4  Deep Learning Models

This chapter addresses the background knowledge of deep learning theories and algo-
rithms that is used as a foundation for developing speaker recognition solutions to meet
different issues in implementation of real-world systems. We will start from an unsuper-
vised learning machine called the restricted Boltzmann machine (RBM), which serves
as a building block for deep belief networks and deep Boltzmann machines, which
will be introduced in Section 4.3. Discriminative fine-tuning will be applied to build
a supervised model with good performance for classification. RBM will be described in
Section 4.1. Then, the algorithm for constructing and training a supervised deep neural
network (DNN) will be addressed in Section 4.2. However, training a reliable DNN
is challenging. Section 4.4 mentions the algorithm of stacking autoencoder, which is
performed to build a deep model based on a two-layer structural module in a layer-
by-layer fashion. Furthermore, in Section 4.3, the deep belief network is introduced
to carry out a procedure of estimating a reliable deep model based on the building
block of RBM. Nevertheless, DNN is not only feasible to build a supervised model
for classification or regression problems in speaker recognition but also applicable to
construct an unsupervised model that serves as generative model for data generation
to deal with data sparseness problem. From this perspective, we introduce two deep
learning paradigms. One is variational auto-encoder as mentioned in Section 4.5 while
the other is the generative adversarial network as provided in Section 4.6. Such general
neural network models can be merged in solving different issues in a speaker recognition
system. At last, this chapter will end in Section 4.7, which addresses the fundamentals
of transfer learning and the solutions based on deep learning. The deep transfer learning
is developed to deal with domain mismatch problem between training and test data.

4.1 Restricted Boltzmann Machine

Restricted Boltzmann machine (RBM) [89, 90] plays a crucial role in building deep
belief networks that are seen as the foundations in deep learning. Basically, RBM is
seen as a bipartite graph that can be represented by an undirected graphical model or
equivalently a bidirectional graphical model in a two-layer structure. One is the visible
layer and the other is the hidden layer. Each connection must connect visible units
v = {v;}}_, with hidden units h = {;}"_ using weight parameters W where bias
parameters {a, b} are usually assumed to be zero for compact notation. Hidden variable
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116 Deep Learning Models

Figure 4.1 A two-layer structure of the restricted Boltzmann machine.

h extracts high-level information from observations v. Unlike the Boltzmann machines,
the name “restricted” is added because there are no connections between two neurons
in the same layer, namely visible-visible or hidden-hidden connections do not exist.
Sparsity is controlled in RBM. RBM structure is depicted in Figure 4.1. There is no
arrows in between-layer connections because these connections are bidirectional. RBM
meets the property that visible units are conditionally independent given hidden units
and vice versa. Or equivalently, the following probabilities are met

p(vih, 0) =[] p(vilh. 0) (4.1)

plv.0) =[] p(h;lv.0) 42)
i

where model parameters 0 = {a,b, W} are used.

411 Distribution Functions

In general, there are two different types of RBM that we usually use in DNN pretraining.
The difference between two types depends on the input data values. First, the Bernoulli-
Bernoulli RBM considers that both visible and hidden units are binary, i.e., either O or 1.
Bernoulli distribution is used to represent the binary units. The conditional distribution
in Bernoulli-Bernoulli RBM is expressed by

pvi=1h.0)=0 |a + Y wih; (4.3)
j

ph; =1|v,0) =0 (b,- +ZWijVi> (4.4)

where w;; denotes the weight between visible units v; and between hidden units %, a;
denotes the visible unit bias, b; denotes the hidden unit bias, @ = {a;,b;, w;;} denotes
the model parameters and

1
14+e*

o(x) = 4.5
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4.1 Restricted Boltzmann Machine 117

denotes a logistic sigmoid function. The energy [91] of such a joint configuration of
visible units and hidden units is given by

\% H V H
EW.h|0) == awi— Y bjhj— Y Y wijvihj, (4.6)
i=1 j=1

i=1 j=1

which is accumulated from V' units v; in visible layer, H units /4 ; in hidden layer and
V - H mutual connections between two layers by using the corresponding parameters
a;, bj, and Wij.

On the other hand, the Gaussian-Bernoulli RBM is developed for the case that hidden
units are binary while input units follow a linear model with Gaussian noise. This RBM
deals with the real-valued data. Speech features are treated as real-valued inputs to
neural networks. Namely, for Gaussian-Bernoulli RBM, the conditional distribution is
given by

phj=1v,0) =0 (b + Z —w,,> (4.7)

2
pi=rh.0) =N |ai+0; Y wijhj.0; (4.8)
J
where r is a real value and al.z denotes the the variance of Gaussian noise for visible unit

vi. We usually set al.z = 1 to simplify the implementation. Using Gaussian-Bernoulli
RBM, the energy of a joint configuration is calculated by

E(v,h|0) = Z(V’ i) th —ZZ wlj (4.9)

i=1 lljl

Given the energy functions E(v,h|0) in Egs. 4.6 and 4.9, the energy-based distribution
of visible units v and latent units h is defined in the form

o—E(vh|6)
p(v,h|0) = —Z S EGe) (4.10)
v.h
where the normalization constant or the partition function is defined as

Z(0) =) e EMHO), 4.11)

This joint distribution of v and h is seen as a realization of exponential family.

The marginal likelihood and conditional likelihood are obtained by
V|6 ~E(h|&) 4.12
p(vI0) = — ( 5 Z e (4.12)
v.h 6 —E(v,h|0)

p(hlv,0) = Pvhio) _ ¢ (4.13)

pVIO) T 3 e EWHIO”
h
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In general, p(h|v, ) is an easy and exact calculation for an RBM and p(v|0) is func-
tioned as an empirical likelihood. An RBM is seen as a generative model for observa-
tions v, which is driven by the marginal distribution p(v|@). Correlations between nodes
in v are present in the marginal distribution p(v|@) as shown in Eq. 4.6 or Eq. 4.9.

41.2 Learning Algorithm

According to the maximum likelihood (ML) principle, we maximize the logarithm of
the likelihood function of visible data v to estimate the ML parameters by

O, = argmax log p(v]0). (4.14)
0
To solve this estimation problem, we differentiate the log-likelihood function with

respect to individual parameters in 0 and derive the updating formulas. The derivative
is derived as follows:

3 e Etvh)
dlog [ ——
dlog p(v|0)

00 00

Zd (Z Ze_E(V’h)>
__Z 1 h _ Ze—mv,h)ﬁ
S e Bl 72 20 h 20

h

3 g—E(v,h))
1 (% 192

T Y e B 90 Z 30

h

—Y e EO 3Ez§‘$h) _ Zlie—E(v,h) 3E3(3h)
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- 3 e—E(V.h) 3 e—E(v.h)

h v,h
JE(V,h) JE(V,h)

= hjv,0)( — — h|O) [ —

;;a( \ )( o ) ;;m |)< o )

JE(V,h)
= En~piniv.0) | =5

JE(V,h)
Vi — Eyh~pw,no) | — 50 .

As aresult, by referring to Eq. 4.6, the updating of the three parameters w;;, a;, and b;
in Bernoulli-Bernoulli RBMs can be formulated as

dlog p(v|0)

pwy - ililo = Dihjheo (4.15)
M)i;me)z (viYo — (Vi)oo (4.16)
a;
31 0
% = (hi)o — (h})se 4.17)
J
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4.1 Restricted Boltzmann Machine 119

where the angle brackets () denote the expectations under the distribution either
p(h]v,0) in the first term or p(v,h|@) in the second term. The subscript 0 means
the step number from the original data and co means the step number after doing the
Gibbs sampling steps. The difference between two terms in Egs. 4.15, 4.16, and 4.17 is
seen as a contrastive divergence (CD) between the expectations of v;4 ;, v; or h; with
initialization from visible data v and with calculation after infinite Gibbs sampling.
A Gibbs chain is run continuously with initialization from the data.

The contrastive divergence algorithm [92, 93] is performed to train an RBM. Because
the parameter updating in exact implementation is time-consuming, the so-called k-step
contrastive divergence (CD-k) [92, 94] is applied to speed up the implementation pro-
cedure. In practice, the case k = 1 is used to carry out one step of Gibbs sampling or
Markov-chain Monte Carlo sampling (CD-1), as addressed in Section 2.4, instead of
k = oco. More specifically, the blocked-Gibbs sampling is performed. This trick practi-
cally works well. Correspondingly, the formulas for parameter updating are modified as

al 0
M = (Vihj>0 — (Vihj>l
Iw;j (4.18)
= ]Epdata [V,]’l]] - Epmodel [vlh]] = AW’]

a1l 0
ogap(VI ) — o — i)t (4.19)
ai
a1 0
TEPCID — tho — (4:20)
J

where the subscript 1 means that one step of Gibbs sampling is performed. Figure 4.2
shows the training procedure of RBM based on CD-1 and CD-k. The arrows between
visible layer and hidden layers are used to indicate the sampling steps and directions.
Calculation of (v;h ;) using each individual neuron i in visible layer and neuron j
in hidden layer is performed step by step by starting from (v;&;)o. Step k is seen as a
kind of state k in a Markov chain. A kind of Markov switching is realized in the CD
algorithm.

(data) (reconstruction)

Figure 4.2 Training procedure for a restricted Boltzmann machine using the contrastive
divergence algorithm.

https://doi.org/10.1017/9781108552332.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108552332.005

120 Deep Learning Models

After finding the partial derivatives of log likelihood with respect to three individual
parameters {w;;,a;,b;} using the CD algorithm, the stochastic gradient descent (SGD)
algorithm with momentum is implemented to construct the RBM model as shown in
Algorithm 1. When running the SGD algorithm, the training data are split into mini-
batches. SGD algorithm proceeds with one minibatch at a time and runs a number of
epochs. Meaningfully, the expectation from data (v; ;)¢ using data distribution pgat, is
also denoted by (Vi )data Or Ep, [vif j]. The other expectations (v;h ;)1 and (vih )0
are seen as those from model, i.e. (Vi j)model O Ep 4 [Vif j] using model distribution
Pmodel- Calculation from model in step k = 1 is also viewed as a kind of reconstruction
from data in step k = 0.

Algorithm 1 Training procedure for the restricted Boltzmann machine
Awij = (vihj)data — (Vi j)model
Use CD-1 to approximate (v;/ j)model
Initialize v with observation data
Sample hg ~ p(h|vy, )
Sample vi ~ p(v|hg, 0)
Sample h; ~ p(h|v, 0)
Call (vi,hp) a sample from the model
(Voos hoo) 18 a true sample from the model
(v1,hy) is a very rough estimate but worked

An RBM acts as an unsupervised two-layer learning machine that is a shallow neural
network with only one hidden layer. Nevertheless, a number of RBMs can act as building
blocks to construct a deep belief network that will be addressed in Section 4.3. Deep
model is equipped with strong modeling capability by increasing the depth of hidden
layers so as to represent the high-level abstract meaning of data. In what follows, we
address the principle of deep neural networks and their training procedure.

4.2 Deep Neural Networks

A deep neural network (DNN) has a hierarchy or deep architecture that is composed
of a number of hidden layers. This architecture aims to learn an abstract representation
or high-level model from observation data, which is used to find the highly nonlinear
mapping between input data and their target values. DNNs have been widely developed
to carry out different classification and regression applications, e.g., speaker recognition
[95], image classification [96], speech recognition [97-99], natural language processing
[100], and music or audio information retrieval, etc.

4.21 Structural Data Representation

Real-world applications involve different kinds of technical data that are inherent with
structural features. It is crucial to capture the hierarchical information and conduct
representation learning when building the information systems in presence of various
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4.2 Deep Neural Networks 121

observation data. System performance is highly affected by the modeling capability of
a learning machine. To assure the learning capability, it is essential to increase the level
of abstraction extracted from observation data and carry out a hierarchy of representa-
tions based on a deep learning machine. For example, image data can be learned via a
representation process with multiple stages:

pixel — edge — texton — motif — part — object.

Each stage is run as a kind of trainable feature transform that captures the hierarchical
features corresponding to different levels of observed evidence including pixel, edge,
texton, motif, part, and object. Such a trainable feature hierarchy can be also extended
to represent other technical data, e.g., text and speech, in a hierarchical style of

character — word — word group — clause — sentence — story
and
sample — spectral band — sound — phoneme — phone — word

based on the hierarchies from character to story and from time sample to word sequence,
respectively. A deep structural model is required to perform delicate representation so
as to achieve desirable system performance in heterogeneous environments.

