
5 Robust Speaker Verification

5.1 DNN for Speaker Verification

Recently, deep learning and deep neural networks (DNNs) have changed the research
landscape in speech processing [139–142]. This is mainly due to their superb perfor-
mance. In speaker recognition, the most common strategy is to train a DNN with a
bottleneck layer from which either frame-based features or utterance-based features can
be extracted. The network can be trained to produce senone posteriors or speaker poste-
riors. For the latter, a pooling procedure is applied to convert variable-length utterances
into a fixed-length feature vector. Then, standard back-end classifiers can be applied for
scoring.

The relationship between i-vectors and background noise is not straightforward and
may not be linear. Linear models such as PLDA and LDA cannot fully capture this
complex relationship. Recently, a number of studies have demonstrated that DNNs are
more capable of modeling this complex relationship. For instance, Isik et al. [143]
extracted speaker vectors from i-vectors through disentangling the latent dependence
between speaker and channel components, and [144, 145] used the weights of a stacked
restricted Boltzmann machine (RBM) to replace the parameters of a PLDA model.
In [146], noisy i-vectors were mapped to their clean counterparts by a discriminative
denoising autoencoder (DDAE) using the speaker identities and the information in the
clean i-vectors.

5.1.1 Bottleneck Features

DNNs have been used as frame-based feature extractors. This is achieved by reading
the activations of the bottleneck layer of a DNN that is trained to produce the senone
posteriors of a short segment of speech [147, 148]. The procedure of this approach is
illustrated in Figure 5.1. The main idea is to replace the MFCC-UBM by the bottleneck-
feature based UBM (BNF-UBM). As the DNN is trained to produce senone posteriors,
the bottleneck features contain more phonetic information and the alignments with
the BNF-UBM are more relevant and reliable for speaker verification. In addition to
computing the zeroth-order statistics (alignment), the bottleneck features can also be
used as acoustic features for i-vector extraction.

Alternatively, bottleneck features can be extracted at the conversation level by aver-
aging the activation of the last hidden layer [149, 150]. This procedure leads to the

169

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

170 Robust Speaker Verification

Figure 5.1 The procedure of extracting i-vectors from DNN-based bottleneck features. Instead of
using an MFCC-based UBM for frame alignment, an UBM trained by DNN-based bottleneck
features (BNF) is used.

d-vectors. The structure of the DNN is almost the same as Figure 5.1 except that the
DNN is trained to output speaker posteriors instead of senone posteriors. This straight-
forward use of DNNs, however, can barely achieve significant performance gain, despite
some success under reverberant environments [151] or with the help of a denoising
autoencoder [2, 148]. The idea is illustrated in Figure 5.2.

5.1.2 DNN for I-Vector Extraction

One of the promising approaches is to use a DNN to compute the frame posteriors
(senone posteriors) for i-vector extraction [3, 84, 85, 152–154] (see Section 3.6.10). In
this method, the component posteriors of a GMM-based universal background model
(UBM) are replaced by the output of a phonetically aware DNN. This means that an
UBM is not required for frame alignment. Instead, the DNN estimates the posterior
probabilities of thousands of senones given multiple contextual acoustic frames. How-
ever, as the i-vector extractor is still based on a GMM-based factor analyzer, the total
variability matrix is still formed by stacking multiple loading matrices, one for each
Gaussian. The resulting i-vectors are known as senone i-vectors or DNN i-vectors.
Figure 5.3 shows the procedure of senone i-vector extraction.

The idea of replacing the UBM by a DNN is fascinating because the latter facilitates
the comparison of speakers as if they were pronouncing the same context.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.1 DNN for Speaker Verification 171

Figure 5.2 Procedure for creating a DNN classifier by stacking restricted Boltzmann machines
and the extraction of bottleneck (BN) features from the BN layer. A softmax layer outputting
speaker IDs is put on top of the denoising autoencoder. After backpropagation fine-tuning, BN
features extracted from the BN layer can be used for speaker recognition [2].

Figure 5.3 Extracting senone i-vectors. The DNN–UBM contains the mean vectors and
covariance matrices computed from the frame posteriors and acoustic vectors (typically MFCCs)
using Eq. 3.161 and Eq. 3.163, respectively. The DNN-based total variability matrix is obtained
by Eq. 3.129 using the frame posteriors computed by the DNN. In some systems [3], the MFCCs
are replaced by bottleneck features.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

172 Robust Speaker Verification

5.2 Speaker Embedding

The use of deep neural networks to create an embedded space that captures most of
the speaker characteristics has attracted a lot of attention in the last few years. Strictly
speaking, the d-vector [150] is also a kind of speaker embedding. However, the most
promising approach today is the x-vectors [155, 156].

5.2.1 X-Vectors

Despite the outstanding performance of the senone i-vectors, training the DNN to
output senone posteriors is computationally demanding and requires language-specific
resources such as transcribed data. So far, senone i-vectors are limited to English only.

To remove the language constraint in senone i-vectors, Snyder et al. [155, 156] pro-
posed to train a network to output speaker posteriors instead of senone posteriors. The
concept is similar to the d-vector. However, unlike the d-vector, a time-delay neural
network (TDNN) is used to capture the temporal information in the acoustic frames and
statistical pooling is applied to aggregate the frame-level information into utterance-
level information. Statistical pooling computes the mean and standard deviation of the
TDNN’s outputs across consecutive frames in the utterance. Speaker-dependent embed-
ded features are then extracted at the layer(s) after the pooling. The authors name the
resulting feature vectors as x-vectors. The TDNN and the pooling mechanism is shown
to be very effective in converting acoustic frames into fixed-length feature vectors for
PLDA scoring. Figure 5.4 shows the structure of the x-vector extractor.

In addition to the TDNN and the statistical pooling mechanism, another difference
between the x-vector extractor and the d-vector extractor is that the former outputs the
speaker posteriors at the utterance-level, whereas the latter outputs the speaker posterior
at the frame level.

Figure 5.4 Structure of an x-vector extractor. The TDNN aims to capture the temporal
information of contextual acoustic frames and the pooling layer aggregates the temporal
information to form the utterance-level representation called the x-vector.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.2 Speaker Embedding 173

Figure 5.5 The frame context at different layers of an x-vector extraction DNN (courtesy of
Youzhi Tu).

The TDNN structure allows neurons in the upper layers to receive signals that span
across multiple frames. For example, in [155], at a particular frame t of an input utter-
ance, the first hidden layer receives five frames between t − 2 and t + 2 from the input
layer; the second hidden layer receives three frames at t − 2, t , and t + 2 from the first
hidden layer; the third hidden layer receives three frames at t − 3, t , and t + 3 from
the second hidden layer. As a result, each neuron in the third hidden layer will have a
temporal span of 15 frames, as shown in Figures 5.5 and 5.6.

The authors in [156] shows that their x-vector system significantly outperforms their
i-vector systems in the Cantonese part of NIST 2016 SRE. It was demonstrated that the
performance of x-vectors can be further improved by increasing the diversity of training
speech. This was done by adding noise, music, babble, and reverberation effect to the
original speech samples. The combined speech samples are then used for training the
DNN in Figure 5.4.

Very recently, the x-vector embedding has been enhanced by adding LSTM layers on
top of the last TDNN layer, followed by applying statistical pooling on both the TDNN
and LSTM layers [157, 158]. Another improvement is to add an attention mechanism
to the statistical pooling process [159, 160], which are shown to be better than simply
averaging the frame-level features.

5.2.2 Meta-Embedding

The idea of meta-embedding [62] is motivated by the difficulty of propagating the
uncertainty of i-vectors and x-vectors to the PLDA models. Although it has been shown
that the uncertainty of i-vectors (represented by the their posterior covariances) can

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

174 Robust Speaker Verification

Figure 5.6 Architecture of the TDNN in the x-vector extractor. At the input layer, the vertical bars
represent acoustic frames. In the hidden layers, the vertical bars comprises neurons with
connections to contextual nodes in the layer below. (Courtesy of Youzhi Tu)

be propagated to the PLDA models [50, 80], the method increases the scoring time
significantly [82, 83].

In the conventional i-vector/PLDA framework, speaker identity is represented by the
a point estimate of the posterior density (Eq. 3.76) and the uncertainty of the point
estimate is discarded. Meta-embedding overcomes this limitation by considering the
likelihood function for the speaker identity variable:

f (z) ∝ P (r|z), (5.1)

where z ∈ R
d is the speaker identity variable (which is hidden) and r is a representation

of the audio recording, e.g., i-vector or MFCCs. Therefore, given the j th recording,
instead of using the point estimate rj to represent the speaker, we keep all of the
information about the speaker in fj (z) = kjP (rj |z) where kj is an arbitrary constant. It
is important to note that meta-embedding is the whole function fj instead of some point
estimates that live in R

d .
Given the representation of two recordings, r1 and r2, we have two hypotheses:

H1 : r1 and r2 are obtained from the same speaker

H2 : r1 and r2 are obtained from two different speakers

To apply meta-embedding for speaker verification, we need to compute the likelihood
ratio

p(r1,r2|H1)

p(r1,r2|H2)
=

∫
Rd f1(z)f2(z)π(z)dz[∫

Rd f1(z)π(z)dz
] [∫

Rd f2(z)π(z)dz
], (5.2)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 175

where π(z) is the prior density of z. In [62], π(z) = N (z|0,I). The integrals in Eq. 5.2
are the expectation of fj : ∫

Rd

fj (z)π(z)dz = Ez∼π(z){fj (z)}.

For Gaussian meta-embedding (GME), the expectation is given by [161]

Ez∼π(z){f (z)} =
∫
N (z|0,I)f (z)dz

=
∫

1√
(2π)d

exp

{
−1

2
zTz

}
· exp

{
aTz − 1

2
zTBz

}
dz

=
∫

1√
(2π)d

exp

{
aTz − 1

2
zT(B + I)z

}
dz

= |B + I|− 1
2 exp

{
1

2
aT(B + I)−1a

}
, (5.3)

where a and B are the natural parameters of the Gaussian likelihood function fj (z).

5.3 Robust PLDA

One school of thought to enhance the robustness of speaker verification systems against
background noise is to improve the robustness of the PLDA model. To this end, both the
SNR and duration variabilities can be incorporated into the PLDA model so that these
variabilities can be marginalized during the scoring stage. The method is called SNR-
and duration-invariant PLDA [55, 162, 163]. Table 5.1 summarizes the nomenclature of
various types of PLDA models to be discussed in this section.

5.3.1 SNR-Invariant PLDA

An i-vector xij is generated from a linear model of the form [164, 165]:

xij = m + Vhi + Grij + εij, (5.4)

Table 5.1 Abbreviations of various PLDA models.

Abbr. Model Name Formula

PLDA Probabilistic LDA xij = m + Vhi + εij (Eq. 5.5)
SI-PLDA SNR-invariant PLDA xk

ij
= m + Vhi + Uwk + εkij (Eq. 5.6)

DI-PLDA Duration-invariant PLDA xp
ij
= m + Vhi + Ryp + εp

ij
(Eq. 5.7)

SDI-PLDA SNR- and duration-invariant PLDA xkp
ij

= m + Vhi + Uwk + Ryp + εkp
ij

(Eq. 5.29)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

176 Robust Speaker Verification

where V and G define the speaker subspace and channel subspace, respectively. hi

and rij are the speaker and channel factors, respectively, and εij is the residue with
a Gaussian distribution, N (ε|0,�). In most cases, � is a diagonal covariance matrix
that represents the variation that cannot be described by GGT and VVT.

The PLDA model in Eq. 5.4 has two components [61, 66], namely the speaker compo-
nent (m+Vhi) that represents the characteristics of speaker i and the channel component
(Grij+εij) that characterizes the speaker as well as the channel. Because the dimension
of i-vectors is sufficiently low, the covariance GGT can be absorbed into � provided that
it is a full covariance matrix. As a result, the PLDA model reduces to [166]:

xij = m + Vhi + εij, (5.5)

where εij ∼ N (0,�) with � being a full covariance matrix.
SNR-invariant PLDA (SI-PLDA) was developed [55, 162] to address the limitation

of PLDA in modeling SNR and duration variabilities in i-vectors. To train an SNR-
invariant model, we partition the training set into K groups based on the SNR of the
training utterances so that each i-vector is assigned to one SNR group. Let xk

ij represents
the jth i-vector from the ith speaker in the kth SNR group. Extending the classical PLDA
to modeling SNR and duration variabilities, we may write xk

ij as

xk
ij = m + Vhi + Uwk + εkij, (5.6)

where V and U represent the speaker and SNR subspaces respectively, hi and wk are
speaker and SNR factors with a standard normal prior, and εkij is a residue term follow-
ing a Gaussian distribution N (ε|0,�). In [55, 162], the channel variability is modeled
by the full covariance matrix �.

