euclidean spaces.

Example 3.15 (String subsequence kernels) Let I be a finite alphabet. A string
is a finite sequence of characters from X, including the empty sequence. For
strings s,t, we denote by |s| the length of the string s = s\ ...s\s\, and by st the
string obtained by concatenating the strings 5 and t. The string s[i : j] is the
substring s,... Sj of s. We say that u is a subsequence of 5, if there exist indices
i = O'i,... , /|M|), with 1 < i\ < - - < i\ui < \s\, such that Uj = sij9 for j = 1,... , |w|,
or u = s[i] for short. The length /(i) of the subsequence in s is i\u\ —i\ + \. We
denote by Hn the set of all finite strings of length n, and by E* the set of all
strings

Z* = Q
n=0

We now define feature spaces Fn = R 2 \ The feature mapping <f> for a string 5 is
given by defining the u coordinate </>M(s) for each u G Sn. We define

i:u=s[i]

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.3 Making Kernels 45

for some k < 1. These features measure the number of occurrences of subse-
quences in the string s weighting them according to their lengths. Hence, the
inner product of the feature vectors for two strings s and t give a sum over all
common subsequences weighted according to their frequency of occurrence and
lengths

= E E ̂ /(i) E ̂
ueT" i:u=s[i] y.u=t\j]

= E E E *m+l(i)-
MGE" i:w=s[i] y.u=t jj]

Such a kernel could clearly be very useful for text classification, but appears
at first sight too expensive to compute for practical purposes. We introduce an
additional function which will aid in defining a recursive computation for this
kernel. Let

that is counting the length to the end of the strings s and t instead of just /(i) and
/(j). We can now define a recursive computation for K[and hence compute Kn,

K'0(s9t) = 1, for all s9t9

Ki(s,t) = 0, if min (|s|, |t|) < i,

Kl(sx91) = kK[{s, t) + J2 KU(s9 t[l : j - l])k^+2, i = 1,... , n - 1,
j:tj=x

Kn{sx, t) = Kn{s91) +
j:tj=x

The correctness of this recursion follows from observing how the length of the
strings has increased, incurring a factor of k for each extra character, until the
full length of n characters has been attained. It is quite surprising that the
recursive formulation is sufficient to compute the kernel in time proportional to
n|s||*|. If we wished to compute Kn(s,t) for a range of values of n, we would
simply perform the computation of Kr

t(s, t) up to one less than the largest n
required, and then apply the last recursion for each Kn(s,t) that is needed using
the stored values of K[(5, t). We can of course use parts 1 and 2 of Proposition
3.12 to create a kernel K(s,t) that combines the different Kn(s,t) giving different
weightings for each n.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

46 3 Kernel-Induced Feature Spaces

3.4 Working in Feature Space

Since the embedding given by the feature mapping

x = (xi,. . . , xn) i—> <j>(x) = (^i(x),... , <t>j(x),. -.)

is non-linear and hence in general defines an n dimensional sub-manifold of the
feature space, linear combinations of images often do not correspond to images
of any input point. Nevertheless, we are able to represent such points using
the dual representation, and provided we are only concerned with distances and
inner products the kernel can be used without computing an explicit feature
vector. In this section, we briefly review how such calculations can be performed.
Let <f>{X) be the image of the input space under the feature mapping, and define
F = co (<j)(X)) to be the space of all finite linear combinations of points from
4>(X). We represent a generic point

in F, by a sequence of pairs

P=(aI-,xI-)f=i.

Consider a second such point Q = (j8|,Zi).=1. The sum and difference of two
such points are defined by taking the union of the set of points and adding or
subtracting corresponding coefficients. For example if x*, i = 1,... , / , are a set
of positive examples, and z,-, i — 1,... , s, a set of negative examples, then the
weight vector of the hyperplane oriented from the centre of mass of the negative
points towards the centre of mass of the positives is given by

The inner product with a second point Q = (fib Zj)f=1 is given by

Note that this corresponds exactly to the inner product (/ • g)^ of the two
functions

f(x) = Y/^iK(xhx) and g(x) = JT
i = l i = l

in the corresponding RKHS 2tf. Hence, we can also view the sequences of
pairs as representing functions in the RKHS with the inner product giving the
corresponding RKHS inner product.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.4 Working in Feature Space 47

For a point x e X the norm squared of the feature vector is K(x,x). Note
that for Gaussian kernels, this is equal to 1 for all inputs, showing that the input
space is embedded onto the surface of the unit ball in this case. Similarly, the
square of the distance between P and Q can be computed as

\\P-Q\\2
F = (P-Q-P-Q)F

Uj Ui hi

As an example of how distances can be computed, the conditions that P must
satisfy to be at the centre of the smallest sphere containing the images (l,x,-) of
the points x,-, i= 1,... , / , are

P = (oci,XiYi=u where

i(XjK(Xi,Xj) -f max K(xk,xk) — 2 > aiK(xi9xk) ,

since the squared distance from P to (l,Xfc) is

(P-(lxk)-P-(l,xk))F =

-2]T <*iK(xu xk)

and the first term on the right hand side is independent of k.
Following this type of approach it is also possible to perform principal

components analysis in feature space using dual representations of the feature
vectors.