Figure 4.3 represents a bottom-up fully connected neural network that can char-
acterize the multilevel abstraction in the hidden layers given the observation data in
the bottom layer. The calculation starts from the input signals and then propagates
with feedforward layers toward the abstraction outputs for regression or classification.
In layer-wise calculation, we sum up the inputs in low-level layer and produce the

activation outputs in high-level layer. The regression or classification error is determined
at the top, and it is minimized and passed backward from the top to the bottom layer.
Deep neural networks are structural models with three kinds of realizations as shown in
Figure 4.4.

Figure 4.3 Bottom-up layer-wise representation for structural data.
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(a)

(b)

(©)

Figure 4.4 Three types of structural model (a) feedforward model, (b) feedback model, and (c)
bidirectional model.

The multilayer neural networks and the convolutional neural networks correspond
to the feedforward model where the inputs are summed, activated, and feedforwarded
toward outputs. Without loss of generality, the bottom-up network has an alternative
graphical representation using the left-to-right model topology. In addition to feed-
forward model, the layer-wise network can also be realized as a feedback model as
well as a bidirectional model according to the direction of data flow in the model.
Deconvolutional neural network [101] and stacked sparse coding [102] are seen as
the feedback models. Deep Boltzmann machine [103], stacked autoencoder [104], and
bidirectional recurrent neural network [105] are known as the bidirectional models. This
book mainly addresses the feedforward model for deep learning based on multilayer
perceptrons that will be introduced next.

4.2.2 Multilayer Perceptron

Figure 4.5 depicts a multilayer perceptron (MLP) [106] where x; denotes the input
with D dimensions, z; denotes the hidden feature with M dimensions, y; denotes the
output with K dimensions, and ¢ denotes the time index. A hierarchy of hidden layers
is constructed by stacking a number of hidden layers. The mapping or relation between
an input vector X = {x;4} and an output vector y = {y;;} is formulated as

Vik = Yi(Xt, W)
M D
g
m=0 d=0
M
=f (Z ng,lztm) = f(azr).
m=0
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Figure 45 A multilayer perceptron with one input layer, one hidden layer, and one output layer.
[Based on Pattern Recognition and Machine Learning (Figure 5.1), by C. M. Bishop, 2006,
Springer.]

Here, we introduce the weight parameters of the first two layers, which are expressed
by w = {w%,wfj}){}. We have x;0 = z;0 = 1 and the bias parameters that are denoted
by {W(()lrr)w wgg}. This is a feedforward neural network (FNN) with two layer-wise calcu-
lations in forward pass. The first calculation is devoted to the layer-wise affine trans-

formation with multiplication by using the layered parameters {Wﬁiln)z} and {w(z) }. The

mk
transformation is calculated to find the activation from input layer to output layer in an
order of
D M
1 2
arm = ngi’lxtd == Ay = Z Winl)cf(aT’")' (422)
d=0 m=0

The second calculation is performed with the nonlinear activation function f(-).
Figure 4.6 shows different activation functions, including the logistic sigmoid function
in Eq. 4.5, the rectified linear unit (ReLU)

f(a) = ReLU(a) = max{0,a}, (4.23)

and the hyperbolic tangent function
el — o4
a) = tanh(a) = ——. 4.24
f@ @@= (4.24)
The logic sigmoid function has value between 0 and 1. Differently, the hyperbolic
tangent function has value between —1 and 1. However, the most popular activation
in the implementation is ReLU, although others could be just as good for specific tasks
[107]. For the case of classification network, the output vector y; = {y;} is additionally
calculated as a softmax function
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Figure 4.6 Three common activation functions in deep neural networks.

Ve = exp(ask)
TN explam)”

In general, a DNN is constructed as a fully connected multilayer perceptron consisting
of multiple hidden layers. Given an input vector, it is simple to compute the DNN’s
output in the forward pass, which includes the nonlinearity in the hidden layers and
softmax activations in the output layer.

(4.25)

4.2.3 Error Backpropagation Algorithm

In implementation of DNN training, we collect a set of training samples {X,R} =
{xt,r,}tT=1 in the form of input-output pairs. In the context of speech applications, x;
can be a speech vector or a number of consecutive speech vectors, whereas r; is the
desirable network output. In case r;’s are also speech vectors, a regression problem is
formulated in an optimization procedure. We therefore estimate DNN parameters w by
optimizing an objective based on the sum-of-squares error function, which is computed
in DNN output layer in a form of

1 T
EwW) =2 3 Iy w) =, (4.26)

=1

where y(x;, w) = {yr(x¢, w)}. However, the closed-form solution to solve this nonlinear
regression problem is not analytical. The optimization is then implemented according
to the stochastic gradient descent (SGD) algorithm

wT™HD — (O _ TIVEn(W(T))’ (4.27)
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where T denotes the iteration index, 1] denotes the learning rate and E,(-) denotes
the error function computed from the nth minibatch in training set {X,,, R, }, which is
sampled by using the entire training data {X, R}. A training epoch is run by scanning the
whole set of minibatches denoted by {X,R} = {X,, R,,}n |- In the implementation, we
initialize the parameters from w®) and continuously perform SGD algorithm to reduce
the value of error function E, until the iteration procedure converges. Practically, the
SGD algorithm is implemented by randomizing all minibatches in a learning epoch.
Also, a large number of epochs are run to assure that the convergence condition is met
after DNN training. In general, SGD training can achieve better regression or classifica-
tion performance when compared with the batch training where all of the training data
are put into a single batch.

The training of DNNs using the backpropagation algorithm involves two passes. In
forward pass, an affine transformation followed by nonlinear activation is computed
layer by layer until the output layer. In the background passes, the error (typically cross-
entropy for classification and mean squared error for regression) between the desired
output and the actual output is computed and the error gradient with respect to the
network weights are computed from the output layer back to the input layer. That is,
we find the gradients for updating the weights in different layers in the following order

JE, (W) JE, (WD)
LA ®) — —(1) , (4.28)
mek Bw

where the minibatch samples {X,,, Rn}fl\]:l are used. Figures 4.7(a) and (b) illustrate the
computation in the forward pass and the backward pass, respectively. To fulfill the error
backpropagation algorithm in a backward pass, an essential trick is to compute the local
gradient of neuron m in a hidden layer by using the input vector at each time x;

5 o O
tm —

damm
_ Z 8El 3a,k
- - das damm 4.29)

da
=) O ,
Xk: z

aa;m

which is updated and recalculated by integrating local gradients 0;; from all neurons
k in output layer. The order of updating for local gradient is shown by 6;x — O -
Given the local gradients in output layer and hidden layer, the SGD updating involves
the calculation of differentiations in a way of

OFE (1)
M) S S (4.30)
(1)
Iwy 1e(X, R}
9E, (w“))
= ) duim (4.31)
mk te{X,, Ry}
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Figure 4.7 Illustration for computations in error backpropagation algorithm including those in (a)
forward pass and (b) backward pass. The propagation directions are displayed by arrows. In a
forward pass, each individual node involves the computation and propagation of activations a,
and outputs z;. In a backward pass, each individual node involves the computation and
propagation of local gradients 0;. [Adapted from Pattern Recognition and Machine Learning
(Figure 5.2), by C. M. Bishop, 2006, Springer.]

where the error function E; is accumulated over r € {X,,,R;}, which is an calculation
using the input-target pairs in a minibatch £, =), [X,.R,} Ei- Ateach time ¢, we sim-
ply express the gradient for correcting a weight parameter wfj,)( by using a multiplication
of the output of neuron m, z;,,, in the hidden layer and the local gradient of neuron &,
Otk in the output layer. This type of computation is similarly employed in updating the
weight parameter wgrzl for the neurons in input layer d and hidden layer m. In Figure
4.8, we illustrate a general procedure for error backpropagation algorithm that is used to
train a /-layer multilayer perceptron. The forward calculation of error function and the
backward calculations of local gradients or error gradients from layer / to layer [ — 1
until layer 1.

424 Interpretation and Implementation

The deep hierarchy in DNN is efficient in learning representation. The computation units
based on linear transformation and nonlinear activation are modulated and adopted in
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Target

0

1

Figure 4.8 Procedure in the backward pass based on an error backpropagation algorithm. (a)
Calculate the error function, (b) propagate the local gradient from output layer L to (c) hidden
layer L — 1 (d) until input layer 1.

different neurons and different layers. DNN is naturally seen as a discriminative model
for hierarchical learning, which works for regression and classification tasks. It is crucial
to explain why deep hierarchy does help when training a DNN for speaker recogni-
tion. Basically, the nonlinear and deep architecture provides a vehicle to deal with the
weakness of the bounded performance due to a complicated regression mapping. Deep
learning aims to conduct structural representation and pursue the comprehensibility in
hierarchical learning. A hierarchical model with multiple layers of hidden neurons opens
an avenue to conduct combinational sharing over the synapse of statistics. Structural
learning in DNN provides a monitoring platform to analyze what has been learned
and what subspace has been projected to obtain a better prediction for regression or
classification. A hierarchical representation consisting of different levels of abstraction
is trained for future prediction. Each level is trainable and corresponds to a specific
feature transformation. A deep model is trained to find a high-level representation that
is generalized for different tasks.

On the other hand, DNN is built with a huge parameter space and is spanned by
a number of fully connected layers. The convergence condition in training procedure
is usually hard to meet. Backpropagation does not work well if parameters are ran-
domly initialized. The performance of deep model could not be theoretically guaranteed.
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Basically, the weights of a DNN without unsupervised pretraining are randomly initial-
ized. The resulting system performance is even worse than that of a shallow model [108].
It is crucial that DNN training procedure requires a reliable initialization and a rapid
convergence to learn a desirable “deep” model for different regression or classification
problems in a speaker recognition system.

The problems and solvers with the error backpropagation algorithm are discussed
here. Basically, the gradient in backpropagation is progressively getting diluted. Below
a top few layers, the correction signal for the connection weights is too weak. Backprop-
agation accordingly gets stuck in a local minimum, especially in case of random initial-
ization where the starting point is far from good regions. On the other hand, in usual
settings, we can use only labeled data to train a supervised neural network. But, almost
all data are unlabeled in practical applications. Nevertheless, a human brain can effi-
ciently learn from unlabeled data. To tackle this issue, we may introduce unsupervised
learning via a greedy layer-wise training procedure. This procedure allows abstraction to
be developed naturally from one layer to another and helps the network initialize with
good parameters. After that, the supervised top-down training is performed as a final
step to refine the features in intermediate layers that are directly relevant for the task.
An elegant solution based on deep belief network is therefore constructed and addressed
in what follows.

4.3 Deep Belief Networks

Deep belief network (DBN) [109] is a probabilistic generative model that provides a
meaningful initialization or pretraining for constructing a neural network with deep
structure consisting of multiple hidden layers. DBN conducts an unsupervised learning
where the outputs are learned to reconstruct the original inputs. Different layers in DBN
are viewed as the feature extractors. Such an unsupervised learning could be further
merged with the supervised retraining for different regression or classification problems
in speaker recognition. DBN is seen as a theoretical tool to pretrain or initialize different
layers in DNN training. In the training procedure, the RBM, addressed in Section 4.1.2,
is treated as a building component to construct multiple layers of hidden neurons for
DBN. The building method is based on a stack-wise and bottom-up style. Each stack
is composed of a pair of layers that is trained by RBM. After training each stack, the
hidden layer of RBM is subsequently used as an observable layer to train the RMB in
next stack for a deeper hidden layer. Following this style, we eventually train a bottom-
up deep machine in accordance with a stack-wise and tandem-based training algorithm.
DBN obtained great results in [109] due to good initialization and deep model structure.
A lower bound of log likelihood of observation data v is maximized to estimate DBN
parameters [94].