The SI-PLDA (Eq. 5.6) and the classical PLDA (Eq. 5.4) are different. Specifically,
in SI-PLDA, variability in i-vectors caused by noise level variation is modeled by UUT,
whereas in classical PLDA, the channel variability is modeled by GGT. Therefore, the
SNR factor (wk in Eq. 5.6) depends on the SNR groups, whereas the channel factor (rij

in Eq. 5.4) depends on the speaker and channel.
Figure 5.7 shows the use of speaker and SNR labels when training a PLDA model (a)

and an SNR-invariant PLDA model (b). In PLDA, the SNR group labels are ignored dur-
ing PLDA training, whereas, in SI-PLDA, the SNR labels are used to group the i-vectors
according to the SNR of their respective utterances. These extra SNR labels enable the
PLDA model to find an SNR subspace, which helps to reduce i-vector variability due to
noise level variation.

5.3.2 Duration-Invariant PLDA

In some datasets, the duration of utterances varies widely. Figure 5.8 shows the
histogram of utterance durations in NIST 2016 SRE. According to [167, 168], duration
variability in the i-vectors can be modeled as additive noise in i-vector space. Adding
a duration factor to the PLDA model results in a duration-invariant PLDA (DI-
PLDA) [163].

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 177

(a)

(b)

Figure 5.7 (a) Grouping of i-vectors under multi-condition training in conventional PLDA. The
rectangles represents i-vectors. Although the training set contains two groups of i-vectors (with
different SNRs), the training algorithm of PLDA will not consider this information and will sum
over the statistics of both groups. (b) Grouping of i-vectors under SNR-invariant PLDA in which
each cube represents an i-vector. There are Hi (k) i-vectors from speaker i whose utterances fall
into SNR group k. The training algorithm of SNR-invariant PLDA will take the SNR labels and
speaker labels into consideration and will sum over the statistics within individual groups.
[Reprinted from Discriminative Subspace Modeling of SNR and Duration Variabilities for
Robust Speaker Verification (Figure 1), N. Li, M.W. Mak, W.W. Lin and J.T. Chien, Computer
Speech and Language, vol. 45, pp. 87–103, 2017, with permission of Elsevier]

EM Formulations
Denote X = {xp

ij |i = 1, . . . ,S;j = 1, . . . ,Hi(p);p = 1, . . . ,P } as a set of i-vectors

obtained from S speakers, where xp
ij is utterance j from speaker i at duration group p.

Speaker i posseses Hi(p) i-vectors from duration group p. If the term associated with
the SNR is replaced by a term related to duration, Eq. 5.6 becomes DI-PLDA, i.e.,

xp
ij = m + Vhi + Ryp + εpij, (5.7)

where the duration subspace is defined by R and yp denotes the duration factor whose
prior is a standard Gaussian. The meanings of other terms remain the same as those in
Eq. 5.6.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

178 Robust Speaker Verification

0 20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

Time (sec) after VAD

D
en

si
ty

, p
(le

ng
th

)

Enrollment utterances
Test utterances

(a) (b)

Figure 5.8 (a) Duration distributions of enrollment and test utterances in NIST 2016 SRE. (b) A
two-dimensional histogram illustrating the duration distribution of all possible target-test pairs.

To simplify computation, the latent factors hi and yp are assumed to be posteri-
orly independent in [55]. However, a better approach is to consider them posteriorly
dependent, as in [163]. In the latter case, variational Bayes methods [1] can be used for
deriving the EM algorithms for training the SI-PLDA and DI-PLDA models.

Suppose there are Ni =
∑P

p=1 Hi(p) training utterances from speaker i and Bp =∑S
i=1 Hi(p) training utterances in duration group p. Denote θ = {m,V,R,�} as the old

estimate of the model parameters, a new estimate θ′ can be computed by maximizing
the auxiliary function:

Q(θ′|θ) = Eq(h,y)

{
log p(X,h,y|θ′)

∣∣∣∣X,θ
}

= Eq(h,y)

{∑
ijp

log [p(xp
ij |hi,yp,θ′)p(hi,yp)]

∣∣∣∣X,θ
}

,

(5.8)

where h = {h1, . . . ,hs}, y = {y1, . . . ,yp}, and q(h,y) is the variational posterior density
of h and y. Q(θ′|θ) can then be maximized by setting the derivative of Q(θ′|θ) with
respect to the model parameters {m,V,R,�} to 0, which results in

m = 1

N

S∑
i=1

P∑
p=1

Hi (p)∑
j=1

xp
ij, (5.9a)

V′ =
⎧⎨⎩

S∑
i=1

P∑
p=1

Hi (p)∑
j=1

[
(xp

ij − m)〈hi |X〉 − R〈yphT
i |X〉

]⎫⎬⎭ (5.9b)

⎡⎣ S∑
i=1

P∑
p=1

Hi (p)∑
j=1

〈hihT
i |X〉

⎤⎦−1

,

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 179

R′ =
⎧⎨⎩

S∑
i=1

P∑
p=1

Hi (p)∑
j=1

[
(xp

ij − m)〈yp|X〉 − V〈hiyT
p|X〉

]⎫⎬⎭ ,

⎡⎣ S∑
i=1

P∑
p=1

Hi (p)∑
j=1

〈ypyT
p|X〉

⎤⎦−1

(5.9c)

�′ = 1

N

S∑
i=1

P∑
p=1

Hi (p)∑
j=1

[
(xp

ij − m)(xp
ij − m)T − V〈hi |X〉(xp

ij − m)T
]
−

1

N

S∑
i=1

P∑
p=1

Hi (p)∑
j=1

R〈yp|X〉(xp
ij − m)T, (5.9d)

where N =∑S
i=1 Ni =

∑P
p=1 Bp.

The global mean, Eq. 5.9(a), can be computed in one iteration. However, the other
model parameters, Eqs. 5.9(b)–(d), which make up the M-step of the EM algorithm,
require iterative update because the posterior distribution of hi and yp are not known.
Below, we will explain how variational Bayes method can be used to compute these
posteriors.

In variational Bayes, the true posterior p(h,y|X) is approximated by a variational
posterior q(h,y), and the marginal likelihood of X is written as

log p(X) =
∫ ∫

q(h,y) log p(X)dhdy

=
∫ ∫

q(h,y) log

[
p(h,y,X)

p(h,y|X)

]
dhdy

=
∫ ∫

q(h,y) log

[
p(h,y,X)

q(h,y)

]
dhdy +

∫ ∫
q(h,y) log

[
q(h,y)

p(h,y|X)

]
dhdy

= L(q) +DKL(q(h,y)‖p(h,y|X)). (5.10)

In Eq. 5.10, DKL(q||p) denotes the KL-divergence between distribution q and distribu-
tion p; also,

L(q) =
∫ ∫

q(h,y) log

[
p(h,y,X)

q(h,y)

]
dhdy (5.11)

is the variational lower-bound of the marginal likelihood. Because of the non-negativity
of KL-divergence, maximizing the lower bound with respect to q(h) will also maximize
the marginal likelihood. The maximum is attained when q(h,y) is the same as the
true posterior p(h,y|X). Also, it is assumed that the approximated posterior q(h,y) is
factorizable, i.e.,

log q(h,y) = log q(h) + log q(y) =
S∑

i=1

log q(hi) +
P∑

p=1

log q(yp). (5.12)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

180 Robust Speaker Verification

When the lower bound L(q) in Eq. 5.11 is maximized, we have [1, 30]

log q(h) = Eq(y){log p(h,y,X)} + const

log q(y) = Eq(h){log p(h,y,X)} + const,
(5.13)

where Eq(y){Z} is the expectation of Z using q(y) as the density.
Note that log q(h) in Eq. 5.13 can be written as

log q(h)

=
∑

i
log q(hi)

= 〈log p(h,y,X)〉y + const

= 〈log p(X|h,y)〉y + 〈log p(h,y)〉y + const

=
∑

ijp

〈
logN (xp

ij |m + Vhi + Ryp,�)
〉
yp

+
∑

i
〈logN (hi |0,I)〉y

+
∑

p
〈logN (yp|0,I)〉yp + const

= −1

2

∑
ijp

(xp
ij − m − Vhi − Ry∗p)T�−1(xp

ij − m − Vhi − Ry∗p)

− 1

2

∑
i
hT

i hi + const

=
∑

i

[
hT

i VT�−1
∑

jp
(xp

ij − m − Ry∗p) − 1

2
hT

i

(
I +

∑
p

Hi(p)VT�−1V
)

hT
i

]
+ const, (5.14)

where y∗p ≡ 〈yp|X〉yp is the posterior mean of yp in the previous iteration and 〈.〉yp

denotes the expectation with respect to yp. Note that 〈logN (yp|0,I)〉yp is the differential
entropy of a normal distribution, which does not depend on hi [169, Chapter 8].

By extracting hi in Eq. 5.14 and comparing with
∑

i log q(hi), we can see that q(hi)
is a Gaussian with mean vector and precision matrix as follows:

Eq(hi){hi |X} = 〈hi |X〉 =
(

L(1)
i

)−1
VT�−1

P∑
p=1

Hi (p)∑
j=1

(xp
ij − m − Ry∗p)

and

L(1)
i ≡ I +

P∑
p=1

Hi(p)VT�−1V.

Using this precision matrix, we can compute the second-order moment (which will be
needed in the M-step) as follows:

〈hihT
i |X〉 =

(
L(1)

i

)−1 + 〈hi |X〉〈hi |X〉T.

In the same manner, we obtain the posterior mean and second-order moment of yp by
comparing the terms in log q(yp) with a Gaussian distribution.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 181

The posterior moment 〈hiyT
p|X〉 is also needed in the M-step. We can use variational

Bayes to approximate it as follows:

p(hi,yp|X) ≈ q(hi)q(yp), (5.15)

where both q(hi) and q(yp) are Gaussians. According to the law of total expectation
[170], we factorize Eq. 5.15 to get

〈yphT
i |X〉 ≈ 〈yp|X〉〈hi |X〉T

〈hiyT
p|X〉 ≈ 〈hi |X〉〈yp|X〉T.

Therefore, the equations for the variational E-step are as follows:

L(1)
i = I + NiVT�−1V i = 1, . . . ,S (5.16a)

L(2)
p = I + BpRT�−1R p = 1, . . . ,P (5.16b)

〈hi |X〉 = (L(1)
i)−1VT�−1

P∑
p=1

Hi (p)∑
j=1

(xp
ij − m − Ry∗p) (5.16c)

〈yp|X〉 = (L(2)
p)−1RT�−1

S∑
i=1

Hi (p)∑
j=1

(xp
ij − m − Vh∗i) (5.16d)

〈hihT
i |X〉 = (L(1)

i)−1 + 〈hi |X〉〈hi |X〉T (5.16e)

〈ypyT
p|X〉 = (L(2)

p)−1 + 〈yp|X〉〈yp|X〉T (5.16f)

〈yphT
i |X〉 ≈ 〈yp|X〉〈hi |X〉T (5.16g)

〈hiyT
p|X〉 ≈ 〈hi |X〉〈yp|X〉T (5.16h)

Algorithm 4 shows the procedure of training a duration-invariant PLDA model.

Derivation of VB Posteriors
Our goal is to approximate the true joint posteriors p(h,w|X) by a distribution q(h,w)
such that

q(h,w) = q(h)q(w).

The derivation of the VB posteriors begins with minimizing the KL-divergence

DKL(q(h,w)||p(h,w|X)) =
∫ ∫

q(h,w) log

[
q(h,w)

p(h,w|X)

]
dhdw

= −
∫ ∫

q(h,w) log

[
p(h,w|X)

q(h,w)

]
dhdw

= −
∫ ∫

q(h,w) log

[
p(h,w,X)

q(h,w)p(X)

]
dhdw

= −L(q) + log p(X), (5.17)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

182 Robust Speaker Verification

Algorithm 4 Variational Bayes EM algorithm for duration-invariant PLDA
Input:

Development data set consisting of i-vectors X = {xp
ij
|i = 1, . . . ,S;j = 1, . . . ,Hi (p);p =

1, . . . ,P }, with identity labels and duration group labels.

