
8 Near-Optimal Evasion of Classifiers

In this chapter, we explore a theoretical model for quantifying the difficulty of
Exploratory attacks against a trained classifier. Unlike the previous work, since the clas-
sifier has already been trained, the adversary can no longer exploit vulnerabilities in the
learning algorithm to mistrain the classifier as we demonstrated in the first part of this
book. Instead, the adversary must exploit vulnerabilities that the classifier accidentally
acquired from training on benign data (or at least data not controlled by the adversary
in question). Most nontrivial classification tasks will lead to some form of vulnerabil-
ity in the classifier. All known detection techniques are susceptible to blind spots (i.e.,
classes of miscreant activity that fail to be detected), but simply knowing that they exist
is insufficient. The principal question is how difficult it is for an adversary to discover
a blind spot that is most advantageous for the adversary. In this chapter, we explore a
framework for quantifying how difficult it is for the adversary to search for this type of
vulnerability in a classifier.

At first, it may appear that the ultimate goal of these Exploratory attacks is to reverse
engineer the learned parameters, internal state, or the entire boundary of a classifier
to discover its blind spots. However, in this work, we adopt a more refined strategy;
we demonstrate successful Exploratory attacks that only partially reverse engineer the
classifier. Our techniques find blind spots using only a small number of queries and yield
near-optimal strategies for the adversary. They discover data points that the classifier
will classify as benign and that are close to the adversary’s desired attack instance.

While learning algorithms allow the detection algorithm to adapt over time, real-
world constraints on the learning algorithm typically allow an adversary to programmat-
ically find blind spots in the classifier. We consider how an adversary can systematically
discover blind spots by querying the filter to find a low-cost (for some cost function)
instance that evades the filter. Consider, for example, a spammer who wishes to mini-
mally modify a spam message so it is not classified as spam (here cost is a measure of
how much the spam must be modified). By observing the responses of the spam detec-
tor,1 the spammer can search for a modification while using few queries. The design of
an exploit that must avoid intrusion detection systems can also be cast into this setting
(here cost may be a measure of the exploit’s severity).

1 There are a variety of domain-specific mechanisms an adversary can use to observe the classifier’s response
to a query; e.g., the spam filter of a public email system can be observed by creating a test account on that
system and sending the queries to that account. In this chapter, we assume the filter is able to be queried.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

200 Near-Optimal Evasion of Classifiers

The problem of near-optimal evasion (i.e., finding a low-cost negative instance with
few queries) was introduced by Lowd & Meek (2005a). We continue studying this
problem by generalizing it to the family of convex-inducing classifiers—classifiers
that partition their feature space into two sets, one of which is convex. The family of
convex-inducing classifiers is a particularly important and natural set of classifiers to
examine that includes the family of linear classifiers studied by Lowd & Meek, as well
as anomaly detection classifiers using bounded PCA (Lakhina et al. 2004b), anomaly
detection algorithms that use hypersphere boundaries (Bishop 2006), one-class classi-
fiers that predict anomalies by thresholding the log-likelihood of a log-concave (or uni-
modal) density function, and quadratic classifiers with a decision function of the form
x�Ax + b�x + c ≥ 0 if A is semidefinite (cf. Boyd & Vandenberghe 2004, Chapter 3),
to name a few. The family of convex-inducing classifiers also includes more compli-
cated bodies such as the countable intersection of halfspaces, cones, or balls.

We further show that near-optimal evasion does not require complete reverse engi-
neering of the classifier’s internal state or decision boundary, but instead only partial
knowledge about its general structure. The algorithm of Lowd & Meek (2005a) for
evading linear classifiers in a continuous domain reverse engineers the decision bound-
ary by estimating the parameters of their separating hyperplane. The algorithms we
present for evading convex-inducing classifiers do not require fully estimating the clas-
sifier’s boundary (which is hard in the case of general convex bodies; see Rademacher &
Goyal 2009) or its parameters (internal state). Instead, these algorithms directly search
for a minimal cost-evading instance. These search algorithms require only polynomially
many queries, with one algorithm solving the linear case with better query complexity
than the previously published reverse-engineering technique. Finally, we also extend
near-optimal evasion to general �p costs. We show that the algorithms for �1 costs can
also be extended to near-optimal evasion on �p costs, but are generally not efficient.
However, in the cases when these algorithms are not efficient, we show that there is no
efficient query-based algorithm.

The rest of this chapter is organized as follows. We first present an overview of the
prior work most closely related to the near-optimal evasion problem in the remainder
of this section (see Chapter 3 for additional related work). In Section 8.1, we formalize
the near-optimal evasion problem and review Lowd & Meek (2005a) definitions and
results. We present algorithms for evasion that are near-optimal under weighted �1 costs
in Section 8.2, and we provide results for minimizing general �p costs in Section 8.3.

This chapter builds on (Nelson, Rubinstein, Huang, Joseph, Lau, Lee, Rao, Tran, &
Tygar 2010; Nelson, Rubinstein, Huang, Joseph, & Tygar 2010; and Nelson, Rubinstein,
Huang, Joseph, Lee, Rao, & Tygar 2012).

Related Work
Lowd & Meek (2005a) first explored near-optimal evasion and developed a method
that reverse engineered linear classifiers in a continuous domain, as is discussed in
Sections 3.4.2.4 and 3.4.4. The theory we present here generalizes that result and pro-
vides three significant improvements:

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

Near-Optimal Evasion of Classifiers 201

� This analysis considers a more general family of classifiers: the family of convex-in-
ducing classifiers that partition the space of instances into two sets, one of which is
convex. This family subsumes the family of linear classifiers considered by Lowd &
Meek.

� The approach we present does not fully estimate the classifier’s decision boundary,
which is generally hard for arbitrary convex bodies (Rademacher & Goyal 2009) or
reverse engineer the classifier’s state. Instead, the algorithms search directly for an
instance that the classifier labels as negative and is close to the desired attack instance;
i.e., an evading instance of near-minimal cost. Lowd & Meek previously demonstrated
a direct search technique for linear classifiers in Boolean spaces, but it is not applica-
ble to the classifiers we consider.

� Despite being able to evade a more general family of classifiers, these algorithms still
only use a limited number of queries: they require only polynomially many queries
in the dimension of the feature space and the desired accuracy of the approximation.
Moreover, the K-step MultiLineSearch (Algorithm 8.3) solves the linear case with
asymptotically fewer queries than the previously published reverse-engineering tech-
nique for this case.

Further, as summarized in Section 3.4.2.4, Dalvi et al., Brückner & Scheffer, and
Kantarcioglu et al. studied cost-sensitive game-theoretic approaches to preemptively
patch a classifier’s blind spots and developed techniques for computing an equilibrium
for their games. This prior work is complementary to query-based evasion problems;
the near-optimal evasion problem studies how an adversary can use queries to find blind
spots of a classifier that is unknown but is able to be queried, whereas their game-
theoretic approaches assume the adversary knows the classifier and can optimize their
evasion accordingly at each step of an iterated game. Thus, the near-optimal evasion
setting studies how difficult it is for an adversary to optimize its evasion strategy only
by querying, and cost-sensitive game-theoretic learning studies how the adversary and
learner can optimally play and adapt in the evasion game given knowledge of each other:
These are two separate aspects of evasion.

A number of authors also have studied evading sequence-based IDSs as discussed in
Section 3.4.2.2 (cf. Tan et al. 2002, 2003; Wagner & Soto 2002). In exploring mimicry
attacks, these authors used offline analysis of the (IDS) to construct their modifications;
by contrast, the adversary in near-optimal evasion constructs optimized modifications
designed by querying the classifier.

The field of active learning also studies a form of query-based optimization (e.g., see
Schohn & Cohn 2000). As summarized by Settles (2009), the three primary approaches
to active learning are membership query synthesis, stream-based selective sampling,
and pool-based sampling. Our work is most closely related to the membership query
synthesis subfield introduced by Angluin (1988), in which the learner can request the
label for any instance in feature space, rather than for unlabeled instances drawn from
a distribution. However, while active learning and near-optimal evasion are similar in
their exploration of query strategies, the objectives for these two settings are quite
different—evasion approaches search for low-cost negative instances within a factor

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

202 Near-Optimal Evasion of Classifiers

1 + ε of the optimal cost, whereas active learning algorithms seek to obtain hypotheses
with low-generalization error, often in a PAC setting (see Section 8.1.2 for a discus-
sion on reverse-engineering approaches to evasion and active learning). It is interesting
to note, nonetheless, that results in active learning settings (e.g., Dasgupta, Kalai, &
Monteleoni 2009; Feldman 2009) have also achieved polynomial query complexities in
specific settings. However, the focus of this chapter is solely on the evasion objective,
and we leave the exploration of relationships between our results and those in active
learning to future work.

Another class of related techniques that use query-based optimization are nongradient
global optimization methods often referred to as direct search. Simple examples of these
techniques include bisection and golden-section search methods for finding roots and
extrema of univariate functions, as well as derivative approximation approaches such as
the secant method and interpolation methods (e.g., Burden & Faires 2000). Combina-
tions of these approaches include Brent’s (1973) algorithms, which exhibit superlinear
convergence under certain conditions on the query function; i.e., the number of queries
is inversely quadratic in the desired error tolerance. However, while these approaches
can be adapted to multiple dimensions, their query complexity grows exponentially
with the dimension. Other approaches include the simplex method of Nelder & Mead
(1965) and the direct search algorithm introduced by Jones, Perttunen, & Stuckman
(1993) (refer to Jones 2001, and Kolda, Lewis & Torczon 2003, for surveys of direct
search methods); however, we are unaware of query bounds for these methods. While
any direct search methods can be adapted for near-optimal evasion, these methods were
designed to optimize an irregular function in a regular domain with few dimensions,
whereas the near-optimal evasion problem involves optimizing regular known functions
(the cost function) over an unknown, possibly irregular, and high-dimensional domain
(the points labeled as negative by the classifier). The methods we present specifically
exploit the regular structure of �p costs and of the convex-inducing classifiers to achieve
near-optimality with only polynomially many queries.

8.1 Characterizing Near-Optimal Evasion

We begin by introducing the assumptions made for this problem. First, we assume that
feature space X for the learner is a real-valued D-dimensional Euclidean space; i.e.,
X = �D such as for some intrusion detection systems (e.g., Wang & Stolfo 2004).
(Lowd & Meek also consider integer- and Boolean-valued feature spaces and provide
interesting results for several classes of Boolean-valued learners, but these spaces are
not compatible with the family of convex-inducing classifiers we study in this chapter.)
We assume the feature space representation is known to the adversary and there are
no restrictions on the adversary’s queries; i.e., any point x in feature space X can be
queried by the adversary to learn the classifier’s prediction f (x) at that point. These
assumptions may not be true in every real-world setting (for instance, spam detec-
tors are often defined with discrete features, and designers often attempt to hide or

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.1 Characterizing Near-Optimal Evasion 203

randomize their feature set; e.g., see Wang et al. 2006), but allow us to consider a worst-
case adversary.

As in Section 2.2.4, we assume the target classifier f is a member of a family of clas-
sifiers F—the adversary does not know f but knows the family F . (This knowledge
is congruous with the security assumption that the adversary knows the learning algo-
rithm, but not the training set or parameters used to tune the learner.) We also restrict
our attention to binary classifiers and use Y = {''−'', ''+''}. We assume the adversary’s
attack will be against a fixed f so the learning method and the training data used to
select f are irrelevant for this problem. Further, we assume f ∈ F is deterministic, and
so it partitions X into two sets—the positive class X+

f = {x ∈ X | f (x) = ''+''} and the
negative class X−

f = {x ∈ X | f (x) = ''−''}. As before, we take the negative set to be
normal instances where the sought-after blind spots reside. We assume that the adver-
sary is aware of at least one instance in each class, x− ∈ X−

f and xA ∈ X+
f , and can

observe the class for any x by issuing a membership query: f (x).

8.1.1 Adversarial Cost

We assume the adversary has a notion of utility over the feature space, which we quan-
tify with a cost function A : X �→ �0+. The adversary wishes to optimize A over the
negative class, X−

f ; e.g., a spammer wants to send spam that will be classified as normal
email (''−'') rather than as spam (''+''). We assume this cost function is a distance to
some target instance xA ∈ X+

f that is most desirable to the adversary; e.g., for a spam-

mer, this could be a string edit distance required to change xA to a different message.
We focus on the general class of weighted �p (0 < p ≤ ∞) cost functions relative to xA

defined in terms of the �p norm ‖ · ‖p as

A(c)
p

(
x − xA

) = ∥∥c & (x − xA
)∥∥

p
=
(

D∑
d=1

cp
d

∣∣xd − xA
d

∣∣p)1/p

, (8.1)

where 0 < cd < ∞ is the relative cost the adversary associates with altering the d th

feature. When the relative costs are uniform, cd = 1 for all d, we use the simplified
notation Ap to refer to the cost function. Similarly, when referring to a generic weighted
cost function with weights c, we use the notation A(c). In Section 8.2.1.3, we also con-
sider the special cases when some features have cd = 0 (the adversary does not care
about the d th feature) or cd = ∞ (the adversary requires the d th feature to match xA

d),
but otherwise, the weights are on the interval (0,∞). We use BC (A; y) to denote the
C-cost ball (or sublevel set) centered at y with cost no more than the threshold, C; i.e.,
BC (A; y) = {x ∈ X | A (x − y) ≤ C}. For instance, BC

(
A1; xA

)
is the set of instances

that do not exceed an �1 cost of C from the target xA. For convenience, we also use
BC (A) � BC

(
A; xA

)
to denote the C-cost-ball of A recentered at the adversary’s target,

xA, since we focus on costs relative to this instance.
Unfortunately, �p costs do not include many interesting costs such as string edit dis-

tances for spam, and in other real-world settings, such as the intrusion detection example
given earlier, there may be no natural notion of distance between points. Nevertheless,

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

204 Near-Optimal Evasion of Classifiers

the objective of this chapter is not to provide practical evasion algorithms, but rather to
understand the theoretic capabilities of an adversary on the analytically tractable, albeit
practically restrictive, family of �p costs. Weighted �1 costs are, however, particularly
appropriate for adversarial problems in which the adversary is interested in some fea-
tures more than others and its cost is assessed based on the degree to which a feature is
altered. The �1-norm is a natural measure of edit distance for email spam, while larger
weights can model tokens that are more costly to remove (e.g., a payload URL). We
focus first on the weighted �1 costs studied by Lowd & Meek in Section 8.2 and then
explore general �p costs in Section 8.3. In the latter case, our discussion will focus on
uniform weights for ease of exposition, but the results easily extend to the cost-sensitive
case as presented for weighted �1 costs.

