
4
Tensor Decompositions

Applications

Many exciting problems fit into the following paradigm: First, we choose some
parametric family of distributions that are rich enough to model things like
evolution, writing, and the formation of social networks. Second, we design
algorithms for learning the unknown parameters — which you should think
of as a proxy for finding hidden structure in our data, like a tree of life
that explains how species evolved from each other, the topics that underly a
collection of documents, or the communities of strongly connected individuals
in a social network. In this chapter, all of our algorithms will be based on
tensor decomposition. We will construct a tensor from the moments of our
distribution and apply Jennrich’s algorithm to find the hidden factors, which in
turn will reveal the unknown parameters of our model.

4.1 Phylogenetic Trees and HMMs

Our first application of tensor decomposition is to learning phylogenetic trees.
Before we go into the details of the model, it is helpful to understand the
motivation. A central problem in evolutionary biology is piecing together
the tree of life, which describes how species evolved from each other. More
precisely, it is a binary tree whose leaves represent extant species (i.e., species
that are currently living) and whose internal nodes represent extinct species.
When an internal node has two children, it represents a speciation event, where
two populations split off into separate species.

We will work with a stochastic model defined on this tree where each edge
introduces its own randomness that represents mutation. More precisely, our
model has the following components:

48

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.1 Phylogenetic Trees and HMMs 49

(a) A rooted binary tree with root r (the leaves do not necessarily have the
same depth).

(b) A set � of states, for example � = {A, C, G, T}. Let k = |�|.
(c) A Markov model on the tree; i.e., a distribution πr on the state of the root

and a transition matrix Puv for each edge (u, v).

We can generate a sample from the model as follows: We choose a state for the
root according to πr, and for each node v with parent u we choose the state of
v according to the distribution defined by the ith row of Puv, where i is the state
of u. Alternatively, we can think of s(·) : V → � as a random function that
assigns states to vertices where the marginal distribution on s(r) is πr and

Puv
ij = P(s(v) = j|s(u) = i).

Note that s(v) is independent of s(t) conditioned on s(u) whenever the (unique)
shortest path from v to t in the tree passes through u.

In this section, our main goal is to learn the rooted tree and the transition
matrices when given enough samples from the model. Now is a good time
to connect this back to biology. What does a sample from this model
represent? If we have sequenced each of the extant species and, moreover,
these sequences have already been properly aligned, we can think of the ith

symbol in each of these sequences as being represented by the configuration
of the states of the leaves in a sample from the above model. Of course this
is an oversimplification of the biological problem, but it still captures many
interesting phenomena.

There are really two separate tasks: (a) learning the topology and (b) esti-
mating the transition matrices. Our approach for finding the topology will
follow the foundational work of Steel [133] and Erdos, Steel, Szekely, and
Warnow [69]. Once we know the topology, we can apply tensor decomposi-
tions to find the transition matrices following the approach of Chang [47] and
Mossel and Roch [115].

Learning the Topology

Here we will focus on the problem of learning the topology of the tree.
The amazing idea credited to Steel [133] is that there is a way to define
an evolutionary distance. What is important about this distance is that it
(a) assigns a nonnegative value to every edge in the tree and (b) can be
evaluated for any pair of nodes given just their joint distribution. So what
magical function has these properties? First, for any pair of nodes a and b,
let Fab be a k × k matrix that represents their joint distribution:

Fab
ij = P(s(a) = i, s(b) = j).

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

50 4 Tensor Decompositions

Definition 4.1.1 Steel’s evolutionary distance on an edge (u, v) is

νuv = − ln |det(Puv)| + 1

2
ln

⎛⎝∏
i∈[k]

πu(i)

⎞⎠− 1

2
ln

⎛⎝∏
i∈[k]

πv(i)

⎞⎠ .

Steel [133] proved two fundamental properties of this distance function,
captured in the following lemma:

Lemma 4.1.2 Steel’s evolutionary distance satisfies:

(a) νuv is nonnegative and
(b) for any pair of nodes a and b, we have

ψab := − ln |det(Fab)| =
∑

(u,v)∈pab

νuv

where pab is the shortest path connecting a and b in the tree.

What makes this distance so useful for our purposes is that for any pair
of leaves a and b, we can estimate Fab from our samples, and hence we
can (approximately) compute ψab on the leaves. So from now on, we can
imagine that there is some nonnegative function on the edges of the tree and
that we have an oracle for computing the sum of the distances along the path
connecting any two leaves.

Reconstructing Quartets
Now we will use Steel’s evolutionary distance to compute the topology by
piecing together the picture four nodes at a time.

Our goal is to determine which of these induced topologies is the true
topology, given the pairwise distances.

Lemma 4.1.3 If all distances in the tree are strictly positive, then it is possible
to determine the induced topology on any four nodes a, b, c, and d given an
oracle that can compute the distance between any pair of them.

Proof: The proof is by case analysis. Consider the three possible induced
topologies between the nodes a, b, c, and d, as depicted in Figure 4.1. Here
by induced topology, we mean delete edges not on any shortest path between
any pair of the four leaves and contract paths to a single edge if possible.

It is easy to check that under topology (a) we have

ψ(a, b)+ ψ(c, d) < min {ψ(a, c)+ ψ(b, c), ψ(a, d)+ ψ(b, d)} .