Initialization:

y∗p ← 0;
� ← 0.01I;
V,R ← eigenvectors of PCA projection matrix learned using data set X;

Parameter Estimation:

Compute m via Eq. 5.9(a);

Compute L(1)
i

and L(2)
p according to Eqs. 5.16(a) and (b), respectively;

Set y∗p to the posterior mean of yp . Compute the posterior mean of hi using Eq. 5.16(c);
Use the posterior mean of hi computed in Step 3 to update the posterior mean of yp according to
Eq. 5.16(d);
Compute the other terms in the E-step, i.e., Eq. 5.16(e)–(h);
Update the model parameters using Eq. 5.9(a)–(c);
Go to Step 2 until convergence;

Return: the parameters of the duration-invariant PLDA model θ = {m,V,R,�}.

where L(q) is the variational Bayes lower bound (VBLB). The lower bound is given by:

L(q) =
∫ ∫

q(h,w) log

[
p(h,w,X)

q(h,w)

]
dhdw

=
∫ ∫

q(h,w) log p(h,w,X)dhdw −
∫ ∫

q(h,w) log q(h,w)dhdw

=
∫ ∫

q(h)q(w) log p(h,w,X)dhdw −
∫ ∫

q(h)q(w) log q(h)dhdw

−
∫ ∫

q(h)q(w) log q(w)dhdw

=
∫ ∫

q(h)q(w) log p(h,w,X)dhdw −
∫

q(h) log q(h)dh

−
∫

q(w) log q(w)dw. (5.18)

Note that the first term in Eq. 6.39 can be written as∫ ∫
q(h)q(w) log p(h,w,X)dhdw =

∫
q(h)

[∫
q(w) log p(h,w,X)dw

]
dh

=
∫

q(h)Eq(w){log p(h,w,X)}dh.

(5.19)

Define a distribution of h as

q∗(h) ≡ 1

Z
exp

{
Eq(w){log p(h,w,X)}} , (5.20)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 183

where Z is to normalize the distribution. Using Eqs. 5.19 and 5.20, Eq. 6.39 can be
written as:

L(q) =
∫

q(h) log q∗(h)dh −
∫

q(h) log q(h)dh −
∫

q(w) log q(w)dw + log Z

= −
∫

q(h) log

[
q(h)

q∗(h)

]
dh +H (q(w)) + log Z

= −DKL(q(h)||q∗(h)) +H (q(w)) + log Z.

L(q) will attain its maximum when the KL-divergence vanishes, i.e.,

log q(h) = log q∗(h) = Eq(w){log p(h,w,X)} + const. (5.21)

Now, we write Eq. 6.41 as

log p(X) = L(q) +DKL(q(h,w)||p(h,w|X)).

Because KL-divergence is nonnegative, we may maximize the data likelihood p(X) by
maximizing the VB lower bound L(q), which can be achieved by Eq. 5.21. A similar
treatment can be applied to q(w).

Likelihood Ratio Scores
Suppose we do not know (or not use) the duration of the target and test utterances.
Then, the scoring function of SI-PLDA [55] can be used for computing the likelihood
ratio score. However, because we know the duration of the the target and test utterances
(�s and �t), the likelihood-ratio score can be computed as follows:

SLR(xs,xt |�s,�t) = log
p(xs,xt |same-speaker,�s,�t)

p(xs,xt |different-speakers,�s,�t)
, (5.22)

where xs and xt are the i-vectors of the target speaker and test speaker, respectively.
There are two approaches to calculating the score in Eq. 5.22, depending on the

sharpness of the posterior density of yp. Consider the case where the posterior density of
yp is sharp at its mean y∗p.1 Assuming that � belongs to duration group p, the marginal-
likelihood of i-vector x can then be expressed as:

p(x|� ∈ pth duration group) =
∫

h
p(x|h,y∗p)p(h)dh

=
∫

h
N (x|m + Vh + Ry∗p,�)N (h|0,I)dh

= N (x|m + Ry∗p,VVT +�),

(5.23)

where y∗p ≡ 〈yp|X〉 is the posterior mean of yp. Given a test i-vector xt and a target
i-vector xs , we can use Eq. 5.23 to compute the likelihood ratio score:

1 As suggested by Eq. 5.16(b), this occurs when the number of training i-vectors (Bp) in duration group p is
large.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

184 Robust Speaker Verification

SLR(xs,xt |�s,�t) = log
p(xs,xt |same-speaker,�s,�t)

p(xs,xt |different-speakers,�s,�t)

= log

N
([

xs

xt

] ∣∣∣∣
[

m + Ry∗ps

m + Ry∗pt

]
,

[
� �ac

�ac �

])

N
([

xs

xt

] ∣∣∣∣
[

m + Ry∗ps

m + Ry∗pt

]
,

[
� 0
0 �

])

= 1

2
[x̄T

s Qx̄s + 2x̄T
s Px̄t + x̄T

t Qx̄t] + const

(5.24)

where

x̄s = xs − m − Ry∗ps

x̄t = xt − m − Ry∗pt

Q = �−1 − (� −�ac�
−1�ac)−1

P = �−1�ac(� − �ac�
−1�ac)−1

� = VVT + �; �ac = VVT.

Now, let’s consider the case where the posterior density of yp is moderately sharp and
is a Gaussian N (yp|μ∗p,�∗

p).2 If � falls on duration group p, the marginal-likelihood of
i-vector x is:

p(x|� ∈ pth duration group) =
∫

h

∫
yp

p(x|h,yp)p(h)p(yp)dhdyp

=
∫

h

∫
yp

N (x|m + Vh + Ryp,�)N (h|0,I)N (yp|0,I)dhdyp

=
∫

yp

N (x|m + Ryp,VVT +�)N (yp|0,I)dyp

= N (x|m + Rμ∗
p
,VVT + R�∗

pRT + �), (5.25)

where we may use Eq. 5.16(d) to compute μ∗
p

and Eq. 5.16(b) to estimate �∗
p. Given a

test i-vector xt and a target i-vector xs , the likelihood ratio score can be computed as:

SLR(xs,xt |�s,�t) = log
p(xs,xt |same-speaker,�s,�t)

p(xs,xt |different-speakers,�s,�t)
(5.26)

= log

N
([

xs

xt

] ∣∣∣∣
[

m + Rμ∗
ps

m + Rμ∗
pt

]
,

[
�s �ac

�ac �t

])

N
([

xs

xt

] ∣∣∣∣
[

m + Rμ∗ps

m + Rμ∗
pt

]
,

[
�s 0
0 �t

]) (5.27)

= 1

2
[x̄T

s As,t x̄s + 2x̄T
s Bs,t x̄t + x̄T

t Cs,t x̄t] + const (5.28)

2 This happens when there are a moderate number of training i-vectors (Bp) in duration group p, as evident
by Eq. 5.16(b).

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 185

where

x̄s = xs − m − Rμ∗
ps

x̄t = xt − m − Rμ∗
pt

As,t = �−1
s − (�s −�ac�

−1
t �ac)−1

Bs,t = �−1
s �ac(�t − �ac�

−1
s �ac)−1

Cs,t = �−1
t − (�t −�ac�

−1
s �ac)−1

�s = VVT + R�∗
ps

RT + �

�t = VVT + R�∗
pt

RT + �

�ac = VVT.

5.3.3 SNR- and Duration-Invariant PLDA

The SNR-invariant PLDA in Section 5.3.1 and the duration-invariant PLDA in Section
5.3.2 can be combined to address both SNR and duration variabilities in utterances. It is
called SNR- and duration-invariant PLDA (SDI-PLDA) in [163]. The model has three
latent factors, and they represent speaker, SNR, and duration information, respectively.

Generative Model
In classical PLDA, i-vectors from the same speaker share the same speaker factor.
Inspired by this notion, SDI-PLDA assumes (1) that utterances with similar SNR will
lead to i-vectors that possess similar SNR information and (2) that utterances of approx-
imately the same length should lead to i-vectors that own similar duration information.

Figure 5.9 demonstrates that the assumptions above are reasonable. In Figure 5.9(a),
we project the i-vectors to the first three principal components and denote three groups
of i-vectors by three different colors. Each group corresponds to the same set of speak-
ers whose utterances’ SNR belong to the same SNR group. Grouping the i-vectors in
this way is to ensure that any displacement in the clusters is not caused by speaker
variability. Figure 5.9(a) clearly shows three clusters, and each cluster corresponds to
one SNR group. To show that the second assumption is valid, we divided the clean i-
vectors according to their utterance duration and plotted them on the first three principal
components. Here, the word “clean” means that the i-vectors were obtained from clean
telephone utterances. Again, each duration group in the legend of Figure 5.9(b) cor-
responds to the same set of speakers. Results clearly show that i-vectors are duration
dependent and that the cluster locations depend on the utterance duration.

With the above assumptions, i-vectors can be generated from a linear model that com-
prises five components, namely speaker, SNR, duration, channel, and residue. Suppose
we have a set of D-dimensional i-vectors

X = {x̂kp
ij |i = 1, . . . ,S;k = 1, . . . ,K;p = 1, . . . ,P ;j = 1, . . . ,Hik(p)}

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

186 Robust Speaker Verification

(a)

(b)

Figure 5.9 Projection of i-vectors on the first three principal components. (a) Utterances of
different SNRs. (b) Utterances of different durations. It may be better to view the color version of
this figure, which is available at https://github.com/enmwmak/ML-for-Spkrec.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://github.com/enmwmak/ML-for-Spkrec
https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 187

Table 5.2 The definitions of the variables in Eq. 5.29.

Symbol Dimension Definition

m D Global mean vector
hi Q1 Speaker factor with Gaussian prior N (0,I)
wk Q2 SNR factor with Gaussian prior N (0,I)
yp Q3 Duration factor with Gaussian prior N (0,I)

εkp
ij

D Residual vector with Gaussian prior N (0,�)

V D ×Q1 Speaker loading matrix
U D ×Q2 SNR loading matrix
R D ×Q3 Duration loading matrix

Figure 5.10 Probabilistic graphical model of SDI-PLDA.

obtained from S speakers, where x̂kp
ij is the jth i-vector from speaker i and k and p

denote the SNR and duration groups, respectively. In SDI-PLDA, x̂kp
ij can be considered

generated from the model:

x̂kp
ij = m + Vhi + Uwk + Ryp + εkpij , (5.29)

where the variables in Eq. 5.29 are defined in Table 5.2. Note that hi , wk , and yp are
assumed to be independent in their prior. Figure 5.10 shows the graphical model of
SDI-PLDA.

The SNR- and duration-invariant PLDA extends the conventional PLDA in that the
former takes the advantage of having multiple labels (speaker IDs, SNR levels, and
duration ranges) in the training set to train the loading matrices, whereas the latter only
uses the speaker IDs. SDI-PLDA uses the additional duration subspace to leverage
the duration information in the utterances. Different from the session- and speaker-
dependent term Grij in Eq. 5.4, the duration term Ryp and the SNR term Uwk in Eq.
5.29 depend on the duration and SNR groups, respectively.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

188 Robust Speaker Verification

Variational Bayes EM Algorithm
The parameters θ = {m,V,U,R,�} of the SNR- and duration-invariant PLDA model
can be obtained by using the maximum likelihood principle. Specifically, denote θ as
the old parameters. We estimate the new parameters θ′ by maximizing the auxiliary
function:

Q(θ′|θ) = Eq(h,w,y)

[
log p(X,h,w,y|θ′)

∣∣∣X,θ
]

= Eq(h,w,y)

[∑
ikpj

log
(
p(x̂kp

ij |hi,wk,yp,θ′)p(hi,wk,yp)
)∣∣∣X,θ

]
. (5.30)

Taking expectation with respect to q(h,w,y) suggests that it is necessary to compute
the posterior distributions of the latent variables given the model parameters θ. Let
Ni =

∑
kp Hik(p) be the number of training i-vectors from speaker i, Mk =

∑
ip Hik(p)

be the number of training i-vectors from SNR group k, and Bp = ∑
ik Hik(p) be the

number of training i-vectors from duration group p. Similar to duration-invariant PLDA,
we may use variational Bayes to compute these posteriors:

L(1)
i = I + NiVT�−1V i = 1, . . . ,S (5.31a)

L(2)
k = I + MkUT�−1U k = 1, . . . ,K (5.31b)

L(3)
p = I + BpRT�−1R p = 1, . . . ,P (5.31c)

〈hi |X〉 = (L(1)
i)−1VT�−1

∑
kpj

(x̂kp
ij − m − Uw∗

k − Ry∗p) (5.31d)

〈wk|X〉 = (L(2)
k)−1UT�−1

∑
ipj

(x̂kp
ij − m − Vh∗i − Ry∗p) (5.31e)

〈yp|X〉 = (L(3)
p)−1RT�−1

∑
ikj

(x̂kp
ij − m − Vh∗i − Uw∗

k) (5.31f)

