
CHAPTER 3

Beyond binary classification

T
HE PREVIOUS CHAPTER introduced binary classification and associated tasks such as

ranking and class probability estimation. In this chapter we will go beyond these basic

tasks in a number of ways. Section 3.1 discusses how to handle more than two classes.

In Section 3.2 we consider the case of a real-valued target variable. Section 3.3 is de-

voted to various forms of learning that are either unsupervised or aimed at learning

descriptive models.

3.1 Handling more than two classes

Certain concepts are fundamentally binary. For instance, the notion of a coverage

curve does not easily generalise to more than two classes. We will now consider general

issues related to having more than two classes in classification, scoring and class prob-

ability estimation. The discussion will address two issues: how to evaluate multi-class

performance, and how to build multi-class models out of binary models. The latter

is necessary for some models, such as linear classifiers, that are primarily designed to

separate two classes. Other models, including decision trees, handle any number of

classes quite naturally.
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82 3. Beyond binary classification

Multi-class classification

Classification tasks with more than two classes are very common. For instance, once

a patient has been diagnosed as suffering from a rheumatic disease, the doctor will

want to classify him or her further into one of several variants. If we have k classes,

performance of a classifier can be assessed using a k-by-k contingency table. Assessing

performance is easy if we are interested in the classifier’s accuracy, which is still the

sum of the descending diagonal of the contingency table, divided by the number of

test instances. However, as before, this can obscure differences in performance on

different classes, and other quantities may be more meaningful.

Example 3.1 (Performance of multi-class classifiers). Consider the following

three-class confusion matrix (plus marginals):

Predicted

15 2 3 20

Actual 7 15 8 30

2 3 45 50

24 20 56 100

The accuracy of this classifier is (15+15+45)/100 = 0.75. We can calculate per-

class precision and recall: for the first class this is 15/24 = 0.63 and 15/20 = 0.75

respectively, for the second class 15/20= 0.75 and 15/30= 0.50, and for the third

class 45/56 = 0.80 and 45/50 = 0.90. We could average these numbers to obtain

single precision and recall numbers for the whole classifier, or we could take a

weighted average taking the proportion of each class into account. For instance,

the weighted average precision is 0.20 ·0.63+0.30 ·0.75+0.50 ·0.80= 0.75. Notice

that we still have that accuracy is weighted average per-class recall, as in the two-

class case (see Example 2.1 on p.56).

Another possibility is to perform a more detailed analysis by looking at pre-

cision and recall numbers for each pair of classes: for instance, when distin-

guishing the first class from the third precision is 15/17 = 0.88 and recall is

15/18 = 0.83, while distinguishing the third class from the first these numbers

are 45/48= 0.94 and 45/47= 0.96 (can you explain why these numbers are much

higher in the latter direction?).

Imagine now that we want to construct a multi-class classifier, but we only have

the ability to train two-class models – say linear classifiers. There are various ways to
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3.1 Handling more than two classes 83

combine several of them into a single k-class classifier. The one-versus-rest scheme

is to train k binary classifiers, the first of which separates class C1 from C2, . . . ,Cn , the

second of which separates C2 from all other classes, and so on. When training the i -

th classifier we treat all instances of class Ci as positive examples, and the remaining

instances as negative examples. Sometimes the classes are learned in a fixed order,

in which case we learn k −1 models, the i -th one separating Ci from Ci+1, . . . ,Cn with

1≤ i < n. An alternative to one-versus-rest is one-versus-one. In this scheme, we train

k(k −1)/2 binary classifiers, one for each pair of different classes. If a binary classifier

treats the classes asymmetrically, as happens with certain models, it makes more sense

to train two classifiers for each pair, leading to a total of k(k−1) classifiers.

A convenient way to describe all these and other schemes to decompose a k-class

task into l binary classification tasks is by means of a so-called output code matrix.

This is a k-by-l matrix whose entries are +1, 0 or −1. The following are output codes

describing the two ways to transform a three-class task by means of one-versus-one:

⎛
⎜⎝
+1 +1 0

−1 0 +1

0 −1 −1

⎞
⎟⎠

⎛
⎜⎝
+1 −1 +1 −1 0 0

−1 +1 0 0 +1 −1

0 0 −1 +1 −1 +1

⎞
⎟⎠

Each column of these matrices describes a binary classification task, using the class

corresponding to the row with the +1 entry as positive class and the class with the −1

entry as the negative class. So, in the symmetric scheme on the left, we train three clas-

sifiers: one to distinguish between C1 (positive) and C2 (negative), one to distinguish

between C1 (positive) and C3 (negative), and the remaining one to distinguish between

C2 (positive) and C3 (negative). The asymmetric scheme on the right learns three more

classifiers with the roles of positives and negatives swapped. The code matrices for the

unordered and ordered version of the one-versus-rest scheme are as follows:

⎛
⎜⎝
+1 −1 −1

−1 +1 −1

−1 −1 +1

⎞
⎟⎠

⎛
⎜⎝
+1 0

−1 +1

−1 −1

⎞
⎟⎠

On the left, we learn one classifier to distinguish C1 (positive) from C2 and C3 (nega-

tive), another one to distinguish C2 (positive) from C1 and C3 (negative), and the third

one to distinguish C3 (positive) from C1 and C2 (negative). On the right, we have or-

dered the classes in the order C1 – C2 – C3, and thus only two classifiers are needed.

In order to decide the class for a new test instance, we collect predictions from

all binary classifiers which can again be +1 for positive, −1 for negative and 0 for no

prediction or reject (the latter is possible, for instance, with a rule-based classifier).