Remark 3.16 There is an interesting view of the feature space, not necessary for
the main development of the book, that sheds light on the structure of the image
manifold of the input space. The distances we have considered above are all
distances in the full feature space, which is potentially very high dimensional.
The image <j*{X) of the input space is a possibly contorted submanifold whose
dimension is that of the input space. It is also possible to analyse distances
within this image. The measurement of distance along the surface requires
the use of a Riemannian metric defined by an appropriate tensor. Differential
geometry studies the metric induced on a space by such a tensor. Metric tensors
are symmetric and positive definite. Choosing a kernel induces a corresponding
tensor g, which can be determined by computing the first three terms of a Taylor
series for the squared distance between two points x and z as a function of the
point x = z-\-dx on the surface. Since the first two terms are zero we obtain the

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

48 3 Kernel-Induced Feature Spaces

bilinear form or quadratic term

ds2 = ((l,x)-(l,z)-(l,x)-(l,z))F

= K(x,x)-2K(x,z)+K(z,z)

^ ^ v v fd2K{x,z)

£ r £ r V 8xidxJ A=I t r ^

giving the tensor g components

x) d2K(x,z)

Hence, the Riemannian metric tensor can also be computed from the kernel
function and may give additional insight into the structure of the feature space
and the sub-manifold corresponding to the image of the input space.

3.5 Kernels and Gaussian Processes

If we consider the output of a function /(x), for fixed x e X, as / is chosen
according to some distribution Q) defined over a class of real-valued functions
J*\ we may view the output value as a random variable, and hence

{/(x) : x 6 l }

as a collection of potentially correlated random variables. Such a collection is
known as a stochastic process. The distribution over the function class 3F can
be regarded as our prior belief in the likelihood that the different functions will
provide the solution to our learning problem. Such a prior is characteristic of
a Bayesian perspective on learning. We will return to discuss this approach
further in the next chapter and in Chapter 6 discuss how to make predictions
using Gaussian processes. At this point we wish to highlight the connection
between a particular form of prior commonly used in Bayesian learning and
the kernel functions we have introduced for Support Vector Machines. Many
of the computations required by a Bayesian analysis are greatly simplified if the
prior distributions are assumed to be Gaussian distributions. For a finite set of
variables S = (xi,... ,x^), a Gaussian distribution (with zero mean) is specified
by a symmetric positive definite covariance matrix Z = E(xi,... ,x^) with the
corresponding distribution given by

Pf~* [(/(xi),... ,/(x,)) = (yi,... ,y,)] oc exp (- i y ' ^

A Gaussian process is a stochastic process for which the marginal distribution for
any finite set of variables is zero mean Gaussian. The (i,j) entry of £ measures the

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.6 Exercises 49

correlation between /(x,-) and /(x7), that is the expectation £ /^ [/ (x ;) / (x ;)] , and
hence depends only on x,- and x7. There therefore exists a symmetric covariance
function K(x,z) such that E(xi , . . . ,x/) i ; = X(x,,x;). The requirement that the
covariance matrix is positive definite for all finite sets of input points is precisely
the defining property of a Mercer kernel given in Remark 3.7, and hence we
see that defining a Gaussian process over a set of variables indexed by a space
X is equivalent to defining a Mercer kernel on X x X. The definition of a
Gaussian process by specifying the covariance function avoids explicit definition
of the function class #", and the prior over the functions in <F. Hence, in
much the same way that the feature space is defined implicitly by the kernel in
Support Vector Machines, the function class and prior are defined implicitly by
the Gaussian process covariance function. It is possible to define a function class
and prior for which the kernel is the corresponding covariance function in much
the same way that the feature space can be explicitly computed for a kernel.
Indeed one choice of function space is the class of linear functions in the space
F of Mercer features

X = (X 1 , . . . , X B) ^ - ^ (X) = (0 1 (X) , . . . ,^ . (X) , . . .) ,

in the \i space defined by the weighted inner product given by
00

7=0

The prior distribution Q) over the weight vector \j/ is chosen to be an independent
zero mean Gaussian in each coordinate with variance in coordinate i equal to
yfXi. With this prior we can compute the correlation C(x,z) between the outputs
of two inputs x and z, as follows:

C(x,z) = E^

= f

i=o 7=0
00 00

i=0 ;=0
oo

f=0

as promised.