4.3.1 Training Procedure

As illustrated in Figure 4.9, a stack-wise and tandem-based training procedure is per-
formed to learn DBN parameters. In this training procedure, the first RBM is estimated

https://doi.org/10.1017/9781108552332.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108552332.005

4.3 Deep Belief Networks 129

from a set of training samples {x} and then used to transform each individual speech
token X into a latent variable z(!) using the trained RBM parameters w"). The latent
units {z1} are subsequently treated as the observation data to learn the next RBM,
which transforms each sample z(!) into a deeper sample z® in the next layer. RBM is
used as a learning representation for a pair of layers. According to this procedure, a deep
hierarchy using DBN is built to explore the observed and hidden variables from input
layer to deep layers in a chain of

x> 2D 5@ 0 (4.32)

We develop the level of abstraction in a layer-wise manner. The progression of model
structure from low level to high level represents the natural complexity. An unsupervised
learning is performed to estimate a DBN by using a greedy and layer-wise training
procedure. After training the DBN, we use DBN parameters as the initial parameters to
train a DNN that performs much better than that based on the random initialization. The
chance of going stuck in a local minimum point is much smaller. Finally, a supervised
top-down fine-tuning procedure is executed to adjust the features in middle layers based
on the labels of training data r. Compared to the original features, the adapted features
are better fitted to produce the target values y in output layer. The supervised learning
using error backpropagation algorithm is employed in a fine-tuning process. The result-
ing method is also called DBN-DNN, which has been successfully developed for deep
learning. This DBN-DNN is seen as generative model as well as discriminative model
due to this two-step procedure, including one step of unsupervised stack-wise training
and the other step of supervised fine-tuning and processing. Specifically, the unlabeled
samples {x} are collected to build a generative model in a stack-wise and bottom-up
manner. Then, a small set of labeled samples {x,r} is used to adjust DBN parameters to
final DNN parameters based on an error backpropagation algorithm.

In general, the greedy and layer-wise training of DNN performs well from the per-
spectives of optimization and regularization due to twofold reasons. First, the pretraining
step in each layer in a bottom-up way helps constraining the learning process around

Figure 4.9 A stack-wise training procedure for deep belief network based on the restricted
Boltzmann machine. [Based on Source Separation and Machine Learning (Figure 2.16), by J.T.
Chien, 2018, Academic Press.]
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the region of parameters, which is relevant to represent the unlabeled data. The learning
representation is performed to describe the unlabeled data in a way of providing dis-
criminative representation for labeled data. DNN is accordingly regularized to improve
model generalization for prediction of unseen data. In addition, the second reason is
caused by the fact that the unsupervised learning starts from lower-layer parameters that
are close to the localities and near to the minimum in optimization. Random initial-
ization is hard to attain these properties. Such a perspective sufficiently explains why
the optimization for DNN based on DBN initialization works better than that based on
random initialization.

There are three training strategies for deep neural networks or deep belief networks
developed in different application domains under various training conditions. First, the
deep model can be purely trained in supervised mode. The model parameters can be
initialized randomly and estimated according to SGD using the backpropagation method
to compute gradients. Most practical systems for speech, text, and image applications
have been built by using this strategy. Second, the unsupervised learning is combined
with supervised training for constructing a deep model. Using this strategy, each layer
is trained in an unsupervised way using RBM. The layer-wise hierarchy is grown one
layer after the other until the top layer. Then, a supervised classifier on top layers is
trained while keeping the parameters of the other layers fixed. This strategy is suitable
especially when very few labeled samples are available. A semi-supervised learning is
carried out from a large set of unlabeled data and a small set of labeled data. Similar to
the second strategy, the third strategy builds a deep structure in an unsupervised mode
layer by layer based on RBMs. A classifier layer is added on the top for classifica-
tion task. The key difference is to retrain the whole model in a supervised way. This
strategy works well especially when the labels are poorly transcribed. Typically, the
unsupervised pretraining in second and third strategies is often performed by applying
the regularized stacked autoencoders that will be addressed later in Section 4.4. In what
follows, we further detail the procedure and the meaning of greedy training for deep
belief networks.

4.3.2 Greedy Training

In deep learning, it is essential to carry out the greedy training procedure for stack-wise
construction of a bottom-up neural network model. Greedy training is performed in an
unsupervised style. Figure 4.10 depicts a building block of an RBM and an approach
to stack a number of RBMs toward a deep model. The undirectional two-layer RBM
functions as described in Section 4.1. The hidden units in h are characterized from
visible speech data v using the weight parameters W' in the first RBM. The construction
of DBN with one visible layer v and three hidden layers h', h?, and h? in this example
can be decomposed into three steps as illustrated in Figures 4.10(b) and (c).

At the first step, a two-layer RBM is constructed with an input layer v and a hidden
layer h!. RBM parameters W' are trained by maximizing the log likelihood log p(v)
or alternatively the lower bound (or variational bound) of log likelihood, which is
derived by

https://doi.org/10.1017/9781108552332.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108552332.005

4.3 Deep Belief Networks 131

(b)

Figure 4.10 (a) A building block of two-layer RBM. Construction of deep belief network using
(b) the second step of RBM and (c) the third step of RBM. The variational distributions q(h1 [v)
and q(hzlhl) are introduced to infer hidden variables h! and h? and model parameters W! and
W2 in different layers, respectively.

log p(v) = " q(h'|v) (log p(h') + log p(v|h1)) + Hy gy ('] (4.33)
hl

according to variational inference where the variational distribution g(h!|v) for hid-
den variable h! is used. H[-] denotes an entropy function. The derivation is similar to
Eq. 2.33 in Section 2.3 when finding the evidence lower bound. At the second step,
another hidden layer is stacked on top of the RBM to form a new RBM. When training
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this second RBM, the parameters W' of the first RBM are fixed and the units of the first
hidden layer h! are sampled by variational distribution ¢(h'|v) and treated as visible
data for training the second RBM with parameters W2. At the third step, this stack-wise
process is continued in order to stack layers on top of the network and to train the third
RBM parameter W3 as in the previous step, with the sample h?> drawn from g(h’|h!)
and treated as the visible data to explore the latent variable h? in the third hidden layer.
The joint distribution of visible data v and / hidden variables {h!, ... ,h'} is therefore
expressed in accordance with the property of Markov switching where the probability
of a layer k depends only on layer k + 1 as

p(v,h' 02 .. 0 = p(vih)ph'h?). .. p(h! 2 ph T n). (4.34)

Figure 4.11(a) shows the construction of DBN with one visible layer and three hidden
layers. RBM is on the top while the directed belief network is on the bottom. The arrows
indicate the direction of data generation. We basically estimate the model parameters
{Wl, ... ,Wl} by maximizing the variational lower bound of log likelihood p(v) where
all possible configurations of the higher variables are integrated to get the prior for
lower variables toward the likelihood of visible variables. In addition, as illustrated in
Figure 4.11(b), if the first RBM with parameter W' is stacked by an inverse RBM (the
second RBM) with parameters (WHT, the hidden units h2 of the second RBM with
input units h? are seen as the reconstruction of visible data v in the first RBM.

It is important to explain why greedy training works for construction of a deep belief
network. In general, DBN is constructed via RBM where the joint distribution of a
two-layer model p(v,h) is calculated by using the conditional distributions p(v|h) and
p(h|v) that implicitly reflects the marginal distributions p(v) and p(h). The key idea
behind DBN is originated from the stacking of RBM, which preserves the conditional
likelihood p(v|h!) from the first-level RBM and replaces the distribution of hidden units
by using the distribution p(h'|h?) generated by the second-level RBM. Furthermore,
DBN performs an easy approximate inference where p(h**!|h¥) is approximated by the
associated RBM in layer k using g(h**+1|h%). This is an approximation because p(hkth
differs between RBM and DBN.

During training time [110], variational bound is maximized to justify greedy layer-
wise training of RBMs. In the whole training procedure, we basically initialize from
the stacked RBMs in a pretraining stage, which is seen as two-step fine-tuning. First,
the generative fine-tuning is run to construct or fine-tune a deep model based on the
variational or mean-field approximation where the persistent chain and the stochastic
approximation are performed. Second, the discriminative fine-tuning is executed by
minimizing the classification loss in the backpropagation procedure. In addition, greedy
training meets the regularization hypothesis where the pretraining is performed to con-
strain the parameters in a region relevant to an unsupervised dataset. Greedy training
also follows the optimization hypothesis where the unsupervised training initializes the
lower-level parameters near the localities of better minima. Such a property is not held
by using the scheme of random initialization. Nevertheless, the greedy procedure of
stacking RBMs is suboptimal. A very approximate inference procedure is performed in
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RBM

Hidden layers

Directed
belief net

Figure 4.11 (a) Construction of deep belief network with three hidden layers. The top two layers
form an undirectional bipartite graph using a RBM while the remaining layers form a sigmoid
belief net with directed and top-down connections. (b) RBMs are stacked as an invertible
learning machine for data reconstruction.

DBN. These weaknesses were tackled by using a different type of hierarchical proba-
bilistic model, called the deep Boltzmann machine, which is addressed in what follows.

4.3.3 Deep Boltzmann Machine

Deep Boltzmann machine (DBM) [103, 111] is a type of Markov random field where
all connections between layers are undirected as depicted in Figure 4.12, which differs
from Figure 4.11 for deep belief network. The undirected connection between the layers
make a complete Boltzmann machine. Similar to RBM and DBN, using this unsuper-
vised DBM, there are no connections between the nodes in the same layer. High-level
representations are built from the unlabeled inputs. Labeled data are only used to slightly
fine-tune the model.

Considering the example of DBM with three hidden layers, the marginal likelihood
function is given by

1
pvie) = > exp (valh1 + (") W2 + (h2)Tw3h3) (4.35)
h!,h2 hn3 Z(G)
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Figure 412 A deep Boltzmann machine with three hidden layers. All connections between layers
are undirected but with no within-layer connections.

where {hl,hz,h3} are the hidden units, 0 = {Wl,Wz,WS} are the model parameters,
and Z(0) is a normalization constant. Similar to RBM in Section 4.1, the energy-based
likelihood function in DBM is defined by using the energy function

E(v,h|0) = —v'W'h' — (h")TW?h? — (h®)TW3h’, (4.36)

which is accumulated from three pairs of weight connections {v,h'}, {h! h?}, and
{h?,h3}. For example, the updating of parameter vector W' is performed according to
the following derivative

8I;(VV\JIG) = Epiu [V(hl)T] = Eproae [V(hl)T] (4.37)

Similar updating can be also found for W2 and W?3.

The mean-field theory is developed for variational inference of DBM parameters.
A factorized variational distribution is introduced for a set of hidden variables h =
{h',h? h?} in a form of

gtlv,p) = [ [T athDatrdaws,) (4.38)
i kom

where y = {yl, yz, p3} denote the mean-field parameters with q(hf =1 = y;‘ for
k = 1,2,3. The lower bound of log likelihood in DBM is then derived by referring Eq.
4.33 using the variational distribution in Eq. 4.38. The bound is expressed by
— log Z(0) + Hynjv)[h] (4.39)
£ L(g(hlv, p)).

An approximate inference, by following Section 2.3, is performed to fulfill a learning
procedure of RBM that corresponds to a type of VB-EM algorithm as addressed in
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Section 2.3.3. For each training sample, we first estimate the mean-field parameters
¢ by maximizing the variational lower bound L(g(h|v, u)) given the current value of
model parameters 6. This optimal variational parameters p are estimated to meet the
mean-field conditions

uh=qhs =1 < ph =1v.p’.0)=0 <Z Whvi+ ) W}ky§> (4.40)
i k

i =qhi =0 < plhi = Np' @ 0) = o | Y- Wi+ Wi | 44D

J m

g =qhl, =1) < ph, = 1|u*,0) =0 (Z WP y%) (4.42)
k

where the biases in sigmoid function are considered and merged in the summation terms.
The VB-E step is completed. Given the variational parameters y, the lower bound
L(q(h|v, u)) is updated and then maximized to find model parameters € in the VB-
M step. Let 0, and H; = {vt,h,l,htz,h?} denote the current parameters and the state,
respectively. These two variables are sequentially updated and sampled. Continuous cal-
culating H;+1 < H; is similar to performing the Gibbs sampling. The new parameter
0,41 is updated by calculating a gradient step where the intractable model expectation
E poqe [-] in the gradient is approximated by a point estimate at sample ;| or more
precisely calculated from a set of L samples or particles {xgl), e ,XﬁL)}. This MCMC-
based optimization assures the asymptotic convergence in the learning process. Next,
we further address the scheme of stacking autoencoder, which is employed to build a
deep neural network model.

4.4 Stacked Autoencoder

It is crucial to explore a meaningful strategy and learn a useful representation for layer-
wise structure in a deep neural network. Stacking layers of denoising autoencoder pro-
vides an effective approach to deep unsupervised learning [104]. In what follows, we
will first address the principle of denoising autoencoder and then introduce the proce-
dure of greedy layer-wise learning for a deep network with the stacked autoencoder.