Together, these predictions form a ‘word’ that can be looked up in the code matrix, a

process also known as decoding. Suppose the word is−1 +1 −1 and the scheme is un-
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84 3. Beyond binary classification

ordered one-versus-rest, then we know the decision should be class C2. The question

is: what should we with words that do not appear in the code matrix? For instance,

suppose the word is 0 + 1 0, and the scheme is symmetric one-versus-one (the first

of the above four code matrices). In this case we could argue that the nearest code

word is the first row in the matrix, and so we should predict C1. To make this a lit-

tle bit more precise, we define the distance between a word w and a code word c as

d(w,c)=∑i (1−wi ci )/2, where i ranges over the ‘bits’ of the words (the columns in the

code matrix). That is, bits where the two words agree do not contribute to the distance;

each bit where one word has +1 and the other −1 contributes 1; and if one of the bits

is 0 the contribution is 1/2, regardless of the other bit.1 The predicted class for word w

is then argmin j d(w,c j ), where c j is the j -th row of the code matrix. So, if w = 0 +1 0

then d(w,c1)= 1 and d(w,c2)= d(w,c3)= 1.5, which means that we predict C1.

However, the nearest code word is not always unique. For instance, suppose we use

a four-class one-versus-rest scheme, and two of the binary classifiers predict positive

and the other two negative, then this word is equidistant to two code words, and so we

can’t resolve which of the two classes corresponding to the two nearest code words to

predict. We can improve the situation by adding more columns to our code matrix:

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1

−1 +1 −1 −1

−1 −1 +1 −1

−1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
+1 −1 −1 −1 +1 +1 +1

−1 +1 −1 −1 +1 −1 −1

−1 −1 +1 −1 −1 +1 −1

−1 −1 −1 +1 −1 −1 +1

⎞
⎟⎟⎟⎟⎠

On the left we see a standard four-class one-versus-rest code matrix, which has been

extended with three extra columns (i.e., binary learning problems) on the right. As a re-

sult, the distance between any two code words has now increased from 2 to 4, increas-

ing the likelihood that we can decode words that are not contained in the code matrix.

The resulting scheme can be seen as a mix between one-versus-rest and one-versus-

one classification. However, notice that the additional binary learning problems may

be hard. For instance, if our four classes are spam e-mails, work e-mails, household

e-mails (e.g., utility bills or credit card statements) and private e-mails, then each one-

versus-rest binary classification task may be much easier than, say, distinguishing be-

tween spam and work e-mails on the one hand and household and private e-mails on

the other.

The one-versus-rest and one-versus-one schemes are the most commonly used

ways to turn binary classifiers into multi-class classifiers. In order to force a decision in

the one-versus-rest scenario we can settle on a class ordering prior to or after learning.

In the one-versus-one scheme we can use voting to arrive at a decision, which is actu-

1This is a slight generalisation of the Hamming distance for binary strings, which counts the number of

positions in which the two strings differ.
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3.1 Handling more than two classes 85

ally equivalent to distance-based decoding as demonstrated by the following example.

Example 3.2 (One-versus-one voting). A one-versus-one code matrix for k = 4

classes is as follows: ⎛
⎜⎜⎜⎜⎝
+1 +1 +1 0 0 0

−1 0 0 +1 +1 0

0 −1 0 −1 0 +1

0 0 −1 0 −1 −1

⎞
⎟⎟⎟⎟⎠

Suppose our six pairwise classifiers predict w = +1 −1 +1 −1 +1 +1. We can

interpret this as votes for C1 – C3 – C1 – C3 – C2 – C3; i.e., three votes for C3, two

votes for C1 and one vote for C2. More generally, the i -th classifier’s vote for the

j -th class can be expressed as (1+wi c j i )/2, where c j i is the entry in the j -th row

and i -th column of the code matrix. However, this overcounts the 0 entries in the

code matrix; since every class participates in k−1 pairwise binary tasks, and there

are l = k(k −1)/2 tasks, the number of zeros in every row is k(k −1)/2− (k −1)=
(k−1)(k−2)/2= l (k−2)/k (3 in our case). For each zero we need to subtract half

a vote, so the number of votes for C j is

v j =
(

l∑
i=1

1+wi c j i

2

)
− l

k−2

2k
=
(

l∑
i=1

wi c j i −1

2

)
+ l − l

k−2

2k

=−d j + l
2k−k+2

2k
= (k−1)(k+2)

4
−d j

where d j = ∑i (1−wi c j i )/2 is the bit-wise distance we used earlier. In other

words, the distance and number of votes for each class sum to a constant de-

pending only on the number of classes; with three classes this is 4.5. This can

be checked by noting that the distance between w and the first code word is 2.5

(two votes for C1); with the second code word, 3.5 (one vote for C2); with the third

code word, 1.5 (three votes for C3); and 4.5 with the fourth code word (no votes).

If our binary classifiers output scores, we can take these into account as follows. As

before we assume that the sign of the scores si indicates the class. We can then use

the appropriate entry in the code matrix c j i to calculate a margin zi = si c j i , which we

feed into a loss function L (margins and loss functions were discussed in Section 2.2).

We thus define the distance between a vector of scores s and the j -th code word c j as

d(s,c j )=∑i L(si c j i ), and we assign the class which minimises this distance. This way

of arriving at a multi-class decision from binary scores is called loss-based decoding.
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86 3. Beyond binary classification

Example 3.3 (Loss-based decoding). Continuing the previous example, sup-

pose the scores of the six pairwise classifiers are (+5,−0.5,+4,−0.5,+4,+0.5).

This leads to the following margins, in matrix form:

⎛
⎜⎜⎜⎜⎝
+5 −0.5 +4 0 0 0

−5 0 0 −0.5 +4 0

0 +0.5 0 +0.5 0 +0.5

0 0 −4 0 −4 −0.5

⎞
⎟⎟⎟⎟⎠

Using 0–1 loss we ignore the magnitude of the margins and thus predict C3 as in

the voting-based scheme of Example 3.2. Using exponential loss L(z)= exp(−z),

we obtain the distances (4.67,153.08,4.82,113.85). Loss-based decoding would

therefore (just) favour C1, by virtue of its strong wins against C2 and C4; in con-

trast, all three wins of C3 are with small margin.