〈hihT
i |X〉 = (L(1)

i)−1 + 〈hi |X〉〈hi |X〉T (5.31g)

〈wkwT
k |X〉 = (L(2)

k)−1 + 〈wk|X〉〈wk|X〉T (5.31h)

〈ypyT
p|X〉 = (L(3)

p)−1 + 〈yp|X〉〈yp|X〉T (5.31i)

〈wkhT
i |X〉 ≈ 〈wk|X〉〈hi |X〉T (5.31j)

〈hiwT
k |X〉 ≈ 〈hi |X〉〈wk|X〉T (5.31k)

〈wkyT
p|X〉 ≈ 〈wk|X〉〈yp|X〉T (5.31l)

〈ypwT
k |X〉 ≈ 〈yp|X〉〈wk|X〉T (5.31m)

〈hiyT
p|X〉 ≈ 〈hi |X〉〈yp|X〉T (5.31n)

〈yphT
i |X〉 ≈ 〈yp|X〉〈hi |X〉T, (5.31o)

where w∗
k , y∗p, and h∗i denote the posterior mean of wk , yp, and hi in the previous

iteration, respectively.
Using Eq. 5.31(a)–(o), the model parameters θ′ can be estimated by maximizing the

auxiliary function in Eq. 5.30, which gives

m = 1

N

∑
ikpj

x̂kp
ij (5.32a)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.3 Robust PLDA 189

V′ =
{∑

ikpj

[
(x̂kp

ij − m)〈hi |X〉T − U〈wkhT
i |X〉 − R〈yphT

i |X〉
]}

{∑
ikpj

〈hihT
i |X〉

}−1
(5.32b)

U′ =
{∑

ikpj

[
(x̂kp

ij − m)〈wk|X〉T − V〈hiwT
k |X〉 − R〈ypwT

k |X〉
]}

{∑
ikpj

〈wkwT
k |X〉

}−1
(5.32c)

R′ =
{∑

ikpj

[
(x̂kp

ij − m)〈yp|X〉T − V〈hiyT
p|X〉 − U〈wkyT

p|X〉
]}

{∑
ikpj

〈ypyT
p|X〉

}−1
(5.32d)

�′ = 1

N

∑
ikpj

[
(x̂kp

ij − m)(x̂kp
ij − m)T − V〈hi |X〉(x̂kp

ij − m)T

− U〈wk|X〉(x̂kp
ij − m)T − R〈yp|X〉(x̂kp

ij − m)T
]
, (5.32e)

where N = ∑S
i=1 Ni =

∑K
k=1 Mk . Algorithm 5 shows the procedure of applying the

variational EM algorithm.

Algorithm 5 Variational Bayes EM algorithm for SNR- and duration-invariant PLDA
Input:

Development data set comprising i-vectors or LDA-projected i-vectors X = {x̂kp
ij
|i = 1, . . . ,S;k =

1, . . . ,K;p = 1, . . . ,P ;j = 1, . . . ,Hik(p)}, with speaker labels, SNR group labels, and duration
labels.

Initialization:

y∗p ← 0, w∗
k
← 0;

� ← 0.01I;
V,U,R ← eigenvectors obtained from the PCA of X;

Parameter Estimation:

Compute m via Eq. 5.32(a);

Compute L(1)
i

, L(2)
k

, and L(3)
p according to Eq. 5.31(a) to Eq. 5.31(c), respectively;

Compute the posterior mean of hi using Eq. 5.31(d);
Use the posterior mean of hi computed in Step 3 to update the posterior means of wk and yp using
Eq. 5.31(e)–(f);
Compute the other terms in the E-step, i.e., Eq. 5.31(g)–(o);
Update the model parameters using Eq. 5.32(b)–(e);
Set y∗p = 〈yp |X〉, w∗

k
= 〈wk |X〉, and h∗

i
= 〈hi |X〉;

Go to Step 2 until convergence;

Return: the parameters of the SNR- and duration-invariant PLDA model θ = {m,V,U,R,�}.

Likelihood Ratio Scores
Consider the general case where both SNR and duration of the target speaker’s utterance
and the test speaker’s utterance are unknown. Let xs and xt be the i-vectors of the target
speaker and test speaker respectively, the likelihood ratio score is

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

190 Robust Speaker Verification

SLR(xs,xt) = log
P (xs,xt |same-speaker)

P (xs,xt |different-speakers)

= const + 1

2
x̄T
s Qx̄s + 1

2
x̄T
t Qx̄t + x̄T

s Px̄t,

(5.33)

where

x̄s = xs − m, x̄t = xt − m,

P = �−1
tot�ac(�tot −�ac�

−1
tot�ac)−1,

Q = �−1
tot − (�tot − �ac�

−1
tot�ac)−1,

�ac = VVT, and �tot = VVT + UUT + RRT +�.

See Section 3.4.3 for the derivation of Eq. 5.33. If we know the utterance duration and
SNR, we may use the principle in Eq. 5.26 to derive the scoring function. SDI-PLDA
scoring is computationally light because both P and Q can be computed during training.

5.4 Mixture of PLDA

In duration- and SNR-invariant PLDA, the duration and SNR variabilities are modeled
by the duration and SNR subspace in the PLDA model. In case the variabilities are
very large, e.g., some utterances are very clean but some are very noisy, then the
variabilities may be better modeled by a mixture of PLDA models in which each model
is responsible for a small range of variability. In this section, we will discuss the mixture
models that are good at modeling utterances with a wide range of SNR. Much of the
materials in this section are based on the authors’ previous work on PLDA mixture
models [47, 95, 171–173].

5.4.1 SNR-Independent Mixture of PLDA

In Eq. 3.70, the PLDA model assumes that the length-normalized i-vectors are Gaussian
distributed. The modeling capability of a single Gaussian, however, is rather limited,
causing deficiency of the Gaussian PLDA model in tackling noise and reverberation
with varying levels. In such scenarios, it is more appropriate to model the i-vectors by
a mixture of K factor analysis (FA) models. Specifically, the parameters of the mixture
FA model are given by ω = {ϕk,mk,Vk,�k}Kk=1, where ϕk , mk , Vk , and �k are
the mixture, coefficient, mean vector, speaker loading matrix and covariance matrix of
the k-th mixture, respectively. It is assumed that the full covariance matrices �k’s are
capable of modeling the channel effect. Because there is no direct relationship between
the mixture components and the SNR of utterances, we refer to this type of mixture
models as SNR-independent mixture of PLDA (SI-mPLDA).

The following subsection will provide the derivation of the EM formulations for
the scenario in which an i-vector is connected with K latent factors. After that, the
formulations will be extended to the scenario in which each speaker has only one latent
factor across all mixtures.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 191

EM Formulation
DenoteY = {yijk}Kk=1 as the latent indicator variables identifying which of the K factor
analysis models {ϕk,mk,Vk,�k}Kk=1 produces xij . Specifically, yijk = 1 if the FA model
k produces xij , and yijk = 0 otherwise. Also denote Z = {zik}Kk=1 as the latent factors
for the K mixtures. Then, the auxiliary function in Eq. 3.71 can be written as

Q(ω′|ω) = EY,Z{log p(X,Y,Z|ω′)|X,ω}

= EY,Z

{∑
ijk

yijk log
[
p(yijk|ω′)p(xij |zik,yijk = 1,ω′

k)p(zik|ω′)
] ∣∣∣∣X,ω

}

=
N∑

i=1

Hi∑
j=1

K∑
k=1

EY,Z

{
yijk log

[
ϕ′

kN (xij |m′
k + V′

kzik,�
′
k)N (zik|0,I)

] ∣∣∣∣X,ω
}

.

(5.34)

Although the ith training speaker have multiple (Hi) sessions, these sessions share the
same set of latent variables {zik}Kk=1. To simplify notations, we will drop the ′ symbol in
Eq. 5.34:

Q(ω) =
∑

ijk
EY,Z

{
yijk log

[
ϕkN (xij |mk + Vkzik,�k)N (zik|0,I)

] ∣∣∣∣X}
=
∑
ijk

〈
yijk

{
logϕk − 1

2
log |�k|

} ∣∣∣∣X〉

− 1

2

∑
ijk

〈
yijk

{
(xij − mk − Vkzik)T�−1

k (xij − mk − Vkzik)
} ∣∣∣∣X〉

− 1

2

∑
ijk

〈
yijkzik

Tzik

∣∣∣∣X〉

=
∑
ijk

〈
yijk|X

〉 [
logϕk − 1

2
log |�k| − 1

2
(xij − mk)T�−1

k (xij − mk)

]
+
∑
ijk

(xij − mk)T�−1
k Vk

〈
yijkzik|X

〉

− 1

2

⎡⎣∑
ijk

tr
{(

VT
k �−1

k Vk + 1
) 〈

yijkzikzT
ik|X

〉}⎤⎦ . (5.35)

To compute mk , we follow the two-step EM as suggested in [174]. Specifically, we
drop zik at this stage of EM and setting3

∂Q

∂mk

= −
∑
ij

〈yijk|X〉
(
�−1

k mk −�−1
k xij

)
= 0,

3 In [174], the first step in the two-step EM does not consider zik . As a result, the 6th row of Eq. 5.35 is not
included in the derivative.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

192 Robust Speaker Verification

which results in

mk =
∑N

i=1
∑Hi

j=1〈yijk|X〉xij∑N
i=1

∑Hi

j=1〈yijk|X〉
.

To find Vk , we compute

∂Q

∂Vk

=
∑
ij

�−1
k (xij − mk)〈yijkzT

ik|X〉 −
∑
ij

�−1
k Vk

〈
yijkzikzT

ik|X
〉

. (5.36)

Setting ∂Q
∂Vk

= 0, we obtain

Vk =
⎡⎣∑

ij

(xij − mk)〈yijkzik|X〉T
⎤⎦⎡⎣∑

ij

〈
yijkzikzT

ik|X
〉⎤⎦−1

. (5.37)

To find �k , we evaluate

∂Q

∂�−1
k

= 1

2

∑
ij

〈yij |X〉
[
�k − (xij − mk)(xij − mk)T

]

+
∑
ij

(xij − mk)〈yijkzT
ik|X〉VT

k −
1

2
Vk

⎡⎣∑
ij

〈yijkzikzT
ik|X〉

⎤⎦VT
k .

(5.38)

Substituting Eq. 5.37 into Eq. 5.38 and setting ∂Q

∂�−1
k

= 0, we have

∑
ij

〈yijk|X〉�k

=
∑
ij

[
〈yijk|X〉(xij − mk)(xij − mk)T − (xij − mk)〈yijkzT

ik|X〉VT
k

]
.

Rearranging, we have

�k =
∑

ij

[〈yijk|X〉(xij − mk)(xij − mk)T − Vk〈yijkzik|X〉(xij − mk)T
]∑

ij 〈yijk|X〉 .

To compute ϕk , we optimize Q(ω) subject to the constraint
∑

k ϕk = 1. This can be
achieved by introducing a Lagrange multiplier λ such that Q′(ω) = Q(ω)+λ(

∑
k ϕk−

1). λ can be found by setting ∂Q′
∂ϕk

= 0, which results in

−ϕkλ =
∑
ij

〈yijk|X〉. (5.39)

Summing both side of Eq. 5.39 from 1 to K , we obtain

λ = −
∑
ijk

〈yijk|X〉. (5.40)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 193

Substituting Eq. 5.40 into Eq. 5.39 and rearranging, we obtain

ϕk =
∑

ij 〈yijk|X〉∑
ij l〈yij l |X〉 .

E-Step: Computing Posterior Expectations
Because the mixture model comprises more than one latent variable, formally these
latent variables should be inferred through the variational Bayes (VB) method in which
the variational distributions over the latent variables zik and yijk are assumed to be
factorizable. Specifically, we have q(zik,yijk) = q(zik)q(yijk). The VB method is able
to find the closest variational distribution to the true joint posterior distribution of two
dependent latent variables p(zik,yijk|X). In the VB-E step, the optimal variational dis-
tribution or variational parameters with the largest lower-bound of the likelihood are
estimated. Then, in the VB-M step, given the updated variational distribution, we update
the model parameters {ϕk,mk,Vk,�k}Kk=1 by maximizing the variational lower bound.

Rather than using the more complex VB method, we assume that the latent variable
zik is posteriorly independent of yijk , that is,

p(zik,yijk|Xi) = p(zik|Xi)p(yijk|xij).

