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Extended string matching

4.1 Basic concepts

Up to now we have considered search patterns that are sequences of charac-
ters. However, in many cases one may be interested in a more sophisticated
form of searching. The most complex patterns that we consider in this book
are regular expressions, which are covered in Chapter 5. However, regular
expression searching is costly in processing time and complex to program,
so one should resort to it only if necessary. In many cases one needs far less
flexibility, and the search problem can be solved more efficiently with much
simpler algorithms.

We have designed this chapter on "extended strings" as a middle point
between simple strings and regular expressions. We provide simple search
algorithms for a number of enhancements over the basic string search, which
can be solved more easily than general regular expressions. We focus on
those used in text searching and computational biology applications.

We consider four extensions to the string search problem: classes of char-
acters, bounded length gaps, optional characters, and repeatable characters.
The first one allows specifying sets of characters at any pattern or text po-
sition. The second permits searching patterns containing bounded length
gaps, which is of interest for protein searching (e.g., PROSITE patterns
[Gus97, HBFB99]). The third allows certain characters to appear option-
ally in a pattern occurrence, and the last permits a given character to appear
multiple times in an occurrence, which includes wild cards. We finally con-
sider some limited multipattern search capabilities.

Different occurrences of a pattern may have different lengths, and there
may be several occurrences starting or ending at the same text position.
Among the several choices for reporting these occurrences, we choose to
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78 Extended string matching

report all the initial or all the final occurrence positions, depending on what
is more natural for each algorithm.

In this chapter we make heavy use of bit-parallel algorithms. With some
extra work, other algorithms can be adapted to handle some extended pat-
terns as well, but bit-parallel algorithms provide the maximum flexibility
and in general the best performance. We show that Shift-And can be
adapted by changing the mechanism to simulate a new nondeterministic au-
tomaton. B N D M can be adapted as well, although we will be faced with
the problem that the pattern occurrences need not have the same length
as the pattern, so it will be necessary to verify, each time we arrive at the
beginning of a window, whether we have a real match or not.

All the techniques in this chapter can be plugged into the algorithms
in Chapter 6 for approximate searching. Some can also be combined with
regular expression searching (Chapter 5).

4.2 Classes of characters

4-2.1 Classes in the pattern

Our simplest extension of string matching permits each pattern position to
match a set of characters rather than a single character. The pattern is a
sequence over p(S), that is, p = p\P2 • • -Pm, where pj C X. We say that
p' E S* is an occurrence of p whenever p'- E Pj for all j E 1 . . . m. A simple
string is a particular case of this type of pattern.

It is usual to denote sets of characters by enumerating their components
in square brackets, or by using ranges of characters when a total linear order
is clear. For example, " [Aa]nnual" matches "Annual" and "annual", while
11 [0-9] [0-9] / [0-9] [0-9]/199[0-9] " matches dates in the 1990s. We will
use this notation throughout the chapter, as well as the symbol £ to denote
a pattern position matching the whole alphabet.

Two simple extensions that can be expressed using classes of characters
are (1) "don't care" symbols, which match any text character, corresponding
to the class S; (2) case-insensitive searching, which corresponds to replac-
ing each pattern character by a class formed from its uppercase and its
lowercase version; for example, " [Aa] [Mn] [Mn] [Uu] [Aa] [LI]" matches the
string "annual" in case-insensitive form.

Assume that we have a bit-parallel algorithm, such as Shift-And or
B N D M (Chapter 2). The only connection between the pattern and the
text is made at preprocessing time by building a table B, which for each
character c gives the bit mask of the pattern positions matching c. Now
assume that p is a sequence of classes of characters. The bit-parallel al-
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4.2 Classes of characters 79

gorithms can be used directly provided we change the preprocessing. We
replace line 3 of Shift-And (Figure 2.6) by

For j £ 1 . . . m Do
For c £ Pj Do B[c] <- B[c] | O ^ I O ^ 1

End of for

or, alternatively, line 3 of B N D M (Figure 2.16) by

For j G 1 . . . m Do
For c G Pj Do B[c] <- B[c] | O^IO™"'

End of for

Shift-Or needs to reverse the bits and change "|" to "&". Figure 4.1 shows
an example of the resulting mask B for the Shift-And.

B[c] c B[c]

0 10 0 0 0 0 0 0 0 0000 0 9 1110 00000 0 0000

10 0 100000 0000 0 A 0000 00000 0 000 1

2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 10 0 1

3 10 0 0 0 0 0 0 0 0000 0 f 0000 0 1000 0 0000

4 10 0 0 0 0 0 0 0 0000 0 1 0000 00000 10000

5 10 0 0 0 0 0 0 0 0000 0 n 0 0 0 0 0 0 0 0 0 0 0 110

6 10 0 0 0 0 0 0 0 0000 0 o 0 0 0 0 0 0 10 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0000 0 s 0000 0000 10 0000

8 10 0 0 0 0 0 0 0 0000 0 _ 0000 100 10 0 0000

Fig. 4.1. The resulting mask B for the pattern " [Aa]nnals_of _199[0-9] ".