It should be noted that loss-based decoding assumes that each binary classifier scores

on the same scale.

Multi-class scores and probabilities

If we want to calculate multi-class scores and probabilities from binary classifiers, we

have a number of different options.

� We can use the distances obtained by loss-based decoding and turn them into

scores by means of some appropriate transformation, just as we turned bit-wise

distances into votes in Example 3.2. This method is applicable if the binary clas-

sifiers output calibrated scores on a single scale.

� Alternatively, we can use the output of each binary classifier as features (real-

valued if we use the scores, binary if we only use the predicted class) and train a

model that can produce multi-class scores, such as naive Bayes or tree models.

This method is generally applicable but requires additional training.

� A simple alternative that is also generally applicable and often produces satis-

factory results is to derive scores from coverage counts: the number of examples

of each class that are classified as positive by the binary classifer. Example 3.4

illustrates this.
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3.1 Handling more than two classes 87

Example 3.4 (Coverage counts as scores). Suppose we have three classes and

three binary classifiers which either predict positive or negative (there is no reject

option). The first classifier classifies 8 examples of the first class as positive, no

examples of the second class, and 2 examples of the third class. For the second

classifier these counts are 2, 17 and 1, and for the third they are 4, 2 and 8. Sup-

pose a test instance is predicted as positive by the first and third classifiers. We

can add the coverage counts of these two classifiers to obtain a score vector of

(12,2,10). Likewise, if all three classifiers ‘fire’ for a particular test instance (i.e.,

predict positive), the score vector is (14,19,11).

We can describe this scheme conveniently using matrix notation:

(
1 0 1

1 1 1

)⎛⎜⎝
8 0 2

2 17 1

4 2 8

⎞
⎟⎠=
(

12 2 10

14 19 11

)
(3.1)

The middle matrix contains the class counts (one row for each classifier). The left

2-by-3 matrix contains, for each example, a row indicating which classifiers fire

for that example. The right-hand side then gives the combined counts for each

example.

With l binary classifiers, this scheme divides the instance space into up to 2l regions.

Each of these regions is assigned its own score vector, so in order to obtain diverse

scores l should be reasonably large.

Once we have multi-class scores, we can ask the familiar question of how good

these are. As we have seen in Section 2.1, an important performance index of a binary

scoring classifier is the area under the ROC curve or AUC, which is the proportion of

correctly ranked positive–negative pairs. Unfortunately ranking does not have a di-

rect multi-class analogue, and so the most obvious thing to do is to calculate the aver-

age AUC over binary classification tasks, either in a one-versus-rest or one-versus-one

fashion. For instance, the one-versus-rest average AUC estimates the probability that,

taking a uniformly drawn class as positive, a uniformly drawn example from that class

gets a higher score than a uniformly drawn example over all other classes. Notice that

the ‘negative’ is more likely to come from the more prevalent classes; for that reason

the positive class is sometimes also drawn from a non-uniform distribution in which

each class is weighted with its prevalence in the test set.
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88 3. Beyond binary classification

Example 3.5 (Multi-class AUC). Assume we have a multi-class scoring classifier

that produces a k-vector of scores ŝ(x)= (ŝ1(x), . . . , ŝk (x)) for each test instance x.

By restricting attention to ŝi (x) we obtain a scoring classifier for class Ci against

the other classes, and we can calculate the one-versus-rest AUC for Ci in the nor-

mal way.

By way of example, suppose we have three classes, and the one-versus-rest

AUCs come out as 1 for the first class, 0.8 for the second class and 0.6 for the third

class. Thus, for instance, all instances of class 1 receive a higher first entry in their

score vectors than any of the instances of the other two classes. The average

of these three AUCs is 0.8, which reflects the fact that, if we uniformly choose

an index i , and we select an instance x uniformly among class Ci and another

instance x ′ uniformly among all instances not from Ci , then the expectation that

ŝi (x)> ŝi (x ′) is 0.8.

Suppose now C1 has 10 instances, C2 has 20 and C3 70. The weighted average

of the one-versus-rest AUCs is then 0.68: that is, if we uniformly choose x without

reference to the class, and then choose x ′ uniformly from among all instances not

of the same class as x ′, the expectation that ŝi (x) > ŝi (x ′) is 0.68. This is lower

than before, because it is now more likely that a random x comes from class C3,

whose scores do a worse ranking job.

We can obtain similar averages from one-versus-one AUCs. For instance, we can

define AUCi j as the AUC obtained using scores ŝi to rank instances from classes Ci and

C j . Notice that ŝ j may rank these instances differently, and so AUC j i 
= AUCi j . Taking

an unweighted average over all i 
= j estimates the probability that, for uniformly cho-

sen classes i and j 
= i , and uniformly chosen x ∈Ci and x ′ ∈C j , we have ŝi (x)> ŝi (x ′).

The weighted version of this estimates the probability that the instances are correctly

ranked if we don’t pre-select the class.