But under topology (b) or (c) this inequality would not hold. There is an
analogous way to identify each of the other topologies, again based on the

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.1 Phylogenetic Trees and HMMs 51

a

b d

c

(a)

c d

a b

(b)

d c

a b

(c)

Figure 4.1: Possible quartet topologies

pairwise distances. What this means is that we can simply compute three
values: ψ(a, b)+ψ(c, d), ψ(a, c)+ψ(b, c), and ψ(a, d)+ψ(b, d). Whichever
is the smallest determines the induced topology as being (a), (b), or (c),
respectively. �

Indeed, from just these quartet tests, we can recover the topology of the tree.

Lemma 4.1.4 If for any quadruple of leaves a, b, c, and d we can determine
the induced topology, it is possible to determine the topology of the tree.

Proof: The approach is to first determine which pairs of leaves have the same
parent, and then determine which pairs have the same grandparent, and so on.
First, fix a pair of leaves a and b. It is easy to see that they have the same parent
if and only if for every other choice of leaves c and d, the quartet test returns
topology (a). Now, if we want to determine whether a pair of leaves a and b
have the same grandparent, we can modify the approach as follows: They have
the same grandparent if and only if for every other choice of leaves c and d,
neither of which is a sibling of a or b, the quartet test returns topology (a).
Essentially, we are building up the tree by finding the closest pairs first. �

An important technical point is that we can only approximate Fab from our
samples. This translates into a good approximation of ψab when a and b are
close, but is noisy when a and b are far away. Ultimately, the approach in [69]
of Erdos, Steel, Szekely, and Warnow is to use quartet tests only where all the
distances are short.

Estimating the Transition Matrices

Now we will assume that we know the topology of the tree and set our
sights on estimating the transition matrices. Our approach is to use tensor
decompositions. To that end, for any triple of leaves a, b, and c, let Tabc be
the k × k × k tensor, defined as follows:

Tabc
ijk = P(s(a) = i, s(b) = j, s(c) = k).

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

52 4 Tensor Decompositions

These are third-order moments of our distribution that we can estimate from
samples. We will assume throughout this section that the transition matrices
are full rank. This means that we can reroot the tree arbitrarily. Now consider
the unique node that lies on all of the shortest paths among a, b, and c. Let’s
let this be the root. Then

Tabc =
∑

�

P(s(r) = �)P(s(a) = ·|s(r) = �)⊗ P(s(b) = ·|s(r) = �)

⊗ P(s(c) = ·|s(r) = �)

=
∑

�

P(s(r) = �)Pra
� ⊗ Prb

� ⊗ Prc
�

where we have used Prx
� to denote the �th row of the transition matrix Prx.

We can now apply the algorithm in Section 3.3 to compute a tensor
decomposition of T whose factors are unique up to rescaling. Furthermore,
the factors are probability distributions and hence we can compute their proper
normalization. We will call this procedure a star test. (Indeed, the algorithm
for tensor decompositions in Section 3.3 has been rediscovered many times,
and it is also called Chang’s lemma [47].)

In [115], Mossel and Roch used this approach to find the transition matrices
of a phylogenetic tree given the tree topology, as follows. Let us assume that u
and v are internal nodes and that w is a leaf. Furthermore, suppose that v lies
on the shortest path between u and w. The basic idea is to write

Puw = PuvPvw

and if we can find Puw and Pvw (using the star tests above), then we can
compute Puv = Puw(Pvw)−1 since we have assumed that the transition matrices
are invertible.

However, there are two serious complications:

(a) As in the case of finding the topology, long paths are very noisy.

Mossel and Roch showed that one can recover the transition matrices also
using only queries to short paths.

(b) We can only recover the tensor decomposition up to relabeling.

In the above star test, we could apply any permutation to the states of r and
permute the rows of the transition matrices Pra, Prb, and Prc accordingly so
that the resulting joint distribution on a, b, and c is unchanged.

However, the approach of Mossel and Roch is to work instead in the
probably approximately correct learning framework of Valiant [138], where

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.1 Phylogenetic Trees and HMMs 53

the goal is to learn a generative model that produces almost the same joint
distribution on the leaves. In particular, if there are multiple ways to label the
internal nodes to produce the same joint distribution on the leaves, we are
indifferent to them.

Remark 4.1.5 Hidden Markov models are a special case of phylogenetic trees,
where the underlying topology is a caterpillar. But note that for the above
algorithm, we need that the transition matrices and the observation matrices
are full rank.

More precisely, we require that the transition matrices are invertible and
that the observation matrices, with the convention that the rows are indexed by
the states of the corresponding hidden node and whose columns are indexed
by the output symbols each have full row rank.

Beyond Full Rank?

The algorithm above assumes that all transition matrices are full rank. In fact,
if we remove this assumption, then it is easy to embed an instance of the noisy
parity problem [37], which is a classic hard learning problem. Let us first define
this problem without noise:

Let S ⊂ [n], and choose X(j) ∈ {0, 1}n independently and uniformly at
random for j = 1, . . . , m. Given X(j) and b(j) = χS(X(j)) :=∑i∈S X(j)

i mod 2
for each j, the goal is to recover S.

This is quite easy: Let A be the matrix whose jth row is X(j) and let b be a
column vector whose jth entry is b(j). It is straightforward to see that 1S is a
solution to the linear system Ax = b where 1S is the indicator function for S.
Furthermore, if we choose �(n log n) samples, then A is with high probability
full column rank, and so this solution is unique. We can then find S by solving
a linear system over GF(2).