Non-bit-parallel algorithms can be extended to handle classes of charac-
ters too, but none of them provide the same combination of simplicity and
performance robustness. Let us examine first the Horspool algorithm (Sec-
tion 2.3.2). We need to change, in Figure 2.12, line 3 in the preprocessing
and line 8 in the search. However, the performance of Horspool degrades
rapidly, especially if there is a large class near the end of the pattern. This
is because the shifts for all the characters contained in the large class will
be short. Thus its performance is extremely sensitive to the number, size,
and position of the classes.

Now consider BDM (Section 2.4.1). No efficient algorithm is known to
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80 Extended string matching

extend the deterministic suffix automaton to handle classes of characters
[NR00]. The same is true for the BOM algorithm of Section 2.4.3.

From the classical algorithms, the extension that performs best is the
classical Boyer-Moore algorithm (Section 2.3.1). However, it is complex
to implement and does not perform as well as BNDM [NR00].

Performance of Shift-And/Shift-Or is unaffected by the use of classes
of characters. However, it is inferior to that of BNDM in most cases. But
BNDM is affected because it is more likely to find occurrences of pattern
factors in the window. A rough analysis is as follows: If S is the average size
of a class, then the result is the same as if we had an alphabet of size (Sl/S1,
and hence the average complexity of BNDM becomes O(ralogisi/s(m)/m).

Just as BNDM is better than Horspool with smaller alphabets, it is
more resistant than Horspool to the size and number of classes in the pat-
tern. When the classes become too numerous or too large, it may be better
to switch to Shift-Or, which is slightly faster than Shift-And. However, in
the extensions that we consider next Shift-Or is not faster, and Shift-And
is preferable because it is more intuitive.

4.2.2 Classes in the text
In computational biology applications there may be uncertainty on some
text characters; that is, one knows that a given text position holds some
character in a given set, but cannot tell which one. This situation is modeled
by allowing classes of characters in the text. It is normally represented by
using new character codes that are known to represent given sets of ''normal"
character codes.

Formally, the text is a sequence over p(£), that is, T = t\t2 • • • tn, where
ti C S. The pattern is said to occur at text position t{+i... £j+m if pjHti+j ^
0 for all j € 1.. . m.

Bit-parallelism gives a simple way to deal with this. Let us say that
character code c represents the set {ci, C2, . . . , c^}. Then, after building
the mask B of the normal characters in the preprocessing of either Shift-
And or BNDM, we add for each such c

B[c] <- 0 m

For i e 1 . . . k D o B[c] <- B[c] \ B[cz]

which makes c match every pattern position that matches some Q.
This can be extended to permit special characters that are sets of other

special characters, as long as they are processed in the correct order. More-
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4-3 Bounded length gaps 81

over, it can be combined with classes of characters in the pattern, which are
dealt with when the table B of the normal characters is built.

On small alphabets, such as that of DNA sequences, an interesting choice
is to extend the character set to S' = {0 . . . 2lE — 1} and represent the set
using bit-parallelism. The new alphabet is formed by bit masks of length
S|, where the i-ih. bit indicates the presence in the set of the i-th character.

For example, if the alphabet is {A, G, C, T}, then single characters will be
represented by A = 0001, G = 0010, C = 0100, and T = 1000, and classes
will be represented by, for example, {A, C} = 0101.

Under this representation we need to build a different table B' that ranges
over the integers {0 . . . 2ls — 1}. Assume for simplicity that E = {0 . . . |S| —
1}. The construction of B', given B, is as follows:

B'[0] 4- 0 m

For c 6 0 . . . |S| - 1 Do
For j e 0 . . . 2C - 1 D o B'[2C + j] <- B[c] \ B'[j]

End of for

It takes O(2lEl) time. With DNA, for example, the table B' has just 16
entries. The search process is unaltered: We simply use B' instead of B.

4.3 Bounded length gaps
An important case of protein searching is that of PROSITE patterns [Gus97,
HBFB99]. A PROSITE pattern contains classes of characters and bounded
length gaps, which match any string whose length is between given bounds.
In the notation of PROSITE, pattern characters or classes are separated
by hyphens and x(a,b) denotes a gap of length between a and b. Also,
x(a) = x(a, a) and x = x(l), which is equivalent to the class S. For example,
the pattern a — b — c — x(l,3) — d — e matches "abcfde" and "abcfddde",
but not "abcffffde". Although we focus on the concrete case of PROSITE
patterns in this chapter, the algorithms can handle other types of pattern
with bounded length gaps.

Figure 4.2 shows an NFA for the pattern a — b — c — x(l, 3) —d — e. Between
the characters "c" and "d" we have inserted three transitions that can be
followed by any character, which corresponds to the maximum length of
the gap. Two e-transitions leave the state where "abc" has been recognized
and skip one and two subsequent edges, respectively. This skips one to three
text characters before finding the "de" at the end of the pattern. The initial
self-loop allows the match to begin at any text position.

Let m be the number of symbols in the pattern, each symbol being a class
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82 Extended string matching

Fig. 4.2. A nondeterministic automaton for the pattern a — b — c — x(l, 3) — d — e.
Dashed arrows represent e-transitions, which can be followed without consuming
any input.

of characters or a gap specification of the form x(a,b). Also let train and
Imax be the minimum and maximum lengths of a pattern occurrence. Both
can be obtained from the pattern in O(m) time by adding 1 for each class
of characters and adding a for the minimum and b for the maximum for
each gap specification x(a, b). Finally, let L be the number of states of the
corresponding NFA, not including the first state. It is not hard to see that
L = Umax. In our example, m = 6, £min = 6, and £max = L = 8.