441 Denoising Autoencoder

Denoising autoencoder (DAE) [107, 112] is an autoencoder that is trained to produce
the original and uncorrupted data point as output when given a corrupted data point
as its input. Figure 4.13 illustrates a procedure of finding a reconstructed data X from
a corrupted sample X given its original data x via a deterministic hidden code h. The
corrupted version X is obtained by means of a stochastic mapping function for data
corruption under a predefined probability distribution X ~ ¢.(X|x). DAE aims to learn
an autoencoder that maps the corrupted sample X to a hidden representation h via an
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Figure 4.13 An illustration of denosing autoencoder for finding a hidden representation h from a
corrupted input X. [Based on Stacked Denoising Autoencoders: Learning Useful Representations
in a Deep Network with a Local Denoising Criterion (Figure 1), by P. Vincent et al., J. of
Machine Learning Research, vol. 11, 2010, pp. 3371-3408, MIT Press.]

encoder fp(X) with parameters 0 and attempts to estimate the reconstructed sample
X via a decoder X = g¢(h) with parameters ¢. DAE is constructed by learning the
parameters of encoder 0 and decoder ¢ by minimizing the reconstruction error or the
negative log likelihood of decoder output or reconstructed data, i.e., — log p(X]h), from
the minibatches of training pairs {x,X}. More specifically, we perform the stochastic
gradient descent and minimize the following expectation function

Lpag(8, §) = —Ex~ pyu).3~¢. @ [10g p& = gp()h = fo(X))], (4.43)

where pgaa(X) denotes the distribution of training data. The fulfillment of DAE learning
procedure is done by running three steps.

(1)  Sample a training sample x from a collection of training data.

(2)  Sample a corrupted version X from the corruption model ¢.(X|x).

(3)  Use this data pair {x,X} as a training example for estimating the distribution of
decoder for reconstruction p(X|h) or equivalently finding the encoder and decoder
parameters {0, ¢} by minimizing Lpag(0, §).

In the implementation, the encoder and decoder are expressed by a feedforward
network that is trained by the standard error backpropagation algorithm as mentioned in
Section 4.2.3. The corruption model is represented by an isotropic Gaussian distribution

¢:X|x) = NX|x, o°1), (4.44)

where the corrupted sample X is around the the original data x with a shared variance o>

across different dimensions of x.

Figure 4.14 depicts the concept of DAE from a manifold learning perspective. The
corrupted sample X is shown with a circle of equiprobable corruption. Basically, DAE
is trained to learn a mean vector field, i.e., g¢( fo(X)) — x, toward the regions with high
probability or low reconstruction error. Different corrupted samples X are constructed
with vector fields shown by the dashed arrows. A generative model based on DAE is
accordingly trained by minimizing the loss function in Eq. 4.43. This objective function
corresponds to the negative variational lower bound by using the variational autoen-
coder, which will be addressed in Section 4.5. In fact, DAE loss function is minimized
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Figure 414 A denoising autoencoder that maps corrupted data X’s to their raw data x’s along a
data manifold. [Based on Stacked Denoising Autoencoders: Learning Useful Representations in
a Deep Network with a Local Denoising Criterion (Figure 2), by P. Vincent et al., J. of Machine
Learning Research, vol. 11, 2010, pp. 3371-3408, MIT Press.]

to realize a maximum likelihood (ML) estimate of DAE parameters {0, ¢, 02}. Such
an estimation in DAE is similar to fulfill the regularized score matching [113] or the
denoising score matching [107] on an RBM with Gaussian visible unites. The score
matching aims to find the model distribution ppyegel, Which is encouraged to produce
the same likelihood score as the data distribution pgae, at every training point x. The
robustness to noise corruption is assured in this specialized and regularized RBM. In
the next section, the denoising autoencoder is treated as a building block to perform
unsupervised stacking for a deep neural network.

442 Greedy Layer-Wise Learning

This section addresses how the autoencoder or RBM is stacked to carry out the greedy
layer-wise learning for a deep structural model. Uncorrupted encoding is acted as the
inputs for next level of stacking. Uncorrupted inputs are reconstructed in each stacking.
Briefly speaking, we first start with the lowest level and stack upwards. Second, each
layer of autoencoder is trained by using the intermediate codes or features from the layer
below. Third, top layer can have a different output, e.g., softmax nonlinearity, to provide
an output for classification. Figures 4.15(a), (b), and (c) demonstrate three steps toward
constructing a deep classification network.

(1)  Autoencoder or RBM is trained from visible data x to explore the hidden units
h! in the first hidden layer by using the first-level parameter W', The transpose
of parameters (W')T is used to implement an inverse of model or equivalently to
find the reconstructed data X.

(2) Reconstructed data X are masked by fixing the trained parameter W' or (WHT,
The second hidden layer with hidden units h? is explored by training the second-
level parameter W2 or its transpose (W2)T to reconstruct the hidden units h' in
the second hidden layer.

(3) Labels y of the visible data x are then used to train the third-level parameter U
where the reconstructions X and h! are masked by fixing the inverse parameters
{(WHT (W2)T}. Three levels of parameters {W! W2, U} are further fine-tuned
by using error backpropagation algorithm via minimization of classification loss.
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Figure 4.15 Procedure of stacking autoencoders for the construction of a deep classification
network with input x and classification output y.

Alternatively, Figures 4.16(a), (b), and (c) show a different greedy procedure to con-
struct a deep classification network where the output is predicted directly for class label
¥ rather than indirectly for training sample X. In the first step, the hidden units h! are
discovered from visible data v by using the first-level parameter W'. The reconstructed
class label ¥ is then calculated by using transformation parameter U'. However, the two-
layer model is insufficient to estimate a good class label y. The second step is presented
to explore a deeper model to h? and use this higher abstraction to predict class label ¥
via an updated higher-level parameter U? while the estimated class label ¥ using lower-
level parameter U' is masked. The whole model with three layers is fine-tuned by using
error backpropagation.

In general, using DAE, there is no partition function in the training criterion. The
encoder and decoder can be represented by any parametric functions although feedfor-
ward neural networks have been widely adopted. The experiments on classification tasks
in [104] showed that the unsupervised pretraining based on greedy layer-wise learning
using RBM and DAE worked well for the construction of deep classification networks.
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Figure 4.16 An alternative procedure for greedy layer-wise learning in a deep classification
network where the output layer produces the reconstructed class label y.

When the number of training examples is increased, the stacking DAE performs better
than stacking RBM.

Although the restricted Boltzmann machine and denoising autoencoder are developed
as the building block for greedy layer-wise learning of a deep neural network, the
hidden units in different layers {hk}i:1 are seen as the deterministic variables without
uncertainty modeling. The interpretation of model capacity is therefore constrained. For
example, in real-world speaker recognition systems, the utterances or feature vectors of
a target speaker are usually collected in adverse environments with different contents
and lengths in presence of various noise types and noise levels. It is challenging to
build a robust deep model that can accommodate the variations of speech patterns
from abundant as well as sparse training utterances. Uncertainty modeling or Bayesian
learning (as described in Section 2.5) becomes crucial in the era of deep learning. In the
next section, we will introduce the variational autoencoder where the hidden units are
considered random.
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Figure 4.17 Network structures for (a) autoencoder and (b) variational autoencoder. [Adapted
from Variational Recurrent Neural Networks for Speech Separation (Figure 2), by J.T. Chien and
K.T. Kuo, Proceedings Interspeech, 2017, pp. 1193—1197, ISCA.]

4.5 Variational Autoencoder

Figures 4.17(a) and (b) show the model structures for an autoencoder and a varia-
tional autoencoder, respectively, which are designed to find the reconstructed data X
corresponding to its original data x based on an encoder and decoder. A traditional
autoencoder is seen as a deterministic model to extract the deterministic latent features
h. In [114], the variational autoencoder (VAE) was developed by incorporating the
variational Bayesian learning into the construction of an autoencoder that is used as a
building block for different stochastic neural networks [115, 116]. Uncertainty modeling
is performed to build a latent variable model for data generation through stochastic
hidden features z. As addressed in Section 2.3, the variational inference involves the
optimization of an approximation to an intractable posterior distribution. The standard
mean-field approach requires analytical derivations to calculate the expectations with
respect to the approximate posterior. Such a calculation is obviously intractable in the
case of neural networks. A VAE provides an approach to illustrate how the reparame-
terization of variational lower bound is manipulated to yield a simple differentiable and
unbiased estimator, also called the stochastic gradient variational Bayes method. This
estimator is used to calculate the posterior distribution and carry out the approximate
inference in presence of continuous latent variables. The optimization is implemented
according to a standard stochastic gradient ascent technique as detailed in what follows.

451 Model Construction

Given a data collection X = {xt}tT: | consisting of 7" i.i.d. (identically, independently
distributed) samples of continuous observation variable X, we aim to train a generative
model to synthesize a new value of x from its latent variable z. The latent variable z
and observation data x are generated by prior distribution pg(z) and likelihood function
po(x|z), respectively, but the true parameters 0, as well as the values of z, are unknown.
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Notably, there is no assumption or simplification on the marginal distribution p(x)
or posterior distribution pg(z|x). To deal with the issue that marginal likelihood or
posterior distribution is intractable, the variational Bayes algorithm is introduced to
approximate the logarithm of marginal likelihood of individual data points log p(x) or

T
log p(x1, ...,X7) = Zlog p(Xy) (4.45)

=1

through maximizing the variational lower bound £(0, ¢) derived by

log p(x) =1log Y po(x|z)pe(2)

q¢(z|x)
q¢(z|x)
pe(XIZ)pe(Z)]
49(2Ix)

> Eq¢(zx>[log (pe(XIZ) po(z) ) }

=log ) po(x|z) Po(z)

= log By, (apx) [ (4.46)

q¢(z[x)

fo(x.2)

= Egyaiv [log po(x12)] — Dk1(qpzX) | po(2) = L(O, D)

where ® = {0, ¢} denote the whole parameter set of a VAE. By subtracting this lower
bound from the log-marginal distribution, as referred to Eqs. 2.32 and 2.33, we obtain
the relation

log p(x) = DxL(g¢ (Xl pe(z[x)) + L(6, P). (4.47)

Maximizing the likelihood function p(x) turns out to maximizing lower bound £(0, ¢»)
while the KL divergence term is minimized, or equivalently, the variational distribution
q¢(z|x) is estimated to be maximally close to the true posterior pg(z|x).

Figure 4.18 shows the graphical representation of generative model based on a VAE.
The variational autoencoder is composed of two parts. One is the recognition model or
probabilistic encoder g¢(z[x), which is an approximation to the intractable true poste-
rior pg(z|x). The other part is the generative model or probabilistic decoder pg(x|z),
which generates the data sample x from latent code z. Note that in contrast with the
approximate posterior in mean-field variational inference, the factorized inference is not
required in a VAE. Variational parameter ¢ and model parameter O are not computed
via a closed-form expectation. All parameters are jointly learned with this network
structure by maximizing the variational lower bound £(0, ¢), as shown in Eq. 4.46,
which consists of two terms: the KL divergence term corresponds to the optimization of
the parameters for recognition model ¢, and the other term corresponds to maximizing
the log-likelihood of training samples given the generative model 0.
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Figure 4.18 Graphical model for variational autoencoder. Solid lines denote the generative model
Po(x|z) and dash lines denote the variational approximation q¢(z|x) to the intractable posterior
po(z|x). [Adapted from Variational Recurrent Neural Networks for Speech Separation

(Figure 2), by J.T. Chien and K.T. Kuo, Proceedings Interspeech, 2017, pp. 1193—1197, ISCA.]

45.2 Model Optimization

Different from traditional error backpropagation algorithm developed for training neural
networks with deterministic hidden variables h, the stochastic neural network, i.e., the
variational autoencoder in this section, is trained according to the stochastic backprop-
agation [117] where the random hidden variable z is considered in the optimization of
the variational lower bound.

Stochastic Backpropagation

There is no closed-form solution for the expectation in the objective function of a
VAE in Eq 4.46. The approximate inference based on sampling method, as intro-
duced in Section 2.4, was employed in model inference for a VAE [114]. To implement
the stochastic backpropagation, the expectation with respect to variational distribution
q¢(z|x) in a VAE is simply approximated by sampling a hidden variable z) and using
this random sample to calculate the gradient for parameter updating. For example, the
Gaussian distribution with mean vector y_ and diagonal covariance matrix O'%I

2D ~ gg(z|x) = N(z|p,(x). a2(x)I) (4.48)

is popularly assumed and used to find the M-dimensional random sample of continuous-
density latent variable z). Given the sample z, the lower bound can be approximated
by a single sample using

LO.9) = Egyuw [ fox.2)]

4.49
~ fo(x, z(l)). ( )

Figure 4.19(a) shows three steps toward fulfilling the stochastic gradient estimator for
model parameter and variational parameter @ = {0, ¢} where the single sample 20 is
used in the expectation.