This assumption is similar to that of traditional continuous density HMM in which
the HMM states and Gaussian mixtures are assumed independent. Therefore, in the E-
step, we compute the posterior means 〈yijkzik|X〉 and posterior moment 〈yijkzikzT

ik|X〉,
where j = 1, . . . ,Hi . The joint posterior expectations are given by:

〈yijkzik|Xi〉 = 〈yijk|xij 〉〈zik|Xi〉
〈yijkzikzT

ik|Xi〉 = 〈yijk|xij 〉〈zikzT
ik|Xi〉.

(5.41)

Figure 5.11 shows the relation among zik , xij and yijk [171]. In the figure, ω =
{ϕk,mk,�k,Vk}Kk=1. In the diagram, m = {mk}Kk=1, V = {Vk}Kk=1, � = {�k}Kk=1,
and ϕ = {ϕk}Kk=1.

Let yi·k be the indicator variables of the Hi i-vectors from the ith speaker for the kth
mixture. We use the Bayes rule to estimate the joint posterior expectations as follows:

p(zik,yi.k|Xi) ∝ p(Xi |zik,yi.k = 1)p(zik,yi.k)

= p(Xi |zik,yi.k = 1)p(yi.k)p(zik) ∵ zik and yi.k are independent

=
Hi∏

j=1

[
ϕkp(xij |yijk = 1,zik)

]yijk p(zik) [1, Eq. 9.38]

= p(zik)
Hi∏

j=1

[
N (xij |mk + Vkzik,�k)

]yijk

︸ ︷︷ ︸
∝ p(zik |Xi)

ϕ
yijk

k . (5.42)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

194 Robust Speaker Verification

Figure 5.11 Probabilistic graphical model representing SNR-independent mixture of PLDA.
[Reprinted from Mixture of PLDA for Noise Robust I-Vector Speaker Verification (Figure 2),
M.W. Mak, X.M Pang and J.T. Chien., IEEE/ACM Trans. on Audio Speech and Language
Processing, vol. 24, No. 1, pp. 130–142, Jan. 2016, with permission of IEEE]

To find the posterior of zik , we extract terms dependent on zik from Eq. 5.42 as follows:

p(zik|Xi)

∝ exp

⎧⎨⎩−1

2

Hi∑
j=1

yijk(xij − mk − Vkzik)T�−1
k (xij − mk − Vkzik) − 1

2
zT
ikzik

⎫⎬⎭
= exp

⎧⎨⎩zT
ikVT

k

∑
j∈Hik

�−1
k (xij − mk) − 1

2
zT
ik

⎛⎝I +
∑

j∈Hik

VT
k �−1

k Vk

⎞⎠ zik

⎫⎬⎭ , (5.43)

where Hik comprises the indexes of speaker i’s i-vectors that aligned to mixture k.
Comparing Eq. 3.77 with Eq. 5.43, we have

〈zik|Xi〉 = L−1
ik VT

k �−1
k

∑
j∈Hik

(xij − mk)

〈zikzT
ik|Xi〉 = L−1

ik + 〈zik|Xi〉〈zT
ik|Xi〉,

(5.44)

where

Lik = I +HikVT
k �−1

k Vk, (5.45)

where Hik is the number (occupancy count) of i-vectors from speaker i aligned to
mixture j .

Eq. 5.44 suggests that only Hik out of Hi i-vectors from speaker i are generated
by mixture k. This characteristic is crucial for proper modeling of i-vectors when they
are obtained from utterances with large difference in SNR. This is because these i-
vectors tend to fall on different areas of the i-vector space (see Hypothesis I in Section
II of [171]). For example, the training i-vectors in [171] were obtained from utterances
having three noise levels: 6dB, 15dB, and clean. Therefore, when K = 3, Mixtures 1,

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 195

2, and 3 will be responsible for generating i-vectors whose utterances have noise level
of 6dB, 15dB, and clean, respectively. This characteristic also causes the PLDA mixture
model different from that of [175]. In particular, in [175], a mixture component is first
chosen for the i-vector of a particular speaker; then the selected component generates
all of the i-vectors from that speaker. Clearly, this strategy is constrained to the case in
which the i-vectors from a speaker are obtained from a similar acoustic environment.

To estimate the posterior expectation of yijk , we may use the Bayes rule:

〈yijk|Xi〉 = P (yijk = 1|xij,ω)

= P (yijk = 1)p(xij |yijk = 1,ω)∑K
r=1 P (yijr = 1)p(xij |yijr = 1,ω)

= ϕkN (xij |mk,VkVT
k + �k)∑K

r=1 ϕrN (xij |mr,VrVT
r +�r)

.

(5.46)

Note that in Eq. 5.46,

p(xij |yijk = 1,ω) =
∫

p(xij |z,yijk = 1,ω)p(z)dz

=
∫
N (xij |mk + Vkz,�k)N (z|0,I)dz

= N (xij |mk,VkVT
k + �k).

Sharing Latent Factors
Note that in Eq. 5.44, each speaker needs K latent factors zik . Another way is to let the
speaker to share the same latent factor, i.e., zik = zi ∀i. Therefore, Eq. 5.34 changes into

Q(ω′|ω) =
∑

ijk
EY,Z

{
yijk log

[
ϕ′

kN (xij |m′
k + V′

kzi,�
′
k)N (zi |0,I)

] ∣∣∣∣X,ω
}

.

(5.47)

Let yi·· be the indicator variables for all possible sessions and mixture components for
speaker i. The joint posterior density in Eq. 5.42 turns into

p(zi,yi..|Xi) ∝ p(Xi |zi,yi.. = 1)p(zi,yi..)

= p(Xi |zi,yi.. = 1)p(yi..)p(zi) ∵ zi and yi.. are independent

=
Hi∏

j=1

K∏
k=1

[
ϕkp(xij |yijk = 1,zi)

]yijk p(zi) [1, Eq. 9.38]

= p(zi)
Hi∏

j=1

K∏
k=1

[
N (xij |mk + Vkzi,�k)

]yijk

︸ ︷︷ ︸
∝ p(zi |Xi)

ϕ
yijk

k , (5.48)

where we have used the property that for each i and j , only one of yijk’s equals to 1,
the rest are 0. Taking out terms depending on zi from Eq. 5.48 and contrasting with Eq.
3.77, we have the posterior expectations as follows:

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

196 Robust Speaker Verification

〈zi |Xi〉 = L−1
i

K∑
k=1

∑
j∈Hik

VT
k �−1

k (xij − mk)

〈zizT
i |Xi〉 = L−1

i + 〈zi |Xi〉〈zT
i |Xi〉.

(5.49)

We also have the posterior precision as follows:

Li = I +
K∑

k=1

∑
j∈Hik

VT
k �−1

k Vk, (5.50)

whereHik contains the indexes of the i-vectors from speaker i that aligned to mixture k.
In summary, we have the following EM formulations:

E-Step:

〈yijk|X〉 =
ϕkN (xij |mk,VkVT

k +�k)∑K
l=1 ϕlN (xij |ml,VlVT

l + �l)
(5.51a)

Li = I +
K∑

k=1

HikVT
k �−1

k Vk (5.51b)

〈yijkzi |X〉 = 〈yijk|X〉〈zi |X〉 (5.51c)

〈zi |X〉 = L−1
i

K∑
k=1

VT
k �−1

k

∑
j∈Hik

(xij − mk) (5.51d)

〈yijkzizT
i |X〉 = 〈yijk|X〉〈zizT

i |X〉 (5.51e)

〈zizT
i |X〉 = L−1

i + 〈zi |X〉〈zi |X〉T (5.51f)

M-Step:

m′
k =

∑N
i=1

∑Hi

j=1〈yijk|X〉xij∑N
i=1

∑Hi

j=1〈yijk|X〉
(5.52a)

ϕ′
k =

∑
ij 〈yijk|X〉∑
ij l〈yij l |X〉 (5.52b)

V′
k =

⎡⎣∑
ij

(xij − m′
k)〈yijkzi |X〉T

⎤⎦⎡⎣∑
ij

〈
yijkzizT

i |X
〉⎤⎦−1

(5.52c)

�′
k =

∑
ij

[〈yijk|X〉(xij − m′
k)(xij − m′

k)T − V′〈yijkzi |X〉(xij − m′
k)T
]∑

ij 〈yijk|X〉 (5.52d)

where 〈yijk|X〉 ≡ EY
{
yijk|X,ω

}
, 〈yijkzi |X〉 ≡ EY,Z

{
yijkzi |X,ω

}
, and 〈yijkzizT

i |X〉
≡ EY,Z

{
yijkzizT

i |X,ω
}
.

Mixture PLDA Scoring
Given the target speaker’s i-vector xs and a test i-vector xt , the same-speaker likelihood
(numerator) can be written as:

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 197

p(xs,xt |same-speaker)

=
∑K

ks=1

∑K

kt=1

∫
p(xs,xt,yks = 1,ykt = 1,z|ω)dz

=
∑K

ks=1

∑K

kt=1
P (yks = 1,ykt = 1|ω)

∫
p(xs,xt |yks = 1,ykt = 1,z,ω)p(z)dz

=
∑K

ks=1

∑K

kt=1
ϕksϕkt

∫
p(xs,xt |yks = 1,ykt = 1,z,ω)p(z)dz

=
K∑

ks=1

K∑
kt=1

ϕksϕktN
([

xT
s xT

t

]T
∣∣∣∣ [mT

ks
mT

kt

]T
,V̂kskt V̂

T
kskt

+ �̂kskt

)
. (5.53)

A similar procedure is applied to compute the different-speaker likelihood. Therefore,
the likelihood ratio score for the mixture of PLDA becomes is

SmLR(xs,xt)

=
∑K

ks=1
∑K

kt=1 ϕksϕktN
([

xT
s xT

t

]T ∣∣ [mT
ks

mT
kt

]T
,V̂kskt V̂

T
kskt

+ �̂kskt

)
[∑K

ks=1 ϕksN
(

xs |mks,Vks VT
ks
+�ks

)] [∑K
kt=1 ϕktN

(
xt |mkt ,Vkt V

T
kt
+ �kt

)]
(5.54)

where �̂kskt = diag{�ks,�kt } and V̂kskt = [VT
ks

VT
kt

]T.

5.4.2 SNR-Dependent Mixture of PLDA

The SNR-dependent mixture of PLDA (SD-mPLDA) uses the SNR of utterances to
guide the clustering of i-vectors. As a result, the alignment of i-vectors is based on the
posterior probabilities of SNR rather than the posterior probabilities of i-vectors, as in
the SI-PLDA in Section 5.4.1.

In SD-mPLDA, i-vectors are modeled by a mixture of SNR-dependent factor analyz-
ers with parameters:

θ = {λ,ω} = {λk,ωk}Kk=1 = {πk,μk,σk,mk,Vk,�k}Kk=1, (5.55)

where λk = {πk , μk , σk} contains the mixture coefficient, mean and standard deviation
of the kth SNR group, and ωk = {mk,Vk,�k} comprises the mean i-vector, factor
loading matrix, and residual covariance matrix of the FA model associated with SNR
group k.

M-Step: Maximizing Expectation of Complete Likelihood
Let Y = {yijk}Kk=1 be the latent indicator variables identifying which of the K FA
models should be selected based on the SNR of the training utterances. More precisely,
if the kth FA model produces xij , then yijk = 1; otherwise yijk = 0. We also let
L = {�ij ;i = 1, . . . ,N;j = 1, . . . ,Hi} be the SNR of the training utterances. Then, the
auxiliary function for deriving the EM formulation can be written as

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

198 Robust Speaker Verification

Q(θ′|θ) = EY,Z{log p(X,L,Y,Z|θ′)|X,L,θ}

= EY,Z

⎧⎨⎩∑
ijk

yijk log
[
p(�ij |yijk = 1)p(yijk)p(xij |zi,yijk = 1,ω′

k)p(zi)
] ∣∣∣∣X,L,θ

⎫⎬⎭
=

N∑
i=1

K∑
k=1

Hi∑
j=1

EY,Z

{
yijk log

[
N (�ij |μ′k,σ′k)π′kN (xij |m′

k + V′
kzi,�

′
k)

N (zi |0,I)]

∣∣∣∣X,L,θ
}

. (5.56)

For notation simplicity, we will remove the symbol (′) in Eq. 5.56 and ignore the con-
stants that do not depend on the model parameters. Then, Eq. 5.56 is written as

Q(θ) =
∑
ijk

〈
yijk|L

〉 [− log σk − 1

2
σ−2

k (�ij − μk)2 + logπk

]

+
∑
ijk

〈
yijk

[
−1

2
log |�k|

−1

2
(xij − mk − Vk〈zi |X〉)T�−1

k (xij − mk − Vk〈zi |X〉)
]〉

− 1

2

∑
ijk

〈
yijkzi

Tzi |X,L
〉

=
∑
ijk

〈
yijk|L

〉 [− log σk − 1

2
σ−2

k (�ij − μk)2 + logπk

]

+
∑
ijk

〈
yijk|L

〉 [−1

2
log |�k| − 1

2
(xij − mk)T�−1

k (xij − mk)

]
+
∑
ijk

(xij − mk)T�−1
k Vk

〈
yijkzi |X,L

〉

− 1

2

⎡⎣∑
ijk

〈
yijkzT

i VT
k �−1

k Vkzi |X,L
〉
+
〈
yijkzT

i zi |X,L
〉⎤⎦

=
∑
ijk

〈
yijk|L

〉 [− log σk − 1

2
σ−2

k (�ij − μk)2 + logπk

]

+
∑
ijk

〈
yijk|L

〉 [−1

2
log |�k| − 1

2
(xij − mk)T�−1

k (xij − mk)

]
+
∑
ijk

(xij − mk)T�−1
k Vk

〈
yijkzi |X,L

〉

− 1

2

⎡⎣∑
ijk

tr
{(

VT
k �−1

k Vk + I
) 〈

yijkzizT
i |X,L

〉}⎤⎦ , (5.57)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 199

where we have used the identity〈
xTAx

〉
= tr

{
A
[〈

xxT
〉
− 〈x〉〈xT〉

]}
+ 〈xT〉A〈x〉.