We now describe two bit-parallel algorithms presented in [NROlb] which
are able to find patterns quickly patterns with gaps (PROSITE in particu-
lar). They extend Shift-And and BNDM.

4-3.1 Extending Shift-And
We augment the representation of Shift-And by adding the e-transitions.
We call "gap-initial" states those states i from which an £-transition leaves.
For each gap-initial state i corresponding to a gap x(a, 6), we define its "gap-
final" state to be (i + b — a + 1), that is, the one following the last state
reached by an e-transition leaving i. In Figure 4.2, we have one gap-initial
state (3) and one gap-final state (6).

We create a bit mask / that has 1 in the gap-initial states and another
mask F that has 1 in the gap-final states. In Figure 4.2, the corresponding
/ and F masks are 00000100 and 00100000, respectively. After performing
the normal Shift-And step, we simulate all the e-moves with the operation

D <- D I ((F -(D k I ) ) k ~ F)

The rationale is as follows. D k I isolates the active gap-initial states.
Subtracting this from F has two possible outcomes for each gap-initial state
i. First, if % is active, the result will have 1 in all the states from % to (i + b —
a), successfully propagating the active state i to the desired target states.
Second, if i is inactive, the outcome will have 1 only in state (i + b — a + 1).
This undesired 1 is removed by operating on the result with "& ~ Fv. Once
the propagation has been done, we OR the result with the already active
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states in D. Note that the propagations of different gaps do not interfere
with one another, since all the subtractions have a local effect.

Gaps-Shift-And (p = pip2 .. .pm, T = M 2 . . . tn)
Preprocessing

L —̂ maximum length of an occurrence
For c e S Do B[c] <- 0L

I <- 0L , F <- 0L

i <- 0
For j G 1. . . m Do

If Pj is of the form x(a,b) Then

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

I <- I \ 0L"*10*"1

771 , 771 I C\L — (i+b — a)— l-i r\i+b — a

For c e S Do 5[c] ^- 5[c] | OL~'~&1
z -<— z + b

Else /* pj is a class of characters */
For c e Pj Do B[c] <- 5[c] | O ^ " 1 ]

End of if
End of for

Searching
D <- 0L

For pos G 1. . . n Do
£> ^- ((D << 1
D <- D
If D & 10

End of for
0L Then report an occurrence ending at pos

Fig. 4.3. The extension of Shift-And to handle PROSITE expressions.

Figure 4.3 shows the complete algorithm. For simplicity we assume that
there are no gaps at the beginning or at the end of the pattern and that con-
secutive gaps have been merged into one. The preprocessing takes O(ra|S|)
time, while the scanning needs O(n) time. If Imax > w, however, we need
several machine words for the simulation, and it then takes 0(n\£max/w^\)
time.

Example of Gaps-Shift-And We search for the pattern a — b—c—x(l, 3) —
d — e in the text "abcabcffdee".

/ = 0 0 0 0 0 1 0 0
F = 0 0 1 0 0 0 0 0

. D = 0 0 0 0 0 0 0 0

a
b
c
d
e
*

00111001
00111010
00111100
01111000
10 111000
00 111000
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84 Extended string matching

1. Reading a 0 0 1 1 1 0 0 1
D^ 0 0 0 0 0 0 0 1

We now apply the propagation for-
mula on D. The result is ((F —
(D & /)) & ~ F) = ((00100000 -
00000000) & 11011111) = 00000000,
and hence D does not change. We do
not mention again the propagation for-
mula unless it has an effect on D.

•I.

3.

Reading
D

Reading

b

=

c

0
0

0

0 1 1
0 0 0

0 1 1

1
0

1

0
0

1

1
1

0

0
0

0
D= 0 0 0 0 0 1 0 0

At this point the e-transitions take
effect: ((F - (D & /)) & ~ F) yields
((00100000-00000100) & 11011111) =
00011100, where states 4 and 5 have
been activated. The new D value is

D = 0 0 0 1 1 1 0 0.

4. Reading a 0 0 1 1 1 0 0 1D= 00 1 1 1 0 0 1

5. Reading b 0 0 1 1 1 0 1 0
D~= 0 0 1 1 0 0 1 0

6. Reading c 0 0 1 1 1 1 0 0
D= 0 0 1 0 0 1 0 0

The propagation formula takes effect
again and produces

D = 0 0 1 1 1 1 0 0 .

7. Reading f 0 0 1 1 1 0 0 0
D= 0 0 1 1 1 0 0 0

Reading f 0 0 1 1 1 0 0 0
D= 0 0 1 1 0 0 0 0

9. Reading d 0 1 1 1 1 0 0 0
ZT= 0 1 1 0 0 0 0 0

10. Reading e 1 0 1 1 1 0 0 0
D~^ 1 0 0 0 0 0 0 0

The last bit of D is set, so we mark an
occurrence. The gap has matched the
text "ff".