(1) Sample the latent variable ) from g (z|x).
(2)  Replace the variable z by z) to obtain the objective L >~ fo(X, ).
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ObjeCtiVe: L@ = ch,(z\x) [f@(X, Z)]
Gradient:
Step1 sample z®) from gy(z|x)
Step2 Lo~ f@(x|z(l))
Step3 Vele ~ Vefo(x, Z(l))
(@)
Objective: Lo = Equlxfo(x,2)]
Gradient:
Step1 sample € from A/(0,T)
Step2 20 =p,+ 0,0
Step3 Lo~ f@(x|z(l))
Step4 VeoLe =~ Ve fo(x,z?)

(b)

Figure 4.19 Objectives and implementation steps for (a) stochastic backpropagation and (b)
stochastic gradient variational Bayes.

(3) Individually take gradient of £ with respect to parameters 0 and ¢ to obtain
VoL = Ve fo(x.z").

As shown in Figure 4.17(b), the encoder of a VAE is configured as a two-layer neural
network with variational parameter ¢p where the D-dimensional input data x is used
to estimate the variational posterior g¢(z|x). Practically, the hidden layer is arranged
with M units for mean vector pz(x) and M units for diagonal covariance matrix og(x)l,
which are both functions of input data x. Hidden variable z corresponding to input X is
then sampled from this Gaussian distribution.

Although the standard gradient estimator is valid by using variational posterior
q¢(z|x), the problem of high variance will happen [117] if latent variable z is directly
sampled from a Gaussian distribution N (z|yz(x), of(x)l). To deal with this problem,
a reparameterization trick [114] is introduced and applied as the variance reduction
method, which will be detailed in the following section.
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Stochastic Gradient Variational Bayes

Stochastic gradient variational Bayes (SGVB) is a method to address the high variance
issue in a VAE. In this implementation, the sampling based on a chosen distribution
q¢(z|x) is executed via a reparameterization trick. This trick is performed by reparame-
terizing the random variable z ~ g¢(z|x) using a differentiable transformation function
8¢ (X, €) with an auxiliary random noise €

7= gp(x,€) (4.50)

with € ~ p(e) where p(e) is chosen for an appropriate distribution. Basically, the M-
dimensional standard Gaussian distribution

p(e) = N(el0,I) 4.51)

is adopted. In this way, the latent variable z is viewed as a deterministic mapping
function with deterministic parameter ¢ but driven by a standard Gaussian variable €.
A stable random variable sampled by the variational posterior g¢(z|x) is then approxi-
mated by the mapping function g¢(x, €). The reduction of variance in sampling can be
assured. More specially, we can calculate the Monte Carlo estimate of the expectation
of a target function f(z) with respect to g¢(z[x) by using L samples of z drawn from
q¢(2]x), by referring to Eqgs. 2.50 and 2.51, via the reparameterization trick

]qub(l\x)[f(z)] = Eq¢(z\x)[f(g¢>(xs €))]

L 4.52
~ % > flegpxe) (432
=1

where €)' ~ N(e]0,I). An SGVB estimator is then developed by maximizing the
variational lower bound in Eq. 4.46, which is written in a form of

1 L
L£(0.9) = 7 > _log pox|z") — D99 @IXlIpo(2) (4.53)
=1

where z) = gp(x, e®)and e® ~ p(e). In this way, the variance of the gradient simply
depends on the noise term €, which is sampled from distribution p(e). When compared
with directly sampling of z, the variance of sampling p(e) is considerably reduced.

Algorithm 2 Autoencoding variational Bayes algorithm

Initialize hidden state parameters 0, ¢

For parameters (0, ¢) until convergence
X,, < Random minibatch with 7,, data points from full dataset X
€ < Random samples from noise distribution p(e)
g < Vo, L(0, $; X, €) (Gradient of Eq. (4.54))
0, ¢ < Update parameters using g

End For

Return 0, ¢
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453 Autoencoding Variational Bayes

Based on the model construction in Section 4.5.1 and the model optimization in Section
4.5.2, the autoencoding variational Bayes (AEVB) algorithm is developed to fulfill
the building block of variational autoencoder for deep learning. AEVB learning for
variational autoencoder is shown in Algorithm 2. From the full data set X = {x,}tT: 1
with 7' data points, we first randomly sample a minibatch X, = {x,}tTi , with T, data
points and calculate an estimator of variational lower bound of log marginal likelihood
using a VAE as

T,
T ~ T <N ~
£(0,p;X) ~ T—nL(G,q),Xn,e) =7 ;L(G,(f;,xt,e), (4.54)

where

T = Z T, (4.55)

and a random noise € is used by sampling from a standard Gaussian distribution €.
Then, the gradients of variational lower bound with respect to a VAE parameters {0, ¢}
are calculated to perform the stochastic optimization based on the stochastic gradient
ascent or the adaptive gradient (AdaGrad) algorithm [107] via

(6,0} < (0,9} +1 Vo 6 L(O, ;X ). (4.56)

A
=2

In the implementation, an isotropic Gaussian distribution is adopted as the prior density
of latent variable

po(z) = N(z/0,1). (4.57)

Likelihood function pg(x;|z) for the reconstructed data X; is either modeled by a
multivariate Gaussian distribution for real-valued data or a Bernoulli distribution for
binary data where the distribution parameters are computed from z by using a decoder
neural network with parameter 0. More specifically, AEVB algorithm is performed to
maximize the variational lower bound jointly for the variational parameter 6 in the
encoder and the model parameter ¢ in the decoder. The variational posterior distribution
q¢(z|x,) is approximated by a multivariate Gaussian with parameters calculated by an
encoder neural network [p_(x;), ag(x,)] = f(;nc(x,). As explained in Section 4.5.2, we
sample the M-dimensional posterior latent variable by

20 = gp(xi, V) = p.(x) + 0:(x) © €, (4.58)

where © denotes the element-wise product of two vectors and €?) is a standard Gaussian
variable with NV (0,I). The resulting estimator for the variational lower bound in Eq. 4.54
using a speech observation x; is expressed by
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L
~ 1
Lo.pixe) = - glog po(x|z")

1 = (4.59)
+3 (1 +log(0? (%)) — 2 (%) — gg’j(xt)),

j=1

—Dx1L(q¢ (%) po(2))

where the second term on the right-hand side is calculated as a negative KL divergence
between the variational posterior distribution g¢(z[x) and the standard Gaussian distri-
bution pg(z). The KL term can be derived as

—DxL(q¢(z|x)||po(2) = / q¢(2|x) (log pe(z) — log q¢(z|x)) dz (4.60)
where

/61¢(ZIX)10g pe(2)dz = /N(Zlyz(Xz), a7 (x,)) log N (210, T)dz

y | (4.61)
= —? log(2mt) — E Z (Hij(xz) + GZZ,,,i(Xt))

j=1

and

/ q¢(z|x) log g (z|x)dz = / N (z|p, (%)), 67(x)) log N (zl ., (x,). 02(x;))dz

v LM (4.62)
_ 2
=7 log(2m) — 3 ;(1 + log o).

The AEVB algorithm is accordingly implemented to construct the variational autoen-
coder with parameters 0 and ¢. This type of autoencoder can be stacked in a way
as addressed in Section 4.4 to build the deep regression or classification network for
speaker recognition. In general, a VAE is sufficiently supported by exploring the ran-
domness of latent code z. The capability as a generative model is assured to synthesize
an artificial sample X from a latent variable z where the global structure of observation
data are preserved to minimize the reconstruction error. In what follows, we introduce
another paradigm of generative model, called the generative adversarial network, which
produces artificial samples based on adversarial learning.

4.6 Generative Adversarial Networks

This section addresses the pros and cons of the generative models based on the genera-
tive adversarial network (GAN) [118] that has been extensively studied and developed
for different applications including adversarial learning for speaker recognition [119,
120]. There are two competing neural networks that are estimated mutually through
adversarial learning. Several generative models based on deep learning and maximum
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likelihood estimation have been discussed in Sections 4.1 and 4.5. Before explaining
the details of GANs, we would like to point out the key idea and property where GANs
perform differently when compared with the other generative models.

46.1 Generative Models

Figure 4.20 depicts the taxonomy of generative models. In general, the parameter of
a generative model is estimated according to the maximum likelihood (ML) principle
where a probabilistic model or distribution pmogel(X|0) with parameter 0 characterize
how a speech observation x is obtained, namely X ~ pnode1(X|0). Training samples are
collected or drawn from an unknown data distribution by X ~ pgawa(X). The ML method
assumes that there exists a parameter 6 that make the model distribution exactly the
same as the true data distribution

Pmodel(X]0) = pdata(X). (4.63)

The ML parameter 0 of a model distribution pmogel is then estimated by maximizing
the log likelihood function of training data collected from data distribution pgata, i.€.,
solving the optimization problem

OmL = argmax Ex~ py,.[10g pmode1(X] 0)]. (4.64)
0

Traditionally, the ML solution is derived through an explicit model distribution where
a specific distribution is assumed. Such a model distribution is possibly intractable. An
approximate distribution is accordingly required. The approximation can be either based
on the variational inference or driven by the Markov chain. The variational autoencoder
in Section 4.5 adopts the variational distribution, which is a Gaussian, to approximate
a true posterior distribution in variational inference. The restricted Boltzmann machine
in Section 4.1 employs the explicit distributions of Bernoulli and Gaussian in a style of
distribution approximation based on a Markov chain using the contrastive divergence

Maximum
Likelihood

Explicit Density

Generative
Adversarial Net

Implicit Density

Tractable Density

Approximate Markov Chain
Density

Generative
Stochastic Net

‘ Variational I [ Markov Chain ]
Variational Boltzmann
Autoencoder Machine

Figure 420 Taxonomy of generative models based on maximum likelihood estimation.
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algorithm. On the other hand, the ML model can also be constructed without assuming
any explicit distribution. In [121], the generative stochastic network was proposed to
carry out a Markov chain to find state transitions for updating a generative model. An
implicit distribution was actually adopted to drive the construction of the generative
model.

In what follows, we are introducing the generative model based on the generative
adversarial network. GAN presents a general idea to learn a sampling mechanism for
data generation. The generation process is based on the sampling of a latent variable z
by using a generator network G. The generated sample is distinguished from the true
data sample by using a discriminator network D. There is no explicit density assumed
in the optimization procedure. There is no Markov chain involved. The issue of mixing
between the updated models of two states is mitigated. The property of asymptotically
consistent performance is assured. GAN is likely to produce the best samples through
the adversarial learning. GAN is seen as a direct model that directly estimates the
data distribution without assuming distribution function. Some theoretical justification
is provided to illustrate why GAN is powerful to estimate true data distribution as
addressed in what follows.