Lowd & Meek (2005a) define minimal adversarial cost (MAC) of a classifier f to be
the value

MAC (f, A) � inf
x∈X−

f

[
A
(
x − xA

)] ; (8.2)

i.e., the greatest lower bound on the cost obtained by any negative instance. They further
define a data point to be an ε-approximate instance of minimal adversarial cost (ε-
IMAC) if it is a negative instance with a cost no more than a factor (1 + ε) of the MAC;
i.e., every ε-IMAC is a member of the set2

ε-IMAC (f, A) �
{

x ∈ X−
f

∣∣∣ A
(
x − xA

) ≤ (1 + ε) · MAC (f, A)
}

. (8.3)

Alternatively, this set can be characterized as the intersection of the negative class and
the ball of A of costs within a factor (1 + ε) of MAC (f, A) (i.e., ε-IMAC (f, A) =
X−

f ∩ B(1+ε)·MAC (A)); a fact we exploit in Section 8.2.2. The adversary’s goal is to
find an ε-IMAC efficiently while issuing as few queries as possible. In the next section,
we introduce formal notions to quantify how effectively an adversary can achieve this
objective.

8.1.2 Near-Optimal Evasion

Lowd & Meek (2005a) introduce the concept of adversarial classifier reverse engineer-
ing (ACRE) learnability to quantify the difficulty of finding an ε-IMAC instance for a
particular family of classifiers, F , and a family of adversarial costs, A.

Using our notation, their definition of ACRE ε-learnable is as follows: A set of clas-
sifiers F is ACRE ε-learnable under a set of cost functions A if an algorithm exists such
that for all f ∈ F and A ∈ A, it can find an x ∈ ε-IMAC (f, A) using only polynomially
many membership queries in terms of the dimensionality D, the encoded size of f , and
the encoded size of x+ and x−.

In this definition, Lowd & Meek use encoded size to refer to the length of the string
of digits used to encode f , x+, and x−. In generalizing their result, we use a slightly
altered definition of query complexity. First, to quantify query complexity, we only use

2 We use the term ε-IMAC to refer both to this set and members of it. The usage will be clear from the
context.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.1 Characterizing Near-Optimal Evasion 205

the dimension, D, and the number of steps, Lε , required by a unidirectional binary search
to narrow the gap to within a factor 1 + ε, the desired accuracy. By including L(∗)

ε in our
definition of query complexity, we do not require the encoded size of x+ and x− since
Lε implicitly captures the size of the distance between these points as discussed earlier.

Using the encoded sizes of f , x+, and x− in defining ε-IMAC searchable is problem-
atic. For our purposes, it is clear that the encoded size of both x+ and x− is D so it is
unnecessary to include additional terms for their size. Further we allow for families of
nonparametric classifiers for which the notion of encoding size is ill defined, but is also
unnecessary for the algorithms we present. In extending beyond linear and parametric
family of classifiers, it is not straightforward to define the encoding size of a classifier f .
One could use notions such as the VC-dimension of F or its covering number, but it is
unclear why size of the classifier is important in quantifying the complexity of ε-IMAC
search. Moreover, as we demonstrate in this chapter, there are families of classifiers for
which ε-IMAC search is polynomial in D and Lε alone.

Second, we assume the adversary only has two initial points x− ∈ X−
f and xA ∈ X+

f

(the original setting used a third x+ ∈ X+
f); this yields simpler search procedures. As

is apparent in the algorithms we demonstrate, using x+ = xA makes the attacker less
covert since it is significantly easier to infer the attacker’s intentions based on its queries.
Covertness is not an explicit goal in ε-IMAC search, but it would be a requirement of
many real-world attackers. However, since the goal of the near-optimal evasion problem
is not to design real attacks but rather to analyze the best possible attack so as to under-
stand a classifier’s vulnerabilities, we exclude any covertness requirement but return to
the issue in Section 8.4.2.1.

Finally, our algorithms do not reverse engineer so ACRE would be a misnomer.
Instead, we call the overall problem near-optimal evasion and replace ACRE ε-learnable
with the following definition of ε-IMAC searchable: a family of classifiers F is ε-IMAC
searchable under a family of cost functions A if for all f ∈ F and A ∈ A, there is an
algorithm that finds some x ∈ ε-IMAC (f, A) using polynomially many membership
queries in D and Lε . We will refer to such an algorithm as efficient.

Our definition does not include the encoded size of the classifier, f , because our
approach to near-optimal evasion does not reverse engineer the classifier’s parameters
as we now discuss in detail.

Near-optimal evasion is only a partial reverse-engineering strategy. Unlike Lowd &
Meek’s approach for continuous spaces, we introduce algorithms that construct queries
to provably find an ε-IMAC without fully reverse engineering the classifier; i.e., esti-
mating the decision surface of f or estimating the parameters that specify it. Efficient
query-based reverse engineering for f ∈ F is sufficient for minimizing A over the esti-
mated negative space. However, generally reverse engineering is an expensive approach
for near-optimal evasion, requiring query complexity that is exponential in the feature
space dimension D for general convex classes (Rademacher & Goyal 2009), while find-
ing an ε-IMAC need not be as we demonstrate in this chapter.3 In fact, the requirements

3 Lowd & Meek (2005a) also previously showed that the reverse-engineering technique of finding a fea-
ture’s sign witness is NP-complete for linear classifiers with Boolean features, but also that this family was
nonetheless 2-IMAC searchable.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

206 Near-Optimal Evasion of Classifiers

for finding an ε-IMAC differ significantly from the objectives of reverse-engineering
approaches such as active learning. Both approaches use queries to reduce the size of
version space F̂ ⊆ F ; i.e., the set of classifiers consistent with the adversary’s mem-
bership queries. Reverse-engineering approaches minimize the expected number of dis-
agreements between members of F̂ . In contrast, to find an ε-IMAC, the adversary only
needs to provide a single instance, x† ∈ ε-IMAC (f, A), for all f ∈ F̂ , while leaving the
classifier largely unspecified; i.e., we need to show that⋂

f∈F̂
ε-IMAC (f, A) �= ∅.

This objective allows the classifier to be unspecified over much of X . We present algo-
rithms for ε-IMAC search on a family of classifiers that generally cannot be efficiently
reverse engineered—the queries necessarily only elicit an ε-IMAC; the classifier itself
will be underspecified in large regions of X so these techniques do not reverse engi-
neer the classifier’s parameters or decision boundary except in a shrinking region near
an ε-IMAC. Similarly, for linear classifiers in Boolean spaces, Lowd & Meek demon-
strated an efficient algorithm for near-optimal evasion that does not reverse engineer
the classifier—it too searches directly for an ε-IMAC, and it shows that this family is
2-IMAC searchable for �1 costs with uniform feature weights, c.

8.1.3 Search Terminology

The notion of near-optimality introduced in Equation (8.3) and of the overall near-
optimal evasion problem in the previous section is that of multiplicative optimality;
i.e., an ε-IMAC must have a cost within a factor of (1 + ε) of the MAC. However, the
results of this chapter can also be immediately adopted for additive optimality in which
the adversary seeks instances with cost no more than η > 0 greater than the MAC. To
differentiate between these notions of optimality, we use the notation ε-IMAC(∗) to refer
to the set in Equation (8.3) and define an analogous set η-IMAC(+) for additive optimal-
ity as

η-IMAC(+) (f, A) �
{

x ∈ X−
f

∣∣∣ A
(
x − xA

) ≤ η + MAC (f, A)
}

. (8.4)

We use the terms ε-IMAC(∗) and η-IMAC(+) to refer both to the sets defined in Equa-
tion (8.3) and (8.4) as well as the members of them—the usage will be clear from the
context.

We consider algorithms that achieve either additive or multiplicative optimality of the
family of convex-inducing classifiers. For either notion of optimality one can efficiently
use bounds on the MAC to find an ε-IMAC(∗) or an η-IMAC(+). Suppose there is a neg-
ative instance, x−, with cost C−, and there is a C+ > 0 such that all instances with cost
no more than C+ are positive; i.e., C− is an upper bound and C+ is a lower bound on the
MAC; i.e., C+ ≤ MAC (f, A) ≤ C−. Under that supposition, then the negative instance
x− is ε-multiplicatively optimal if C−/C+ ≤ (1 + ε), whereas it is η-additively optimal

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.1 Characterizing Near-Optimal Evasion 207

if C− − C+ ≤ η. We consider algorithms that can achieve either additive or multiplica-
tive optimality via binary search. Namely, if the adversary can determine whether an
intermediate cost establishes a new upper or lower bound on the MAC, then binary
search strategies can iteratively reduce the t th gap between any bounds C−

t and C+
t with

the fewest steps. We now provide common terminology for the binary search, and in
Section 8.2 we use convexity to establish a new bound at the t th iteration.

Remark 8.1 If an algorithm can provide bounds 0 < C+ ≤ MAC (f, A) ≤ C−, then

this algorithm has achieved (C− − C+)-additive optimality and (C−

C+ − 1)-multiplicative
optimality.

In the t th iteration of an additive binary search, the additive gap between the t th

bounds, C−
t and C+

t , is given by G(+)
t = C−

t − C+
t with G(+)

0 defined accordingly by the

initial bounds C−
0 = C− and C+

0 = C+. The search uses a proposal step of Ct = C−
t +C+

t

2 ,

a stopping criterion of G(+)
t ≤ η, and achieves η-additive optimality in

L(+)
η =

⌈
log2

(
G(+)

0

η

)⌉
(8.5)

steps. In fact, binary search has the least worst-case query complexity for achieving the
η-additive stopping criterion for a unidirectional search (e.g., search along a ray).

Binary search can also be used for multiplicative optimality by searching in exponen-
tial space. Assuming that C− ≥ C+ > 0, we can rewrite the upper and lower bounds
as C− = 2a and C+ = 2b, and thus the multiplicative optimality condition becomes
a − b ≤ log2 (1 + ε); i.e., an additive optimality condition. Thus, binary search on the
exponent achieves ε-multiplicative optimality and does so with the best worst-case
query complexity (again in a unidirectional search). The multiplicative gap of the t th iter-
ation is G(∗)

t = C−
t /C+

t with G(∗)
0 defined accordingly by the initial bounds C−

0 and C+
0 .

The t th query is Ct =
√

C−
t · C+

t , the stopping criterion is G(∗)
t ≤ 1 + ε, and it achieves

ε-multiplicative optimality in

L(∗)
ε =

⎡
⎢⎢⎢log2

⎛
⎝ log2

(
G(∗)

0

)
log2 (1 + ε)

⎞
⎠
⎤
⎥⎥⎥ (8.6)

steps. Notice that multiplicative optimality only makes sense when both C−
0 and C+

0 are
strictly positive.

It is also worth noting that both L(+)
ε and L(∗)

ε can be instead replaced by log
(

1
ε

)
for asymptotic analysis. As pointed out by Rubinstein (2010), the near-optimal evasion
problem is concerned with the difficulty of making accurate estimates of the MAC, and
this difficulty increases as ε ↓ 0. In this sense, clearly L(+)

ε and log
(

1
ε

)
are asymptoti-

cally equivalent. Similarly, comparing L(∗)
ε and log

(
1
ε

)
as ε ↓ 0, the limit of their ratio

(by application of L’Hôpital’s rule) is

lim
ε↓0

L(∗)
ε

log
(

1
ε

) = 1;

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

208 Near-Optimal Evasion of Classifiers

i.e., they are also asymptotically equivalent. Thus, in the following asymptotic results,
L(∗)

ε can be replaced by log
(

1
ε

)
.

Binary searches for additive and multiplicative optimality differ in their proposal step
and their stopping criterion. For additive optimality, the proposal is the arithmetic mean
Ct = C−

t +C+
t

2 and search stops when G(+)
t ≤ η, whereas for multiplicative optimality, the

proposal is the geometric mean Ct =
√

C−
t · C+

t and search stops when G(∗)
t ≤ 1 + ε.

In the remainder of this chapter, we will use the fact that binary search is optimal for
unidirectional search to search the cost space. At each step in the search, we use several
probes in the feature space X to determine if the proposed cost is a new upper or lower
bound and then continue the binary search accordingly.