11. Reading e 1 0 1 1 1 0 0 0
D= 0 0 0 0 0 0 0 0

4.3.2 Extending BNDM
We now try to extend BNDM (Section 2.4.2) to handle patterns with gaps.
To recognize all the reverse factors of the pattern, we use the same automa-
ton of Figure 4.2 on the reversed pattern, but without the initial self-loop,
and we consider that all the states are active at the beginning. Figure 4.4
shows the automaton for the pattern a — b — c — x(l,3) — d — e. A string
read by this automaton is a factor of the pattern as long as there exists at
least one active state. Note that now the arrows depart from the state next
to "d", but the effect is the same as before.

Fig. 4.4. A nondeterministic automaton to recognize all the reversed factors of the
PROSITE pattern a-b-c- x(l, 3) - d - e.
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The bit-parallel simulation of this automaton is similar to that of the for-
ward automaton. The only modifications are (a) we build it on the reversed
pattern; (6) the bit mask D that registers the state of the search has to be
initialized with D = 1L to represent the initial e-transitions; and (c) we do
not OR D with 0L~ll when we shift it, since there is no longer an initial
loop.

The backward matching algorithm shifts a window of size Irnin along the
text. Inside each window, the algorithm traverses the text backwards trying
to recognize a factor of the pattern. Each time the automaton reaches its
final state we have recognized a pattern prefix and we store the window
position in the variable last.

If the backward search inside the window fails before reaching the begin-
ning of the window, then the search window is shifted to the beginning of
the longest prefix recognized, as in BNDM.

If the beginning of the window is reached with the automaton still holding
active states, then some factor of length imin of the pattern has been rec-
ognized in the window. Unlike exact string matching, where all occurrences
have the length of the pattern, reaching the beginning of the window here
does not automatically imply that we have recognized the whole pattern.
We need to verify a possible occurrence, which can be as long as imax,
starting at the beginning of the window.

To carry out this verification, we read the characters again from the begin-
ning of the window with the forward automaton of Figure 4.2, but without
the initial self-loop. This makes the automaton recognize rather than search
for the pattern. To simulate that automaton without the initial self-loop,
we simply do

D <- {D « 1) k B[tpos]

D <- D \ ((F - (D & I)) & ~ F)

This forward verification ends when either (1) the automaton reaches its
final state, in which case we have found the pattern; or (2) the automaton
runs out of active states, in which case there is no pattern occurrence starting
at the window. Since there is no initial loop, the forward verification surely
finishes after reading at most Imax text characters. We then shift the search
window to the position of the last pattern prefix recognized and resume the
search.

Figure 4.5 shows the complete algorithm. Its worst-case complexity is
O(n x £max), which is poor in theory. In particular, let us consider the
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G a p s - B N D M ( p = P l p 2 . . . p m , T = M 2 . . . t n )
1.
2.
3.
4.
5.
6.
7.
8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

Preprocessing
L <r- maximum length of an occurrence
imin —̂ minimum length of an occurrence
For c e S Do B[c] <- 0L

I <r- 0 L , F 4r- 0L

i <- 0

For j G 1 . . . m Do
If pj is of the form x(a, b) Then

I ^ I\ 0^+&10^-(^+&)-l

F <- F \ o*+°-1lOL- (*+o)

For c e S Do B[c] <- B[c] \ 0*lb0L-*-b

i —̂ i + 6
Else /* pj is a class of characters */

For c e Pj Do B[c] <- B[c] \ 0*10L"*"1

i <- i + 1
End of if

End of for
Searching

pos —̂ 0
While pos < n — imin Do

j —̂ imin, last —̂ imin
D <r- 1L

While D / 0L AND j > 0 DO
D ^ D & B[tpos+j]
D <r- D \((F-(D & I)) & ~ F )

i ^ i - i
If D & lO1^1 / 0L Then /* prefix recognized */

If j > 0 Then /ast <- j
Else check a possible occurrence starting at pos

End of if
D <- D « 1

End of while
pos —̂ pos + last

End of while

Fig. 4.5. The extension of BNDM to handle PROSITE expressions.

maximum gap length G in the pattern. If G > Imin, then every text
window of length Imin is a factor of the pattern; so we will always traverse
the whole window during the backward scan, for a minimum complexity of
O(n). Consequently, this approach should not be used when G > imin.
It has been shown experimentally in [NROlb] that Gaps-BNDM is better
than Gaps-Shift-And whenever G + 1 < tmin/2.
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Example of Gaps-BNDM We search for the pattern a — b — c — x(l, 3) —
d — e in the text "abcabcffdee".

B =

a
b
c
d
e
*

10011100
0 10 11100
00111100
00011110
0001110 1
00011100

I = 0 0 0 0 0 1 0 0
F = 0 0 1 0 0 0 0 0

Imin = 6, Imax = 8

abcabc
i i

last <r- 6
Reading c

ffdee

0 0 1 1 1 1 0 0
D= 0 0 1 1 1 1 0 0

The propagation mechanism does not
introduce any new active states in D.

Reading b 0 1 0 1 1 1 0 0
U=" 0 10 1 1 0 0 0

Reading a 10 0 1 1 1 0 0
D= 1 0 0 1 0 0 0 0

The last bit of D is activated and j > 0,
so we set last —̂ 3.

Reading c 0 0 1 1 1 1 0 0
D = 0 0 1 0 0 0 0 0

Reading b 0 1 0 1 1 1 0 0
D= 0 1 0 0 0 0 0 0

Reading a 1 0 0 1 1 1 0 0
B~= 1 0 0 0 0 0 0 0

The last bit of D is active and j = 0, so
we start a forward verification against
the text "abcabcff". The forward au-
tomaton finally dies without finding
the pattern and we proceed to the next
window, shifting by last = 3.