Yet a slight change in the above problem does not change the sample com-
plexity, but makes the problem drastically harder. The noisy parity problem
is the same as above, but for each j we are independently given the value
b(j) = χS(X(j)) with probability 2/3 and otherwise b(j) = 1 − χS(Xj). The
challenge is that we do not know which labels have been flipped.

Claim 4.1.6 There is an exponential time algorithm that solves the noisy parity
problem using m = O(n log n) samples.

Proof: For each T , calculate the fraction of samples where χT agrees with the
observed label — i.e.,

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

54 4 Tensor Decompositions

1

m

m∑
j=1

1χT (X(j))=b(j).

From standard concentration bounds, it follows that with high probability this
value is larger than (say) 3/5 if and only if S = T . �

The best-known algorithm due to Blum, Kalai, and Wasserman [37] has
running time and sample complexity 2n/ log n. It is widely believed that there
is no polynomial time algorithm for noisy parity even given any polynomial
number of samples. This is an excellent example of a problem whose sample
complexity and computational complexity are (conjectured to be) wildly
different.

Next we show how to embed samples from a noisy parity problem into an
HMM; however, to do so, we will make use of transition matrices that are not
full rank. Consider an HMM that has n hidden nodes, where the ith hidden node
encoded is used to represent the ith coordinate of X, and the running parity

χSi(X) :=
∑

i′≤i,i′∈S

X(i′) mod 2.

Hence each node has four possible states. We can define the following
transition matrices. Let s(i) = (xi, si) be the state of the ith internal node, where
si = χSi(X).

We can define the following transition matrices:

if i+ 1 ∈ S Pi,i+1 =

⎧⎪⎪⎨⎪⎪⎩
1
2 (0, si)

1
2 (1, si + 1 mod 2)

0 otherwise

if i+ 1 /∈ S Pi,i+1 =

⎧⎪⎪⎨⎪⎪⎩
1
2 (0, si)

1
2 (1, si)

0 otherwise

.

At each internal node we observe xi, and at the last node we also observe
χS(X) with probability 2/3 and otherwise 1 − χS(X). Each sample from the
noisy parity problem is a set of observations from this HMM, and if we could
learn its transition matrices, we would necessarily learn S and solve the noisy
parity problem.

Note that here the observation matrices are certainly not full rank, because
we only observe two possible emissions even though each internal node has
four possible states! Hence these problems become much harder when the
transition (or observation) matrices are not full rank!

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.2 Community Detection 55

4.2 Community Detection

Here we give applications of tensor methods to community detection. There
are many settings in which we would like to discover communities — that
is, groups of strongly connected individuals. Here we will focus on graph
theoretic approaches, where we will think of a community as a set of nodes
that are better connected to each other than to nodes outside of the set. There
are many ways we could formalize this notion, each of which would lead to a
different optimization problem, e.g., sparsest cut or k-densest subgaph.

However, each of these optimization problems is NP-hard and, even worse,
is hard to approximate. Instead, we will formulate our problem in an average-
case model where there is an underlying community structure that is used to
generate a random graph, and our goal is to recover the true communities from
the graph with high probability.

Stochastic Block Model

Here we introduce the stochastic block model, which is used to generate a
random graph on V with |V| = n. Additionally, the model is specified by
parameters p and q and a partitioning specified by a function π :

• π : V → [k] partitions the vertices V into k disjoint groups (we will relax
this condition later).

• Each possible edge (u, v) is chosen independently with

P[(u, v) ∈ E] =
{

q π(u) = π(v)

p otherwise
.

In our setting we will set q > p, which is called the assortative case, but this
model also makes sense when q < p, which is called the disassortative case.
For example, when q = 0, we are generating a random graph that has a planted
k-coloring. Regardless, we observe a random graph generated from the above
model and our goal is to recover the partition described by π .

When is this information theoretically possible? In fact, even for k = 2,
where π is a bisection, we need

q− p > �
(√ log n

n

)
in order for the true bisection to be the uniquely smallest cut that bisects the
random graph G with high probability. If q − p is smaller, then it is not even
information theoretically possible to find π . Indeed, we should also require

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

56 4 Tensor Decompositions

that each part of the partition is large, and for simplicity we will assume that
k = O(1) and |{u|π(u) = i}| = �(n).

There has been a long line of work on partitioning random graphs in the
stochastic block model, culminating in the work of McSherry [109]:

Theorem 4.2.1 [109] There is an efficient algorithm that recovers π (up to
relabeling) if

q− p

q
> c

√
log n/δ

qn

and succeeds with probability at least 1− δ.

This algorithm is based on spectral clustering, where we think of the observed
adjacency matrix as the sum of a rank k matrix that encodes π and an error
term. If the error is small, then we can recover something close to the true rank
k matrix by finding the best rank k approximation to the adjacency matrix. For
full details, see [109].

We will instead follow the approach in Anandkumar et al. [9] that makes
use of tensor decompositions. In fact, their algorithm also works in the mixed
membership model, where we allow each node to be a distribution over [k].
Then, if πu and πv are the probability distributions for u and v, the probability
of an edge (u, v) is

∑
i π

u
i πv

i q+∑i �=j π
u
i πv

j p. We can interpret this probability
as: u and v choose a community according to πu and πv, respectively, and
if they choose the same community, there is an edge with probability q, and
otherwise there is an edge with probability p.

Counting Three Stars

What’s really going on when we use tensor decompositions is that we are
finding conditionally independent random variables. That’s what we did when
we used them for learning the transition matrices of a phylogenetic tree. There,
the states of a, b, and c were independent once we conditioned on the state of
the unique node r where the shortest paths between them met. We will do
something similar here.