3.6 Exercises

1. Working in feature space, find the centre of mass and the mean of the
squared distances of the points from it.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

50 3 Kernel-Induced Feature Spaces

2. Let K(x,z) = exp(- ||x - z||2 /a2) be the Gaussian kernel of Remark 3.14,
which can be applied in any Euclidean or I2 space. Now consider any
kernel Ki(x,z) over X x X for an input space X. Show how you can
compute a Gaussian kernel of the features defined implicitly by K{ and
hence use it as a kernel over X x X.

3. Consider Example 3.15. Using the same feature space construct a kernel
for the feature map for which <j)u(s) counts the number of occurrences of
u as a substring of s.

3.7 Further Reading and Advanced Topics

The use of Mercer's theorem for interpreting kernels as inner products in a
feature space was introduced into machine learning in 1964 by the work of
Aizermann, Bravermann and Rozoener on the method of potential functions [1],
but its possibilities were not fully understood until it was first used in the article
by Boser, Guyon and Vapnik that introduced the Support Vector method [19].

The theory of kernels is, however, older: Mercer's theorem dates back to 1909
[95], and the study of reproducing kernel Hilbert spaces was developed by Aron-
szajn in the 1940s [7]. This theory was used in approximation and regularisation
theory, see for example the book of Wahba [171] and her 1999 survey [172]. The
first use of polynomial kernels was by Poggio in 1975 [115]. Reproducing kernels
were extensively used in machine learning and neural networks by Poggio and
Girosi, see for example their 1990 paper on radial basis function networks [116].

The theory of positive definite functions was also developed in the context
of covariance and correlation functions, so that work in Gaussian processes
is closely related [180]. In fact that literature builds on the older results in
[172]. Saitoh [123] shows the connection between positivity and the positive
semi-definiteness of all finite set kernel matrices mentioned in Remark 3.7.

Techniques for 'making kernels' can be found in many papers, for example
by Micchelli [97], MacKay [81], Evgeniou et al. [39], Scholkopf et al. [136],
Haussler [58], and Watkins [174]. The discussion about RKHSs draws on the
paper of Haussler [58], while Example 3.15 is based on Watkins's paper [176].
The one dimensional shift invariant kernels of Example 3.9 is taken from Girosi
[51]. The differential geometric description of the feature space has been provided
by Burges [132], along with some necessary conditions for a kernel to satisfy
Mercer's theorem.

Building on an observation of Scholkopf [129], Watkins [175] and Haussler
[58] have greatly extended the use of kernels, showing that they can in fact be
defined on general sets, which do not need to be Euclidean spaces, paving the
way for their use in a swathe of new real-world applications, on input spaces as
diverse as biological sequences, text, and images. These kernels generalise the
idea of recursive AN OVA kernels described in Vapnik [159].

Joachims [67] and Dumais et al. [36] used sparse vectors to encode text
features. Jaakkola and Haussler proposed to use a hidden Markov model in

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

3.7 Further Reading and Advanced Topics 51

order to evaluate a kernel between biosequences [65], where the feature vector
is the Fisher score of the distribution. This is described in more detail in
Subsection 8.4.1. Watkins proposed to use probabilistic context free grammars
to build kernels between sequences [174]. Also Haussler proposed the use of
special kernels for biosequences [58].

An interesting direction of research is to learn the kernel directly from the
data. The papers of Jaakkola [65] and Cristianini et al. [31] deal with this
issue. An interesting paper by Amari and Wu [3] describes a method for directly
acting on the kernel in order to affect the geometry in the input space, so that
the separability of the data is improved.

The use of kernels as a general technique for using linear machines in a
non-linear fashion can be exported to other learning systems, such as nearest
neighbour (using the techniques of Section 3.4) or less trivially to PCA as
demonstrated by Scholkopf, Smola and Mueller [134]. A technique that uses a
specific kernel in order to deal with noisy and non-separable data was introduced
by Shawe-Taylor and Cristianini, and will be described in Chapter 6 (see also
[140]).

These references are also given on the website www.support-vector.net, which
will be kept up to date with new work, pointers to software and papers that are
available on-line.

https://doi.org/10.1017/CBO9780511801389.005 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511801389.005