Reading d 0 0 0 1 1 1 1 0
D= 0 0 0 1 1 1 1 0

The propagation mechanism is acti-
vated, but it produces no effects.

Reading f 0 0 0 1 1 1 0 0
D= 0 0 0 1 1 1 0 0

The propagation mechanism is acti-
vated, but again it produces no effects.

Reading f 0 0 0 1 1 1 0 0
D= 0 0 0 1 1 0 0 0

Reading c 0 0 1 1 1 1 0 0
D= 0 0 1 1 0 0 0 0

Reading b 0 1 0 1 1 1 0 0
U=" 0 1 0 0 0 0 0 0

Reading c 1 0 0 1 1 1 0 0
D= 1 0 0 0 0 0 0 0

The last bit of D is set and j = 0, so we
perform a forward verification against
the text "abcffdee", which produces a
match. Therefore, the current text po-
sition (4) is reported as the beginning
of an occurrence.
The window is shifted by last = 6 and
we finish the search.

4.4 Optional characters
We now allow the possibility that some pattern positions may or may not
appear in the text. We call these "optional characters" (or classes) and
denote them by putting a question mark after the optional position. Con-
sider the pattern Mabc?d?ef g?hM, which matches, for example, "abefh" and
"abdefgh". A nondeterministic automaton accepting this pattern is shown
in Figure 4.6.
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Fig. 4.6. A nondeterministic automaton accepting the pattern "abc?d?efg?h".

As the figure shows, multiple consecutive optional characters could exist.
The simplest solution, for when that does not happen, is to set up a bit
mask O with l's in the optional positions (in our example, O = 01001100)
and let the l's in previous states of D propagate to them. Hence, after the
normal update to D in, say, the Shift-And algorithm (i.e., after line 7 in
Figure 2.6), we perform

D <- D | ((£> « 1) k O)

This solution works if we have read "abcdef" (then D = 00100000) and
the next text character is "h", since the above operation would convert D
into 01100000 before operating it against B[h] = 10000000. However, it does
not work if the text is "abefgh", where both consecutive optional characters
have been omitted.

A general solution needs to propagate each active state in D so as to flood
with l's all the states ahead of it that correspond to optional characters. In
our example, when D is 00000010 we would like it to become 00001110 after
the flooding.

This is achieved in [NavOlb] with a mechanism resembling that of Sec-
tion 4.3. Three masks, A, J, and F, mark the boundaries of blocks of
consecutive optional characters. Each block starts at the position before the
first optional character in the sequence and finishes at the position of the
last optional character. For example, in Figure 4.6 the first block starts at
position 2 and ends at position 4. The i-th bit of A is set if position i in
p is optional, that of / is set if i is the position preceding the first optional
character of a block, and that of F is set if i is the position of the last op-
tional character of a block. In our example, A = 01001100, I = 00100010,
and F = 01001000. After performing the normal transition on D, we do the
following

Df <- D
D <- D

F
(A & ( ( - (Df - I)) A Df))

The first line sets the positions finishing blocks in D to 1. In the second
line we add some active states to D. Since the states to add are AND-ed
with A, let us consider what happens inside a specific block. We want the
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first 1 counting from the right to flood all the block bits to its left. We
subtract / from Df, which is equivalent to subtracting 1 at each block.
This subtraction cannot propagate outside the block because there is a 1
coming from "| F" in Df at the highest bit of the block. The effect of the
subtraction is that all the bits until the first 1 (counting from the right)
are reversed (e.g., 1000000 — 1 = 0111111) and the rest are unchanged. In
general, bxbx-\... bx-y10z — 1 = bxbx-\... bx-y01z. When this is reversed
by the "~" operation we get ~ bx ~ bx-\... ~ bx-y10z. Finally, when
this is XOR-ed with the same Df = bxbx_\ ... bx-y\§

z we get p-«/+1oz+1.
This gives the effect we wanted: The first 1 flooded all the bits to the left.

The 1 itself has been converted to 0, but it is restored when the result is
OR-ed with the original D. This works even if the last active state in the
optional block is the leftmost bit of the block. Note that it is necessary to
AND with A at the end to avoid propagating the XOR outside the block. We
will see a combined example at the end of Section 4.5.

Note that optional characters cannot be expressed as gaps, since they
can appear consecutively and they do not necessarily match with arbitrary
characters. On the other hand, bounded length gaps can be expressed using
optional characters; for example, a — b — c — x(l,3) — d — e is equivalent to
"abcSE?S?de". However, the formula for the case of bounded length gaps
is simpler and hence faster.

4.5 Wild cards and repeatable characters
"Wild card1 is a term used to refer to a pattern position that matches
an arbitrarily long text string, and it is usually denoted with a star. For
example, "ann*al" matches the texts "annal", "annual", and "annals of
biological". We are not using this notation because we prefer a more
general one.