If we have four nodes a, b, c, and x and we condition on which community
x belongs to, then whether or not (a, x), (b, x), and (c, x) are edges in our
graph they are are all independent random variables. When all three edges
are present, this is called a three star. We will set up a tensor that counts three
stars as follows. First we partition V into four sets X, A, B, and C. Now let
� ∈ {0, 1}V×k represent the (unknown) assignment of nodes to communities,

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.2 Community Detection 57

so that each row of � contains exactly one 1. Finally, let R be the k× k matrix
whose entries are the connection probabilities. In particular,

(R)ij =
{

q i = j

p i �= j
.

Consider the product �R. The ith column of �R encodes the probability
that there is an edge from a node in community i to the node corresponding to
the given row.

(�R)xi = Pr[(x, a) ∈ E|π(a) = i].

We will use (�R)A
i to denote the matrix �R restricted to the ith column and

the rows in A, and similarly for B and C. Moreover, let pi be the fraction of
nodes in X that are in community i. Then our algorithm revolves around the
following tensor:

T =
∑

i

pi(�R)A
i ⊗ (�R)B

i ⊗ (�R)C
i .

The key claim is:

Claim 4.2.2 Let a ∈ A, b ∈ B and c ∈ C, then

Ta,b,c = P[(x, a), (x, b), (x, c) ∈ E]

where the randomness is over x chosen uniformly at random from X and the
edges included in G.

This is immediate from the discussion above. With this tensor in hand, the key
things we need to prove are:

(a) The factors {(�R)A
i }i, {(�R)B

i }i, and {(�R)B
i }i are linearly independent.

(b) We can recover the partition π from {(�R)A
i }i up to relabeling which

community is which.

We will ignore the problem of estimating T accurately, but roughly this
amounts to choosing X to be much larger than A, B, or C and applying the
appropriate concentration bounds. In any case, let’s now figure out why the
hidden factors are linearly independent.

Lemma 4.2.3 If A, B, and C have at least one node from each community, then
the factors {(�R)A

i }i, {(�R)B
i }i, and {(�R)B

i }i are each linearly independent.

Proof: First, it is easy to see that R is full rank. Now, if A has at least one node
from each community, each row of R appears in (�R)A, which means that it
has full column rank. An identical argument works for B and C too. �

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

58 4 Tensor Decompositions

Actually, we need the factors to be not just full rank, but also well
conditioned. The same type of argument as in the previous lemma shows that
as long as each community is well represented in A, B, and C (which happens
with high probability if A, B, and C are large enough and chosen at random),
then the factors {(�R)A

i }i, {(�R)B
i }i, and {(�R)B

i }i will be well conditioned.
Now let’s recover the community structure from the hidden factors: First, if

we have {(�R)A
i }i, then we can partition A into communities just by grouping

together nodes whose corresponding rows are the same. In turn, if A is large
enough, then we can extend this partitioning to the whole graph: We add a node
x /∈ A to community i if and only if the fraction of nodes a ∈ A with π(a) = i
that x is connected to is close to q. If A is large enough and we have recovered
its community structure correctly, then with high probability this procedure
will recover the true communities in the entire graph.

For a full analysis of the algorithm, including its sample complexity
and accuracy, see [9]. Anandkumar et al. also give an algorithm for mixed
membership models, where each πu is chosen from a Dirichlet distribution.
We will not cover this latter extension, because we will instead explain those
types of techniques in the setting of topic models next.

Discussion

We note that there are powerful extensions to the stochastic block model
that are called semirandom models. Roughly, these models allow a monotone
adversary to add edges between nodes in the same cluster and delete edges
between clusters after G is generated. It sounds like the adversary is only
making your life easier by strengthening ties within a community and breaking
ties across them. If the true community structure is the partition of G into
k parts that cuts the fewest edges, then this is only more true after the
changes. Interestingly, many tensor and spectral algorithms break down in the
semirandom model, but there are elegant techniques for recovering π even
in this more general setting (see [71], [72]). This is some food for thought
and begs the question: How much are we exploiting brittle properties of our
stochastic model?

4.3 Extensions to Mixed Models

Many of the models we have studied so far can be generalized to so-called
mixed membership models. For example, instead of a document being about
just one topic, we can model it as a mixture of topics. And instead of an

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.3 Extensions to Mixed Models 59

individual belonging to just one community, we can model her as belonging
to a mixture of communities. Here we will leverage tensor decompositions in
mixed membership settings.

Pure Topic Model

As a warm-up, let’s first see how tensor decompositions can be used to discover
the topics of a pure topic model where every document is about just one topic.
Our approach will follow that of Anandkumar et al. [10]. Recall that in a pure
topic model, there is an unknown m × r topic matrix A and each document is
generated according to the following stochastic process:

(a) Choose topic i for document j with probability pi.
(b) Choose Nj words according to the distribution Ai.

In Section 2.4 we constructed the Gram matrix, which represents the joint
distribution of pairs of words. Here we will use the joint distribution of triples
of words. Let w1, w2, and w3 denote the random variables for its first, second,
and third words, respectively.

Definition 4.3.1 Let T denote the m× m× m tensor where

Ta,b,c = P[w1 = a, w2 = b, w3 = c].