The simplest way to turn multi-class scores into classifications is by assigning the

class that achieves the maximum score – that is, if ŝ(x) = (ŝ1(x), . . . , ŝk (x)) is the score

vector assigned to instance x and m = argmaxi ŝi (x), then the class assigned to x is

ĉ(x)=Cm . However, just as in the two-class case such a fixed decision rule can be sub-

optimal, and instead we may want to learn it from data. What this means is that we

want to learn a weight vector w= (w1, . . . , wk ) to adjust the scores and assign ĉ(x)=Cm′

with m′ = argmaxi wi ŝi (x) instead.2 Since the weight vector can be multiplied with

a constant without affecting m′, we can fix one of the degrees of freedom by setting

2Notice that with two classes such a weighted decision rule assigns class C1 if w1 ŝ1(x) > w2 ŝ2(x), or

equivalently, ŝ1(x)/ŝ2(x) > w2/w1. This can be interpreted as a threshold on suitably transformed scores,
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(0,0,1)

(1,0,0)

(0,1,0)

3

1 2

Figure 3.1. (left) Triples of probabilistic scores represented as points in an equilateral triangle

connecting three corners of the unit cube. (right) The arrows show how the weights are adjusted

from the initial equal weights (dotted lines), first by optimising the separation of C2 against C1

(dashed line), then by optimising the separation of C3 against the other two classes (solid lines).

The end result is that the weight of C1 is considerably decreased, to the benefit of the other two

classes.

w1 = 1. Unfortunately, finding a globally optimal weight vector is computationally in-

tractable. A heuristic approach that works well in practice is to first learn w2 to opti-

mally separate C2 from C1 as in the two-class case; then learn w3 to separate C3 from

C1∪C2, and so on.

Example 3.6 (Reweighting multi-class scores). We illustrate the proce-

dure for a three-class probabilistic classifier. The probability vectors

p̂(x) = (p̂1(x), p̂2(x), p̂3(x)
)

can be thought of as points inside the unit cube.

Since the probabilities add up to 1, the points lie in an equilateral triangle

connecting three corners of the cube (Figure 3.1 (left)). Each corner of this

triangle represents one of the classes; the probability assigned to a particular

class in a given point is proportional to the distance to the opposite side.

Any decision rule of the form argmaxi wi ŝi (x) cuts the triangle in three areas

using lines perpendicular to the sides. For the unweighted decision rule these

lines intersect in the triangle’s centre of mass (Figure 3.1 (right)). Optimising the

separation between C2 against C1 means moving this point along a line paral-

lel to the base of the triangle, moving away from the class that receives greater

weight. Once the optimal point on this line is found, we optimise the separation

so the weighted decision rule indeed generalises the two-class decision threshold.
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90 3. Beyond binary classification

of C3 against the first two classes by moving in a direction perpendicular to the

previous line.

Finally, we briefly look at the issue of obtaining calibrated multi-class probabilities.

This is not a solved problem and several approaches have been suggested in the lit-

erature. One of the simplest and most robust of these calculates normalised coverage

counts. Specifically, we take the summed or averaged coverage counts of all classifiers

that fire, and normalise these to obtain probability vectors whose components sum to

one. Equivalently, we can obtain probability vectors for each classifier separately, and

take a weighted average of these with weights determined by the relative coverage of

each classifier.

Example 3.7 (Multi-class probabilities from coverage counts). In Example 3.4

on p.87 we can divide the class counts by the total number of positive predic-

tions. This results in the following class distributions: (0.80,0,0.20) for the first

classifier, (0.10,0.85,0.05) for the second classifier, and (0.29,0.14,0.57) for the

third. The probability distribution associated with the combination of the first

and third classifiers is

10

24
(0.80,0,0.20)+ 14

24
(0.29,0.14,0.57)= (0.50,0.08,0.42)

which is the same distribution as obtained by normalising the combined counts

(12,2,10). Similarly, the distribution associated with all three classifiers is

10

44
(0.80,0,0.20)+ 20

44
(0.10,0.85,0.05)+ 14

44
(0.29,0.14,0.57)= (0.32,0.43,0.25)

Matrix notation describes this very succinctly as

(
10/24 0 14/24

10/44 20/44 14/44

)⎛⎜⎝
0.80 0.00 0.20

0.10 0.85 0.05

0.29 0.14 0.57

⎞
⎟⎠=
(

0.50 0.08 0.42

0.32 0.43 0.25

)

The middle matrix is a row-normalised version of the middle matrix in Equation

3.1. Row normalisation works by dividing each entry by the sum of the entries in

the row in which it occurs. As a result the entries in each row sum to one, which

means that each row can be interpreted as a probability distribution. The left

matrix combines two pieces of information: (i) which classifiers fire for each ex-

ample (for instance, the second classifier doesn’t fire for the first example); and
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3.2 Regression 91

(ii) the coverage of each classifier. The right-hand side then gives the class dis-

tribution for each example. Notice that the product of row-normalised matrices

again gives a row-normalised matrix.

In this section we have seen that many interesting issues arise, once we have more

than two classes. The general way of addressing a k-class learning problem with binary

classifiers is to (i) break the problem up into l binary learning problems; (ii) train l bi-

nary classifiers on two-class versions of the original data; and (iii) combine the predic-

tions from these l classifiers into a single k-class prediction. The most common ways

to do the first and third step is one-versus-one or one-versus-rest, but the use of code

matrices gives the opportunity of implementing other schemes. We have also looked at

ways of obtaining multi-class scores and probabilities from the binary classifiers, and

discussed a heuristic method to calibrate the multi-class decision rule by reweighting.

This concludes our discussion of classification, arguably the most common task in

machine learning. In the remainder of this chapter we will look at one more supervised

predictive task in the next section, before we turn our attention to unsupervised and

descriptive learning in Section 3.3.

3.2 Regression

In all the tasks considered so far – classification, scoring, ranking and probability esti-

mation – the label space was a discrete set of classes. In this section we will consider

the case of a real-valued target variable. A function estimator, also called a regressor, is

a mapping f̂ : X →R. The regression learning problem is to learn a function estimator

from examples (xi , f (xi )). For instance, we might want to learn an estimator for the

Dow Jones index or the FTSE 100 based on selected economic indicators.