A wild card is a particular class of a more general feature called a "re-
peatable character." A repeatable character is a pattern position that
can appear zero or more times in the text. We denote it with the char-
acter or class of characters followed by an asterisk; for example, AOTCA
matches ATCA, as well as ACCTCA and ACCCCCCCTCA. Another example is
" [a-zA-Z_] [a-zA-Z_0-9] *", which matches valid variable names in most
programming languages. Under this definition, a wild card is expressed as
"£*". The algorithms for repeatable characters are not slower nor harder
to program than those for simple wild cards. Following regular expression
notations, we also denote c+ = cc*.

Figure 4.7 shows a possible automaton for the pattern "abc+def*gh".
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However, it is difficult to extend to the case where consecutive characters
with stars appear, for example, "abc+def *g*h".

Fig. 4.7. A nondeterministic automaton accepting the pattern "abc+def *gh". The
mechanism cannot be extended to consecutive stars.

A general solution that permits consecutive stars is based on the iden-
tity c* = c+1. We simulate directly the "+" and express the "*" opera-
tor in terms of "+" and "?". Figure 4.8 shows the automaton we use for
"abc+def *gh". Hence, to deal with "*" we need to deal with repeatable
and optional characters.

-. e /

Fig. 4.8. A nondeterministic automaton accepting the pattern "abc+def *gh". It
can deal with consecutive stars.

Let m be the pattern length, counting both normal characters and the
three special symbols. The minimum length of an occurrence, £min, is
computed in O(m) time as the number of normal characters in the pattern
excluding those affected by "?" and "*" operators. On the other hand, the
maximum length of an occurrence is unbounded when there are repeatable
characters. Finally, let L be the number of states in the NFA (excluding the
first one) computed as the number of normal characters in p.

For bit-parallel simulation of the operator "+" we need a table S[c] that
for each character c tells which pattern positions can remain active when we
read the character c. In Figure 4.8, S[c] = 00000100 and S[f] = 00100000.
A complete simulation step permitting optional and repeatable characters
after reading text character tpos is as follows:

D <- ((£> « 1) | 0L"1 l) k B[tpos]) | (D k S[tpos])
Df <- D\F
D <- D | (Ak ((~ (Df - I)) A Df))

The complete code is quite similar to that of patterns with gaps detailed
in Section 4.3, the only change being in the simulation of a single step of
the NFA. We present extended versions of Shift-And and of BNDM.
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Some experimental results are presented in [NavOlb] regarding the use of
optional and repeatable characters. It is shown that Extended-BNDM
works better in most cases than Extended-Shift-And. The latter choice
should be considered only when Imin < 3 or when there are large repeatable
classes of characters.

4-5.1 Extended Shift-And
Figure 4.9 shows pseudo-code for the Shift-And extension. It includes
the necessary preprocessing of the pattern to deal with the symbols " + ",
11 *", and M?M. The code assumes that there are no optional or repeatable
characters at the beginning or at the end of the pattern. It is not hard to
augment the code to handle classes of characters.

Consider the Extended-Shift-And algorithm preprocessing. The pre-
processing has two parts. Lines 2-17 build the mask A and the tables S and
B, where S stores information about repeatable characters and A stores
information about optional characters. The operator "*" is treated exactly
like "+" followed by "?". Lines 18-29 build the / and F masks from A, by
the simple mechanism of detecting in line 21 whether the current active bit
of A belongs to a new block or not, and, if not, "moving" the bit of F that
signals its end. The preprocessing takes O(m + |S|) time and the search
O(n\L/w]) time.

The search code is simple compared to the preprocessing. It applies the
formula to deal with optional and repeatable characters.

Example of Extended-Shift-And We search for the ending position of
occurrences of the pattern Mab?c*de+f " in the text "acccdf abdeeef ". We
have m = 9 and L = 6. For each character we show the effect of the three
lines of the processing done on D and Df.

c
a
b
c
d
e
f
*

B
00000 1
000010
000 100
00 1000
0 10000
100000
000000

5
000000
000000
000100
000000
0 10000
000000
000000

A
I
F
D

000110
000001
000100
000000
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Extended-Shift-And (p = T = .. -tn)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Preprocessing

L —̂ number of normal characters in p
A <- 0L /* build B, S and A */
For c e S Do £[c] <- 0L, 5[c] <- 0L

ii 1
For j G 1 . . . m Do

IfPj = «+" Then S[Jastc] -
Else Ifpj = "?" Then A ^
Else If pj = "*" Then

Spastc] ^- 5pastc] | 0J

A <- A | 0L-*-40*
Else /* pj is a character */

• S[lastc] | 0
A I oL-*"4

0L-i-l10i

End of if
End of for
/ <- 0L, F <- 0L /* build / and F */
For i e 0 .

If A
. L - 1 Do

If F

Else

0L"*10li

^1 | (
^F I

/ 0 L Then

F F

1 = 0^
L-i-j^Qi-l

Then

End of if
End of if

End of for
Searching

D <- 0L

For pos G 1 . . . n Do
D <r- «D « 1) I
Df <- D | F
D <- D\ (A & ((•
If D & lO1^"1 / 0

End of for

) & B[tpos]) | (D & S[tpos])

~ I)) A D/))
L Then report an occurrence ending at pos

Fig. 4.9. The extension of Shift-And to handle patterns with optional and repeat-
able characters.

Reading a B
S

0 0 0 0 0 1
0 0 0 0 0 0

D 0 0 0 0 0 1
Df 0 0 0 10 1
D 0 0 0 1 1 1

The propagation over the two optional
characters "b?c*" took effect.