We can express T in terms of the unknown topic matrix as follows:

T =
r∑

i=1

piAi ⊗ Ai ⊗ Ai

So how can we recover the topic matrix given samples from a pure topic
model? We can construct an estimated T̃ where T̃a,b,c counts the fraction of
documents in our sample whose first word, second word and third word, are
a, b, and c, respectively. If the number of documents is large enough, then T̃
converges to T .

Now we can apply Jennrich’s algorithm. Provided that A has full column
rank, we will recover the true factors in the decomposition up to a rescaling.
However, since each column in A is a distribution, we can properly normalize
whatever hidden factors we find and compute the values of pi too. To really
make this work, we need to analyze how many documents we need in order
for T̃ to be close to T , and then apply the results in Section 3.4, where we
analyzed the noise tolerance of Jennrich’s algorithm. The important point is
that the columns of our estimated Ã converge to columns of A at an inverse

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

60 4 Tensor Decompositions

polynomial rate with the number of samples we are given, where the rate of
convergence depends on things like how well conditioned the columns of A are.

Latent Dirichlet Allocation

Now let’s move on to mixed membership models. What has driven all the
applications of tensor decomposition we’ve seen so far have been conditionally
independent random variables. In the case of pure topic models, the distribu-
tions of the first three words is independent when we condition on the topic
that is being used to generate the document. However, in mixed models it will
not be so simple. The way we construct a low-rank third-order tensor from the
data that we have available to us will combine lower-order statistics in more
complicated ways.

We will study the latent Dirichlet allocation model, which was introduced
in the seminal work of Blei et al. [36]. Let � := {x ∈ R

r : x ≥ 0,
∑

i xi = 1}
denote the r-dimensional simplex. Then each document is generated according
to the following stochastic process:

(a) Choose a mixture over topics wj ∈ � for document j according to the
Dirichlet distribution Dir({αi}i).

(b) Repeat Nj times: choose a topic i from wj, and choose a word according
to the distribution Ai.

And the Dirichlet distribution is defined as

p(x) ∝
∏

i

xαi−1
i for x ∈ �.

This model is already more realistic in the following way. When documents
are long (say Nj > m log m), then in a pure topic model, pairs of documents
would necessarily have nearly identical empirical distributions on words. But
this is no longer the case in mixed models like the one above.

The basic issue in extending our tensor decomposition approach for learning
pure topic models to mixed models is that the third-order tensor that counts the
joint distribution of triples of words now satisfies the following expression:

T =
∑
ijk

DijkAi ⊗ Aj ⊗ Ak

where Di,j,k is the probability that the first three words in a random document
are generated from topics i, j, and k, respectively. In a pure topic model, Di,j,k

is diagonal, but for a mixed model it is not!

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.3 Extensions to Mixed Models 61

Definition 4.3.2 A Tucker decomposition of T is

T =
∑
i,j,k

Di,j,kai ⊗ bj ⊗ ck

where D is r1 × r2 × r3. We call D the core tensor.

It turns out that you can compute a Tucker decomposition where r1, r2, and
r3 are as small as possible (they turn out to be the dimensions of the span
of the columns, rows, and tubes, respectively). However, a minimal Tucker
decomposition, is usually not unique, so even if we are given T and we
compute a minimal Tucker decomposition we have no guarantee that its factors
are the hidden topics in the topic model. We will need to find another way,
which amounts to constructing a low-rank third-order tensor out of T and
lower-order moments we have access to as well.

So how can we extend the tensor decomposition approach to work for latent
Dirichlet allocation models? The elegant approach of Anandkumar et al. [8] is
based on the following idea:

Lemma 4.3.3

T =
∑
ijk

DijkAi ⊗ Aj ⊗ Ak

S =
∑
ijk

D̃ijkAi ⊗ Aj ⊗ Ak

�⇒ T − S =
∑
ijk

(Dijk − D̃ijk)Ai ⊗ Aj ⊗ Ak

Proof: The proof is a simple exercise in multilinear algebra. �

Hence, if we have access to other tensors S that can be written using the
same factors {Ai}i in their Tucker decompositions, we can subtract T and S and
hope to make the core tensor diagonal. We can think of D as being the third-
order moment of a Dirichlet distribution in our setting. What other tensors do
we have access to?

Other Tensors

We described the tensor T based on the following experiment: Let Ta,b,c be
the probability that the first three words in a random document are a, b, and
c, respectively. But we could just as well consider alternative experiments.
The two other experiments we will need in order to given a tensor spectral
algorithm for LDA are:

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

62 4 Tensor Decompositions

(a) Choose three documents at random, and look at the first word of each
document.

(b) Choose two documents at random, and look at the first two words of the
first document and the first word of the second document.

These two new experiments combined with the old experiment result in three
tensors whose Tucker decompositions use the same factors but whose core
tensors differ.

Definition 4.3.4 Let μ, M, and D be the first-, second-, and third-order
moments of the Dirichlet distribution.

More precisely, let μi be the probability that the first word in a random
document is generated from topic i. Let Mi,j be the probability that the first
and second words in a random document are generated from topics i and j,
respectively. And as before, let Di,j,k be the probability that the first three words
in a random document are generated from topics i, j, and k, respectively. Then
let T1, T2, and T3 be the expectations of the first (choose three documents),
second (choose two documents), and third (choose one document) experiment,
respectively.