8.1.4 Multiplicative vs. Additive Optimality

Additive and multiplicative optimality are intrinsically related by the fact that the opti-
mality condition for multiplicative optimality C−

t /C+
t ≤ 1 + ε can be rewritten as addi-

tive optimality condition log2

(
C−

t

)− log2

(
C+

t

) ≤ log2 (1 + ε). From this equivalence
one can take η = log2 (1 + ε) and utilize the additive optimality criterion on the log-
arithm of the cost. However, this equivalence also highlights two differences between
these notions of optimality.

First, multiplicative optimality only makes sense when C+
0 is strictly positive, whereas

additive optimality can still be achieved if C+
0 = 0. Taking C+

0 > 0 is equivalent to
assuming that xA is in the interior of X+

f (a requirement for our algorithms to achieve

multiplicative optimality). Otherwise, when xA is on the boundary of X+
f , there is no

ε-IMAC(∗) for any ε > 0 unless there is some point x
 ∈ X−
f that has 0 cost. Practically

though, the need for a lower bound is a minor hindrance—as we demonstrate in Sec-
tion 8.2.1.3, there is an algorithm that can efficiently establish a lower bound C+

0 for any
�p cost if such a lower bound exists.

Second, the additive optimality criterion is not scale invariant (i.e., any instance x†

that satisfies the optimality criterion for cost A also satisfies it for A′ (x) = s · A (x)
for any s > 0), whereas multiplicative optimality is scale invariant. Additive optimality
is, however, shift invariant (i.e., any instance x† that satisfies the optimality criterion
for cost A also satisfies it for A′ (x) = s + A (x) for any s ≥ 0), whereas multiplicative
optimality is not. Scale invariance is more salient in near-optimal evasion because if the
cost function is also scale invariant (all proper norms are), then the optimality condition
is invariant to a rescaling of the underlying feature space; e.g., a change in units for
all features. Thus, multiplicative optimality is a unit-less notion of optimality whereas
additive optimality is not. The following result is a consequence of additive optimality’s
lack of scale invariance.

proposition 8.2 Consider any hypothesis space F , target instance xA, and cost
function A. If there exists some ε̄ > 0 such that no efficient query-based algorithm can
find an ε-IMAC(∗) for any 0 < ε ≤ ε̄, then there is no efficient query-based algorithm
that can find an η-IMAC(+) for any 0 < η ≤ ε̄ · MAC (f, A). In particular consider a
sequence of classifiers fn admitting unbounded MACs, and a sequence εn > 0 such that

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.1 Characterizing Near-Optimal Evasion 209

1/εn = o(MAC (fn, A)). Then if no general algorithm can efficiently find an εn-IMAC(∗)

on each fn, no general algorithm can efficiently find an ηn-IMAC(+) for ηn → ∞.

Proof Consider any classifier f ∈ F such that MAC (f, A) > 0. Suppose there exists
some x ∈ η-IMAC(+) for some η > 0. Let ε = η/MAC (f, A); then by definition

A
(
x − xA

) ≤ η + MAC (f, A) = (1 + ε) MAC (f, A) , (8.7)

implying that x ∈ ε-IMAC(∗). Then by the contrapositive, if no ε-IMAC(∗) can be
efficiently found for any 0 < ε ≤ ε̄, no η-IMAC(+) can be efficiently found for any
0 < η ≤ ε̄ · MAC (f, A). The last result is an immediate corollary. �

The last statement is, in fact, applicable to many common settings. For instance, for
any of the weighted �p costs (with 0 < p ≤ ∞ and 0 < cd < ∞ for all d) the family of
linear classifiers and the family of hypersphere classifiers are both sufficiently diverse
to yield such a sequence of classifiers that admit unbounded MACs as required by the
last statement. Thus, the family of convex-inducing classifiers can also yield such a
sequence. Moreover, as we show in Section 8.3, there are indeed �p costs for which
there exists ε̄ > 0 such that no efficient query-based algorithm can find an ε-IMAC(∗)

for any 0 < ε ≤ ε̄. The consequence of this is that there is no general algorithm capable
of achieving additive optimality for any fixed η with respect to the convex-inducing
classifiers for these �p costs, as is shown by the following theorem:

theorem 8.3 If for some hypothesis space F , cost function A, and any initial bounds
0 < C+

0 < C−
0 on the MAC (f, A) for some f ∈ F , there exists some ε̄ > 0 such that no

efficient query-based algorithm can find an ε-IMAC(∗) for any 0 < ε ≤ ε̄, then there is
no efficient query-based algorithm that can find an η-IMAC(+) for any 0 < η ≤ ε̄ · C−

0 .
As a consequence, if there is ε̄ > 0 as stated above, then there is generally no efficient
query-based algorithm that can find an η-IMAC(+) for any η ≥ 0 since C−

0 could be
arbitrarily large.

Proof By contraposition. If there is an efficient query-based algorithm that can
find an x ∈ η-IMAC(+) for some 0 < η ≤ ε̄ · C−

0 , then, by definition of η-IMAC(+),
A
(
x − xA

) ≤ η + MAC (f, A). Equivalently, by taking η = ε · MAC (f, A) for some
ε > 0, this algorithm achieved A

(
x − xA

) ≤ (1 + ε)MAC (f, A); i.e., x ∈ ε-IMAC(∗).
Moreover, since MAC (f, A) ≤ C−

0 , this efficient algorithm is able to find an ε-IMAC(∗)

for some ε ≤ ε̄. The last remark follows directly from the fact that there is no efficient
query-based algorithm for any 0 < η ≤ ε̄ · C−

0 and C−
0 could generally be arbitrarily

large. �

This result further suggests that additive optimality in near-optimal evasion is an awk-
ward notion. If there is a cost function A for which some family of classifiers F can-
not be efficiently evaded within any accuracy 0 < ε ≤ ε̄, then the question of whether
efficient additive optimality can be achieved for some η > 0 depends on the scale of
the cost function. That is, if η-additive optimality can be efficiently achieved for A,
the feature space could be rescaled to make η-additive optimality no longer generally
efficiently since the rescaling could be chosen to make C−

0 large. This highlights the

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

210 Near-Optimal Evasion of Classifiers

limitation of the lack of scale invariance in additive optimality: the units of the cost
determine whether a particular level of additive accuracy can be achieved, whereas
multiplicative optimality is unit-less. For (weighted) �1 costs, this is not an issue since,
as Section 8.2 shows, there is an efficient algorithm for ε-multiplicative optimality for
any ε > 0. However, as we demonstrate in Section 8.3, there are �p costs where this
becomes problematic.

For the remainder of this chapter, we primarily only address ε-multiplicative opti-
mality for an ε-IMAC (except where explicitly noted) and define Gt = G(∗)

t , Ct =√
C−

t · C+
t , and Lε = L(∗)

ε . Nonetheless, the algorithms we present can be immediately
adapted to additive optimality by simply changing the proposal step, stopping condi-
tion, and the definitions of L(∗)

ε and Gt , although they may not be generally efficient as
discussed earlier.

8.1.5 The Family of Convex-Inducing Classifiers

We introduce the family of convex-inducing classifiers, F convex; i.e., the set of classifiers
that partition the feature space X into a positive and negative class, one of which is
convex. The convex-inducing classifiers include the linear classifiers studied by Lowd
& Meek, as well as anomaly detection classifiers using boundeds PCA (Lakhina et al.
2004b), anomaly detection algorithms that use hypersphere boundaries (Bishop 2006),
one-class classifiers that predict anomalies by thresholding the log-likelihood of a log-
concave (or unimodal) density function, and quadratic classifiers of the form x�Ax +
b�x + c ≥ 0 if A is semidefinite (cf. Boyd & Vandenberghe 2004, Chapter 3). The
convex-inducing classifiers also include complicated bodies such as any intersections
of a countable number of halfspaces, cones, or balls.

There is a correspondence between the family of convex-inducing classifiers and the
set of all convex sets; i.e., C = {X | convex (X) }. By definition of the convex-inducing
classifiers, every classifier f ∈ F convex corresponds to some convex set in C. Further, for
any convex set X ∈ C, there are at least two trivial classifier that create that set; namely
the classifiers f ''+''

X
(x) = I [x ∈ X] and f ''−''

X
(x) = I [x /∈ X]. Thus, in the remainder of

this chapter, we use the existence of particular convex sets to prove results about the
convex-inducing classifiers since there is always a corresponding classifier.

It is also worth mentioning the following alternative characterization of the near-
optimal evasion problem on the convex-inducing classifiers. For any convex set C with
a non-empty interior, let x(c) be a point in its interior and define the Minkowski met-
ric (recentered at x(c)) as mC (x) = inf

{
λ
∣∣ (x − x(c)) ∈ λ(C − x(c))

}
. This function is

convex and non-negative, and it satisfies mC (x) ≤ 1 if and only if x ∈ C. Thus, we can
rewrite the definition of the MAC of a classifier in terms of the Minkowski metric—if
X+

f is convex we require mX+
f

(x) > 1, and if X−
f is convex we require mX−

f
(x) ≤ 1. In

this way, the near-optimal evasion problem (for X−
f convex) can be rewritten as

argminx∈X
[
A
(
x − xA

)]
(8.8)

s.t. mX−
f

(x) ≤ 1

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 211

If A is convex, the fact that mC (·) is convex makes this a convex program that can be
solved by optimizing its Lagrangian

argmin
x∈X ,γ∈�0+

[
A
(
x − xA

)+ γ
(

1 − mX−
f

(x)
)]

.

In cases where mX−
f

(·) has a closed form, this optimization may have a closed-form
solution, but generally this approach seems difficult. Instead, we use the special structure
of the �1 cost function to construct efficient search over the family of convex-inducing
classifiers.

8.2 Evasion of Convex Classes for �1 Costs

We generalize ε-IMAC searchability to the family of convex-inducing classifiers.
Restricting F to be the family of convex-inducing classifiers simplifies ε-IMAC search.
In our approach to this problem, we divide F convex, the family of convex-inducing classi-
fiers, into F convex,''−'' and F convex,''+'' corresponding to the classifiers that induce a convex
set X−

f or X+
f , respectively (of course, linear classifiers belong to both). When the neg-

ative class X−
f is convex (i.e., f ∈ F convex,''−''), the problem reduces to minimizing a

(convex) function A constrained to a convex set—if X−
f were known to the adversary,

this problem reduces simply to solving a convex optimization program (cf. Boyd & Van-
denberghe 2004, Chapter 4). When the positive class X+

f is convex (i.e., f ∈ F convex,''+''),
however, the problem becomes minimizing a (convex) function A outside of a convex
set; this is generally a difficult problem (see Section 8.3.1.4 where we show that min-
imizing an �2 cost can require exponential query complexity). Nonetheless for certain
cost functions A, it is easy to determine whether a particular cost ball BC (A) is com-
pletely contained within a convex set. This leads to efficient approximation algorithms
that we present in this section.

We construct efficient algorithms for query-based optimization of the (weighted) �1

cost A(c)
1 of Equation (8.1) for the family of convex-inducing classifiers. There is, how-

ever, an asymmetry in this problem depending on whether the positive or negative class
is convex as illustrated in Figure 8.1. When the positive set is convex, determining

whether the �1 ball BC
(

A(c)
1

)
is a subset of X+

f only requires querying the vertexes

of the ball as depicted in Figure 8.1(a). When the negative set is convex, determining

whether or not BC
(

A(c)
1

)
∩ X−

f = ∅ is nontrivial since the intersection need not occur

at a vertex as depicted in Figure 8.1(b). We present an efficient algorithm for optimizing
(weighted) �1 costs when X+

f is convex and a polynomial random algorithm for opti-
mizing any convex cost when X−

f is convex, although in both cases, we only consider
convex sets with non-empty interiors. The algorithms we present achieve multiplica-
tive optimality via the binary search strategies discussed in the previous section. In the
sequel, we use Equation (8.6) to define Lε as the number of phases required by binary

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

212 Near-Optimal Evasion of Classifiers

Figure 8.1 Geometry of convex sets and �1 balls. (a) If the positive set X+
f is convex, finding an

�1 ball contained within X+
f establishes a lower bound on the cost; otherwise at least one of the

�1 ball’s corners witnesses an upper bound. (b) If the negative set X−
f is convex, the adversary

can establish upper and lower bounds on the cost by determining whether or not an �1 ball
intersects with X−

f , but this intersection need not include any corner of the ball.

search4 and C−
0 = A(c)

1

(
x− − xA

)
as an initial upper bound on the MAC. We also assume

there is some C+
0 > 0 that lower bounds the MAC (i.e., xA ∈ int

(
X+

f

)
).

8.2.1 ε-IMAC Search for a Convex X+
f

Solving the ε-IMAC search problem when f ∈ F convex,''+'' is difficult for the general
case of optimizing a convex cost A. We demonstrate algorithms for the (weighted) �1

cost of Equation (8.1) that solve the problem as a binary search. Namely, given initial
costs C+

0 and C−
0 that bound the MAC, we introduce an algorithm that efficiently deter-

mines whether BCt (A1) ⊆ X+
f for any intermediate cost C+

t < Ct < C−
t . If the �1 ball is

contained in X+
f , then Ct becomes the new lower bound C+

t+1. Otherwise Ct becomes
the new upper bound C−

t+1. Since the objective given in Equation (8.3) is to obtain

multiplicative optimality, the steps will be Ct =
√

C+
t · C−

t (for additive optimality, see
Section 8.1.3).