2. Reading c B
S

0 0 0 1 0 0
0 0 0 1 0 0

D 0 0 0 1 0 0
Df 0 0 0 10 0
D 0 0 0 1 0 0

This time there were no special propa-
gation effects.
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3. Reading c B
S

0 0 0 1 0 0
0 0 0 1 0 0

9. Reading d

D 0 0 0 1 0 0
Df 0 0 0 10 0
D 0 0 0 1 0 0

The S table permitted the third bit of
D to stay active.

4. Reading c B
S

0 0 0 1 0 0
0 0 0 1 0 0

5. Reading d

D 0 0 0 1 0 0
Df 0 0 0 10 0
D 0 0 0 1 0 0

B 0 0 1 0 0 0
5 0 0 0 0 0 0
D 00 1 0 0 0

Df 0 0 1 1 0 0
D 0 0 1 0 0 0

6. Reading f B
S

100000
000000

D 0 0 0 0 0 0
Df 0 0 0 10 0
D 0 0 0 0 0 0

7. Reading a B
S

000001
000000

D 000001
Df 0 0 0 10 1
D 0 0 0 111

The propagation over the two optional
characters "b?c*" took effect again.

8. Reading b B
S

0 0 0 0 1 0
0 0 0 0 0 0

D 0 0 0 0 10
Df 0 0 0 1 1 0
D 0 0 0 1 1 0

The propagation over the optional
character "c*" took effect.

B
S

001000
000000

D 001000
Df 0 0 110 0
D 001000

No propagation effects this time. The
previous propagation has allowed us to
ignore a nonexistent "c" in the text.

10. Reading e B
S

0 1 0 0 0 0
0 1 0 0 0 0

D 0 1 0 0 0 0
Df 0 10 10 0
D 0 1 0 0 0 0

11. Reading e B
S

0 1 0 0 0 0
0 1 0 0 0 0

D 0 1 0 0 0 0
Df 0 10 10 0
D 0 1 0 0 0 0

The S table permits the automaton to
stay alive while it keeps reading "e".

12. Reading B
S

0 1 0 0 0 0
0 1 0 0 0 0

D 0 1 0 0 0 0
Df 0 10 10 0
D 0 1 0 0 0 0

13. Reading f B
S

100000
000000

D 100000
Df 10 0 10 0
D 100000

The last bit of D is active, so we report
an occurrence ending at text position
13.

4.5.2 Extended BNDM

Figure 4.10 shows pseudo-code for the BNDM extension. The preprocess-
ing for Extended-BNDM is the same except that the bits in the mask are
in reverse order and we also compute Imin. Note that the computation of /
and F is unaltered even when our pattern is reversed, because the arithmetic
operations always work in the same direction.
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E x t e n d e d - B N D M (p = Plp2 . . .pm, T = tit2...tn)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

Preprocessing
L <r- number of normal characters in p
imin —̂ minimum length of an occurrence
A <r- 0L r build B, S and A */
For c e S Do B[c] <- 0L, S[c] =<- 0L

ii 1
For j G 1 . . . m Do

If P j = «+» Then S[Zaste] <- S[lastc] | 0*10L"*"1

Else If pj = "?" Then A <- A \ 0*10L"*"1

Else If Pj = "*" Then
S[lastc] <- S[lastc] \ 0*10L"*"1

A <r- A | 0*10 L -*- 1

Else /* pj is a character */
lastc —̂ pj
i <- i + 1
£[Jastc] ^ 5[/astc] | 0*10L-*-1

End of if
End of for
/ <- 0L, F <r- 0L /* build / and F */
For z G 0 . . . L - 1 Do

If A & 0L"*"110* / 0 L T h e n
If F k 0L"*10*"1 = 0L Then

I <-I \ 0L"*10*"1

F ^ F
Else

F ^F k l^-^Ol*-1

F ^ F 0L-i-l10i

End of if
End of if

End of for
Searching

pos —̂ 0
While pos < n — Imin Do

j <r- imin — 1, last —̂ imin
D <- B[tpos+lmin]
If D k lO1^"1 / 0L Then /ast ^- j
While D / 0L AND j > 0 Do

Df <- D | F
£> ^ D| (A &((-(£)/-/)) A D/))
D ^ ((D « 1) k B[tpos+3]) | (D & S[tpos+3])
3 *~ 3 - 1
If D & lO1^"1 / 0L Then /* prefix recognized */

If j > 0 Then /ast <- j
Else check a possible occurrence starting at pos

End of if
End of while
pos —̂ pos + last

End of while

Fig. 4.10. The extension of BNDM to handle patterns with optional and repeat-
able characters. It assumes imin > 1.
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The search is more complicated. We initialize D using the last character
of the window. Then the loop checks for a match and afterward processes
the next window character. As for patterns with gaps, we need a forward
verification for windows that may match the pattern.

The fact that the maximum length of an occurrence is in general un-
bounded for extended patterns makes it impossible to know beforehand
what the maximum number of characters read will be when checking the
occurrence of a pattern in the text window. We have to continue until the
automaton runs out of active states, we find the pattern, or the text ends.