Lemma 4.3.5 (a) T1 =∑i,j,k[μ⊗ μ⊗ μ]i,j,kAi ⊗ Aj ⊗ Ak

(b) T2 =∑i,j,k[M ⊗ μ]i,j,kAi ⊗ Aj ⊗ Ak

(c) T3 =∑i,j,k Di,j,kAi ⊗ Aj ⊗ Ak

Proof: Let w1 denote the first word and let t1 denote the topic of w1 (and
similarly for the other words). We can expand P[w1 = a, w2 = b, w3 = c] as:∑

i,j,k

P[w1 = a, w2 = b, w3 = c|t1 = i, t2 = j, t3 = k]P[t1 = i, t2 = j, t3 = k]

and the lemma is now immediate. �

Note that T2
a,b,c �= T2

a,c,b because two of the words come from the same

document. Nevertheless, we can symmetrize T2 in the natural way: Set S2
a,b,c =

T2
a,b,c + T2

b,c,a + T2
c,a,b. Hence S2

a,b,c = S2
π(a),π(b),π(c) for any permutation

π : {a, b, c} → {a, b, c}.
Our main goal is to prove the following identity:

α2
0D+2(α0+1)(α0+2)μ⊗3−α0(α0+2)M⊗μ(all three ways) = diag({pi}i)

where α0 =
∑

i αi. Hence we have that

α2
0T3 + 2(α0 + 1)(α0 + 2)T1 − α0(α0 + 2)S2 =

∑
i

piAi ⊗ Ai ⊗ Ai.

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.3 Extensions to Mixed Models 63

The important point is that we can estimate the terms on the left-hand side from
our sample (if we assume we know α0) and we can apply Jennrich’s algorithm
to the tensor on the right-hand side to recover the topic model, provided that A
has full column rank. In fact, we can compute α0 from our samples (see [8]),
but we will focus instead on proving the above identity.

Moments of the Dirichlet

The main identity that we would like to establish is just a statement about the
moments of a Dirichlet distribution. In fact, we can think about the Dirichlet
as being defined by the following combinatorial process:

(a) Initially, there are αi balls of each color i.
(b) Repeat C times: choose a ball at random, place it back with one more of

its own color.

This process gives an alternative characterization of the Dirichlet distribution,
from which it is straightforward to calculate:

(a) μ = [α1
α0

, α2
α0

, . . . , αr
α0

]

(b) Mi,j =
⎧⎨⎩

αi(αi+1)
α0(α0+1)

i = j
αiαj

α0(α0+1)
otherwise

(c) Ti,j,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi(αi+1)(αi+2)
α0(α0+1)(α0+2)

i = j = k

αi(αi+1)αk
α0(α0+1)(α0+2)

i = j �= k
αiαjαk

α0(α0+1)(α0+2)
i, j, k distinct

For example, for Ti,i,k this is the probability that the first two balls are color i
and the third ball is color k. The probability that the first ball is color i is αi

α0
,

and since we place it back with one more of its own color, the probability that
the second ball is also color i is αi+1

α0+1 . And the probability that the third ball is
color k is αk

α0+2 . It is easy to check the above formulas in the other cases too.
Note that it is much easier to think about only the numerators in the above

formulas. If we can prove that following relation for just the numerators

D+ 2μ⊗3 −M ⊗ μ(all three ways) = diag({2αi}i)
it is easy to check that we would obtain our desired formula by multiplying
through by α3

0(α0 + 1)(α0 + 2).

Definition 4.3.6 Let R = num(D)+num(2μ⊗3)−num(M⊗μ)(all three ways).

Then the main lemma is:

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

64 4 Tensor Decompositions

Lemma 4.3.7 R = diag({2αi}i)
We will establish this by a case analysis:

Claim 4.3.8 If i, j, k are distinct, then Ri,j,k = 0.

This is immediate, since the i, j, k numerators of D, μ⊗3, and M ⊗ μ are all
αiαjαk.

Claim 4.3.9 Ri,i,i = 2αi

This is also immediate, since the i, i, i numerator of D is αi(αi+ 1)(αi+ 2) and
similarly, the numerator of μ⊗3 is α3

i . Finally, the i, i, i numerator of M ⊗ μ is
α2

i (αi + 1). The case that requires some care is:

Claim 4.3.10 If i �= k, Ri,i,k = 0.

The reason this case is tricky is because the terms M ⊗ μ(all three ways) do
not all count the same. If we think of μ along the third dimension of the tensor,
then the ith topic occurs twice in the same document, but if instead we think
of μ as along either the first or second dimension of the tensor, even though
the ith topic occurs twice, it does not occur twice in the same document. Hence
the numerator of M ⊗ μ(all three ways) is αi(αi + 1)αk + 2α2

i αk. Also, the
numerator of D is αi(αi + 1)αk and the numerator of μ⊗3 is again α2

i αk.
These three claims together establish the above lemma. Even though the

tensor T3 that we could immediately decompose in a pure topic model no
longer has a diagonal core tensor in a mixed model, at least in the case of
LDA we can still find a formula (each of whose terms we can estimate from
our samples) that diagonalizes the core tensor. This yields:

Theorem 4.3.11 [8] There is a polynomial time algorithm to learn a topic
matrix Ã whose columns are ε-close in Euclidean distance to the columns
of A in a latent Dirichlet allocation model, provided we are given at least
poly(m, 1/ε, 1/σr, 1/αmin) documents of length at least three, where m is the
size of the vocabulary and σr is the smallest singular value of A and αmin is the
smallest αi.