The derivation of SD-mPLDA parameters is almost the same as that of SI-mPLDA in
Section 5.4.1, except for the parameters of the SNR model. Specifically, to compute μk

and σk , we set ∂Q
∂μk

= 0 and ∂Q
∂σk

= 0, which result in

μk =
∑

ij 〈yijk|L〉�ij∑
ij 〈yij |L〉 and σ2

k =
∑

ij 〈yijk|L〉(�ij − μk)2∑
ij 〈yijk|L〉 .

E-Step: Computing Posterior Expectations
The E-step is almost the same as the “Sharing Latent Factors” in Section 5.4.1, except
for the additional observations L (the SNR of utterances). Let Xi and Li be the i-
vectors and SNR of utterances from the ith speaker, respectively. We begin with the
joint posterior density:

p(zi,yi..|Xi,Li) ∝ p(Xi,Li |zi,yi.. = 1)p(zi,yi..)

= p(Xi |zi,yi.. = 1)p(Li |yi.. = 1)p(yi..)p(zi) ∵ zi and yi.. are independent

=
Hi∏

j=1

K∏
k=1

[
πkp(xij |yijk = 1,zi)p(�ij |yijk = 1)

]yijk p(zi) [1, Eq. 9.38] (5.58)

= p(zi)

⎧⎨⎩
Hi∏

j=1

K∏
k=1

[
N (xij |mk + Vkzi,�k)

]yijk

⎫⎬⎭︸ ︷︷ ︸
∝ p(zi |Xi)

⎧⎨⎩
Hi∏

j=1

K∏
k=1

[
πkN (�ij |μk,σ

2
k)
]yijk

⎫⎬⎭ ,

(5.59)

where we have used the property that yijk is governed by �ij . Notice that the posterior
density of zi has the identical form as Eq. 5.48. The only dissimilarity is the posterior
of yijk , which can be estimated by the Bayes rule:

〈yijk|L〉 = 〈yijk|�ij 〉
= P (yijk = 1|�ij,λ)

= P (yijk = 1)p(�ij |yijk = 1,λ)∑K
r=1 P (yijr = 1)p(�ij |yijr = 1,λ)

= πkN (�ij |μk,σ2
k)∑K

r=1 πrN (�ij |μr,σ2
r)

. (5.60)

Then, the joint posterior expectations are given by

〈yijkzi |Xi,Li〉 = 〈yijk|�ij 〉〈zi |Xi〉
〈yijkzizT

i |Xi,Li〉 = 〈yijk|�ij 〉〈zizT
i |Xi〉.

(5.61)

To make sure that the clustering process is guided by the SNR of utterances instead of
their i-vectors, we assume that yijk is posteriorly independent of xij , i.e., 〈yijk|�ij,xij 〉 =

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

200 Robust Speaker Verification

〈yijk|�ij 〉. This assumption causes the alignments of i-vectors depend on the SNR of
utterances only.

In summary, the EM steps of SI-mPLDA are given below:
E-Step:

EY
{
yijk = 1|L,λ

} ≡ 〈yijk|L〉 =
πkN (�ij |μk,σ2

k)∑K
r=1 πrN (�ij |μr,σ2

r)
(5.62a)

Li = I +
K∑

k=1

HikVT
k �−1

k Vk (5.62b)

〈yijkzi |X,L〉 = 〈yijk|L〉〈zi |X〉 (5.62c)

〈zi |X〉 = L−1
i

K∑
k=1

∑
j∈Hik

VT
k �−1

k (xij − mk) (5.62d)

〈yijkzizT
i |X,L〉 = 〈yijk|L〉〈zizT

i |X〉 (5.62e)

〈zizT
i |X〉 = L−1

i + 〈zi |X〉〈zi |X〉T (5.62f)

M-Step:

π′k =
∑N

i=1
∑Hi

j=1〈yijk|L〉∑N
i=1

∑Hi

j=1

∑K
l=1〈yij l |L〉

(5.63a)

μ′k =
∑N

i=1
∑Hi

j=1〈yijk|L〉�ij∑N
i=1

∑Hi

j=1〈yijk|L〉
(5.63b)

σ2
k

′ =
∑N

i=1
∑Hi

j=1〈yijk|L〉(�ij − μ′k)2∑N
i=1

∑Hi

j=1〈yijk|L〉
(5.63c)

m′
k =

∑N
i=1

∑Hi

j=1〈yijk|L〉xij∑N
i=1

∑Hi

j=1〈yijk|L〉
(5.63d)

V′
k =

⎡⎣ N∑
i=1

Hi∑
j=1

f′ijk〈yijkzi |X,L〉T
⎤⎦⎡⎣ N∑

i=1

Hi∑
j=1

〈
yijkzizT

i |X,L
〉⎤⎦−1

�′
k =

∑N
i=1

∑Hi

j=1

[
〈yijk|L〉f′ijkf′ijk

T − V′
k〈yijkzi |X,L〉f′ijk

T
]

∑N
i=1

∑Hi

j=1〈yijk|L〉
(5.63e)

f′ijk = xij − m′
k (5.63f)

Likelihood Ratio Scores
Denote xs and xt as the i-vectors of the target speaker and the test speaker, respectively.
Also denote �s and �t as the SNR (in dB) of the corresponding utterances. Then, the
same-speaker marginal likelihood is

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.4 Mixture of PLDA 201

p(xs,xt,�s,�t |same-speaker)

= p(�s)p(�t)p(xs,xt |�s,�t,same-speaker)

= pst

K∑
ks=1

K∑
kt=1

∫
p(xs,xt,yks = 1,ykt = 1,z|θ,�s,�t)dz

= pst

K∑
ks=1

K∑
kt=1

γ�s,�t (yks,ykt)
∫

p(xs,xt |yks = 1,ykt = 1,z,ω)p(z)dz

= pst

K∑
ks=1

K∑
kt=1

γ�s,�t (yks,ykt)N
([

xT
s xT

t

]T
∣∣∣∣ [mT

ks
mT

kt

]T
,V̂kskt V̂

T
kskt

+ �̂k

)

where pst = p(�s)p(�t), V̂kskt = [VT
ks

VT
kt

]T, �̂k = diag{�ks,�kt } and

γ�s,�t (yks,ykt) ≡ P (yks = 1,ykt = 1|�s,�t,λ)

= πksπktN ([�s �t]T|[μks μkt]
T,diag{σ2

ks
,σ2

kt
})∑K

k′s=1
∑K

k′t=1 πk′sπk′tN ([�s �t]T|[μk′s μk′t]
T,diag{σ2

k′s
,σ2

k′t
})

.

Likewise, the different-speaker marginal likelihood is

p(xs,xt,�s,�t |different-speaker) = p(xs,�s |Spk s)p(xt,�t |Spk t), Spk s �= Spk t,

where

p(xs,�s |Spk s) = p(�s)
∑K

ks=1

∫
p(xs,yks = 1,z|θ,�s)dz

= p(�s)
∑K

ks=1
γ�s (yks)N

(
xs

∣∣mks,Vks VT
ks
+ �ks

)
,

and similarly for p(xt,�t |Spk t). Therefore, the likelihood ratio SmLR-SNR is given by:

SmLR-SNR(xs,xt) =
K∑

ks=1

K∑
kt=1

γ�s,�t (yks,ykt)N
([

xT
s xT

t

]T ∣∣ [mT
ks

mT
kt

]T
,V̂kskt V̂

T
kskt

+ �̂kskt

)
[

K∑
ks=1

γ�s (yks)N
(

xs |mks,Vks VT
ks
+�ks

)][K∑
kt=1

γ�t (ykt)N
(

xt |mkt ,Vkt V
T
kt
+�kt

)]
(5.64)

Because the determinant of V̂ks V̂T
ks
+ �̂ks could exceed the double-precision repre-

sentation, direct evaluations of Eq. 5.64 could cause numerical problems. However, the
problems can be overcome by noting the identity: |αA| = αD|A| where α is a scalar
and A is a D ×D matrix. Thus, we can rewrite Eq. 5.64 as

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

202 Robust Speaker Verification

SmLR-SNR(xs,xt) =

=

K∑
ks=1

K∑
kt=1

γ�s,�t (yks ,ykt)e

{
− 1

2 log |α�̂ks kt |− 1
2D

([
xT
s xT

t

]T∥∥[mT
ks

mT
kt

]T)}
[

K∑
ks=1

γ�s (yks)e

{
− 1

2 log |α�ks |− 1
2D

(
xs‖mks

)}][
K∑

kt=1
γ�t (ykt)e

{
− 1

2 log |α�kt |− 1
2D

(
xt ‖mkt

)}] , (5.65)

where �̂kskt = V̂ks V̂T
kt
+ �̂kskt , �ks = Vks VT

ks
+ �ks , �̂kskt = diag{�ks,�kt }, and

D(x‖y) is the Mahalanobis distance between x and y, D(x‖y) = (x − y)TS−1(x − y),
where S = cov(x,x). In [171], α was set to 5.

5.4.3 DNN-Driven Mixture of PLDA

The DNN-driven mixture of PLDA [95, 176] is an extension of SNR-dependent mixture
of PLDA in Section 5.4.2. The main idea is to compute the posteriors of mixture compo-
nents by using an SNR-aware DNN instead of using a one-D SNR-GMM model. Figure
5.12 shows the difference between the scoring process of (a) SNR-dependent mixture
of PLDA and (b) DNN-driven mixture of PLDA. In the former, an SNR estimator is
applied to estimate the SNR of the target utterance and the test utterance. The posterior
probabilities γ�(yk) of mixture components depend purely on the SNR �:

γ�(yk) ≡ P (yk = 1|�,˘) = πkN (�|μk,σ2
k)∑K

k′=1 πk′N (�|μk′,σ2
k′)

, (5.66)

where {πk,μk,σ2
k}Kk=1 are the parameters of the one-D SNR-GMM model. For the latter,

an SNR-aware DNN is trained to produce the posteriors of SNR γx(yk) based on the
input i-vector x:

γx(yk) ≡ P (yk = 1|x,w), (5.67)

where w denotes the weights of the SNR-aware DNN. Plugging these mixture posteriors
into the mixture of PLDA scoring function in Eq. 5.65, we have

SDNN-mPLDA(xs,xt) =

=

K∑
ks=1

K∑
kt=1

γxs (yks)γxt (ykt)e

{
− 1

2 log |α�̂ks kt |− 1
2D

([
xT
s xT

t

]T∥∥[mT
ks

mT
kt

]T)}
[

K∑
ks=1

γxs (yks)e

{
− 1

2 log |α�ks |− 1
2D

(
xs‖mks

)}][
K∑

kt=1
γxt (ykt)e

{
− 1

2 log |α�kt |− 1
2D

(
xt ‖mkt

)}] , (5.68)

Figure 5.13(a) shows the graphical model of SNR-dependent mixture of PLDA with
parameters {πk,μk,σk,mk,Vk,�k}Kk=1. In the diagram, π = {πk}Kk=1, μ = {μk}Kk=1,

σ = {σk}Kk=1, m = {mk}Kk=1, V = {Vk}Kk=1, � = {�k}Kk=1. Figure 5.13(b) shows the
graphical model of DNN-driven mixture of PLDA with parameters {mk,Vk,�k}Kk=1.