Example of Extended-BNDM We search for the initial position of the
occurrences of the pattern Mab?c*de+f " in the text "acccdf abdeeef ".

c
a
b
c
d
e
f
*

B
100000
0 10000
001000
000 100
000010
00000 1
000000

5
000000
000000
001000
000000
000010
000000
000000

m
L

imin

A
I
F

9
6
4

0 1 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

|accc | dfabdeeef
last <r- 4

Reading c B 00 1 0 0 0
D 0 0 1 0 0 0

Reading B
S

001000
001000

Df 0 110 0 0
D 0 11000
D 001000

Reading B
S

0 0 1 0 0 0
0 0 1 0 0 0

Df 0 1 1 0 0 0
D 0 1 1 0 0 0
D 0 0 1 0 0 0

Reading a B
S

1 0 0 0 0 0
0 0 0 0 0 0

2.

Df 0 1 1 0 0 0
D 0 1 1 0 0 0
D 1 0 0 0 0 0

The last bit of D is set and j = 0, so we
check forward the pattern in the text
window "acccdf a. . . " . At the sixth
character the automaton runs out of ac-
tive states without finding the pattern.
So we shift the window by last = 4.

accc | dfab |
last <r- 4

Reading b

deeef

B 0 1 0 0 0 0
D 0 1 0 0 0 0

Reading B
S

100000
000000

Df 0 10 0 0 0
D 0 10000
D 100000

The last bit of D is set and j > 0, so
we set last —̂ 2.

Reading f B
S

0 0 0 0 0 1
0 0 0 0 0 0

Df 1 1 0 0 0 0
D 1 0 0 0 0 0
D 0 0 0 0 0 0

There are no more active states in D,
so we shift by last = 2.
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3. acccdf | abde | eef
last <r- 4

Reading e B Q Q Q Q 1 Q
D 0 0 0 0 1 0

Reading d B
S

0 0 0 1 0 0
0 0 0 0 0 0

Df 0 10 0 10
D 0 0 0 0 10
D 0 0 0 1 0 0

Reading b B
S

0 1 0 0 0 0
0 0 0 0 0 0

Df 0 10 10 0
D 0 1 1 1 0 0
D 0 1 0 0 0 0

Reading B
S

1 0 0 0 0 0
0 0 0 0 0 0

Df 0 10 0 0 0
D 0 1 0 0 0 0
D 1 0 0 0 0 0

The last bit of D is active and j = 0,
so we perform a forward check on the
text window "abdeeef". We find an
occurrence, so we report the seventh
text position as the beginning of an
occurrence. Then we shift the window
by last = 4.

This puts the window outside the text,
so we are finished.

4.6 Multipattern searching
Consider now the problem of searching a number of extended strings simul-
taneously. Since the only techniques that deal well with extended strings are
based on bit-parallelism, we need a multipattern search algorithm based on
bit-parallelism. Unfortunately, as seen in Chapter 3, most of the techniques
for multipattern search do not use bit-parallelism.

The only approach useful for us is the one considered in Sections 3.2.1
and 3.4.1, which packs a number of automata into a single computer word
and performs Shift-And- or BNDM-like searching. If we are searching a
number of extended strings of the same kind, we can use the same technique:
We pack the bits of many automata in a single computer word and simulate
the corresponding type of search on the whole word, thus updating the states
of the automata represented in there. As for simple strings, we need to take
care of the limits between different patterns and of the initial self-loops of
the automata.

This multipattern search capability is extremely limited, as we will be
able to represent just a few extended patterns in a single computer word.

When trying to extend BNDM in Section 3.4.1 we assumed that all the
strings had the same length and otherwise truncated them to the shortest
one. Here we do analogously: The Imin values of the patterns may be
different, and we truncate them to obtain patterns with the same imin
value.

The truncation in Section 3.4.1 requires checking forward in the window
for the presence of the complete pattern. This does not involve extra com-
plications here, because we need to perform a forward verification with the
whole patterns that seem to occur in the window.
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The easiest way to do the truncation is to take the longest possible pattern
prefix whose Imin is as chosen, although it is possible to take a pattern factor
that has a lower probability of matching. This optimization is pursued in
[NavOlb]. Note that the verification is more complex in this case because
we have to verify in front of and behind the window in the text.

4.7 Other algorithms and references
The problem of string matching with "don't cares" is a simplification of
what we have presented under the name "classes of characters." In this
problem there are pattern and text positions whose value is the whole class
S. An algorithm with time complexity O(nlog n) exists for this problem
[FP74]. It is based on convolutions.

The same paper [FP74] presents an O(n log2 m log log m log |S|) time al-
gorithm for patterns with wild cards. For the same problem, an O(n +
myjn log ny/\og log n) time algorithm is presented in [Abr87]. The work
[Pin85] obtains the same complexity as [FP74] for classes of characters where
complements of single characters are permitted. The work [Abr87] considers
general classes of characters and obtains subquadratic search algorithms.

All these algorithms are theoretically interesting but are hardly usable
in practice. A good survey on the open theoretical problems and existing
results in nonstandard stringology is [MP94].

Extensions to patterns with gaps are of great interest in computational
biology. For example, one may permit gaps of negative lengths, where some
parts of the pattern appear superimposed in the text. These patterns are
considered in [MM89, KM95, Mye96], where they also are searched approx-
imately. They are covered in more detail in Chapter 6.
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