The existence of an efficient query-based algorithm relies on three facts: (1) xA ∈
X+

f ; (2) every weighted �1 cost C-ball centered at xA intersects with X−
f only if at

least one of its vertexes is in X−
f ; and (3) C-balls of weighted �1 costs only have

2 · D vertexes. The vertexes of the weighted �1 ball BC (A1) are axis-aligned instances
differing from xA in exactly one feature (e.g., the d th feature) and can be expressed in the
form

xA ± C

cd
· e(d) (8.9)

4 As noted in Section 8.1.3, the results of this section can be replicated for additive optimality by using
Equation (8.5) for Lε and by using the regular binary search proposal and stopping criterion.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 213

which belongs to the C-ball of the weighted �1 cost (the coefficient C
cd

normalizes for

the weight cd on the d th feature). The second fact is formalized as the following lemma:

lemma 8.4 For all C > 0, if there exists some x ∈ X−
f that achieves a cost of

C = A(c)
1

(
x − xA

)
, then there is some feature d such that a vertex of the form of Equa-

tion (8.9) is in X−
f (and also achieves cost C by Equation 8.1).

Proof Suppose not; then there is some x ∈ X−
f such that A(c)

1

(
x − xA

) = C and x has

M ≥ 2 features that differ from xA (if x differs in one or no features it would be of
the form of Equation 8.9). Let {d1, . . . , dM } be the differing features, and let bdi =
sign

(
xdi − xA

di

)
be the sign of the difference between x and xA along the di

th feature.
For each di, let wdi = xA + C

cdi
· bdi · e(di) be a vertex of the form of Equation (8.9) that

has a cost C (from Equation 8.1). The M vertexes wdi form an M-dimensional equi-cost
simplex of cost C on which x lies; i.e., x =∑M

i=1 αi · wdi for some 0 ≤ αi ≤ 1. If all
wdi ∈ X+

f , then the convexity of X+
f implies that all points in their simplex are in X+

f

and so x ∈ X+
f , which violates the premise. Thus, if any instance in X−

f achieves cost
C, there is always at least one vertex of the form Equation (8.9) in X−

f that also achieves
cost C. �

As a consequence, if all such vertexes of any C ball BC (A1) are positive, then all x
with A(c)

1 (x) ≤ C are positive, thus establishing C as a lower bound on the MAC. Con-
versely, if any of the vertexes of BC (A1) are negative, then C is an upper bound on MAC.
Thus, by simultaneously querying all 2 · D equi-cost vertexes of BC (A1), the adversary
either establishes C as a new lower or upper bound on the MAC. By performing a binary
search on C the adversary iteratively halves the multiplicative gap until it is within a
factor of 1 + ε. This yields an ε-IMAC of the form of Equation (8.9).

A general form of this multi-line search procedure is presented as Algorithm 8.1
and depicted in Figure 8.3. MultiLineSearch simultaneously searches along all

Figure 8.2 The geometry of multi-line search. (a) Weighted �1 balls are centered around the target
xA and have 2 · D vertexes. (b) Search directions in multi-line search radiate from xA to probe
specific costs. (c) In general, the adversary leverages convexity of the cost function when
searching to evade. By probing all search directions at a specific cost, the convex hull of the
positive queries bounds the �1 cost ball contained within it.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

214 Near-Optimal Evasion of Classifiers

unit-cost search directions in the set W, which contains search directions that radi-
ate from their origin at xA and are unit vectors for their cost; i.e., A (w) = 1 for every
w ∈ W. Of course, any set of non-normalized search vectors {v} can be transformed into
unit search vectors simply by applying a normalization constant of A (v)−1 to each. At
each step, MultiLineSearch (Algorithm 8.1) issues at most |W| queries to construct a
bounding shell (i.e., the convex hull of these queries will either form an upper or lower
bound on the MAC) to determine whether BC (A1) ⊆ X+

f . Once a negative instance is
found at cost C, the adversary ceases further queries at cost C since a single negative
instance is sufficient to establish a lower bound. We call this policy lazy querying5—
a practice that will lead to better bounds for a malicious classifier. Further, when an
upper bound is established for a cost C (i.e., a negative vertex is found), the algorithm
prunes all directions that were positive at cost C. This pruning is sound; by the con-
vexity assumption, these pruned directions are positive for all costs less than the new
upper bound C on the MAC so no further queries will be required along such a direction.
Finally, by performing a binary search on the cost, MultiLineSearch finds an ε-IMAC
with no more than |W| · Lε queries but at least |W| + Lε queries. Thus, this algorithm
has a best-case query complexity of O (|W| · Lε) and a worst-case query complexity of
O (|W| · Lε).

It is worth noting that, in its present form, MultiLineSearch has two implicit
assumptions. First, we assume all search directions radiate from a common origin, xA,
and A (0) = 0. Without this assumption, the ray-constrained cost function A (s · w) is
still convex in s ≥ 0, but not necessarily monotonic as required for binary search. Sec-
ond, we assume the cost function A is a positive homogeneous function along any ray
from xA; i.e., A (s · w) = |s| · A (w). This assumption allows MultiLineSearch to scale
its unit search vectors to achieve the same scaling of their cost. Although the algorithm
could be adapted to eliminate these assumptions, the cost functions in Equation (8.1)
satisfy both assumptions since they are norms recentered at xA.

Algorithm 8.2 uses MultiLineSearch for (weighted) �1 costs by making W be the
vertexes of the unit-cost �1 ball centered at xA. In this case, the search issues at most
2 · D queries to determine whether BC (A1) is a subset of X+

f and thus is O (Lε · D).
However, MultiLineSearch does not rely on its directions being vertexes of the �1

ball, although those vertexes are sufficient to span the �1 ball. Generally, MultiLine-
Search is agnostic to the configuration of its search directions and can be adapted for
any set of directions that can provide a sufficiently tight bound on the cost using the
convexity of X+

f (see Section 8.3.1.1 for the bounding requirements that the search
directions must satisfy). However, as we show in Section 8.3.1, the number of search
directions required to adequately bound an �p-cost ball for p > 1 can be exponential
in D.

5 The search algorithm could continue to query at any distance B− where there is a known negative instance
as it may expedite the pruning of additional search directions early in the search. However, in analyzing
the malicious classifier, these additional queries will not lead to further pruning, but instead will prevent
improvements on the worst-case query complexity, as demonstrated in Section 8.2.1.1. Thus, the algorithms
we present only use lazy querying and only queries at costs below the upper bound C−

t on the MAC.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 215

algorithm 8.1 MultiLineSearch

MLS
(
W, xA, x−,C+

0 ,C−
0 , ε

)
x
 ← x−

t ← 0
while C−

t /C+
t > 1 + ε do begin

Ct ←
√

C+
t · C−

t

for all w ∈ W do begin
Query: f t

w ← f
(
xA + Ct · w

)
if f t

w = ''−'' then begin
x
 ← xA + Ct · w
Prune i from W if f t

i = ''+''
break for-loop

end if
end for
C+

t+1 ← C+
t and C−

t+1 ← C−
t

if ∀w ∈ W f t
w = ''+'' then C+

t+1 ← Ct

else C−
t+1 ← Ct

t ← t + 1
end while
return: x

algorithm 8.2 Convex X+
f Search

ConvexSearch
(
xA, x−, c, ε,C+)

D ← dim
(
xA
)

C− ← A(c)
(
x− − xA

)
W ← ∅
for i = 1 to D do begin

wi ← 1
ci

· e(i)

W ← W ∪ {±wi
}

end for
return: MLS

(
W, xA, x−,C+,C−, ε

)

Figure 8.3 Algorithms for multi-line search. Algorithm 8.1 is a generic procedure for performing
simultaneous binary searches along multiple search directions emanating from xA; each
direction, w ∈ W, must be a unit-cost direction. Algorithm 8.2 uses this MultiLineSearch
procedure to minimize weighted �1 costs when the positive class of a classifier is convex. For
this procedure, every weight, ci, must be on the range (0,∞), although extensions are discussed
in Section 8.2.1.3.

8.2.1.1 K-step Multi-line Search
Here we present a variant of the multi-line search algorithm that better exploits prun-
ing to reduce the query complexity of Algorithm 8.1. The original MultiLineSearch

algorithm is 2 · |W| simultaneous binary searches (i.e., a breadth-first search simulta-
neously along all search directions). This strategy prunes directions most effectively
when the convex body is asymmetrically elongated relative to xA, but fails to prune
for symmetrically round bodies. The algorithm could instead search sequentially (i.e., a
depth-first search of Lε steps along each direction sequentially). This alternative search
strategy also obtains a best case of O (Lε + |W|) queries (for a body that is symmet-
rically round about xA, it uses Lε queries along the first direction to establish an upper
and lower bound within a factor of 1 + ε, and then D queries to verify the lower bound)
and a worst case of O (Lε · |W|) queries (for asymmetrically elongated bodies, in the
worst case, the strategy would require Lε queries along each of the D search directions).
Surprisingly, these two alternatives have opposite best-case and worst-case convex bod-
ies, which inspired a hybrid approach called K-step MultiLineSearch. This algorithm

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

216 Near-Optimal Evasion of Classifiers

mixes simultaneous and sequential strategies to achieve a better worst-case query com-
plexity than either pure search strategy.6

At each phase, the K-step MultiLineSearch (Algorithm 8.3) chooses a single direc-
tion w and queries it for K steps to generate candidate bounds B− and B+ on the MAC.
The algorithm makes substantial progress toward reducing Gt without querying other
directions (a depth-first strategy). It then iteratively queries all remaining directions at
the candidate lower bound B+ (a breadth-first strategy). Again, we use lazy querying and
stop as soon as a negative instance is found since B+ is then no longer a viable lower
bound. In this case, although the candidate bound is invalidated, the algorithm can still
prune all directions that were positive at B+ (there will always be at least one such direc-
tion). Thus, in every iteration, either the gap is substantially decreased or at least one
search direction is pruned. We show that for K = (√Lε), the algorithm achieves a deli-
cate balance between the usual breadth-first and depth-first approaches to attain a better
worst-case complexity than either.

theorem 8.5 Algorithm 8.3 will find an ε-IMAC with at most O
(
Lε + √

Lε |W|)
queries when K = (√Lε).

The proof of this theorem appears in Appendix D. As a consequence of Theorem 8.5,
finding an ε-IMAC with Algorithm 8.3 for a (weighted) �1 cost requires O

(
Lε + √

LεD
)

queries. Further, Algorithm 8.2 can incorporate K-step MultiLineSearch directly by
replacing its function call to MultiLineSearch with K-step MultiLineSearch and
using K = (√Lε).

8.2.1.2 Lower Bound
Here we find a lower bound on the number of queries required by any algorithm to find
an ε-IMAC when X+

f is convex for any convex cost function; e.g., Equation (8.1) for
p ≥ 1. Below, we present theorems for additive and multiplicative optimality. Notably,
since an ε-IMAC uses multiplicative optimality, we incorporate a bound C+

0 > 0 on the
MAC into the theorem statement.

theorem 8.6 For any D > 0, any positive convex function A : �D �→ �+, any initial
bounds 0 ≤ C+

0 < C−
0 on the MAC, and 0 < η < C−

0 − C+
0 , all algorithms must submit

at least max{D, L(+)
η } membership queries in the worst case to be η-additive optimal on

F convex,''+''.

theorem 8.7 For any D > 0, any positive convex function A : �D �→ �+, any initial
bounds 0 < C+

0 < C−
0 on the MAC, and 0 < ε <

C−
0

C+
0

− 1, all algorithms must submit at

least max{D, L(∗)
ε } membership queries in the worst case to be ε-multiplicatively optimal

on F convex,''+''.

The proof of both of these theorems is in Appendix D. Note that these theorems only

apply to η ∈ (0,C−
0 − C+

0

)
and ε ∈

(
0,

C−
0

C+
0

− 1
)

, respectively. In fact, outside of these

intervals the query strategies are trivial. For either η = 0 or ε = 0, no approximation

6 K-step MultiLineSearch also has a best case of O (Lε + |W|).

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 217

algorithm 8.3 K-Step MultiLineSearch

KMLS
(
W, xA, x−,C+

0 ,C−
0 , ε, K

)
x
 ← x−

t ← 0
while C−

t /C+
t > 1 + ε do begin

Choose a direction w ∈ W

B+ ← C+
t

B− ← C−
t

for K steps do begin
B ← √

B+ · B−

Query: fw ← f
(
xA + B · w

)
if fw = ''+'' then B+ ← B
else B− ← B and x
 ← xA + B · w

end for
for all i ∈ W \ {w} do begin

Query: f t
i ← f

(
xA + (B+) · i

)
if f t

i = ''−'' then begin
x
 ← xA + (B+) · i
Prune k from W if f t

k = ''+''
break for-loop

end if
end for
C−

t+1 ← B−

if ∀i ∈ W f t
i = ''+'' then C+

t+1 ← B+

else C−
t+1 ← B+

t ← t + 1
end while
return: x

algorithm terminates. Similarly, for η ≥ C−
0 − C+

0 or ε ≥ C−
0

C+
0

− 1, x− is an IMAC since

it has a cost A
(
x− − xA

) = C−
0 , so no queries are required.

Theorems 8.6 and 8.7 show that η-additive optimality and ε-multiplicative optimality

require �
(

L(+)
η + D

)
and �

(
L(∗)

ε + D
)

queries, respectively. Thus, the K-step Mul-

tiLineSearch algorithm (Algorithm 8.3) has close to the optimal query complexity for
weighted �1-costs with its O

(
Lε + √

LεD
)

queries. This lower bound also applies to any
�p cost with p > 1, but in Section 8.3 we present tighter lower bounds for p > 1 that
substantially exceed this result for some ranges of ε and any range of η.