Epilogue

The algorithm of Anandkumar et al. [9] for learning mixed membership
stochastic block models follows the same pattern. Once again, the Dirichlet
distribution plays a key role. Instead of each node belonging to just one
community, as in the usual stochastic block model, each node is described

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.4 Independent Component Analysis 65

by a distribution πu over communities where πu is chosen from a Dirichlet
distribution. The main idea is to count three stars and to add and subtract
tensors constructed from lower-order subgraph counts to make the core tensor
in the natural Tucker decomposition diagonal.

It is worth mentioning that these techniques seem specialized to Dirichlet
distributions. As we have seen, conditionally independent random variables
play a key role in tensor decompositions. In mixed membership models,
finding such random variables is challenging. But how far is the Dirichlet
distribution from being independent? Even though the coordinates are not
independent, it turns out that they almost are. You can instead sample from a
Dirichlet distribution by sampling from a beta distribution for each coordinate
independently and then renormalizing the vector so that it is in the r-
dimensional simplex. An interesting conceptual question going forward is: Are
tensor decomposition methods fundamentally limited to settings where there is
some sort of independence?

4.4 Independent Component Analysis

We can think about the tensor methods we have developed as a way to
use higher-order moments to learn the parameters of a distribution (e.g.,
for phylogenetic trees, HMMs, LDA, community detection) through tensor
decomposition. Here we will give another style of using the method of
moments through an application to independent component analysis, which
was introduced by Comon [53].

This problem is simple to define: Suppose we are given samples of the form

y = Ax+ b

where we know that the variables xi are independent and the linear transforma-
tion (A, b) is unknown. The goal is to learn A, b efficiently from a polynomial
number of samples. This problem has a long history, and the typical moti-
vation for it is to consider a hypothetical situation called the cocktail party
problem:

We have n microphones and n conversations going on in a room. Each
microphone hears a superposition of the conversations given by the
corresponding rows of A. If we think of the conversations as independent and
memoryless, can we disentangle them?

Such problems are also often referred to as blind source separation. We will
follow an approach of Frieze, Jerrum, and Kannan [74]. What’s really neat
about their approach is that it uses nonconvex optimization.

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

66 4 Tensor Decompositions

A Canonical Form and Rotational Invariance

Let’s first put our problem into a more convenient canonical form. It turns out
we can assume we are given samples from

y = Ax+ b

but where for all i, E[xi] = 0,E[x2
i] = 1. The idea is that if any variable xi

were not mean zero, we could make it mean zero and add a correction to b.
And similarly, if xi were not variance one, we could rescale both it and the
corresponding column of A to make its variance be one. These changes are
just notational and do not affect the distribution on samples that we observe.
So from here on out, let’s assume that we are given samples in the above
canonical form.

We will give an algorithm based on nonconvex optimization for estimating
A and b. But first let’s discuss what assumptions we will need. We will
make two assumptions: (a) A is nonsingular and (b) every variable satisfies
E[x4

i] �= 3. You should be used to nonsingularity assumptions by now (it’s
what we need every time we use Jennrich’s algorithm). But what about the
second assumption? Where does it come from? It turns out that it is actually
quite natural and is needed to rule out a problematic case.

Claim 4.4.1 If each xi is an independent standard Gaussian, then for any
orthogonal transformation R, x and Rx, and consequently

y = Ax+ b and y = ARx+ b

have identical distributions.

Proof: The standard n-dimensional Gaussian is rotationally invariant. �

What this means is that when our independent random variables are standard
Gaussians, it is information theoretically impossible to distinguish between
A and AR. Actually the n-dimensional Gaussian is the only problematic
case. There are other rotationally invariant distributions, such as the uniform
distribution on S

n−1, but its coordinates are not independent. The standard
n-dimensional Gaussian is the only rotationally invariant distribution whose
coordinates are independent.

In light of this discussion, we can understand where our assumption about
the fourth moments comes from. For a standard Gaussian distribution, its mean
is zero, its variance is one, and its fourth moment is three. So our assumption
on the fourth moment of each xi is just a way to say that it is noticeably
non-Gaussian.

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.4 Independent Component Analysis 67

Whitening

As usual, we cannot hope to learn A from just the second moments. This is
really the same issue that arose when we discussed the rotation problem. In the
case of tensor decompositions, we went directly to the third-order moment to
learn the columns of A through Jennrich’s algorithm. Here we will learn what
we can from the first and second moments, and then move on to the fourth
moment. In particular, we will use the first and second moments to learn b and
to learn A up to a rotation:

Lemma 4.4.2 E[y] = b and E[yyT] = AAT

Proof: The first identity is obvious. For the second, we can compute

E[yyT] = E[AxxTAT] = AE[xxT]AT = AAT

where the last equality follows from the condition that E[xi] = 0 and E[x2
i] = 1

and that each xi is independent. �

What this means is that we can estimate b and M=AAT to arbitrary
precision by taking enough samples. What I claim is that this determines A
up to a rotation. Since M � 0, we can find B such that M = BBT using the
Cholesky factorization. But how are B and A related?

Lemma 4.4.3 There is an orthogonal transformation R so that BR = A.