The key advantage of the DNN-driven mixture of PLDA is that it uses a classifier
to guide the PLDA training, such that each i-vector cluster is modeled by one mixture
component. During testing, we combine the PLDA scores using dynamic weights that
depend on the classifier’s output. This approach is flexible because there is no restriction

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.5 Multi-Task DNN for Score Calibration 203

(a)

(b)

Figure 5.12 (a) Procedure of computing the score of two utterances with SNR �s and �t in
SNR-dependent mixture of PLDA. (b) Same as (a) but replacing the SNR-dependent mixture of
PLDA by DNN-driven mixture of PLDA.

on the type of classifiers to be used. In fact, any classifier, such as DNN, SVM, and
logistic regression, can be used as long as they can leverage the cluster property in the
training data. However, experimental results suggest that DNN classifiers give the best
performance [95].

5.5 Multi-Task DNN for Score Calibration

Because adverse acoustic conditions and duration variability in utterances could change
the distribution of PLDA scores, a number of back ends have been investigated to replace
the PLDA models. These back ends include support vector machines (SVMs) [177] and
end-to-end models [178].

Rather than enhancing the PLDA back end, score calibration methods have been
proposed to compensate for the harmful effect on the PLDA scores due to background
noise and duration variability. For example, the score shifts in in [167, 179, 180] are
deterministic and the shifts are assumed to be linearly related to the utterances’ SNR
and/or to the logarithm of utterance duration. In [181], the authors assume that the shift
follows a Gaussian distribution with quality-dependent mean and variance. A Bayesian
network was used to infer the posterior distributions of the target and nontarget hypothe-
ses; a calibrated likelihood-ratio is then computed from the posterior distributions. On

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

204 Robust Speaker Verification

(a)

(b)

Figure 5.13 The graphical model of (a) SNR-dependent mixture of PLDA and (b) DNN-driven
mixture of PLDA. [Reprinted with permission from DNN-driven Mixture of PLDA for Robust
Speaker Verification (Figure 2), N. Li, M.W. Mak, and J.T. Chien., IEEE/ACM Trans. on Audio
Speech and Language Processing, vol. 25, no. 6, pp. 1371–1383, June 2017, with permission of
IEEE]

the other hand, the score shift in [182, 183] was assumed to be bilinear or considered
as a cosine-distance function of the two quality vectors derived from the target-speaker
and test i-vectors.

There are methods that compensate for the duration mismatch only [167, 184, 185]
or both duration and SNR mismatch [179–182]. A common property of these methods
is that all of them assume that the detrimental effect can be compensated by shifting
the PLDA scores. These methods aim to estimate the shift based on some meta data,
including duration and SNR [179, 180]), or from the i-vectors [182] to counteract the
effect. Despite these methods use linear models, they have demonstrated improvement
in performance in a number of systems. However, score shift may not be linearly related
to SNR and log-duration. As a result, cosine-distance scores and bilinear transformation
may not be able to capture the true relationship accurately.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.5 Multi-Task DNN for Score Calibration 205

5.5.1 Quality Measure Functions

A quality measure function (QMF) maps some measurable quantities, such as SNR
and duration of utterances, to score shifts that represent the detrimental effect of back-
ground noise and duration variability on the PLDA scores [167, 179, 180]. Denote S

as the uncalibrated PLDA score of a test utterance and a target speaker utterance. Also
denote λtgt and λtst as the quality measures of the target speaker and test utterances,
respectively. The calibrated score S′ can then be evaluated according to:

S′ = w0 + w1S +Q(λtgt,λtst), (5.69)

where Q(λtgt,λtst) is a QMF. In [179, 180], the QMFs were based on the duration (dtst)
and SNR (SNRtst) of the test utterance:

QSNR(SNRtst) = w2SNRtst

QDur(dtst) = w2 log (dtst)

QSNR+Dur(SNRtst,dtst) = w2SNRtst + w3 log (dtst),

(5.70)

where w2 and w3 are the weights of the respective meta information. In case the effect
of noise in the target utterance is also considered, QSNR becomes:

QSNR2(SNRtgt,SNRtst) = w2SNRtgt + w3SNRtst, (5.71)

where SNRtgt is the SNR of the target speaker utterance. In Eqs. 5.69–5.71, the weights
wi , i = 0, . . . ,3, can be estimated by logistic regression [186].

Ferrer et al. [183] and Nautsch et al. [182] derived a quality vector q based on the
posterior probabilities of various acoustic conditions given an i-vector based on the
assumption that i-vectors are acoustic-condition dependent. In the method, every i-
vector has its corresponding quality vector. Given the i-vectors of a verification trial,
the score shift is a function of the quality vectors in that trial.

Nautsch et al. [182] name the function the “function of quality estimate (FQE).”
Specifically, i-vectors derived from utterances of 55 combinations of different durations
and SNRs were used to train 55 Gaussian models �j = {μ

j
,�}55

j=1. These Gaussians
have their own mean μ

j
estimated from the i-vectors of the respective conditions;

however, they share the same global covariance matrix �. For an i-vector x, the j th
component of q is the posterior of condition j :

qj =
N (x|μ

j
,�)∑

j ′ N (x|μ
j ′,�)

, j = 1, . . . ,55. (5.72)

Given the i-vectors xtgt and xtst from a target speaker and a test speaker, respectively,
the corresponding quality vectors qtgt and qtst are obtained from Eq. 5.72. Then, we
can obtain the score shift as follows:

QUAC(qtgt,qtst) = w2qᵀ
tgtWqtst

Qqvec(qtgt,qtst) = w2cos(qtgt,qtst),
(5.73)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

206 Robust Speaker Verification

where W is a symmetric bilinear matrix and cos(a,b) means cosine-distance score
between vectors a and b:

cos(a,b) = aᵀb
‖a‖‖b‖ .

In Eq. 5.73, the components of a quality vector are the posteriors of the respective
SNR/duration groups. The cosine-distance and bilinear transformation of the two quality
vectors reflect the similarity between the two vectors in terms of SNR and duration. They
are similar to the QMFs in Eq. 5.70 and Eq. 5.71 in that the score shift is linearly related
to the SNR of the utterances and/or to the logarithm of utterance duration. As will be
discussed later, the relationship among score shift, SNR, and duration is rather complex.
As a result, the information in SNR and duration is not enough to estimate the ideal score
shift. It turns out that i-vectors can provide essential information for estimating the ideal
score shift.

Theoretically, the FQE in Eq. 5.73 is better than the QMF in Eq. 5.69 because the
former does not use SNR information directly but instead uses it implicitly through
the i-vectors and the Gaussian models. Nevertheless, at low SNR, it is unclear whether
the cosine distance and bilinear transformation can accurately estimate the score shift.
As Figure 5.14 shows, the score shifts and the SNR of utterances have a nonlinear and
complex relationship. Because of the noise-level dependence of i-vectors [171] (also see
Figure 5.9), it is reasonable to explicitly predict the score shifts from i-vectors instead
of implicitly predict them through the Gaussian models of the i-vectors such as the FQE
method. In the next section, we explain how the score shifts can be accurately estimated
through multi-task deep learning.

5.5.2 DNN-Based Score Calibration

In [3], a DNN-based score calibration algorithm was proposed to mitigate the limitations
of the score calibration algorithms described in Section 5.5.1. The key idea is to apply
a DNN to determine a suitable score shift for each pair of i-vectors or to estimate the
clean PLDA score given a pair of noisy i-vector and a noisy PLDA score. The DNN
is trained to carry out score compensation, and it plays the same role as function Q

in Eq. 5.69. Nevertheless, when the DNN is trained to produce clean PLDA scores,
it essentially carries out score transformation. For whatever purposes and roles, a fur-
ther calibration process is necessary because there is no guarantee that the DNN can
produce true log-likelihood ratios in its output. The authors in [3] collectively refer to
the score compensation, transformation, and calibration processes as DNN-based score
calibration. Figure 5.15 shows the full process.

In some reports [187, 188], the term calibration referred strictly to the process of
score adjustment and the adjustment will not change the equal error rate (EER). Here,
the terminology in [179, 180, 182] was adopted, i.e., we relax the definition of calibra-
tion so that it also includes the processes that could reduce the EER.

The most basic form of DNN-based score calibration is to use a DNN as shown in
Figure 5.16 to estimate the appropriate score shift given the target and test i-vector pairs

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.5 Multi-Task DNN for Score Calibration 207

(a) (b)

(c)

Figure 5.14 Nonlinear relationship between SNRs and socre shifts, and large score shift at low
SNR. (a) Distribution of the SNR of the noise-contaminated test utterances and the original
utterances in CC4 and CC5 (male) of NIST 2012 SRE. Babble noise was added to to original
utterances at SNR of 15dB, 6DB, and 0dB. (b) Distributions of ideal score shifts (S−Scln) under
three SNR conditions in the test utterances and clean condition in the target speakers’ utterances.
Scln (clean scores) were obtained by scoring clean test i-vectors against clean i-vectors from
target speakers. (c) Distributions of score shifts with respect to test utterances’ SNR under clean
utterances from target speakers. [Reprinted from Denoised Senone I-Vectors for Robust Speaker
Verification (Figures 6, 8, and 9), Z.L. Tan, M.W. Mak, et al., IEEE/ACM Trans. on Audio Speech
and Language Processing, vol. 26, no. 4, pp. 820–830, April 2018, with permission of IEEE]

(xtgt and xtst) and the uncalibrated PLDA score S. Given an uncalibrated PLDA score
S of a verification trial, the compensated score is given by:

S′st = S + DNNst(xs,xt,S), (5.74)

where the subscript “st” denotes the output of a single-task DNN. With the i-vector pair
and the uncalibrated score as input, the DNN outputs the shift of the PLDA score due to
the deviation of the acoustic condition from the clean one:

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

208 Robust Speaker Verification

Figure 5.15 DNN-based score calibration.

Figure 5.16 The most basic form of DNN-based score calibration in which a DNN predicts the
score shift given the target speaker i-vector, the test i-vector, and noisy PLDA score as inputs.

DNNst(xs,xt,S) ≈ δscore = Scln − S, (5.75)

where Scln is the PLDA score if both xs and xt were derived from clean utterances.
Substituting Eq. 5.75 to Eq. 5.74, we have:

S′st ≈ S + (Scln − S) = Scln. (5.76)

Eq. 5.76 suggests that the clean score can be recovered.
The PLDA score of i-vector pair (xs , xt) is the log-likelihood ratio (Eq. 3.85):

S = LLR(xs,xt)

= 1

2
xᵀ
s Qxt + 1

2
xᵀ
t Qxt + xᵀ

s P xt + const,
(5.77)

where P and Q and are derived from the across-speaker covariances and total covari-
ances of i-vectors. Using Eq. 5.77, the general form of score shift is:

δscore = LLR(xs_cln,xt_cln) − LLR(xs,xt)

= 1

2
xT
s_clnQxs_cln − 1

2
xT
s Qxs + 1

2
xT
t_clnQxt_cln

− 1

2
xT
t Qxt + xT

s_clnP xt_cln − xT
s P xt .

(5.78)

Take notice of the differences between Eq. 5.78 and the bilinear transformation in Eq.
5.73. Specifically, the score shift in Eq. 5.78 involves both of the bilinear transformation
of clean and noisy test i-vectors and the bilinear transformation between the target

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.5 Multi-Task DNN for Score Calibration 209

Figure 5.17 Multi-task DNN for score calibration.

speaker and test i-vectors. If the clean test i-vector (xt_cln) for every noisy test i-vector
(xt) were known, then Eq. 5.78 can be easily computed without a DNN. However, xt_cln

is unknown; therefore, it is necessary for the DNN to learn the complex relationship
between the score shifts and the i-vector pairs.

To train the DNN in Figure 5.16, it is necessary to propagate the output node’s errors
to hundreds of hidden nodes as well as to the input layers. Because there is only one
output node, the error propagation is very inefficient. The problem could be solved by
introducing some auxiliary tasks for the network to learn, i.e., multi-task learning [189,
190]. The idea is based on the notion that the auxiliary information in the output layer
of a multi-task DNN may help to improve the learning efficiency.

In Figure 5.17, a DNN uses multi-task learning to learn two tasks: main and auxiliary.
In the main task, the network is trained to produce score shift δscore and clean score
Scln, whereas in the auxiliary tasks, the network produces the SNR of target speaker’s
utterance and the test utterance and outputs the same-speaker and different-speaker
posteriors. Both the clean score Scln and ideal score shift δscore are the target outputs
of the multi-task DNN.