While this may seem a natural and innocuous generalisation of discrete classifica-

tion, it is not without its consequences. For one thing, we switched from a relatively

low-resolution target variable to one with infinite resolution. Trying to match this pre-

cision in the function estimator will almost certainly lead to overfitting – besides, it is

highly likely that some part of the target values in the examples is due to fluctuations

that the model is unable to capture. It is therefore entirely reasonable to assume that

the examples are noisy, and that the estimator is only intended to capture the general

trend or shape of the function.
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Figure 3.2. (left) Polynomials of different degree fitted to a set of five points. From bottom to

top in the top right-hand corner: degree 1 (straight line), degree 2 (parabola), degree 3, degree 4

(which is the lowest degree able to fit the points exactly), degree 5. (right) A piecewise constant

function learned by a grouping model; the dotted reference line is the linear function from the

left figure.

Example 3.8 (Line fitting example). Consider the following set of five points:

x y

1.0 1.2

2.5 2.0

4.1 3.7

6.1 4.6

7.9 7.0

We want to estimate y by means of a polynomial in x. Figure 3.2 (left) shows the

result for degrees of 1 to 5 using �linear regression, which will be explained in

Chapter 7. The top two degrees fit the given points exactly (in general, any set

of n points can be fitted by a polynomial of degree no more than n−1), but they

differ considerably at the extreme ends: e.g., the polynomial of degree 4 leads to

a decreasing trend from x = 0 to x = 1, which is not really justified by the data.

To avoid overfitting the kind of data exemplified in Example 3.8 it is advisable to choose

the degree of the polynomial as low as possible – often a simple linear relationship is

assumed.

Regression is a task where the distinction between grouping and grading models

comes to the fore. The philosophy of grouping models is to cleverly divide the instance

space into segments and learn a local model in each segment that is as simple as pos-

sible. For instance, in decision trees the local model is a majority class classifier. In the
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same spirit, to obtain a regression tree we could predict a constant value in each leaf.

In the univariate problem of Example 3.8 this would result in the piecewise constant

curve of Figure 3.2 (right). Notice that such a grouping model is able to fit the given

points exactly, just as a polynomial of sufficiently high degree, and the same caveat

regarding overfitting applies.

We can understand the phenomenon of overfitting a bit better by looking at the

number of parameters that each model has. An n-degree polynomial has n+1 param-

eters: e.g., a straight line y = a ·x+b has two parameters, and the polynomial of degree

4 that fits the five points exactly has five parameters. A piecewise constant model with

n segments has 2n − 1 parameters: n y-values and n − 1 x-values where the ‘jumps’

occur. So the models that are able to fit the points exactly are the models with more

parameters. A rule of thumb is that, to avoid overfitting, the number of parameters esti-

mated from the data must be considerably less than the number of data points.

We have seen that classification models can be evaluated by applying a loss func-

tion to the margins, penalising negative margins (misclassifications) and rewarding

positive margins (correct classifications). Regression models are evaluated by apply-

ing a loss function to the residuals f (x)− f̂ (x). Unlike classification loss functions a

regression loss function will typically be symmetric around 0 (although it is conceiv-

able that positive and negative residuals have different weights). The most common

choice here is to take the squared residual as the loss function. This has the advan-

tage of mathematical convenience, and can also be justified by the assumption that

the observed function values are the true values contaminated by additive, normally

distributed noise. However, it is well-known that squared loss is sensitive to outliers:

you can see an example of this in Figure 7.2 on p.199.

If we underestimate the number of parameters of the model, we will not be able

to decrease the loss to zero, regardless of how much training data we have. On the

other hand, with a larger number of parameters the model will be more dependent on

the training sample, and small variations in the training sample can result in a con-

siderably different model. This is sometimes called the bias–variance dilemma: a low-

complexity model suffers less from variability due to random variations in the training

data, but may introduce a systematic bias that even large amounts of training data

can’t resolve; on the other hand, a high-complexity model eliminates such bias but can

suffer non-systematic errors due to variance.

We can make this a bit more precise by noting that expected squared loss on a train-

ing example x can be decomposed as follows:3

E
[(

f (x)− f̂ (x)
)2]= ( f (x)−E

[
f̂ (x)
])2+E

[(
f̂ (x)−E

[
f̂ (x)
])2]

(3.2)

3The derivation expands the squared difference term, making use of the linearity of E [·] and that E
[

f (x)
]=

f (x), after which terms can be rearranged to yield Equation 3.2.
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94 3. Beyond binary classification

Figure 3.3. A dartboard metaphor illustrating the concepts of bias and variance. Each dartboard

corresponds to a different learning algorithm, and each dart signifies a different training sample.

The top row learning algorithms exhibit low bias, staying close to the bull’s eye (the true function

value for a particular x) on average, while the ones on the bottom row have high bias. The left

column shows low variance and the right column high variance.

It is important to note that the expectation is taken over different training sets and

hence different function estimators, but the learning algorithm and the example are

fixed. The first term on the right-hand side in Equation 3.2 is zero if these function es-

timators get it right on average; otherwise the learning algorithm exhibits a systematic

bias of some kind. The second term quantifies the variance in the function estimates

f̂ (x) as a result of variations in the training set. Figure 3.3 illustrates this graphically

using a dartboard metaphor. The best situation is clearly achieved in the top left-hand

corner of the figure, but in practice this is rarely achievable and we need to settle either

for a low bias and a high variance (e.g., approximating the target function by a high-

degree polynomial) or for a high bias and a low variance (e.g., using a linear approx-

imation). We will return to the bias–variance dilemma at several places in the book:

although the decomposition is not unique for most loss functions other than squared

loss, it serves as a useful conceptual tool for understanding over- and underfitting.
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3.3 Unsupervised and descriptive learning

So far, we have concerned ourselves exclusively with supervised learning of predictive

models. That is, we learn a mapping from instance space X to output space Y using

labelled examples (x, l (x)) ∈X ×L (or a noisy version thereof). This kind of learning

is called ‘supervised’ because of the presence of the target variable l (x) in the train-

ing data, which has to be supplied by a ‘supervisor’ or ‘teacher’ with some knowledge

about the true labelling function l . Furthermore, the models are called ‘predictive’

because the outputs produced by the models are either direct estimates of the target

variable or provide us with further information about its most likely value. Thus, we

have only paid attention to the top-left entry in Table 3.1. In the remainder of this

chapter we will briefly introduce the other three learning settings by means of selected

examples:

� unsupervised learning of a predictive model in the form of predictive clustering;

� unsupervised learning of a descriptive model, exemplified by descriptive clus-

tering and association rule discovery;

� supervised learning of a descriptive model, with subgroup discovery as practical

realisation.