4.6.2 Adversarial Learning

Generative adversarial network is a generative model consisting of two competing neu-
ral networks as illustrated in Figure 4.21. One of the competing neural networks is the
generator G that takes an random hidden variable z from p(z) where z is a sample from
probability distribution p(z) and is used to generate an artificial or fake sample. The
other model is the discriminator D that receives samples from both the generator and
the real samples. The discriminator is to take the input either from the real data or from
the generator and tries to predict whether the input is real or generated. It takes an input x

Real
Samples

I X ~ Pdata (X)

,7 IsD '~
z Np<z) =N<Z|0,I) \_ Correct ? )
N //
Generated N7
Fake
X ~ p‘q(X) G San}\(ples

-

i

I

|

|
Generator =
|
I

Error Backpropatation
Training

Figure 4.21 Illustration for generative adversarial network. [Adapted from Adversarial Learning
and Augmentation for Speaker Recognition (Figure 1), by J.T. Chien and K.T. Peng, Proceedings
Odyssey 2018 The Speaker and Language Recognition Workshop, pp. 342-348, ISCA.]
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from real data distribution pgaa(X). The discriminator then solves a binary classification
problem using a sigmoid function giving output in the range 0 to 1. More specifically,
GAN is formulated as a two-player game between a generator with mapping function

G@):z— X (4.65)
and a binary discriminator with the mapping
D(x):x — [0,1] (4.66)

via a minimax optimization over a value function V (G, D) or an adversarial loss L,qy.
This minimax game is expressed by a joint optimization over G and D according to

min max V (G, D). 4.67)
G D

GAN aims to pursue a discriminator D, which optimally classifies if the input comes
from true sample x (with discriminator output D(x)) or the fake sample G(z) using a
random code z for generator G (with discriminator output D(G(z))). Meaningfully, the
value function is formed as a negative cross-entropy error function for binary classifi-
cation in a two-player game

V(G, D) = Ex~pgxllog D(x)]

. (4.68)
+ Ezvp@yllog(l — D(G(2)))] = Lagy,

where pgaia(X) is data distribution and p(z) is a distribution that draws a noise sample
or latent code z. Similar to a VAE in Section 4.5, GAN adopts the standard Gaussian
distribution as the prior density of z

z ~ p(z) = N(z|0,1). (4.69)

Using GAN, G(z) captures the data distribution and generates a sample x from z. The
discriminator produces a probability 0 < D(x) < 1, which measures how likely a
data point x is sampled from the data distribution pgai(X) as a real sample or from the
generator G(z) (with a distribution of generator p,(x) or equivalently a model distribu-
tion pmodel(X)) as a fake sample. Correspondingly, discriminator D classifies a sample
coming from the training data rather than G.

The generator G is trained via maximizing the probability of discriminator D to make
a mistake. Generator G minimizes the classification accuracy of D. Generator G(z) and
discriminator D(x) are both realized as the fully connected neural network models. This
minimax optimization assures the worst performance in which a fake sample is classified
as a real sample. A powerful generator model G(z) is therefore implemented.

4.6.3 Optimization Procedure

There are two steps in the optimization procedure for training the discriminator and the
generator.

https://doi.org/10.1017/9781108552332.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108552332.005

150 Deep Learning Models

First Step: Finding the Optimal Discriminator
To derive the formula for an optimal discriminator, we first rewrite the value function in
Eq. 4.67 by

V(G, D) = Ex~py,[log DX)] + Ez~ppllog (1 — D(G(2)))]

= / Ddata(X) log D(x)dx + / p(z)log (1 — D(G(z)))dz (4.70)
= /{pdata(x) log(D(x)) + pg(x)log(l — D(X))}dx,

where the variable z in the second term in the right-hand side is manipulated and
expressed by using the variable x so that p(z) is expressed by p,(x) and D(G(z)) =
D(x). Taking the derivative of Eq. 4.70 with respect to the discriminator D(x), the
optimal discriminator is derived for any given generator G with a distribution p,(x)
in a form of

Dix) = — Paaa® @.71)

Pdata(X) + pg(X)

A global optimum happens in the condition that the generator or model distribution is
exactly the same as data distribution

Pg(X) (01 Pmodel(X)) = Pdata(X), (4.72)

which results in the worst performance in binary classification using the discriminator.
Namely, no matter the input x to the discriminator is either drawn from the data distribu-
tion pgaa(x) or from the model distribution p(x), the classification accuracy is always
50 percent because

* —
D ()|, (0= pygat = 0-5- @.73)

Second Step: Finding the Optimal Generator
By substituting this discriminator into value function, the second step of GAN is to find
the optimal generator G by solving a minimization problem

min V(G, D*) = min C(G)
¢ ¢ (4.74)
= me {2D15(pdataX®) || pg (%)) — log 4},

where Djs(+]|-) denotes the Jensen—Shannon (JS) divergence. JS divergence quantifies
how distinguishable two distributions p and g are from each other. It is related to the
KL divergence by

Dis(pllg) = —zm( ”” “’) ( Hp”) (4.75)
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In Eq. 4.74, the detailed derivation of the cost function C(G) for finding optimal gener-
ator is shown as

CG) = mDax V(G, D)
= max / { Paata(%) log(D(x)) + py(x) log(1 — D(x))} dx

= / { Paaa(®) log(D*(x)) + pg(x) log(1 — D*(x))} dx

Pdata(X) P50 ) }
= ata(X) 1 AL (v ! Pdata(X) + pg(X) ¢
/ {pd ) Og<pdata(x) + Pg(X)> P Og(pdata(x) + (X i

2 Pdata(X) ) ( 2Pg ) ) }
= ata(X) 1 (v ! Pdata(X®) + pg(X) ¢
/ {pd ) Og<pdata(X) + pe(x) + pg()log Pdata(X) + pg(X) ’

—log4

2 ) + DxL (Pg(X) H 5

= DyL <Pdata(x)‘ Pdata(X) + pg(X) Ddata(X) + pg(x)> —log4.

(4.76)

Eq. 4.74 is therefore obtained by substituting Eq. 4.75 into Eq. 4.76. According to
Eq. 4.74, the optimal generator G* is calculated to reflect the generator distribution
Pg(x), which is closest to real data distribution pgaa(x). GAN encourages G with pg(x)
to fit pgara(X) so as to fool D with its generated samples. The global minimum or the
lower bound of C(G)

C*(G) = —log4 4.77)

is achieved if and only if pg(X) = pgaa(X). G and D are trained to update the parameters
of both models by the error backpropagation algorithm.

Training Algorithm

Algorithm 3 presents the stochastic training algorithm for estimating the parameters
{04, 0} of discriminator D and generator G for the construction of generative adversar-
ial network. Starting from an initial set of parameters, GAN is implemented by running
K updating steps for discriminator parameter 0, before one updating step for generator
parameter 6. The minibatches of noise samples Z, = {zt}tT;1 and training samples
X, = {X,}tTi] are drawn from p(z) and pga(X), respectively, and then employed in
different updating steps for 84 and 0,. Gradient-based updates with momentum can be
used [118]. Minimax optimization is performed because the value function is maximized
to run the ascending of stochastic gradient for discriminator parameter 0, in Eq. 4.78
and is minimized to run the descending of stochastic gradient for generator 0, in
Eq. 4.79. Notably, Eq. 4.79 does not include the first term of Eq. 4.78 because this
term is independent of generator parameter 0.

https://doi.org/10.1017/9781108552332.005 Published online by Cambridge University Press


https://doi.org/10.1017/9781108552332.005

152 Deep Learning Models

Algorithm 3 SGD training for generative adversarial net

Initialize discriminator and generator parameters 64, 0,
For number of training iterations

For K steps
Sample a minibatch of 7, noise samples {zi, ... ,z7,} from prior p(z)
Sample a minibatch of 7}, training examples {Xi, ...,Xr,} from pgata(X)

Update the discriminator by ascending its stochastic gradient

T,
1 n
0, « ngF Z [log D(x,) + log (1 - D(G(zt)))] (4.78)
=1
End For
Sample a minibatch of 7, noise samples {zi, ...,z } from prior p(z)

Update the generator by descending its stochastic gradient

T,
1 n

0, < Vo, Y log (1 - D(G(z))) (4.79)
=1

End For
Return 0,4, 0,

Interpretation for Learning Procedure

Figure 4.22(a) interprets how the discriminator D(x) and generator G(X) are run to
estimate the distribution of generated data p,(x) relative to the unknown distribution of
real data pgaa(x). Actually, the distribution of generated data p¢(x) is obtained from the
samples x generated by the generator G(z) using the samples z drawn by prior density

Real data Before training G/(x)
distribution
Generated
Pasta(X) data distribution
. g(X> Pawa()
Discriminator » X
After training, reaching
N . X global optimum
Generator D(x)=0.5
G(X) Prior I\ &)
i J \paci0 =0
/\ =
» Z
(@) (b)

Figure 4.22 Interpretation of discriminator, generator, data distribution, and model distribution for
generative adversarial networks.
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p(z) with a standard Gaussian distribution. The discriminator D will correctly determine
whether the input data x comes from the real data distribution or from the generator
distribution. The output of D is likely to be one for true data in low-value range or to be
zero for fake data in high-value range.

Figure 4.22(b) shows the situation of data distribution pgaa(X) and model distribution
pg(x) before and after GAN training. In the beginning of GAN training, the estimated
model distribution is different from the original data distribution. The resulting discrim-
inator classifies the data in region of pgaa(X) as D(x) = 1 and the data in region of p,(x)
as D(x) = 0. After a number of updating steps and learning epochs, we may achieve the
global optimum at pgaa = pg Where the output of discriminator becomes D(x) = 0.5 in
various data region. Nevertheless, the joint training of discriminator and generator may
be difficult and easily stuck in local optimum.

The training procedure for GAN can be further demonstrated by Figures 4.23(a)
and (b) where the optimal discriminator and generator are trained and searched in the
spaces of D and G, respectively. In estimating the discriminator, the maximization
problem

D* = argmax V(G, D) (4.80)
D

is solved to find the optimum D*. Using the estimated discriminator D*, the resulting
value function is minimized to estimate the optimal generator G* by

G* = argmax V(G, D). (4.81)
G

The global optimum happens in an equilibrium condition for minimax optimization
where the saddle point of the value function V (G, D) is reached in a hybrid space of the
discriminator and the generator. However, the value manifold in real-world applications
is much more complicated than this example. The training procedure becomes difficult
for GAN that uses neural networks as the discriminator and the generator in presence
of heterogeneous training data. Although GAN is theoretically meaningful from the
optimization perspective, in the next section, we discuss a number of challenges in the
training procedure that will affect the performance of data generation.

46.4 Gradient Vanishing and Mode Collapse

Generative adversarial networks are generally difficult to optimize. Their training pro-
cedure is prone to be unstable. A careful setting and design of network architecture is
required to balance the model capacities between discriminator and generator so that a
successful training with convergence can be achieved. This section addresses two main
issues in the training procedure that are caused by the unbalance in model capacity. One
is the gradient vanishing and the other is the mode collapse.

First of all, the gradient vanishing problem may easily happen in the optimization
procedure in accordance with a minimax game where the discriminator minimizes
a cross-entropy error function, but the generator maximizes the same cross-entropy
error function. This is unfortunate for the generator because when the discriminator
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V(G, D)

max V (G, D)
D

Global optimum

40 -10
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V(G, D)

Current V(G, D)
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----------- n}ip V(G, D)
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Figure 4.23 Optimization steps for finding (a) optimal discriminator D and then (b) optimal
generator G. The D- and G-axis represent the parameter space of D and G, respectively.

successfully rejects the generated data with high confidence, the gradient of cross-
entropy error or value function with respect to the generator will vanish. No updating
or slow updating is performed for the generator. Only the discriminator is updated
continuously. Therefore, the generator is too weak and the discriminator is too strong.
The discriminator is completely optimal and achieves 100 percent accuracy in binary
classification, which means that the classification probability is D*(x) for real data
X ~ pdaa(x) and (I — D*(x)) for generated data X ~ p,(x) are surely 1 and O,
respectively. This shows that Vgg D*(G(z)) = 0 because log(1 — D*(G(z))) ~ log 1.
Such a problem usually happens when the generator is poorly designed or built with
weak capacity. To deal with this problem, a common practice is to reformulate the
optimization for the generator from Eq. 4.79 to a minimization of the generator loss
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Ez'vp(z)[_ 10g D*(G(Z))] or IEx'\«pg(x)[_ 10g D*(X)], (482)

which yields the same solution but exhibits much stronger gradient for updating.

However, the mode collapse problem is further exacerbated in the training procedure
if the generator loss in Eq. 4.82 is minimized. The key issue in the implementation of
GAN is the instability when calculating the gradients of the value function with respect
to 04 and 0. This issue results in mode collapse in the trained model where the gen-
erator or the model could not produce a variety of samples with sufficient randomness.
To address this issue, we first express the loss function of a standard GAN given by an
optimal discriminator D*(G(z)) or D*(x) as

]Exwpdma(x)[log D*(x)] + ]Exwpg(x)[ log(1 — D*(x))]

(4.83)
= 2-Z)JS(pdata(X)”pg(x)) — log4,

which is minimized to estimate the optimal generator G or equivalently the optimal
generator distribution p,(x). From a representation of Kullback-Leibler divergence
between pg(x) and paa(X)

.
Q

Pg(X) ]
Ddata(X)

Pg(x)
Pdata(X)+pg (X)

_ Pdaa®)
Pdata(X)+pg (X) (484)

1— D*(x)]
D*(x)
= Ex~p,wllog(l — D*(x))] — Ex~, [log D*(x)].