8.2.1.3 Special Cases
Here we present a number of special cases that require minor modifications to
Algorithms 8.1 and 8.3 by adding preprocessing steps.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

218 Near-Optimal Evasion of Classifiers

Revisiting Linear Classifiers
Lowd & Meek originally developed a method for reverse engineering linear classifiers
for a (weighted) �1 cost. First their method isolates a sequence of points from x− to
xA that cross the classifier’s boundary, and then it estimates the hyperplane’s parame-
ters using D binary line searches. However, as a consequence of the ability to efficiently
minimize our objective when X+

f is convex, we immediately have an alternative method
for linear classifiers (i.e., halfspaces). Because linear classifiers are a special case of
convex-inducing classifiers, Algorithm 8.2 can be applied, and our K-step MultiLi-
neSearch algorithm improves on complexity of their reverse-engineering technique’s
O (Lε · D) queries and applies to a broader family of classifiers.

While Algorithm 8.2 has better complexity, it uses 2 · D search directions rather than
the D directions used in the approach of Lowd & Meek, which may require our tech-
nique to issue more queries in some practical settings. However, for some restrictive
classifier families, it is also possible to eliminate search directions if they can be proven
to be infeasible based on the current set of queries. For instance, given a set W of search
directions, t queries

{
x(i)
}t

i=1
and their corresponding responses

{
y(i)
}t

i=1
, a search direc-

tion e can be eliminated from W if for all C+
t ≤ α < C−

t there does not exist any clas-
sifier f ∈ F consistent with all previous queries (i.e., f

(
x−) = ''−'', f

(
xA
) = ''+'' and

for all i ∈ {1, . . . , t}, f
(
x(i)
) = y(i)) that also has f (α · e) = ''−'' and f (α · i) = ''+'' for

every i ∈ W \ {e}). That is, e is feasible if and only if it is the only search direction
among the set of remaining search directions, W, that would be classified as a negative
for a cost α by some consistent classifier. Further, since subsequent queries only restrict
the feasible space of α and the set of consistent classifiers F̂ , pruning these infeasible
directions is sound for the remainder of the search.

For restrictive families of convex-inducing classifiers, these feasibility conditions can
be efficiently verified and may be used to prune search directions without issuing further
queries. In fact, for the family of linear classifiers written as f (x) = sign

(
w�x + b

)
for

a normal vector w and displacement b, the above conditions become a set of linear
inequalities along with quadratic inequalities corresponding to the constraint involving
search directions. This can be cast as the following optimization program with respect
to α, w, and b:

minα,w,b α · w�e + b

s.t.

α ∈ [C+
t ,C−

t)
w�x− + b ≤ 0
w�xA + b ≥ 0

yi(w�x(i) + b) ≥ 0 ∀ i ∈ {1, . . . , t}
α · w�i + b ≥ 0 ∀ i �= e ∈ W

If the resulting minimum is less than zero, direction e is feasible; otherwise, it can
be pruned. Such programs can be efficiently solved and may allow the adversary
to rapidly eliminate infeasible search directions without issuing additional queries.
However, refining these pruning procedures further is beyond the scope of this
chapter.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 219

Extending MultiLineSearch Algorithms to cd = ∞ or cd = 0 Weights
In Algorithm 8.2, we reweighted the d th axis-aligned directions by a factor 1

cd
to make

unit cost vectors by implicitly assuming cd ∈ (0,∞). The case where cd = ∞ (e.g.,
immutable features) is dealt with by simply removing those features from the set of
search directions W used in the MultiLineSearch. In the case when cd = 0 (e.g.,
useless features), MultiLineSearch-like algorithms no longer ensure near-optimality
because they implicitly assume that cost balls are bounded sets. If cd = 0, B0 (A) is no
longer a bounded set, and 0 cost can be achieved if X−

f anywhere intersects the sub-
space spanned by the 0-cost features—this makes near-optimality unachievable unless
a negative 0-cost instance can be found. In the worst case, such an instance could be
arbitrarily far in any direction within the 0-cost subspace, making search for such an
instance intractable. Nonetheless, one possible search strategy is to assign all 0-cost
features a nonzero weight that decays quickly toward 0 (e.g., cd = 2−t in the t th itera-
tion) as we repeatedly rerun MultiLineSearch on the altered objective for T iterations.
The algorithm will either find a negative instance that only alters 0-cost features (and
hence is a 0-IMAC), or it terminates with a nonzero cost instance, which is an ε-IMAC
if no 0-cost negative instances exist. This algorithm does not ensure near-optimality, but
may be suitable for practical settings using some fixed T runs.

Lack of an Initial Lower Bound
Thus far, to find an ε-IMAC the algorithms we presented searched between initial
bounds C+

0 and C−
0 , but in general, C+

0 may not be known to a real-world adversary.
We now present an algorithm called SpiralSearch that efficiently establishes a lower
bound on the MAC if one exists. This algorithm performs a halving search on the expo-
nent along a single direction to find a positive example and then queries the remaining
directions at this candidate bound. Either the lower bound is verified or directions that
were positive can be pruned for the remainder of the search.

algorithm 8.4 SpiralSearch

spiral
(
W, xA,C−

0

)
t ← 0 and V ← ∅
repeat

Choose a direction w ∈ W

Remove w from W and V ← V ∪ {w}
Query: fw ← f

(
xA + C−

0 · 2−2t · w
)

if fw = ''−'' then begin
W ← W ∪ {w} and V ← ∅
t ← t + 1

end if
until W = ∅
C+

0 ← C−
0 · 2−2t

if t > 0 then C−
0 ← C−

0 · 2−2t−1

return: (V, C+
0 , C−

0)

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

220 Near-Optimal Evasion of Classifiers

At the t th iteration of SpiralSearch, a direction is selected and queried at the candi-
date lower bound of (C−

0)2−2t
. If the query is positive, that direction is added to the set

V of directions consistent with the lower bound. Otherwise, all positive directions in V

are pruned, a new upper bound is established, and the candidate lower bound is lowered
with an exponentially decreasing exponent. By definition of the MAC, this algorithm

will terminate after t =
⌈

log2 log2
C−

0
MAC(f,A)

⌉
iterations. Further, in this algorithm, mul-

tiple directions are probed only during iterations with positive queries, and it makes at
most one positive query for each direction. Thus, given that some lower bound C+

0 > 0
does exist, SpiralSearch will establish a lower bound with O

(
L′

ε + D
)

queries, where
L′

ε is given by Equation (8.6) defined using C+
0 = MAC (f, A): the largest possible lower

bound.
This algorithm can be used as a precursor to any of the previous searches7 and can

be adapted to additive optimality by halving the lower bound instead of the expo-
nent (see Section 8.1.3). Upon completion, the upper and lower bounds it establishes
have a multiplicative gap of 22t−1

for t > 0 or 2 for t = 0. From the definition of t
provided above in terms of the MAC, MultiLineSearch can hence proceed using
Lε = L′

ε . Further, the search directions pruned by SpiralSearch are also invalid for
the subsequent MultiLineSearch so the set V returned by SpiralSearch will be
used as the initial set W for the subsequent search. Thus, the query complexity of
the subsequent search is the same as if it had started with the best possible lower
bound.

Lack of a Negative Example
The MultiLineSearch algorithms can also naturally be adapted to the case when the
adversary has no negative example x−. This is accomplished by querying �1 balls
of doubly exponentially increasing cost until a negative instance is found. During
the t th iteration, the adversary probes along every search direction at a cost (C+

0)22t
;

either all probes are positive (a new lower bound), or at least one is negative (a new
upper bound) and search can terminate. Once a negative example is located (hav-
ing probed for T iterations), we must have (C+

0)22T−1
< MAC (f, A) ≤ (C+

0)22T
; thus,

T =
⌈

log2 log2

(
MAC(f,A)

C+
0

)⌉
. After this preprocessing, the adversary can subsequently

perform MultiLineSearch with C+
0 = 22T−1

and C−
0 = 22T

; i.e., log2 (G0) = 2T−1.
This precursor step requires at most |W| · T queries to initialize the MultiLine-

Search algorithm with a gap such that Lε =
⌈

(T − 1) + log2

(
1

log2(1+ε)

)⌉
according to

Equation (8.6).
If there is neither an initial upper bound or lower bound, the adversary can proceed by

probing each search direction at unit cost using additional |W| queries. This will either
establish an upper or lower bound, and the adversary can then proceed accordingly.

7 If no lower bound on the cost exists, no algorithm can find an ε-IMAC. As presented, this algorithm would
not terminate, but in practice, the search would be terminated after sufficiently many iterations.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 221

8.2.2 ε-IMAC Learning for a Convex X−
f

In this section, we minimize convex cost function A with bounded cost balls (we focus
on weighted �1 costs in Equation 8.1) when the feasible set X−

f is convex. Any con-
vex function can be efficiently minimized within a known convex set (e.g., using an
ellipsoid method or interior point methods; see Boyd & Vandenberghe 2004). However,
in the near-optimal evasion problem, the convex set is only accessible via membership
queries. We use a randomized polynomial algorithm of Bertsimas & Vempala (2004)
to minimize the cost function A given an initial point x− ∈ X−

f . For any fixed cost, Ct ,
we use their algorithm to determine (with high probability) whether X−

f intersects with

BCt
(A); i.e., whether Ct is a new lower or upper bound on the MAC. With high prob-

ability, this approach can find an ε-IMAC in no more than Lε repetitions using binary
search. The following theorem is the main result of this section.

theorem 8.8 Let cost function A be convex and have bounded balls; i.e., bounded
sublevel sets. Let the feasible set X−

f be convex and assume there is some r > 0 and
y ∈ X−

f such that X−
f contains the cost ball Br (A; y). Then given access to an oracle

returning separating hyperplanes for the A cost balls, Algorithm 8.7 will find an ε-IMAC
using O∗ (D5

)
queries with high probability.8

The proof of this result is outlined in the remainder of this section and is based on
Bertsimas & Vempala (2004, theorem 14). We first introduce their randomized ellip-
soid algorithm, then we elaborate on their procedure for efficient sampling from a con-
vex body, and finally we present our application to optimization. In this section, we
focus only on weighted �1 costs (Equation 8.1) and return to more general cases in
Section 8.3.2.

8.2.2.1 Intersection of Convex Sets
Bertsimas & Vempala present a query-based procedure for determining whether two
convex sets (e.g., X−

f and BCt
(A1)) intersect. Their IntersectSearch procedure, which

we present as Algorithm 8.5 (see Figure 8.4) is a randomized ellipsoid method for deter-
mining whether there is an intersection between two bounded convex sets: P is only
accessible through membership queries, and B provides a separating hyperplane for any
point not in B. They use efficient query-based approaches to uniformly sample from P to
obtain sufficiently many samples such that cutting P through the centroid of these sam-
ples with a separating hyperplane from B significantly reduces the volume of P with
high probability. Their technique thus constructs a sequence of progressively smaller
feasible sets P(s) ⊆ P(s−1) until either the algorithm finds a point in P ∩ B or it is highly
likely that the intersection is empty.

As noted earlier, the cost optimization problem reduces to finding the intersection
between X−

f and BCt
(A1). Though X−

f may be unbounded, we are minimizing a cost

with bounded cost balls, so we can instead use the set P(0) = X−
f ∩ B2R

(
A1; x−; x−)

(where R = A
(
x− − xA

)
> Ct), which is a (convex) subset of X−

f . Since, by the triangle

8 O∗ (·) denotes the standard complexity notation O (·) without logarithmic terms. The dependence on ε∗ is
in these logarithmic terms; see Bertsimas & Vempala (2004) for details.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

222 Near-Optimal Evasion of Classifiers

algorithm 8.5 Intersect Search

IntersectSearch
(
P(0), Q = {x(j) ∈ P(0)

}
, xA,C

)
for s = 1 to T do begin

(1) Generate 2N samples
{
x(j)
}2N

j=1
Choose x from Q

x(j) ← HitRun
(
P(s−1), Q, x(j)

)
(2) If any x(j), A

(
x(j) − xA

) ≤ C terminate the
for-loop
(3) Put samples into 2 sets of size N

R ← {
x(j)
}N

j=1
and S ← {

x(j)
}2N

j=N+1

(4) z(s) ← 1
N

∑
x(j)∈R x(j)

(5) Compute H(h(z(s)),z(s)) using Equation (8.11)
(6) P(s) ← P(s−1) ∩ H(h(z),z(s))

(7) Keep samples in P(s)

Q ← S ∩ P(s)

end for
Return: the found [x(j), P(s), Q]; or No Intersect

algorithm 8.6 Hit-and-Run Sam-
pling

HitRun
(
P,
{
y(j)
}
, x(0)

)
for i = 1 to K do begin

(1) Choose a random direction:
ν j ∼ N (0, 1)
v ←∑

j ν j · y(j)

(2) Sample uniformly along v using
rejection sampling:

Choose ω̂ s.t. x(i−1) + ω̂ · v /∈ P

repeat
ω ∼ U ni f (0, ω̂)
x(i) ← x(i−1) + ω · v
ω̂ ← ω

until x(i) ∈ P

end for
Return: x(K)

Figure 8.4 Algorithms IntersectSearch and Hit-and-Run are used for the randomized ellipsoid
algorithm of Bertsimas & Vempala (2004). IntersectSearch is used to find the intersection
between a pair of convex sets: P(0) is queryable and B provides a separating hyperplane from
Equation (8.11). Note that the Rounding algorithm discussed in Section 8.2.2.2 can be used
as a preprocessing step so that P(0) is near-isotropic and to obtain the samples for Q. The
Hit-and-Run algorithm is used to efficiently obtain uniform samples from a bounded near-
isotropic convex set, P, based on a set of uniform samples from it,

{
y(j)
}

, and a starting
point x(0).

inequality, the ball B2R
(
A1; x−) centered at x− envelops all of BCt (

A1; xA
)

centered at
xA, the set P(0) contains the entirety of the desired intersection, X−

f ∩ BCt
(A1), if it

exists. We also assume that there is some r > 0 such that there is an r-ball contained in
the convex set X−

f ; i.e., there exists y ∈ X−
f such that the r-ball centered at y, Br (A1; y),

is a subset of X−
f . This assumption both ensures that X−

f has a non-empty interior (a
requirement for the Hit-and-Run algorithm discussed later) and provides a stopping
condition for the overall intersection search algorithm.