Predictive model Descriptive model

Supervised learning classification, regression subgroup discovery

Unsupervised learning predictive clustering descriptive clustering,

association rule discovery

Table 3.1. The learning settings indicated in bold are introduced in the remainder of this chapter.

It is worthwhile reflecting for a moment on the nature of descriptive learning. The

task here is to come up with a description of the data – to produce a descriptive model.

It follows that the task output, being a model, is of the same kind as the learning out-

put. Furthermore, it makes no sense to employ a separate training set to produce the

descriptive model, as we want the model to describe our actual data rather than some

hold-out set. In other words, in descriptive learning the task and learning problem co-

incide (Figure 3.4). This makes some things harder: for example, it is unlikely that a

‘ground truth‘ or ‘gold standard’ is available to test the descriptive models against, and

hence evaluating descriptive learning algorithms is much less straightforward than

evaluating predictive ones. On the other hand, one could say that descriptive learn-

ing leads to the discovery of genuinely new knowledge, and it is often situated at the

intersection of machine learning and data mining.
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Task

Descriptive 

model
Features

Domain 

objects

Discovery 
algorithm

Data

Learning problem

Figure 3.4. In descriptive learning the task and learning problem coincide: we do not have a

separate training set, and the task is to produce a descriptive model of the data.

Predictive and descriptive clustering

The distinction between predictive and descriptive models can be clearly observed in

clustering tasks. One way to understand clustering is as learning a new labelling func-

tion from unlabelled data. So we could define a ‘clusterer’ in the same way as a classi-

fier, namely as a mapping q̂ : X →C , where C = {C1,C2, . . . ,Ck } is a set of new labels.

This corresponds to a predictive view of clustering, as the domain of the mapping is

the entire instance space, and hence it generalises to unseen instances. A descriptive

clustering model learned from given data D ⊆X would be a mapping q̂ : D →C whose

domain is D rather than X . In either case the labels have no intrinsic meaning, other

than to express whether two instances belong to the same cluster. So an alternative

way to define a clusterer is as an equivalence relation q̂ ⊆ X ×X or q̂ ⊆ D ×D (see

Background 2.1 on p.51 for the definition of an equivalence relation), or, equivalently,

as a partition of X or D .

The distinction between predictive and descriptive clustering is subtle and not al-

ways articulated clearly in the literature. Several well-known clustering algorithms in-

cluding �K -means (discussed in more detail in Chapter 8) learn a predictive cluster-

ing. Thus, they learn a clustering model from training data that can subsequently be

used to assign new data to clusters. This is in keeping with our distinction between the

task (clustering arbitrary data) and the learning problem (learning a clustering model

from training data). However, this distinction isn’t really applicable to descriptive clus-

tering methods: here, the clustering model learned from D can only be used to cluster

D . In effect, the task becomes learning a suitable clustering model for the given data.

Without any further information, any clustering is as good as any other. What dis-

tinguishes a good clustering is that the data is partitioned into coherent groups or clus-

ters. ‘Coherence’ here means that, on average, two instances from the same cluster

have more in common – are more similar – than two instances from different clusters.

This assumes some way of assessing the similarity or, as is usually more convenient,

the dissimilarity or distance of an arbitrary pair of instances. If our features are nu-

merical, i.e., X = Rd , the most obvious distance measure is Euclidean distance, but
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other choices are possible, some of which generalise to non-numerical features. Most

distance-based clustering methods depend on the possibility of defining a ‘centre of

mass’ or exemplar for an arbitrary set of instances, such that the exemplar minimises

some distance-related quantity over all instances in the set, called its scatter. A good

clustering is then one where the scatter summed over each cluster – the within-cluster

scatter – is much smaller than the scatter of the entire data set.

This analysis suggests a definition of the clustering problem as finding a partition

D = D1� . . .�DK that minimises the within-cluster scatter. However, there are a few

issues with this definition:

� the problem as stated has a trivial solution: set K = |D| so that each ‘cluster’

contains a single instance from D and thus has zero scatter;

� if we fix the number of clusters K in advance, the problem cannot be solved effi-

ciently for large data sets (it is NP-hard).

The first problem is the clustering equivalent of overfitting the training data. It could be

dealt with by penalising large K . Most approaches, however, assume that an educated

guess of K can be made. This leaves the second problem, which is that finding a glob-

ally optimal solution is intractable for larger problems. This is a well-known situation

in computer science and can be dealt with in two ways:

� by applying a heuristic approach, which finds a ‘good enough’ solution rather

than the best possible one;

� by relaxing the problem into a ‘soft’ clustering problem, by allowing instances a

degree of membership in more than one cluster.

Most clustering algorithms follow the heuristic route, including the K -means algo-

rithm. The soft clustering approach can be addressed in various ways, including

�Expectation-Maximisation (Section 9.4) and �matrix decomposition (Section 10.3).

Figure 3.5 illustrates the heuristic and soft clustering approaches. Notice that a soft

clustering generalises the notion of a partition, in the same way that a probability esti-

mator generalises a classifier.