DKL(Pg(®)|| Pdata(X)) = Ex~p,x)

= Ex~p,w | log

= Exwpg(x) IOg

We derive an equation for the modified generator loss in Eq. 4.82 by

Ex~p,x)[—log D*(%)]
= DKL(Pg(X)| pdata(X)) — Ex~ p, v [log(1 — D*(x))]
= DKL(Pg(X) || pdata(X)) — 2Dss(Pdata(X) | pg (X))
+ Ex~paao[10g D*(X)] + log 4,

(4.85)

which is obtained by substituting Eqs. 4.84 and 4.83 into Eq. 4.82.

There are two problems when minimizing Eq. 4.82 or equivalently Eq. 4.85 for the
estimation of optimal generator G*. First, during the minimization of Eq. 4.85, we
simultaneously minimize the KL divergence Dk1.(pg(X)|| pdata(X)) and maximizing the
JS divergence Djs(pdata(X)|| pg(x)). This circumstance is very strange and inconsistent
and makes the calculation of gradients unstable. Second, KL divergence is not sym-
metric. In addition to the condition of global optimum pg(X) = pdata(X), there are two
possibilities to obtain the lowest divergence

DKL(Pg(®)|| pdata(x)) = 0, if pg(x) — 0 and pyata(x) — 1 (4.86)
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and
DKL(Pdata®)|| pg (X)) — 0, if pgaa(x) — 0 and pg(x) — 1. (4.87)

Eq. 4.86 corresponds to the case that the generator is too weak to produce the samples
with sufficient variety. Eq. 4.87 is seen as the case that the generator is too arbitrary to
generate realistic and meaningful samples. Because of these two different possibilities,
the generative model based on GAN may repeatedly produce similar samples or weakly
synthesized samples with lack of variety. Both penalties considerably cause the issue of
mode collapse in the training procedure of the generative model.

In what next, the generative adversarial network is employed to conduct the proba-
bilistic autoencoder as a new type of deep generative model. The variational inference
in Section 2.3 is again introduced in the implementation.

4.6.5 Adversarial Autoencoder

An AAE [122] was proposed by incorporating the generative adversarial network
(GAN), as addressed in Section 4.6, into the construction of a VAE, as described in
Section 4.5. An AAE is seen as a variant of a VAE where the latent variable z is learned
via adversarial learning through a discriminator. Alternatively, an AAE is also viewed as
a variant of GAN driven by variational inference where the discriminator in adversarial
learning is trained to tell if the latent variable z is either inferred from real data x with
a variational distribution g¢(z[x) or artificially generated from a prior density p(z).
The neural network parameter ¢ is estimated to calculate the data-dependent mean and
variance vectors {u ¢ (x), afb (x)} of a Gaussian distribution of z in the encoder output of
a neural network where

z~ N(zlp, (), af{)(x)l). (4.88)

Figure 4.24 depicts how the adversarial learning is merged in an adversarial autoen-
coder. An AAE is constructed with three components, which are encoder, discriminator,
and decoder. The building components of an AAE are different from those of a VAE
consisting of an encoder and a decoder and those of GAN, containing a generator and a
discriminator. Similar to a VAE the latent code z in an AAE is sampled from a variational
distribution g¢ (z|x) through an inference process. Different from a VAE the decoder in
an AAE is learned as a deep generative model that maps the imposed prior p(z) to
the reconstructed data distribution. Such a mapping is estimated by adversarial learning
through a discriminator that is optimally trained to judge z is drawn from a variational
posterior g (z[x) or came from an imposed prior p(z).

A VAE and AAE are further compared as follows. First of all, a VAE directly recon-
structs an input data through an encoder and a decoder while an AAE indirectly gen-
erates data with an auxiliary discriminator that never sees the data x but classifies the
latent variable z. Second, a VAE optimizes the encoder and decoder by maximizing
the evidence lower bound L(0, ¢), which consists of a log likelihood term for the
lowest reconstruction error and a regularization term for the best variational posterior
q¢(z|x). The derivative of the learning objective is calculated with respect to the decoder
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Figure 4.24 Adversarial autoencoder for data reconstruction, which consists of an encoder, a
decoder, and a discriminator.

parameter O and encoder parameter ¢ through the continuous hidden variable z. Error
backpropagation could not directly run with discrete latent variable z. On the other hand,
an AAE optimizes the encoder, decoder, and discriminator by maximizing the evidence
lower bound L(0, ¢) as well as minimizing the cross-entropy error function of binary
classification of latent variable z either from the variational posterior ¢(z|x) or from
the imposed prior p(z). The derivative of the learning objective over three components
via minimax procedure is likely unstable. Third, a VAE and an AAE may be both
underfitting but caused by different reasons. The capacity of a VAE is degraded due
to the Bayesian approximation in variational inference while the capacity of an AAE is
considerably affected by the non-convergence in the learning procedure due to minimax
optimization. From the perspective of data generation, a VAE basically synthesizes the
data where the global composition is assured but with blurred details. On the contrary, an
AAE is trained for data generation where the local features of training data are captured
but the global structure of data manifold is disregarded.

To balance the tradeoff between a VAE and an AAE, a new combination of a VAE
and GAN was proposed in [123] as a new type of autoencoder. The construction of a
hybrid VAE and GAN is illustrated in Figure 4.25. Using this hybrid VAE and GAN,
the feature representation learned in GAN discriminator is used as the basis for a VAE
reconstruction objective. The hybrid model is trained to estimate the optimal discrimina-
tor with parameter 8,4, which almost could not tell the difference between true data x or
fake data X, which is reconstructed by a decoder or a generator with parameter 0, from
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Figure 425 A hybrid VAE and GAN model where the decoder and generator are unified.

an inferred latent variable z through an encoder with parameter 0.. The parameters of
the encoder, generator, and discriminator {0,, 0, 0,4} are jointly learned by a minimax
optimization procedure over a learning objective consisting of an evidence lower bound
and a cross-entropy error function. Different from an AAE, this hybrid model adopts
the cross-entropy function measured in data domain x rather than in feature domain z.
Using a hybrid VAE and GAN, the evidence lower bound is maximized to pursue the
learned similarity in feature space z, which is different from the learned similarity of a
VAE in data space x. Abstract or high-level reconstruction error is minimized. Global
structure is captured with the preserved local features.

4.7 Deep Transfer Learning

Traditional machine learning algorithms in speaker recognition work well under a com-
mon assumption that training and test data are in the same feature space and follow the
same distribution. However, the real-world speech signals of different speakers may not
follow this assumption due to the varying feature space or the mismatch between train-
ing and test conditions. In practical circumstances, we may train a speaker recognition
system in a target domain, but there are only sufficient training data in the other source
domain. The training data in different domains basically follow by different distributions
or locate in different feature spaces. As shown in Figure 4.26(a), the traditional learning
models are separately trained from scratch by using newly collected data from individ-
ual domains in presence of various distributions and feature spaces. Learning tasks in
existing domains are assumed to be independent. However, the collection and labeling
of training data in new domain are expensive. Solely relying on supervised learning
is impractical. It is crucial to conduct the knowledge transfer with semi-supervised
learning so as to reduce the labeling cost and improve the system utility.

Knowledge is transferred across different domains through learning a good feature
representation or a desirable model adaptation method. More specifically, it is beneficial
to cotrain the feature representation and the speaker recognition model to build a domain
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Figure 4.26 Learning processes based on (a) traditional machine learning and (b) transfer
learning.

invariant system without the labeling in the target domain. Such an emerging research
topic on transfer learning or in particular domain adaptation has been recently attracting
the attention of many researchers in speaker recognition areas. Accordingly, this section
will first address the general definition of transfer learning and discuss the relation-
ships among different transfer learning settings such as multi-task learning and domain
adaptation. Then, domain adaptation is emphasized and described in different types of
solutions. Finally, a variety of deep learning solutions to transfer learning or domain
adaptation are detailed for the development of modern speaker recognition systems.

471 Transfer Learning

Figure 4.26(b) conceptually depicts how knowledge transfer is performed for domains
from different source tasks to a target task [124]. The domains and tasks are defined
as follows. A domain D = {X, p(X)} is composed of feature space X and a marginal
probability distribution p(X), where X = {xy,...,Xx,} C X. Here, x; means the ith
training sample and X is the space of all samples. Fundamentally, if two domains are
different, their observation data may follow different marginal probability distributions
in different feature spaces. In addition, the task is denoted as 7~ = {V, f(-)}. Basically,
a task is composed of a label space Y and an objective predictive function f(-), which
is expressed as p(Y|X) from a probabilistic perspective and can be learned from the
training data. Let Dg = {(x],¥}),....(X},,¥;,)} denotes the training data in a source
domain, where x] € X; means the observation input and y; € Y, corresponds to its
label information. Similarly, the training data in the target domain are denoted as Dy =
(X}, ¥)), ..., (x,,y})}, where x! € X; and y! € Y.

Traditional machine learning methods strongly assume that the source domain and the
target domain are the same, i.e., Dg = D7, and that the source task and the target task
are identical, i.e., 7s = 77. When such an assumption does not exist in learning scenario,
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Figure 4.27 Illustration for multi-task learning with a main task and an auxiliary task.

the learning problem turns out to be a transfer learning problem. In general, transfer
learning commonly assumes that the source and target domains are different Dg # Dr
or the source task and target are different 7s # 77. Transfer learning aims to improve
the target predictive function f7(-) of task 77 in target domain Dr by transferring the
knowledge from source domain Dy under source task 7. Here, the condition Dg # Dr
means that either Xs # X7 or p(X®) # p(X"), whereas the condition 75 # 97 means
that either 7y # 97 or p(Y*|X%) # p(Y'|X").

There are two popular styles of transfer learning. One is multi-task learning, while
the other is domain adaptation.

Multi-Task Learning

Multi-task learning is seen as an inductive transfer learning mechanism. Rather than
only concerning about the target task, multi-task learning aims to learn all of the source
and target tasks simultaneously. The goal of multi-task learning is to improve the gen-
eralization performance by using the domain information contained in the training data
across different related tasks. For example, as shown in Figure 4.27, we may find that
learning to recognize the pears in an auxiliary task might help to build a classifier to
recognize the apples in a main task. More specifically, multi-task learning is seen as
a learning strategy where the main task is performed together with the other related
tasks at the same time so as to discover the shared feature representations that help in
improving the learning fidelity of each individual task.

Previous works on multi-task learning were proposed to learn a common feature
representation shared by different tasks [125-127]. To encourage a model to also work
well on other tasks that are different but related is a better regularization than unin-
formed regularization such as weight decay. A standard learning objective with model
regularization is expressed by

m;n L(D,0)+ AQ(0) (4.89)
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where O denotes the model parameter and A denotes the regularization parameter.
Multi-task learning adopts the regularization (") that reflects the shared information
among different tasks. Thus, we can obtain an improved model for the main task by
learning an integrated model for multiple tasks jointly.

4.7.2 Domain Adaptation

Domain adaptation is another popular case of transfer learning that has been recently
developed for speaker recognition [128, 129]; see also Chapter 6. Assume that the
collected speech samples are available in the source domain and also in the target
domain. Let {X*,Y*} = {(x],y}),....(X},.¥;,)}, which denotes the labeled training
samples in the source domain. Here, x} denotes the training token and y; denotes the
corresponding label information. On the other hand, we have the unlabeled data from
the target domain {X’,Y"} = {(x],y}), ..., (x,y},)} where the label information y; is
unseen. One important assumption in domain adaptation is that two domains {Dg, D7}
are related but different, namely the joint distributions of samples and labels in two
domains p(X*,Y*) and p(X’,Y") are different. Domain adaptation is a special category
under transfer learning where the marginal distributions in two domains p(X°) and
p(X") are different while making the assumption that two conditional distributions
p(Y$|X*) and p(Y?|X") are identical. Typically, the condition of distinct marginal dis-
tributions in training data and test data is also known as the sample selection bias or the
covariate shift [130, 131]. There are two types of domain adaptation methods that are
instance-based domain adaptation and feature-based domain adaptation.