The regression task uses four output nodes, two of which aim to predict the SNRs of
the target speaker’s utterance (SNRs) and the test utterance (SNRt). They are part of the
auxiliary task that helps the network to estimate the score shift. The DNN’s regression
part uses minimum mean squared error as the optimization criterion and linear activation
functions in its output nodes. Another auxiliary task is to enable the network to verify
speakers. To this end, we add two classification nodes at the output to indicate whether
the input i-vectors pair are from the same speaker or not. The classification part of the
network uses softmax outputs and cross-entropy as the optimization criterion.

The multi-task DNN with two classification nodes and four regression nodes com-
prises two sets of vectors that are concatenated together:

DNNmt(xs,xt,S) ≈ [
[δscore,Scln,SNRs,SNRt]︸ ︷︷ ︸

Regression

, [p+,p−]︸ ︷︷ ︸
Classification

]ᵀ
, (5.79)

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

210 Robust Speaker Verification

where DNNmt denotes the multi-task DNN outputs, and p+ and p− are the posterior
probabilities of same-speaker and different-speaker hypotheses, respectively. Similar to
Eq. 5.75, Eq. 5.79 means that the DNN uses the i-vector pair (xs,xt) and the original
score S as input. The multi-task learning strategy enables the network to output the
score shift δscore, the clean score Scln, the SNR of target-speaker speech, the SNR of test
speech, and the posterior probabilities (p+ and p−).

After training, the network can be used for score transformation and calibration. The
calibration process will only use the score shift and clean score produced by the multi-
task DNN:

DNNmt,shift(xs,xt,S) ≈ δscore, (5.80)

and

DNNmt,cln(xs,xt,S) ≈ Scln, (5.81)

where the subscripts denote the output nodes corresponding to the score shift and clean
score in Figure 5.17, respectively. Therefore, we have

S′mt = S + DNNmt,shift(xs,xt,S) ≈ Scln, (5.82)

and

S′mt = DNNmt,cln(xs,xt,S) ≈ Scln. (5.83)

5.6 SNR-Invariant Multi-Task DNN

In [191], Yao and Mak analyze how noisy speech affects the distribution of i-vectors
(Figures 5.18 and 5.19). The analysis shows that background noise has detrimental
effects on intra-speaker variability and that the variability depends on the SNR levels of
the utterances. Yao and Mak argue that this SNR-dependent noise effect on the i-vectors
is caused by SNR variability. This effect causes difficulty in the back end to separate the
speaker and channel variabilities. To address this problem, Yao and Mak proposed using
DNNs to suppress both SNR and channel variabilities in the i-vector space directly. To
this end, they proposed two models. The first model is called hierarchical regression
DNN (H-RDNN). It contains two denoising regression DNNs hierarchically stacked.
The second model is called multi-task DNN (MT-DNN). It is trained to carry out speaker
classification as well as i-vector denoising (regression).

Yao and Mak observed that i-vectors derived from noise-contaminated speech with
similar SNRs tend to form SNR-dependent clusters. This SNR-grouping phenomenon
inspires the use of PLDA mixture models in Section 5.4 (see also [95, 171]) so that each
SNR group can be handled by a PLDA model. Yao and Mak [191] argued that rather
than tackling the i-vectors belonging to the SNR-dependent groups, as in [171], it is
better to compensate for the variability directly in the i-vector space.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

5.6 SNR-Invariant Multi-Task DNN 211

Figure 5.18 Distribution of gender- and language-dependent i-vectors in SRE16 on a
two-dimensional t-SNE space. “cmn”: Mandarin; “ceb”: Cebuano; “yue”: Cantonese; “tgl”:
Tagalog. It may be better to view the color version of this figure, which is available at https://
github.com/enmwmak/ML-for-Spkrec.

5.6.1 Hierarchical Regression DNN

Figure 5.20 shows the structure of a hierarchical regression DNN (H-RDNN). Denote
{xn} as the i-vectors preprocessed by within-class covariance normalization (WCCN)
and length normalization (LN), and tn as target i-vectors obtained by averaging speaker-
dependent i-vectors derived from clean utterances. Also denote S = {xn,tn;n =
1, . . . ,N} as a training set comprising N i-vector pairs. Training is divided into two
stages. In the first stage, the regression network f

reg

� (·) works toward minimizing the
MSE and the Frobenius norm of weight paramters:4

min
�

1

N

N∑
n=1

1

2
||f reg

� (xn) − tn||22 +
βreg1

2
||�||22, (5.84)

4 If tn and xn are derived from a clean utterance and its corresponding noise-contaminated version, Eq. 5.84
leads to the denoising autoencoder (DAE) [3].

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://github.com/enmwmak/ML-for-Spkrec
https://github.com/enmwmak/ML-for-Spkrec
https://doi.org/10.1017/9781108552332.006

212 Robust Speaker Verification

Figure 5.19 Distribution of x-vectors of various datasets on a two-dimensional t-SNE space. It
may be better to view the color version of this figure, which is available at https://github.com/
enmwmak/ML-for-Spkrec.

where f
reg

� (xn) is the output of the top regression layer of the first (left) DNN in Figure
5.20; � denotes the weights in the first regression network and βreg1 controls the degree
of regularization. The first regression DNN is trained to suppress channel and SNR
variations simultaneously within each speaker cluster.

In the second stage, another regression DNN (the DNN on the right of Figure 5.20)
is trained to constrain the outliers that the first DNN cannot properly denoise. Assume
that all i-vectors have been processed by the first DNN followed by WCCN whitening
and LN. Given a training set comprising N i-vector pairs: S′ = {x′n,t′n;n = 1, . . . ,N}, a
regularization term and the MSE of the regression network g

reg
� (·) are minimized jointly:

min
�

1

N

N∑
n=1

1

2
||greg

� (x′n) − t′n||22 +
βreg2

2
||�||22, (5.85)

where x′n is the nth i-vector denoised by the first DNN, i.e., x′n = f
reg

� (xn); t′n is the
associated i-vector obtained from the original i-vector set (without noise contamination)
and then denoised by the first DNN, i.e., t′n = f

reg

� (xorg
n); x′′n = g

reg
� (x′n) is the output of

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://github.com/enmwmak/ML-for-Spkrec
https://github.com/enmwmak/ML-for-Spkrec
https://doi.org/10.1017/9781108552332.006

5.6 SNR-Invariant Multi-Task DNN 213

Figure 5.20 Structure of the hierarchical regression DNN (H-RDNN) with arrows denote the flow
of data. The network receives noisy i-vector xn as input. The regression DNN on the right
receives x′n as input and produces the final denoised i-vector x′′n as output. f

reg
�

(·) and g
reg
� (·) are

the mapping functions of the two regression networks, respectively. tn and t′n are the target
i-vectors in Eq. 5.84 and Eq. 5.85, respectively. MSE: mean squared error. [Reprinted from
SNR-Invariant Multi-Task Deep Neural Networks for Robust Speaker Verification (Figure 1), Q.
Yao and M.W. Mak, IEEE Signal Processing Letters, vol. 25, no. 11, pp. 1670–1674, Nov. 2018,
with permission of IEEE]

Figure 5.21 The structure of the multi-task DNN (MT-DNN). It receives noisy i-vector xn as input
and produces x′n and yn,k as output. tn in Eq. 5.84 and the target label for the classification task
�n,k in Eq. 5.86 are the targets for the regression and classification tasks, respectively. MSE:
mean squared error; CE: cross entropy. [Reprinted from SNR-Invariant Multi-Task Deep Neural
Networks for Robust Speaker Verification (Figure 2), Q. Yao and M.W. Mak, IEEE Signal
Processing Letters, vol. 25, no. 11, pp. 1670–1674, Nov. 2018, with permission of IEEE]

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

214 Robust Speaker Verification

the second regression DNN; � denotes the weights of the second regression DNN and
βreg2 controls the degree of regularization.

5.6.2 Multi-Task DNN

The regression task should avoid losing speaker information. To this end, we need the
DNN-transformed i-vectors to form a small within-speaker scatter and a large between-
speaker scatter. This is realized by a multi-task DNN (MT-DNN) shown in Figure 5.21.

Denote �n as the speaker label in one-hot format of the nth utterance. Also denote xn

and tn as the preprocessed i-vector and the target i-vector, respectively. Assume that we
have a training set S′ = {xn,tn,�n;n = 1, . . . ,N} derived from N utterances. To train
the regression network f

reg

�1
(·) in Figure 5.21, the MSE is minimized in the identical

manner as Eq. 5.84. The top regression layer’s output is the denoised i-vector x′n, i.e.,
x′n = f

reg

�1
(xn). To train the classification network f cls

�2
(·), the cross-entropy (CE) cost

together with the Frobenius norm of weights in the classification network are jointly
minimized:

Figure 5.22 T-SNE visualization of 20 speakers from three SNR groups (org+15dB+6dB,
telephone speech, babble noise). The colors of the markers represent speakers and the markers
with different shapes (◦, ×, and ∗) correspond to different SNR groups. It may be better to view
the color version of this figure, which is available at https://github.com/enmwmak/ML-for-
Spkrec. [Reprinted from SNR-Invariant Multi-Task Deep Neural Networks for Robust Speaker
Verification (Figure 3), Q. Yao and M.W. Mak, IEEE Signal Processing Letters, vol. 25, no. 11,
pp. 1670–1674, Nov. 2018, with permission of IEEE]

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://github.com/enmwmak/ML-for-Spkrec
https://github.com/enmwmak/ML-for-Spkrec
https://doi.org/10.1017/9781108552332.006

5.6 SNR-Invariant Multi-Task DNN 215

min
�2

− 1

N

N∑
n=1

K∑
k=1

�n,k log yn,k + βcls

2
||�2||22. (5.86)

In Eq. 5.86, �n,k is the kth element of �n; if the utterance of xn is spoken by speaker
k, then �n,k = 1, otherwise it is equal to 0; yn,k is the posterior probability of the
kth speaker (totally K speakers), which is a component of yn. Note that yn is the
classification network’s output, i.e., yn = f cls

�2
(xn); �2 denotes the weights in the

classification network and βcls controls the degree of regularization.
The classification and regression tasks are trained in an alternating manner. Specifi-

cally, at iteration t , weights are updated according to the gradient of regression loss, and
at iteration t + 1, weights are updated according to the gradient of classification loss.
Then, the cycle repeats.

The distributions of 20 speaker clusters are shown in Figure 5.22. These clusters are
formed by the raw i-vectors (original, 15 dB, and 6 dB) and the i-vectors transformed
by different DNN models. Obviously, the original i-vectors (top-left) could not form

Figure 5.23 Degree of separation among the clusters of 20 speaker from three SNR groups:
org+15dB+6dB, telephone speech, and babble noise. The x-axis labels correspond to different
types of DNN transformation methods. The vertical axis shows the values of Tr(S−1

w Sb). The
gray levels in the legend correspond to different i-vector post-processing methods applied to the
DNN-transformed i-vectors. [Reprinted from SNR-Invariant Multi-Task Deep Neural Networks
for Robust Speaker Verification (Figure. 4), Q. Yao and M.W. Mak, IEEE Signal Processing
Letters, vol. 25, no. 11, pp. 1670–1674, Nov. 2018, with permission of IEEE]

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

216 Robust Speaker Verification

distinguishable clusters; on the other hand, the clusters formed by the DNN-transformed
i-vectors are very apparent. Consider speaker cluster 6 (darkest shade) in the top-left
figure, the left-most • of this speaker drifts from its center significantly. As this i-vector
was extracted from an uncontaminated utterance, channel effect is the main reason for
the deviation. The 15dB and 6dB i-vectors (marked with crosses and asterisks) have
large speaker clusters. After denoising, i-vectors produced by the MT-DNN have the
most compact clusters. This suggests that the i-vectors transformed by the MT-DNN are
less dependent on the channel and background noise but more dependent on speakers,
which is a favorable property for PLDA modeling.

Figure 5.23 shows the trace of S−1
w Sb, where Sb and Sw are the between- and within-

speaker scatter matrices obtained from different types of i-vectors (see the labels in the
x-axis). These matrices were obtained from the same set of i-vectors used for producing
Figure 5.22. The traces measure the dispersion of speaker clusters. The bars indicated
by different gray level represent different i-vector post-processing methods. Because
Tr{S−1

w Sb} will not be affected by WCCN, the value of “None” and “WCCN” are the
same. The figure suggest that MT-DNN can produce speaker clusters with the largest
degree of separation.

https://doi.org/10.1017/9781108552332.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.006