The representation of clustering models depends on whether they are predictive,

descriptive or soft. A descriptive clustering of n data points into c clusters could be

represented by a partition matrix: an n-by-c binary matrix with exactly one 1 in each

row (and at least one 1 in each column, otherwise there would be empty clusters). A

soft clustering corresponds to a row-normalised n-by-c matrix. A predictive clustering

partitions the whole instance space and is therefore not suitable for a matrix represen-

tation. Typically, predictive clustering methods represent a cluster by their centroid or

exemplar: in that case, the cluster boundaries are a set of straight lines called a Voronoi
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Figure 3.5. (left) An example of a predictive clustering. The coloured dots were sampled from

three bivariate Gaussians centred at (1,1), (1,2) and (2,1). The crosses and solid lines are the

cluster exemplars and cluster boundaries found by 3-means. (right) A soft clustering of the

same data found by matrix decomposition.

diagram (Figure 3.5 (left)). More generally, each cluster could be represented by a prob-

ability density, with the boundaries occurring where densities of neighbouring clusters

are equal; this would allow non-linear cluster boundaries.

Example 3.9 (Representing clusterings). The cluster exemplars in Figure 3.5

(left) can be given as a c-by-2 matrix:

⎛
⎜⎝

0.92 0.93

0.98 2.02

2.03 1.04

⎞
⎟⎠

The following n-by-c matrices represent a descriptive clustering (left) and a soft

clustering (right) of given data points:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0

0 1 0

1 0 0

0 0 1

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.40 0.30 0.30

0.40 0.51 0.09

0.44 0.29 0.27

0.35 0.08 0.57

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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An interesting question is how clustering models should be evaluated. In the ab-

sence of labelled data we cannot use a test set in the same way as we would in classi-

fication or regression. We can use within-cluster scatter as a measure of the quality of

a clustering. For a predictive clustering it is possible to evaluate within-cluster scatter

on hold-out data that wasn’t used to build the clusters in the first place. An alternative

way of evaluating a clustering arises if we have some knowledge about instances that

should, or should not, be clustered together.

Example 3.10 (Evaluating clusterings). Suppose we have five test instances that

we think should be clustered as {e1,e2}, {e3,e4,e5}. So out of the 5·4= 20 possible

pairs, 4 are considered ‘must-link’ pairs and the other 16 as ‘must-not-link’ pairs.

The clustering to be evaluated clusters these as {e1,e2,e3}, {e4,e5} – so two of the

must-link pairs are indeed clustered together (e1–e2, e4–e5), the other two are

not (e3–e4, e3–e5), and so on.

We can tabulate this as follows:

Are together Are not together

Should be together 2 2 4

Should not be together 2 14 16

4 16 20

We can now treat this as a two-by-two contingency table, and evaluate it accord-

ingly. For instance, we can take the proportion of pairs on the ‘good’ diagonal,

which is 16/20= 0.8. In classification we would call this accuracy, but in the clus-

tering context this is known as the Rand index.

Note that there are usually many more must-not-link pairs than must-link pairs,

and it is a good idea to compensate for this. One way to do that is to calculate the har-

monic mean of precision and recall (the latter the same as true positive rate, see Table

2.3 on p.57), which in the information retrieval literature is known as the F-measure.4

Precision is calculated on the left column of the contingency table and recall on the top

row; as a result the bottom right-hand cell (the must-not-link pairs that are correctly

not clustered together) are ignored, which is precisely what we want. In the example

both precision and recall are 2/4 = 0.5, and so is the F-measure. This shows that the

relatively good Rand index is mostly accounted for by the must-not-link pairs that end

up in different clusters.

4The harmonic mean of precision and recall is 2
1/prec+1/rec =

2prec·rec
prec+rec . The harmonic mean is appropriate

for averaging ratios; see Background 10.1 on p.300.
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Other descriptive models

To wrap up our catalogue of machine learning tasks we will briefly look at two other

descriptive models, one learned in a supervised fashion from labelled data and the

other entirely unsupervised.

Subgroup models don’t try to approximate the labelling function, but rather aim at

identifying subsets of the data exhibiting a class distribution that is significantly differ-

ent from the overall population. Formally, a subgroup is a mapping ĝ : D → {true, false}

and is learned from a set of labelled examples (xi , l (xi )), where l : X → C is the true

labelling function. Note that ĝ is the characteristic function of the set G = {x ∈D|ĝ (x)=
true}, which is called the extension of the subgroup. Note also that we used the given

data D rather than the whole instance space X for the domain of a subgroup, since it

is a descriptive model.

Example 3.11 (Subgroup discovery). Imagine you want to market the new ver-

sion of a successful product. You have a database of people who have been sent

information about the previous version, containing all kinds of demographic,

economic and social information about those people, as well as whether or not

they purchased the product. If you were to build a classifier or ranker to find the

most likely customers for your product, it is unlikely to outperform the major-

ity class classifier (typically, relatively few people will have bought the product).

However, what you are really interested in is finding reasonably sized subsets

of people with a proportion of customers that is significantly higher than in the

overall population. You can then target those people in your marketing cam-

paign, ignoring the rest of your database.

A subgroup is essentially a binary classifier, and so one way to develop a subgroup

discovery system is to adapt an existing classifier training algorithm. This may not in-

volve much more than adapting the search heuristic to reflect the specific objective of

a subgroup (to identify subsets of the data with a significantly different class distribu-

tion). However, this would only give us a single subgroup. Rule learners are particularly

appropriate for subgroup discovery since every rule can be interpreted as a separate

subgroup.