Instance-Based Domain Adaptation

Using the instance-based method, importance reweighting or importance sampling is
performed to reweight the labeled instances from the source domain. The divergence
between marginal distributions in two domains can be compensated. In general, we
minimize the expected risk or the expectation of a loss function £(x,y, ) to learn the
optimal model parameter 8 via empirical risk minimization:

0" = arg(r’nin Ex y~pxy[ L.y, 0)]
Lo (4.90)
= argmin o Z L(x;,yi,0)
0 i=1

where n is the number of training samples. Domain adaptation or covariate shift aims
at learning the optimal model parameters @* for the target domain by minimizing the
expected risk

0* =argmin Y p(Dr)[L(xy,0)l. (4.91)
x.y)eDr

In traditional machine learning, the optimal model parameter 6* is learned by assum-
ing p(Ds) = p(PDr) and accordingly using the source domain data D;. However, the
distributions are different p(Dys) # p(Dr) in the real-world speaker recognition where
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the domain adaptation is required. Furthermore, no labeled data in the target domain
are available while a lot of labeled data in source domain are available in this situation.
Accordingly, we modify the optimization problem to fit the target domain using a source
domain data as follows [124]:

0 =argmin Y P00 06 £y, 0)

0 o P(Ds)
(x¥eDs ( (4.92)
pr(X;,y
~ L -E ’ lse
argmmz (ps(x yl)> O )

where m is the number of training samples in the source domain. The optimization

problem in Eq 4.92 is solved to learn a model for the target domain by giving different
prx}.y))
ps(x;,y;)
that the conditional distributions p(Y*|X*) and p(Y'|X") are the same, the difference
between p(Ds) and p(Dr) is caused by p(X*¥) and p(X"). It is because that the assump-

tion of domain adaptation yields

weight to each instance (x},y;) in the source domain. Under the assumption

pr(x;,y)  p(x))
ps(xly))  p(x))’

(4.93)

p(x})
P(x})
Or equivalently, the reweighting factor can be used for adjusting the difference between
the source and target distributions. Finally, the domain adaptation problem is simplified

where

is a reweighting factor for the loss function of individual training sample.

(X’
as a problem of estimating the factor P for calculating the learning objective using

each sample x; in the training procedure. Figure 4.28 illustrates a regression example
before and after the instance-based domain adaptation where the data distributions and
the learned models are shown.

Feature-Based Domain Adaptation

Feature-based domain adaptation is a common approach. Instead of reweighting the
training instances, the feature-based method is developed with the assumption that there
exists a domain-invariant feature space. The goal of feature-based approach is to span a
feature space by minimizing the divergence between two domains and simultaneously
preserving the discriminative information for classification in test session. In [132], the
structural correspondence learning was developed to match the correspondence between
the source domain and the target domain. This method provides an important technique
that makes use of the unlabeled data in the target domain to discover relevant features
that could reduce the divergence between the source and target domains. The key idea
was to evaluate the feature correspondence between the source and target domains,
which are based on the correlation governed by the pivot features. Pivot features behaved
similarly for discriminative learning in both domains. Non-pivot features are correlated
with some of the pivot features. A shared low-dimensional real-valued feature space was
learned by using the pivot features. However, these previous studies do not minimize the
divergence between different domains directly.
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Figure 4.28 Illustration of instance-based domain adaptation. (a) Data distributions of source
and target domains. (b) Straight line is a linear model learned from the source domain.

(c) Distribution of the source domain is adjusted by the reweighting factor. (d) After
reweighting the data in source domain, the learned model fits the target domain.

In [133], a stationary subspace analysis was proposed to match distributions in a low-
dimensional space. In [134], a method based on dimensionality reduction was presented
to simultaneously minimize the divergence between source distribution and target dis-
tribution and minimize the information loss in data. Divergence reduction can be also
performed via the maximum mean discrepancy, which will be addressed in the next
section.

4.7.3 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) [135, 136] provides an effective approach to
domain adaptation based on the distribution matching, which is a major work in domain
adaptation by compensating the mismatch between the marginal distributions in the
source and target domains. There exist many criteria that can be used to estimate the
distance between the source and target distributions. However, many of them, such as the
Kullback-Leibler (KL) divergence, require estimating the densities before estimating
the divergence. Traditionally, it was popular to carry out the distribution matching based
on the estimation of parametric distributions.

Compared with the parametric distributions, it is more attractive to implement the
nonparametric solution to the distance between distributions without the need of density
estimation. Maximum mean discrepancy is a well-known nonparametric method that is
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referred as a divergence between distributions of two data sets in the reproducing kernel
Hilbert space (RKHS) denoted by H. MMD can directly evaluate whether two distribu-
tions are different on the basis of data samples from each of them. A key superiority of
MMD to the other methods is that MMD does not require the density estimation.

The MMD criterion has been employed in many domain adaptation methods for
reweighting data or building domain-invariant feature space. Let the kernel-induced
feature map be denoted by ¢p. The training observations in the source domain and the

target domain are denoted by X* = {xi, ..,x5 }and X' = {x’l, ...,x"}, which are
drawn independently and identically distributed (i.i.d.) from p(X®) and p(X") (ps and
pr in short), respectively. The MMD between {xi, ....x; } and {xtl, o ,Xﬁl} is defined
as follows
MMD(ps, pr) = sup (Ex[fx)] — Ex[F&)D), (4.94)
Ifllee<1

where f € ¥ are functions belonging to the unit ball in a reproducing kernel Hilbert
space H. Then, we obtain a biased empirical estimate of MMD by replacing the popu-
lation expectations with empirical expectations

1 & 1 <&
MMD(X*, X") = sup (— fxj) —— f(X§)>, (4.95)
I fllge <1 m,; ”;

where ||-||¢ denotes the RKHS norm. Due to the property of RKHS, the function
evaluation can be rewritten as f(x) = (¢(x), f), where ¢p(x): X — H, the empirical
estimate of MMD is expressed as

(4.96)

1 & 1 ¢
MMD(X*, X') = H OB AR B
i=1 i=l1 H
Rewriting the norm in Eq. 4.96 as an inner product in RKHS and using the reproducing
property, we have

MMD(X*, X")

1/2
1 m m,n /

‘ 2 s ot | < toot
=1 Z k(xf,x})— o Z k(x;,xj)—i—; Z k(x;,x}) ,

i,j=1 i,j=1 i, j=1

(4.97)

where k(-, -) denotes the characteristic function based on the positive semidefinite kernel.
One commonly used kernel is the Gaussian kernel in the form

k(Xi.X,) = exp (—||x,- —x; ||2/202) (4.98)

with a variance parameter .

In summary, the distance between two distributions is equivalent to the distance
between the means of two samples in the RKHS. The value of MMD is nonnegative,
and it vanishes if and only if two distributions are the same. In Chapter 6, the domain
adaptation techniques are further specialized for the application in speaker recognition.
We will also address how MMD is developed in a type of deep learning solution to
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speaker recognition in Section 6.4. In what follows, we introduce the realization of deep
neural networks for transfer learning.

474 Neural Transfer Learning

In accordance with the fundamentals of transfer learning, hereafter, we address the
implementation of deep neural networks for the fulfillment of generalizable learning as
well as for the realization of classification learning with training data in source domain
and test data in target domain. Neural transfer learning is carried out as a new type
of machine learning in a form of transfer learning where deep neural networks are
configured.

Generalizable Learning

Neural transfer learning is basically feasible to conduct the so-called generalizable
learning with two types of learning strategies in presence of multiple learning tasks.
First, as depicts in Figure 4.29(a), deep transfer learning can be realized for multi-
task learning from raw data through learning the shared representation in intermediate
layers of a deep neural network. Such a shared intermediate representation is learned
in an unsupervised manner that conveys deep latent information generalizable across
different tasks. As we can see, the outputs of the shared intermediate layer are forwarded
to carry out different tasks. On the other hand, neural transfer learning can also be
implemented as a kind of generalizable learning via the partial feature sharing as shown
in Figure 4.29(b). In this case, the low-level features and high-level features are partially
connected and shared between different layers toward the outputs {y,...,yy} of N
tasks. The mixed mode learning is performed as another type of generalizable learning
where different compositions of functions are calculated in different nodes and different
layers.

Typically, transfer learning is implemented as a learning algorithm that can discover
the relations across different tasks as well as share and transfer knowledge across mul-
tiple domains. It is because that the representation of deep models has the capability
of capturing the underlying factors from training data in different domains that are
virtually associated with individual tasks. Correspondingly, the feature representation
using deep models with multi-task learning is advantageous and meaningful for system
improvement due to the shared factors across tasks.

In [137], a hierarchical feed-forward model was trained by leveraging the cross-
domain knowledge via transfer learning from some pseudo tasks without supervision. In
[138], the multi-task learning was applied to elevate the performance of deep models by
transferring the shared domain-specific information that was contained in the related
tasks. In particular, the multi-task learning problem can be formulated as a special
realization based on the neural network architecture as displayed in Figure 4.30(a) where
a main task and N auxiliary tasks are considered. Let D, = {X;, ymun} denote N input
samples of main task, which is indexed by m. The optimization problem is formulated as

min L(D,.0) + AQA(6) (4.99)
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Figure 4.29 Multi-task neural network learning with (a) the shared representation and (b) the
partial feature sharing.

where 0 is the model parameter, ©2(0) is a regularization term and £ amounts to an
empirical loss. Eq. 4.99 is therefore expanded for the main task in a form of

min | Y7L (i W £ (%05 0)) + Al Wi (4.100)

where f(x,;0) =z =[z1- -z k1T denotes the hidden units of a network, w,, denotes
the model parameter and £L(-) denotes the error function for the main task or the target
task. In multi-task learning, 2(0) is implemented by introducing N auxiliary tasks.
Each auxiliary task is learned by using Dy = {X,, ykn}, Where yi, = gk (X;) denotes the
output of an auxiliary function. The regularization term €2(0) is also incorporated in the
learning objective:
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(4.101)

As we can see, a model is encouraged to work well in the other tasks. This provides a
better regularization than the noninformative regularization. Thus, we are able to achieve
a better feature representation for the main task through the help of deep models jointly
trained from multiple tasks. Next, neural transfer learning is further implemented as a

general solution to build a classification system based on semi-supervised learning.

Semi-Supervised Domain Adaptation

Figure 4.30(b) depicts the learning strategy based on a deep semi-supervised model
adaptation. The learning objective is to train a classification system for the target domain

Main task

Auxiliary tasks

Output

Shared feature
representation

(2)
Training Test
Main Task Auxiliary Task Main Task )
[@ @] [@ ] [ O Q ] Classifier
{wy} AT T g} o 1
i (@ ® (O )
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(b)

\
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Figure 4.30 (a) Deep transfer learning via a main task and an auxiliary task. (b) A classification
system is built with training data in source domain and test data in target domain. [Reprinted
from Deep Semi-Supervised Learning for Domain Adaptation (Figure 1), by H.Y. Chen and J.T.
Chien, Proceedings IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015,

with permission of IEEE.]
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where a set of labeled samples in source domain and a set of unlabeled samples or
test samples in target domain are available. This domain adaptation problem requires
assigning a group of output neurons for the main classification task and a group of
neurons for the auxiliary regression tasks, where training is jointly performed to acquire
the shared information between two domains. Such information is conveyed through
different hidden layers consisting of different levels of hidden features.

Basically, Figure 4.30(b) shows a hybrid model of deep neural network (DNN) for
the application of semi-supervised domain adaptation. The DNN classifier is trained
and applied for prediction of class labels for test samples. For the case of D dimen-
sional input data X = [x7...x plT, the auxiliary task for regression can be designed
as the reconstruction of input data as X = [X]...Xp] . We therefore develop a semi-
supervised domain adaptation by matching the distributions between two domains based
on the shared information in hidden layers. There are two learning tasks in an integrated
objective function, which is formulated to find the solution to semi-supervised domain
adaptation. One is the cross-entropy error function, which is minimized for optimal
classification while the other is the reconstruction error function, which is minimized
for optimal regression. Based on this learning strategy, the semi-supervised learning is
conducted under multiple objectives. Notably, the main and auxiliary tasks are separated
in the output layer by using separate weights, {wy;} and {wy;}. The layer next to the
output layer is known as the layer for distribution matching. Those low-level features
were shared for both classification and regression using weight parameters {w;}.

In this chapter, we have addressed the fundamentals of deep learning ranging from
the traditional models including restricted Boltzmann machines, deep neural networks,
and the deep belief networks to the advanced models including variational autoencoders,
generative adversarial networks, and the neural transfer learning machines. These mod-
els will be employed in two categories of speaker recognition systems. One is for robust
speaker recognition while the other is for domain adaptive speaker recognition, which
will be detailed in Chapter 5 and Chapter 6, respectively.
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