The foundation of Bertsimas & Vempala’s search algorithm is the ability to sample
uniformly from an unknown but bounded convex body by means of the Hit-and-Run

random walk technique introduced by Smith (1996) (Algorithm 8.6). Given an instance
x(j) ∈ P(s−1), Hit-and-Run selects a random direction v through x(j) (we revisit the
selection of v in Section 8.2.2.2). Since P(s−1) is a bounded convex set, the set W ={
ω ≥ 0

∣∣ x(j) + ωv ∈ P(s−1)
}

is a bounded interval (i.e., there is some ω̂ ≥ 0 such that
W ⊆ [0, ω̂]) that indexes all feasible points along direction v through x(j). Sampling ω

uniformly from W yields the next step of the random walk: x(j) + ωv. Even though ω̂

is generally unknown, it can be upper bounded, and ω can be sampled using rejection
sampling along the interval as demonstrated in Algorithm 8.6. As noted earlier, this

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.2 Evasion of Convex Classes for �1 Costs 223

random walk will not make progress if the interior of P(s−1) is empty (which we preclude
by assuming that X−

f contains an r-ball), and efficient sampling also requires that P(s−1)

is sufficiently round. However, under the conditions discussed in Section 8.2.2.2, the
Hit-and-Run random walk generates a sample uniformly from the convex body after
O∗ (D3

)
steps (Lovász & Vempala 2004). We now detail the overall IntersectSearch

procedure (Algorithm 8.5) and then discuss the mechanism used to maintain efficient
sampling after each successive cut. It is worth noting that Algorithm 8.5 requires P(0) to
be in near-isotropic position and that Q is a set of samples from it; these requirements
are met by using the Rounding algorithm of Lovász & Vempala discussed at the end of
Section 8.2.2.2.

Randomized Ellipsoid Method
We use Hit-and-Run to obtain 2N samples

{
x(j)
}

from P(s−1) ⊆ X−
f for a single phase

of the randomized ellipsoid method. If any satisfy the condition A
(
x(j) − xA

) ≤ Ct , then
x(j) is in the intersection of X−

f and BCt
(A1), and the procedure is complete. Otherwise,

the search algorithm must significantly reduce the size of P(s−1) without excluding any
of BCt

(A1) so that sampling concentrates toward the desired intersection (if it exists)—
for this we need a separating hyperplane for BCt

(A1). For any point y /∈ BCt
(A1), the

(sub)gradient denoted as h (y) of the weighted �1 cost is given by

[h (y)] f = c f · sign
(

y f − xA
f

)
. (8.10)

and thus the hyperplane specified by
{
x
∣∣ (x − y)� h (y)

}
is a separating hyperplane

for y and BCt
(A1).

To achieve sufficient progress, the algorithm chooses a point z ∈ P(s−1) so that cutting
P(s−1) through z with the hyperplane h (z) eliminates a significant fraction of P(s−1). To
do so, z must be centrally located within P(s−1). We use the empirical centroid of half of
the samples in R: z = 1

N

∑
x∈R x (the other half will be used in Section 8.2.2.2). We cut

P(s−1) with the hyperplane h (z) through z; i.e., P(s) = P(s−1) ∩ H(h(z),z) where H(h(z),z)

is the halfspace

H(h(z),z) = {x ∣∣ x�h (z) < z�h (z)
}
. (8.11)

As shown by Bertsimas & Vempala, this cut achieves vol
(
P(s)
) ≤ 2

3 vol
(
P(s−1)

)
with

high probability if N = O∗ (D) and P(s−1) is near-isotropic (see Section 8.2.2.2). Since
the ratio of volumes between the initial circumscribing and inscribed balls of the feasible
set is

(
R
r

)D
, the algorithm can terminate after T = O

(
D log

(
R
r

))
unsuccessful iterations

with a high probability that the intersection is empty.
Because every iteration in Algorithm 8.5 requires N = O∗ (D) samples, each of

which needs K = O∗ (D3
)

random walk steps, and there are T = O∗ (D) iterations,
the total number of membership queries required by Algorithm 8.5 is O∗ (D5

)
.

8.2.2.2 Sampling from a Queryable Convex Body
In the randomized ellipsoid method, random samples are used for two purposes:
estimating the convex body’s centroid and maintaining the conditions required for

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

224 Near-Optimal Evasion of Classifiers

the Hit-and-Run sampler to efficiently generate points uniformly from a sequence of
shrinking convex bodies. Until now, we assumed the Hit-and-Run random walk effi-
ciently produces uniformly random samples from any bounded convex body P using
K = O∗ (D3

)
membership queries. However, if the body is asymmetrically elongated,

randomly selected directions will rarely align with the long axis of the body, and the
random walk will take small steps (relative to the long axis) and mix slowly in P. For
the sampler to mix effectively, the convex body P has to be sufficiently round, or more
formally near-isotropic; i.e., for any unit vector v,

1

2
vol (P) ≤ Ex∼P

[(
v� (x − Ex∼P [x])

)2] ≤ 3

2
vol (P) . (8.12)

If the body is not near-isotropic, X can be rescaled with an appropriate affine trans-
formation T so the resulting transformed body P′ = {Tx | x ∈ P} is near-isotropic.
With sufficiently many samples from P we can estimate T as their empirical covari-
ance matrix. Instead, we rescale X implicitly using a technique described by Bertsimas
& Vempala (2004). We maintain a set Q of sufficiently many uniform samples from the
body P(s), and in the Hit-and-Run algorithm (Algorithm 8.6), we sample the direction
v based on this set. Intuitively, because the samples in Q are distributed uniformly in
P(s), the directions we sample based on the points in Q implicitly reflect the covariance
structure of P(s). This is equivalent to sampling the direction v from a normal distribu-
tion with zero mean and covariance of P.

Further, the set Q must retain sufficiently many samples from P(s) after each cut:
P(s) ← P(s−1) ∩ H(h(z(s)),z(s)). To do so, we initially resample 2N points from P(s−1)

using Hit-and-Run—half of these, R, are used to estimate the centroid z(s) for the cut,
and the other half, S, are used to repopulate Q after the cut. Because S contains inde-
pendent uniform samples from P(s−1), those in P(s) after the cut constitute independent
uniform samples from P(s) (i.e., rejection sampling). By choosing N sufficiently large,
the cut will be sufficiently deep, and there will be sufficiently many points to resample
P(s) after the cut.

Finally, for this sampling approach to succeed, we need the initial set P(0) to be trans-
formed into near-isotropic position, and we also need an initial set Q of uniform sam-
ples from the transformed P(0) as input to Algorithm 8.5. However, in the near-optimal
evasion problem, we only have a single point x− ∈ X−

f and our set, P(0), need not be
near-isotropic. Fortunately, there is an iterative procedure that uses the Hit-and-Run

algorithm to simultaneously transform the initial convex set, P(0), into a near-isotropic
position and construct our initial set of samples, Q. This algorithm, the Rounding algo-
rithm as described by Lovász & Vempala (2003), uses O∗ (D4

)
membership queries

to find a transformation that places P0 into a near-isotropic position and produces an
initial set of samples from it. We use this as a preprocessing step for Algorithms 8.5
and 8.7; that is, given X−

f and x− ∈ X−
f , we construct P(0) = X−

f ∩ B2R
(
A1; x−) and

then can use the Rounding algorithm to transform P(0) and produce an initial uniform
sample from it; i.e., Q = {x(j) ∈ P(0)

}
. These sets are then the inputs to our search

algorithms.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.3 Evasion for General �p Costs 225

8.2.2.3 Optimization over �1 Balls
We now revisit the outermost optimization loop (for searching the minimum feasible
cost) of the algorithm to optimize the naive approach, which repeats the intersection
search at each step of the binary search over cost balls. These improvements are reflected
in our final procedure SetSearch in Algorithm 8.7 (as with previous binary search
procedures, this algorithm can be trivially adapted for η-additive optimality simply by
changing its stopping criterion and proposal step as explained in Section 8.1.3)—the
total number of queries required is also O∗ (D5

)
since the algorithm only takes Lε binary

search steps (see Figure 8.5). Again, Algorithm 8.7 requires P to be near-isotropic and
that Q is a set of samples from it, which is accomplished by the Rounding algorithm
discussed at the end of Section 8.2.2.2. First, notice that xA and x− are the same for every
iteration of the optimization procedure. Further, in each iteration of Algorithm 8.7, the
new set, P, remains near-isotropic, and the new Q is a set of samples from it since
the sets returned by Algorithm 8.5 retain these properties. Thus, the set, P, and the
set of samples, Q = {x(j) ∈ P

}
, maintained by Algorithm 8.7 are sufficient to initialize

IntersectSearch at each stage of its overall binary search over Ct , and we only need to
execute the Rounding procedure once as a preprocessing step rather than re-invoking it
before every invocation of IntersectSearch. Second, the separating hyperplane h (y)
given by Equation (8.10) does not depend on the target cost Ct but only on xA, the
common center of all the �1 balls used in this search. In fact, the separating hyper-
plane at point y is valid for all �1-balls of cost C < A

(
y − xA

)
. Further, if C < Ct , then

BC (A1) ⊆ BCt
(A1). Thus, the final state from a successful call to IntersectSearch for

the Ct-ball can be used as the starting state for any subsequent call to IntersectSearch

for all C < Ct . Hence, in Algorithm 8.7, we update P and Q only when Algorithm 8.5
succeeds.

8.3 Evasion for General �p Costs

Here we further extend ε-IMAC searchability over the family of convex-inducing clas-
sifiers to the full family of �p costs for any 0 < p ≤ ∞. As we demonstrate in this sec-
tion, many �p costs are not generally ε-IMAC searchable for all ε > 0 over the family
of convex-inducing classifiers (i.e., we show that finding an ε-IMAC for this family can
require exponentially many queries in D and Lε). In fact, only the weighted �1 costs have
known (randomized) polynomial query strategies when either the positive or negative
set is convex.

8.3.1 Convex Positive Set

We explore the ability of the MultiLineSearch and K-step MultiLineSearch algo-
rithms presented in Section 8.2.1 to find solutions to the near-optimal evasion problem
for �p cost functions with p �= 1. Particularly for p > 1, we explore the consequences of
using the MultiLineSearch algorithms using more search directions than just the 2 · D

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

226 Near-Optimal Evasion of Classifiers

algorithm 8.7 Convex X−
f Set Search

SetSearch
(
P, Q = {x(j) ∈ P

}
, xA, x−,C+

0 ,C−
0 , ε

)
x
 ← x− and t ← 0
while C−

t /C+
t > 1 + ε do begin

Ct ←
√

C−
t · C+

t

[x
, P′, Q′] ← IntersectSearch
(
P, Q, xA,Ct

)
if intersection found then begin

C−
t+1 ← A

(
x
 − xA

)
and C+

t+1 ← C+
t

P ← P′ and Q ← Q′

else
C−

t+1 ← C−
t and C+

t+1 ← Ct

end if
t ← t + 1

end while
Return: x

Figure 8.5 Algorithm SetSearch that efficiently implements the randomized ellipsoid algorithm
of Bertsimas & Vempala (2004). SetSearch performs a binary search for an ε-IMAC using the
randomized IntersectSearch procedure to determine, with high probability, whether or not X−

f

contains any points less than a specified cost, Ct . Note that the Rounding algorithm discussed in
Section 8.2.2.2 can be used as a preprocessing step so that P is near-isotropic and to obtain the
samples for Q.

axis-aligned directions. Figure 8.6 demonstrates how queries can be used to construct
upper and lower bounds on general �p costs. The following lemma also summarizes
well-known bounds on general �p costs using an �1 cost.

lemma 8.9 The largest �p (p > 1) ball enclosed within a C-cost �1 ball has a cost of

C · D
1−p

p and for p = ∞ the cost is C · D−1.

Proof By symmetry, the point x
 on the simplex
{

x ∈ �D
∣∣∣ ∑D

i=1 xi = 1, xi ≥ 0∀i
}

that

minimizes the �p norm for any p > 1 is

x
 = 1

D
(1, 1, . . . , 1) .

The �p norm (cost) of the minimizer is

∥∥x

∥∥

p
= 1

D

(
D∑

i=1

1p

)1/p

= 1

D
D1/p

= D
1−p

p

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.3 Evasion for General �p Costs 227

Figure 8.6 The convex hull for a set of queries and the resulting bounding balls for several �p

costs. Each row represents a unique set of positive (“×” points) and negative (black “◦” points)
queries, and each column shows the implied upper bound (the black dashed line) and lower
bound (the black solid line) for a different �p cost. In the first row, the body is defined by a
random set of seven queries, in the second, the queries are along the coordinate axes, and in the
third, the queries are around a circle.

for p ∈ (1,∞) and is otherwise

∥∥x

∥∥

∞ = max

[
1

D
,

1

D
, . . . ,

1

D

]
= D−1.