Proof: Recall that we assumed A is nonsingular, hence M = AAT and B are
also nonsingular. So we can write

BBT = AAT ⇒ B−1AAT(B−1)T = I

which implies that B−1A = R is orthogonal, since whenever a square matrix
times its own transpose is the identity, the matrix is by definition orthogonal.
This completes the proof. �

Now that we have learned A up to an unknown rotation, we can set out to
use higher moments to learn the unknown rotation. First we will apply an affine
transformation to our samples:

z = B−1(y− b) = B−1Ax = Rx

This is called whitening (think white noise), because it makes the first moments
of our distribution zero and the second moments all one (in every direction).
The key to our analysis is the following functional:

F(u) = E[(uTz)4] = E[(uTRx)4]

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

68 4 Tensor Decompositions

We will want to minimize it over the unit sphere. As u ranges over the unit
sphere, so does vT = uTR. Hence our optimization problem is equivalent to
minimizing

H(v) = E[(vTx)4]

over the unit sphere. This is a nonconvex optimization problem. In general, it
is NP-hard to find the minimum or maximum of a nonconvex function. But
it turns out that it is possible to find all local minima and that these are good
enough to learn R.

Lemma 4.4.4 If for all i, E[x4
i] < 3, then the only local minima of H(v) are at

v = ±ei, where ei are the standard basis vectors.

Proof: We can compute

E

[
(vTx)4

]
= E

⎡⎣∑
i

(vixi)
4 + 6

∑
i<j

(vixi)
2(vjxj)

2

⎤⎦
=
∑

i

v4
i E(x4

i)+ 6
∑
i<j

v2
i v2

j + 3
∑

i

v4
i − 3

∑
i

v4
i

=
∑

i

v4
i

(
E

[
x4

i

]
− 3
)
+ 3.

From this expression, it is easy to check that the local minima of H(v)
correspond exactly to setting v = ±ei for some i. �

Recall that vT = uTR, and so this characterization implies that the local
minima of F(u) correspond to setting u to be a column of ±R. The algorithm
proceeds by using gradient descent (and a lower bound on the Hessian) to show
that you can find local minima of F(u) quickly. The intuition is that if you keep
following steep gradients, you decrease the objective value. Eventually, you
must get stuck at a point where the gradients are small, which is an approximate
local minimum. Any such u must be close to some column of ±R, and we can
then recurse on the orthogonal complement to the vector we have found to find
the other columns of R. This idea requires some care to show that the errors
do not accumulate too badly; see [74], [140], [17]. Note that when E[x4

i] �= 3
instead of the stronger assumption that E[x4

i] < 3, we can follow the same
approach, but we need to consider local minima and local maxima of F(u).
Also, Vempala and Xiao [140] gave an algorithm that works under weaker
conditions whenever there is a constant order moment that is different from
that of the standard Gaussian.

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

4.5 Exercises 69

The strange expressions we encountered above are actually called cumu-
lants and are an alternative basis for the moments of a distribution. Sometimes
cumulants are easier to work with, since they satisfy the appealing property
that the k-order cumulant of the sum of independent variables Xi and Xj is the
sum of the k-order cumulants of Xi and Xj. This fact actually gives another
more intuitive way to solve independent component analysis when combined
with Jennrich’s algorithm, but it involves a bit of a digression into higher-
dimensional cumulants. We leave this as an exercise for the reader.

4.5 Exercises

Problem 4-1: Let u � v denote the Khatri-Rao product between two vectors,
where if u ∈ R

m and v ∈ R
n, then u � v ∈ R

mn and corresponds to flattening
the matrix uvT into a vector, column by column. Also recall that the Kruskal
rank k-rank of a collection of vectors u1, u2, . . . , um ∈ R

n is the largest k such
that every set of k vectors is linearly independent.

In this problem, we will explore properties of the Khatri-Rao product and
use it to design algorithms for decomposing higher-order tensors.

(a) Let ku and kv be the k-rank of u1, u2, . . . , um and v1, v2, . . . , vm,
respectively. Prove that the k-rank of u1 � v1, u2 � v2, . . . , um � vm is at
least min(ku + kv − 1, m).

(b) Construct a family of examples where the k-rank of
u1 � u1, u2 � u2, . . . , um � um is exactly 2ku − 1, and not any larger.
To make this nontrivial, you must use an example where m > 2ku − 1.

(c) Given an n× n× n× n× n fifth-order tensor T =∑r
i=1 a⊗5

i , give an
algorithm for finding its factors that works for r = 2n− 1 under
appropriate conditions on the factors a1, a2, . . . , ar. Hint: Reduce to the
third-order case.

In fact, for random or perturbed vectors, the Khatri-Rao product has a much
stronger effect of multiplying their Kruskal rank. These types of properties
can be used to obtain algorithms for decomposing higher-order tensors in the
highly overcomplete case where r is some polynomial in n.

Problem 4-2: In Section 4.4 we saw how to solve independent component
analysis using nonconvex optimization. In this problem we will see how
to solve it using tensor decomposition instead. Suppose we observe many
samples of the form y = Ax, where A is an unknown nonsingular square
matrix and each coordinate of x is independent and satisfies E[xj] = 0 and

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

70 4 Tensor Decompositions

E[x4
j] �= 3E[x2

j]2. The distribution of xj is unknown and might not be the same
for all j.

(a) Write down expressions for E[y⊗4] and
(
E[y⊗2]

)⊗2
in terms of A and the

moments of x. (You should not have any A’s inside the expectation.)
(b) Using part (a), show how to use the moments of y to produce a tensor of

the form
∑

j cja
⊗4
j , where aj denotes column j of A and the cj are nonzero

scalars.
(c) Show how to recover the columns of A (up to permutation and scalar

multiple) using Jennrich’s algorithm.

https://doi.org/10.1017/9781316882177.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316882177.005