How do we distinguish interesting subgroups from uninteresting ones? This can be

determined by constructing a contingency table similar to the ones we use in binary

classification. For three classes such a table looks as follows:
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In subgroup Not in subgroup

Labelled C1 g1 C1− g1 C1

Labelled C2 g2 C2− g2 C2

Labelled C3 g3 C3− g3 C3

|G| |D|− |G| |D|
where gi = |{x ∈D|ĝ (x) = true ∧ l (x) =Ci }| and Ci is shorthand for |{x ∈D|l (x) =Ci }|.
From here there are a number of possibilities. One idea is to measure the extent to

which the class distribution in the left column is different from the class distribution

in the row marginals (the right-most column). As we shall see later (Example 6.6 on

p.180), this boils down to using an adaptation of average recall as evaluation measure.

Another idea is to treat the subgroup as a decision tree split and borrow splitting crite-

ria from �decision tree learning (Section 5.1). It is also possible to use the χ2 statistic to

evaluate the extent to which each gi differs from what would be expected on the basis

of the marginals Ci and |G|. What these evaluation measures have in common is that

they prefer different class distributions in the subgroup and its complement from the

overall distribution in D , and also larger subgroups over smaller ones. Most of these

measures are actually symmetric in that they assign the same evaluation to a subgroup

and its complement, from which it follows that they also prefer larger complements

over smaller ones – in other words, they prefer subgroups that are about half the size

of the data (other things being equal).

I will now give an example of unsupervised learning of descriptive models. Asso-

ciations are things that usually occur together. For example, in market basket analysis

we are interested in items frequently bought together. An example of an association

rule is ·if beer then crisps·, stating that customers who buy beer tend to also buy crisps.

Association rule discovery starts with identifying feature values that often occur to-

gether. There is some superficial similarity with subgroups here, but these so-called

frequent item sets are identified in a purely unsupervised manner, without need for

labelled training data. Item sets then give rise to rules describing co-occurrences be-

tween feature values. These association rules are if-then rules similar to classification

rules, except that the then-part isn’t restricted to a particular class variable and can

contain any feature (or even several features). Rather than adapting a given learning

algorithm we need a new algorithm that first finds frequent item sets and then turns

them into association rules. The process needs to take into account a mix of statistics

in order to avoid generating trivial rules.

Example 3.12 (Association rule discovery). In a motorway service station most

clients will buy petrol. This means that there will be many frequent item sets
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involving petrol, such as {newspaper,petrol}. This might suggest the construc-

tion of an association rule ·if newspaper then petrol· – however, this is predictable

given that {petrol} is already a frequent item set (and clearly at least as fre-

quent as {newspaper,petrol}). Of more interest would be the converse rule

·if petrol then newspaper· which expresses that a considerable proportion of the

people buying petrol also buy a newspaper.

We clearly see a relationship with subgroup discovery in that association rules also

identify subsets that have a different distribution when compared with the full data

set, namely with respect to the then-part of the rule. The difference is that the then-

part is not a fixed target variable but it is found as part of the discovery process. Both

subgroup discovery and association rule discovery will be discussed in the context of

rule learning in Section 6.3.

3.4 Beyond binary classification: Summary and further reading

While binary classification is an important task in machine learning, there are many

other relevant tasks and in this chapter we looked at a number of them.

� In Section 3.1 we considered classification tasks with more than two classes. We

shall see in the coming chapters that some models handle this situation very

naturally, but if our models are essentially two-class (such as linear models) we

have to approach it via a combination of binary classification tasks. One key idea

is the use of a code matrix to combine the results of several binary classifiers,

as proposed by Dietterich and Bakiri (1995) under the name ‘error-correcting

output codes’ and developed by Allwein et al. (2000). We also looked at ways

to obtain scores for more than two classes and to evaluate those scores using

multi-class adaptations of the area under the ROC curve. One of these multi-

class extensions of AUC was proposed and analysed by Hand and Till (2001). The

heuristic procedure for reweighting multi-class scores in Example 3.6 on p.89

was proposed by Lachiche and Flach (2003); Bourke et al. (2008) demonstrated

that it achieves good performance in comparison with a number of alternative

approaches.

� Section 3.2 was devoted to regression: predicting a real-valued target value. This

is a classical data analysis problem that was already studied by Carl Friedrich

Gauss in the late eighteenth century. It is natural to use a quadratic loss func-

tion on the residuals, although this carries with it a certain sensitivity to out-

liers. Grading models are most common here, although it is also possible to
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learn a grouping model that divides the instance space into segments that admit

a simple local model. Since it is often possible to fit a set of points exactly (e.g.,

with a high-degree polynomial), care must be taken to avoid overfitting. Finding

the right balance between over- and underfitting is sometimes called the bias–

variance dilemma; an extensive discussion (including the dartboard metaphor)

can be found in Rajnarayan and Wolpert (2010).

� In Section 3.3 we considered unsupervised and descriptive learning tasks. We

saw that in descriptive learning the task and learning problem coincide. A clus-

tering model can be either predictive or descriptive: in the former case it is meant

to construct classes in a wholly unsupervised manner, after which the learned

model can be applied to unseen data in the usual way. Descriptive clustering,

on the other hand, only applies to the data at hand. It should be noted that

the distinction between predictive and descriptive clustering is not universally

recognised in the literature; sometimes the term ‘predictive clustering’ is used

in the slightly different sense of clustering simultaneously on the target variable

and the features (Blockeel et al., 1998).

� Like descriptive clustering, association rule discovery is another descriptive task

which is wholly unsupervised. It was introduced by Agrawal, Imielinski and Swami

(1993) and has given rise to a very large body of work in the data mining litera-

ture. Subgroup discovery is a form of supervised learning of descriptive mod-

els aimed at finding subsets of the data with a significantly different distribu-

tion of the target variable. It was first studied by Klösgen (1996) and extended

to the more general notion of exceptional model mining in order to deal with,

e.g., real-valued target variables by Leman et al. (2008). More generally, unsu-

pervised learning of descriptive models is a large subject that was pioneered by

Tukey (1977).

�
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