�

8.3.1.1 Bounding �p Balls
In general, suppose one probes along some set of M unit directions, and eventually
there is at least one negative point supporting an upper bound of C−

0 and M positive
points supporting a lower bound of C+

0 . However, the lower bound provided by those
M positive points is the cost of the largest �p cost ball that fits entirely within their
convex hull; let’s say this cost is C† ≤ C+

0 . To achieve ε-multiplicative optimality, we

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

228 Near-Optimal Evasion of Classifiers

need
C−

0

C† ≤ 1 + ε, which can be rewritten as(
C−

0

C+
0

)(
C+

0

C†

)
≤ 1 + ε.

This divides the problem into two parts. The first ratio C−
0 /C+

0 is controlled solely by
the accuracy ε achieved by running the MultiLineSearch algorithm for Lε steps,
whereas the second ratio C+

0 /C† depends only on how well the �p ball is approximated
by the convex hull of the M search directions. These two ratios separate the search task
into choosing M and Lε sufficiently so that their product is less than 1 + ε. First we
select parameters α ≥ 0 and β ≥ 0 such that (1 + α)(1 + β) ≤ 1 + ε. Then we choose

M so that
C+

0

C† = 1 + β and use Lα steps so that MultiLineSearch with M directions

will achieve
C−

0

C+
0

= 1 + α. This process describes a generalized MultiLineSearch that

achieves ε-multiplicative optimality for costs whose cost balls are not spanned by the
convex hull of equi-cost probes along the M search directions.

In the case of p = 1, we demonstrated in Section 8.2.1 that choosing the M = 2 · D
axis-aligned directions

{±e(d)
}

spans the �1 ball so that C+
0 /C† = 1 (i.e., β = 0). Thus,

choosing α = ε recovers the original multi-line search result.
We now address costs where β > 0. For a MultiLineSearch algorithm to be effi-

cient, it is necessary that
C+

0

C† = 1 + β can be achieved with polynomially many search
directions (in D and Lε) for some β ≤ ε; otherwise, (1 + α)(1 + β) > 1 + ε, and the
MultiLineSearch approach cannot succeed for any α > 0. Thus, we quantify how

many search directions (or queries) are required to achieve
C+

0

C† ≤ 1 + ε. Note that this
ratio is independent of the relative size of these costs, so without loss of generality we
only consider bounds for unit-cost balls. Thus, we compute the largest value of C† that
can be achieved for the unit-cost �p ball (i.e., let C+

0 = 1) within the convex hull of M
queries. In particular, we quantify how many queries are required to achieve

C† ≥ 1

1 + ε
. (8.13)

If this can be achieved with only polynomially many queries, then the generalized Mul-
tiLineSearch approach is efficient. More generally,

lemma 8.10 If there exists a configuration of M unit search directions with a convex
hull that yields a bound C† for the cost function A, then MultiLineSearch algorithms
can use those search directions to achieve ε-multiplicative optimality with a query com-
plexity that is polynomial in M and L(∗)

ε for any

ε >
1

C† − 1.

Moreover, if the M search directions yield C† = 1 for the cost function A, then MultiLi-
neSearch algorithms can achieve ε-multiplicative optimality with a query complexity
that is polynomial in M and L(∗)

ε for any ε > 0.

Notice that this lemma also reaffirms that, for p = 1, using the M = 2 · D axis-
aligned directions allows MultiLineSearch algorithms to achieve ε-multiplicative

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.3 Evasion for General �p Costs 229

optimality for any ε > 0 with a query complexity that is polynomial in M and L(∗)
ε

since in this case C† = 1. Also recall that as a consequence of Theorem 8.3, if a par-
ticular multiplicative accuracy ε cannot be efficiently achieved, then additive optimality
cannot be generally achieved for any additive accuracy η > 0.

8.3.1.2 Multi-Line Search for 0 < p < 1
A simple result holds here. Namely, since the unit �1 ball bounds any unit �p balls
with 0 < p < 1, one can achieve C+

0 /C† = 1 using only the 2 · D axis-aligned search
directions. Thus, for any 0 < p < 1, evasion is efficient for any value of ε > 0. Whether
or not any �p (0 < p < 1) cost function can be efficiently searched with fewer search
directions is an open question.

8.3.1.3 Multi-Line Search for p > 1
For this case, one can trivially use the �1 bound on �p balls as summarized by the fol-
lowing corollary.

corollary 8.11 For 1 < p < ∞ and ε ∈
(

D
p−1

p − 1,∞
)

any multi-line search

algorithm can achieve ε-multiplicative optimality on Ap using M = 2 · D search direc-
tions. Similarly for ε ∈ (D − 1,∞) any multi-line search algorithm can achieve ε-
multiplicative optimality on A∞ also using M = 2 · D directions.

Proof From Lemma 8.9, the largest co-centered �p ball contained within the unit

�1 ball has radius D
1−p

p cost (or D for p = ∞). The bounds on ε then follow from
Lemma 8.10. �

Unfortunately, this result only applies for a range of ε that grows with D, which is
insufficient for ε-IMAC searchability. In fact, for some fixed values of ε, there is no
query strategy that can bound �p costs using polynomially many queries in D as the
following result shows.

theorem 8.12 For p > 1, D > 0, any initial bounds 0 < C+
0 < C−

0 on the MAC,

and ε ∈
(

0, 2
p−1

p − 1
)

(or ε ∈ (0, 1) for p = ∞), all algorithms must submit at least

αD
p,ε membership queries (for some constant αp,ε > 1) in the worst case to be ε-

multiplicatively optimal on F convex,''+'' for �p costs.

The proof of this theorem is provided in Appendix D, and the definitions of αp,ε and
α∞,ε are provided by Equations (D.7) and (D.8), respectively. A consequence of this
result is that there is no query-based algorithm that can efficiently find an ε-IMAC of

any �p cost (p > 1) for any fixed ε within the range 0 < ε < 2
p−1

p − 1 (or 0 < ε < 1 for
p = ∞) on the family F convex,''+''. However, from Theorem 8.11 and Lemma 8.10, multi-
line search type algorithms efficiently find the ε-IMAC of any �p cost (p > 1) for any

ε ∈
(

D
p−1

p − 1,∞
)

(or D − 1 < ε < ∞ for p = ∞). It is generally unclear if efficient

algorithms exist for any values of ε between these intervals, but in the following section,
we derive a stronger bound for the case p = 2.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

230 Near-Optimal Evasion of Classifiers

8.3.1.4 Multi-Line Search for p = 2
theorem 8.13 For any D > 1, any initial bounds 0 < C+

0 < C−
0 on the MAC, and

0 < ε <
C−

0

C+
0

− 1, all algorithms must submit at least α
D−2

2
ε membership queries (where

αε = (1+ε)2

(1+ε)2−1 > 1) in the worst case to be ε-multiplicatively optimal on F convex,''+'' for
�2 costs.

The proof of this result is in Appendix D.2.
This result says that there is no algorithm that can generally achieve ε-multiplicative

optimality for �2 costs for any fixed ε > 0 using only polynomially many queries in D

since the ratio
C−

0

C+
0

could be arbitrarily large. It may appear that Theorem 8.13 contradicts

Corollary 8.11. However, Corollary 8.11 only applies for an interval of ε that depends
on D; i.e., ε >

√
D − 1. Interestingly, by substituting this lower bound on ε into the

bound given by Theorem 8.13, the number of required queries for ε >
√

D − 1 need
only be

M ≥
(

(1 + ε)2

(1 + ε)2 − 1

) D−2
2

=
(

D

D − 1

) D−2
2

,

which is a monotonically increasing function in D that asymptotes at
√

e ≈ 1.64.
Thus, Theorem 8.13 and Corollary 8.11 are in agreement since for ε >

√
D − 1, The-

orem 8.13 only requires at least two queries, which is a trivial bound for all D. Indeed,
this occurs because the ε considered here is bounded below by a function that increases
with D.

A Tighter Bound
The bound derived for Lemma A.1 was sufficient to demonstrate that there is no algo-
rithm that can generally achieve ε-multiplicative optimality for �2 costs for any fixed
ε > 0. It is, however, possible to construct a tighter lower bound on the number of
queries required for �2 costs, although it is not easy to express this result as an exponen-
tial in D. A straightforward way to construct a better lower bound is to make a tighter
upper bound on the integral

∫ φ

0 sinD (t) dt as is suggested in Appendix A.2. Namely,
the result given in Equation (A.4) upper bounds this integral by

sinD+1 (φ)

(D + 1) cos (φ)
,

which is tighter for large D and φ < π
2 . Applying this bound to the covering number

result of Theorem 8.13 achieves the following bound on the number of queries required
to achieve multiplicative optimality:

M ≥
√

π

1 + ε
· D · � (D+1

2

)
�
(
1 + D

2

) ((1 + ε)2

(1 + ε)2 − 1

) D−1
2

. (8.14)

While not as obvious as the result presented in Appendix D.2, this bound is also expo-
nential in D for any ε. Also, as with the previous result, this bound does not contradict
the polynomial result for ε ≥ √

D − 1. For D = 1 Equation 8.14 requires exactly two

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.4 Summary 231

queries (in exact agreement with the number of queries required to bound an �2 ball in
1-dimension); for D = 2 it requires more than π queries (whereas at least four queries
are actually required); and for D > 2 the bound asymptotes at

√
2eπ ≈ 4.13 queries.

Again, this tighter bound does not contradict the efficient result achieved by bounding
�2 balls with �1 balls.

8.3.2 Convex Negative Set

Algorithm 8.7 generalizes immediately to all weighted �p costs (p ≥ 1) centered at xA

since these costs are convex. For these costs, an equivalent separating hyperplane for y
can be used in place of Equation (8.10). They are given by the equivalent (sub)-gradients
for �p cost balls:

h(y)
p,d = cd · sign

(
yd − xA

d

) ·
(

|yd − xA
d |

A(c)
p
(
y − xA

)
)p−1

,

h(y)
∞,d = cd · sign

(
yd − xA

d

) · I
[|yd − xA

d | = A(c)
∞
(
y − xA

)]
.

By only changing the cost function A and the separating hyperplane h (y) used for the
halfspace cut in Algorithms 8.5 and 8.7, the randomized ellipsoid method can also be
applied for any weighted �p cost A(c)

p with p > 1.
For more general convex costs A, every C-cost ball is a convex set (i.e., the sublevel

set of a convex function is a convex set; see Boyd & Vandenberghe 2004, Chapter 3)
and thus has a separating hyperplane. Further, since for any D > C, BC (A) ⊆ BD (A),
the separating hyperplane of the D-cost ball is also a separating hyperplane of the
C-cost ball and can be reused in Algorithm 8.7. Thus, this procedure is applicable for
any convex cost function, A, so long as one can compute the separating hyperplanes of
any cost ball of A for any point y not in the cost ball.

For nonconvex costs A such as weighted �p costs with 0 < p < 1, minimization over a
convex set X−

f is generally hard. However, there may be special cases when minimizing
such a cost can be accomplished efficiently.

8.4 Summary

In this chapter we primarily studied membership query algorithms that efficiently
accomplish ε-IMAC search for convex-inducing classifiers with weighted �1 costs.
When the positive class is convex, we demonstrated efficient techniques that outper-
form the previous reverse-engineering approaches for linear classifiers in a continuous
space. When the negative class is convex, we appied the randomized ellipsoid method
introduced by Bertsimas & Vempala to achieve efficient ε-IMAC search. If the adver-
sary is unaware of which set is convex, it can trivially run both searches to discover an
ε-IMAC with a combined polynomial query complexity; thus, for �1 costs, the family
of convex-inducing classifiers can be efficiently evaded by an adversary; i.e., this family
is ε-IMAC searchable.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

232 Near-Optimal Evasion of Classifiers

Further, we also extended the study of convex-inducing classifiers to the full fam-
ily of �p costs. We showed that F convex is only generally ε-IMAC searchable for both
positive and negative convexity for any ε > 0 when p = 1. For 0 < p < 1, the Multi-
LineSearch algorithms of Section 8.2.1 achieve identical results when the positive set
is convex, but the nonconvexity of these �p costs precludes the use of the randomized
ellipsoid method when the negative class is convex. The ellipsoid method does provide
an efficient solution for convex negative sets when p > 1 (since these costs are convex).
However, for convex positive sets, we show that for p > 1 there is no algorithm that can
efficiently find an ε-IMAC for all ε > 0. Moreover, for p = 2, we prove that there is no
efficient algorithm for finding an ε-IMAC for any fixed value of ε.

8.4.1 Open Problems in Near-Optimal Evasion

By investigating near-optimal evasion for the convex-inducing classifiers and �1 costs,
we have significantly expanded the extent of the framework established by Lowd &
Meek , but there are still a number of interesting unanswered questions about the near-
optimal evasion problem. We summarize the problems we believe are most important
and suggest potential directions for pursuing them.

As we showed in this chapter, the current upper bound on the query complexity to
achieve near-optimal evasion for the convex positive class is O

(
Lε + √

LεD
)

queries,
but the tightest known lower bound is O (Lε + D). Similarly, for the case of convex neg-
ative class, the upper bound is given by the randomized ellipsoid method of Bertsimas &
Vempala that finds a near-optimal instance with high probability using O∗ (D5

)
queries

(ignoring logarithmic terms). In both cases, there is a gap between the upper and lower
bound.

Question 8.1 Can we find matching upper and lower bounds for evasion algorithms? Is
there a deterministic strategy with polynomial query complexity for all convex-inducing
classifiers?

The algorithms we present in this chapter built on the machinery of convex optimiza-
tion over convex sets, which relies on family of classifiers inducing a convex set. How-
ever, many interesting classifiers are not convex-inducing classifiers. Currently, the only
known result for non-convex-inducing classifiers is due to Lowd & Meek; they found
that linear classifiers on Boolean feature space are 2-IMAC searchable for unweighted
�1 costs. In this case, the classifiers are linear, but the integer-valued domains do not
have a usual notion of convexity. This raises questions about the extent to which near-
optimal evasion is efficient.

Question 8.2 Are there families larger than the convex-inducing classifiers that are
ε-IMAC searchable? Are there families outside of the convex-inducing classifiers for
which near-optimal evasion is efficient?

A particularly interesting family of classifiers to investigate is the family of support
vector machines (SVMs) defined by a particular nonlinear kernel. This popular learning
technique can induce nonconvex positive and negative sets (depending on its kernel),

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.4 Summary 233

but it also has a great deal of structure. An SVM classifier can be nonconvex in its
input space X , but it is always linear in its kernel’s reproducing kernel Hilbert space
(RKHS; see Definition 7.6). However, optimization within the RKHS is complicated
because mapping the cost balls into the RKHS destroys their structure and querying in
the RKHS is nontrivial. However, SVMs also have additional structure that may facili-
tate near-optimal evasion. For instance, the usual SVM formulation encourages a sparse
representation that could be exploited; i.e., in classifiers with few support vectors, the
adversary would only need to find these instances to reconstruct the classifier.

Question 8.3 Is some family of SVMs (e.g., with a known kernel) ε-IMAC searchable
for some ε? Can an adversary incorporate the structure of a nonconvex classifier into
the ε-IMAC search?

In addition to studying particular families of classifiers, it is also of interest to further
characterize general properties of a family that lead to efficient search algorithms or
preclude their existence. As we showed in this chapter, convexity of the induced sets
allows for efficient search for some �p-costs but not others. Aside from convexity, other
properties that describe the shape of the induced sets X+

f and X−
f could be explored.

For instance, one could investigate the family of contiguous-inducing classifiers (i.e.,
classifiers for which either X+

f or X−
f is a contiguous, or connected, set). However, it

appears that this family is not generally ε-IMAC searchable since it includes induced
sets with many locally minimal cost regions, which rule out global optimization proce-
dures like the MultiLineSearch or the randomized ellipsoid method. More generally,
for families of classifiers that can induce noncontiguous bodies, ε-IMAC searchability
seems impossible to achieve (disconnected components could be arbitrarily close to xA)
unless the classifiers’ structure can be exploited. However, even if near-optimal evasion
is generally not possible in these cases, perhaps there are subsets of these families that
are ε-IMAC searchable; e.g., as we discussed for SVMs earlier. Hence, it is important
to identify what characteristics make near-optimal evasion inefficient.

Question 8.4 Are there characteristics of nonconvex, contiguous bodies that are indica-
tive of the hardness of the body for near-optimal evasion? Similarly, are there character-
istics of noncontiguous bodies that describe their query complexity?

Finally, as discussed in Section 8.1.2, reverse engineering a classifier (i.e., using
membership queries to estimate its decision boundary) is a strictly more difficult prob-
lem than the near-optimal evasion problem. Reverse engineering is sufficient for solving
the evasion problem, but we show that it is not necessary. Lowd & Meek showed that
reverse engineering linear classifiers is efficient, but here we show that reverse engineer-
ing is strictly more difficult than evasion for convex-inducing classifiers. It is unknown
whether there exists a class in between linear and convex-inducing classifiers on which
the two tasks are efficient.

Question 8.5 For what families of classifiers is reverse engineering as easy as evasion?

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

234 Near-Optimal Evasion of Classifiers

8.4.2 Alternative Evasion Criteria

We suggest variants of near-optimal evasion that generalize or reformulate the
problem investigated in this chapter to capture additional aspects of the overall
challenge.

8.4.2.1 Incorporating a Covertness Criterion
As mentioned in Section 8.1.2, the near-optimal evasion problem does not require the
attacker to be covert in its actions. The primary concern for the adversary is that a
defender may detect the probing attack and make it ineffectual. For instance, the Mul-
tiLineSearch algorithms we present in Section 8.2 are very overt about the attacker’s
true intention; i.e., because the queries are issued in �p shells about xA, it is trivial to
infer xA. The queries issued by the randomized ellipsoid method in Section 8.2.2 are
less overt due to the random walks, but still the queries occur in shrinking cost balls
centered around xA. The reverse-engineering approach of Lowd & Meek (2005a), how-
ever, is quite covert. In their approach, all queries are based only on the features of x−

and a third x+ ∈ X+
f —xA is not used until an ε-IMAC is discovered.

Question 8.6 What covertness criteria are appropriate for a near-optimal evasion prob-
lem? Can a defender detect nondiscrete probing attacks against a classifier? Can the
defender effectively mislead a probing attack by falsely answering suspected queries?

Misleading an adversary is an especially promising direction for future exploration.
If probing attacks can be detected, a defender could frustrate the attacker by falsely
responding to suspected queries. However, if too many benign points are incorrectly
identified as queries, such a defense could degrade the classifier’s performance. Thus,
strategies to mislead could backfire if an adversary fooled the defender into misclassi-
fying legitimate data—yet another security game between the adversary and defender.

8.4.2.2 Additional Information about Training Data Distribution
Consider an adversary that knows the training algorithm and obtains samples drawn
from a natural distribution. A few interesting settings include scenarios where the adver-
sary’s samples are i) a subset of the training data, ii) from the same distribution PZ as
the training data, or iii) from a perturbation of the training distribution. With these forms
of additional information, the adversary could estimate its own classifier f̃ and analyze
it offline. Open questions about this variant include.

Question 8.7 What can be learned from f̃ about f? How can f̃ best be used to guide
search? Can the sample data be directly incorporated into ε-IMAC-search without f̃?

Relationships between f and f̃ can build on existing results in learning theory. One
possibility is to establish bounds on the difference between MAC (f, A) and MAC

(
f̃, A
)

in one of the above settings. If, with high probability, the difference is sufficiently small,
then a search for an ε-IMAC could use MAC

(
f̃, A
)

to initially lower bound MAC (f, A).
This should reduce search complexity since lower bounds on the MAC are typically
harder to obtain than upper bounds.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.4 Summary 235

8.4.2.3 Beyond the Membership Oracle
In this scenario, the adversary receives more from the classifier than just a ''+''/''−''
label. For instance, suppose the classifier is defined as f (x) = I [g (x) > 0] for some
real-valued function g (as is the case for SVMs) and the adversary receives g (x) for
every query instead of f (x). If g is linear, the adversary can use D + 1 queries and solve
a linear regression problem to reverse engineer g. This additional information may also
be useful for approximating the support of an SVM.

Question 8.8 What types of additional feedback may be available to the adversary, and
how do they affect the query complexity of ε-IMAC-search?

8.4.2.4 Evading Randomized Classifiers
In this variant of near-optimal evasion, we consider randomized classifiers that gener-
ate random responses from a distribution conditioned on the query x. To analyze the
query complexity of such a classifier, we first generalize the concept of the MAC to
randomized classifiers. We propose the following generalization:

RMAC (f, A) = inf
x∈X
{
A
(
x − xA

)+ λP (f (x) = ''−'')
}
.

Instead of the unknown set X−
f in the near-optimal evasion setting, the objective func-

tion here contains the term P (f (x) = ''−'') that the adversary does not know and must
approximate. If f is deterministic , P (f (x) = ''−'') = I [f (x) = ''−''], this definition is
equivalent to Equation (8.2) only if λ ≥ MAC (f, A) (e.g., λ = A

(
x− − xA

)+ 1 is suf-
ficient); otherwise, a trivial minimizer is xA. For a randomized classifier, λ balances the
cost of an instance with its probability of successful evasion.

Question 8.9 Given access to the membership oracle only, how difficult is near-optimal
evasion of randomized classifiers? Are there families of randomized classifiers that are
ε-IMAC searchable?

Potential randomized families include classifiers (i) with a fuzzy boundary of width
δ around a deterministic boundary, and (ii) based on the class-conditional densities for
a pair of Gaussians, a logistic regression model, or other members of the exponential
family. Generally, evasion of randomized classifiers seems to be more difficult than for
deterministic classifiers as each query provides limited information about the query
probabilities. Based on this argument, Biggio et al. (2010) promote randomized clas-
sifiers as a defense against evasion. However, it is not known if randomized classifiers
have provably worse query complexities.

8.4.2.5 Evading an Adaptive Classifier
Finally, we consider a classifier that periodically retrains on queries. This variant is a
multi-fold game between the attacker and learner, with the adversary now able to issue
queries that degrade the learner’s performance. Techniques from game-theoretic online
learning should be well suited to this setting (Cesa-Bianchi & Lugosi 2006).

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

236 Near-Optimal Evasion of Classifiers

Question 8.10 Given a set of adversarial queries (and possibly additional innocuous
data) will the learning algorithm converge to the true boundary, or can the adversary
deceive the learner and evade it simultaneously? If the algorithm does converge, then at
what rate?

To properly analyze retraining, it is important to have an oracle that labels the points
sent by the adversary. If all points sent by the adversary are labeled ''+'', the classi-
fier may prevent effective evasion, but with large numbers of false positives due to the
adversary queries in X−

f , this itself constitutes an attack against the learner (Barreno
et al. 2010).

8.4.3 Real-World Evasion

While the cost-centric evasion framework presented by Lowd & Meek formalizes the
near-optimal evasion problem, it fails to capture some aspects of reality. From the the-
ory of near-optimal evasion, certain classes of learners have been shown to be easy to
evade, whereas others require a practically infeasible number of queries for evasion to be
successful. However, real-world adversaries often do not require near-optimal cost eva-
sive instances to be successful; it would suffice if they could find any low-cost instance
able to evade the detector. Real-world evasion differs from the near-optimal evasion
problem in several ways. Understanding query strategies and the query complexity for
a real-world adversary requires incorporating real-world constraints that were relaxed
or ignored in the theoretical version of this problem. We summarize the challenges for
real-world evasion.

To adapt to these challenges, we propose a realistic evasion problem that weakens
several of the assumptions of the theoretical near-optimal evasion problem for studying
real-world evasion techniques. We still assume the adversary does not know f and may
not even know the family F ; we only assume that the classifier is a deterministic classi-
fier that uniquely maps each instance in X to {''+'', negLbl}. For a real-world adversary,
we require that the adversary send queries that are representable as actual objects in
�; e.g., emails cannot have 1.7 occurrences of the word “viagra” in a message and IP
addresses must have four integers between 0 − −255. However, we no longer assume
that the adversary knows the feature space of the classifier or its feature mapping.

Real-world near-optimal evasion is also more difficult (i.e., requires more queries)
than is suggested by the theory because the theory simplifies the problem faced by the
adversary. Even assuming that a real-world adversary can obtain query responses from
the classifier, it cannot directly query it in the feature space X . Real-world adversaries
must make their queries in the form of real-world objects like email that are subse-
quently mapped into X via a feature map. Even if this mapping is known by the adver-
sary, designing an object that maps to a desired query in X is itself a difficult problem—
there may be many objects that map to a single query (e.g., permuting the order of words
in a message yields the same unigram representation), and certain portions of X may
not correspond to any real-world object (e.g., for the mapping x �→ (

x, x2
)

no point x
can map to (1, 7)).

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

8.4 Summary 237

Question 8.11 How can the feature mapping be inverted to design real-world instances
to map to desired queries? How can query-based algorithms be adapted for approximate
querying?

Real-world evasion also differs dramatically from the near-optimal evasion setting
in defining an efficient classifier. For a real-world adversary, even polynomially many
queries in the dimensionality of the feature space may not reasonable. For instance,
if the dimensionality of the feature space is large (e.g., hundreds of thousands of
words in unigram models) the adversary may require the number of queries to be
sub-linear, o (D), but in the near-optimal evasion problem this is not even possible
for linear classifiers. However, real-world adversaries do not need to be provably near-
optimal. Near-optimality is a surrogate for the adversary’s true evasion objective: to use
a small number of queries to find a negative instance with acceptably low cost; i.e.,
below some maximum cost threshold. This corresponds to an alternative cost function
A′ (x) = max [A (x) , δ] where δ is the maximum allowable cost. Clearly, if an ε-IMAC
is obtained, either it satisfies this condition or the adversary can cease searching. Thus,
ε-IMAC searchability is sufficient to achieve the adversary’s goal, but the near-optimal
evasion problem ignores the maximum cost threshold even though it may allow for the
adversary to terminate its search using far fewer queries. To accurately capture real-
world evasion with sub-linearly many queries, query-based algorithms must efficiently
use every query to glean essential information about the classifier. Instead of quantifying
the query complexity required for a family of classifiers, perhaps it is more important to
quantify the query performance of an evasion algorithm for a fixed number of queries
based on a target cost.

Question 8.12 In the real-world evasion setting, what is the worst-case or expected
reduction in cost for a query algorithm after making M queries to a classifier f ∈ F?
What is the expected value of each query to the adversary, and what is the best query
strategy for a fixed number of queries?

The final challenge for real-world evasion is to design algorithms that can thwart
attempts to evade the classifier. Promising potential defensive techniques include ran-
domizing the classifier, identifying queries, and sending misleading responses to the
adversary. We discuss these and other defensive techniques in Section 9.1.2.

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

https://doi.org/10.1017/9781107338548.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781107338548.008

