
7 Dimension Reduction and
Data Augmentation

In general, speaker recognition systems using the i-vectors [16] or x-vectors [156] as
speaker features (addressed in Section 3.6) and the probabilistic linear discriminant
analysis (PLDA) [17] (addressed in Section 3.5) as a scoring function can achieve
good performance. PLDA is known as a linear latent variable model where the same
speaker is assumed to be represented by a common factor and the i-vectors or x-vectors
of different speakers are characterized by the corresponding latent variables or com-
mon factors. This chapter concerns several constraints that affect the performance of
i-vectors or x-vectors in PLDA-based speaker recognition. The first constraint is about
the insufficiency of speaker identity by using i-vectors, which is caused by the mixing of
different factors, e.g., noise, channel, language, gender. In addition, the redundancy with
high dimension in i-vectors likely happens. The constraint may be also caused by the
insufficient number of training utterances or the imbalanced number of i-vectors among
various speakers. The training performance is likely degraded due to the varying lengths
of the enrolled sentences. The training of the speaker model may be downgraded by the
sparse and heterogeneous utterances in data collection. It is beneficial to deal with the
constraints of PLDA training by reducing the feature dimensions, especially in the case
of insufficient training sentences [244].

This chapter deals with different constraints in the PLDA model and addresses a series
of learning machines or neural networks that are specially designed for dimension reduc-
tion as well as data augmentation in speaker recognition systems based on the i-vector
combined with PLDA. In particular, we describe how the expanding and emerging
researches on a deep learning machine [95] based on the generative adversarial network
(GAN) [118], as mentioned in Section 4.6, are developed to construct a subspace model
with data augmentation.

Section 7.1 addresses how the objective of neighbor embedding is maximized to
derive the low-dimensional representation for high-dimensional observation data based
on i-vectors or x-vectors [245, 246]. Subspace mapping is performed in accordance with
neighbor embedding. Supervised learning is implemented to assure a low-dimensional
representation, which is close under the same speakers and separate between different
speakers. To improve the performance of speaker embedding, in Section 7.2, the
supervised or discriminative manifold learning [247, 248] is presented to carry out
the adversarial learning with threefold advances in speaker recognition. The first idea
is to conduct deep learning to characterize the unknown and complicated relation
within and between speakers for PLDA speaker recognition. The second thought is
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to build a latent variable representation [30] for an underlying model structure. The
uncertainty of neural network is represented and compensated in a stochastic variant of
error back-propagation algorithm by using minibatches of training utterances. The third
advanced method is to carry out adversarial learning and manifold learning where an
encoder is trained to generate random samples as the prior variables for discriminator.
We present the way of merging the adversarial autoencoder [122] in PLDA model for
speaker recognition. This solution is implemented as an adversarial manifold learning
consisting of three components, which are encoder, decoder, and discriminator. The
encoder is trained to identify latent representation corresponding to an i-vector, and
the decoder is learned to transform the latent variable to reconstruct input i-vector.
This reconstruction is used for PLDA scoring [249]. Also, the discriminator is trained
to achieve the worst binary classification for judgment between real samples using
the PLDA prior and fake data using the generator. We present the approach to this
minimax learning problem according to the stochastic optimization using i-vectors in
minibatches.

In Section 7.3, we present the approach to data augmentation that can increase the
size of training utterances as well as balance the number of training utterances across
various speakers. The augmentation of synthesized i-vectors in low-dimensional space
is performed. In particular, an adversarial augmentation learning is developed to build a
neural generative model for PLDA-based speaker recognition. As a result, the diversity
of training utterances is increased so as to enhance the robustness in the trained speaker
model. Minimax optimization is fulfilled to carry out a two-player game where the
generator is optimized to estimate the artificial i-vectors by using random samples from
standard Gaussian. These synthesized samples are hardly recognizable from true i-
vectors based on the estimated discriminator. The neural networks of generator and
discriminator are trained as a distribution model. We improve the system robustness in
the presence of changing conditions of i-vectors due to various speakers. Furthermore,
the auxiliary classifier GAN [250] is implemented as an extension of conditional GAN
[251], which is merged with a class label so that the class conditional likelihood of
true i-vectors and synthesized i-vectors are maximized. The speaker-embedded GAN is
trained with a fusion of structural information in latent variables. For the sake of speaker
recognition, we further minimize the cosine similarity between artificial i-vectors and
true i-vectors in the observation level as well in the feature level. A dedicated GAN is
formulated and trained in accordance with a multi-objective function where the Gaus-
sian assumption in Gaussian PLDA is met and the reconstruction due to PLDA scoring
is assured.

7.1 Variational Manifold PLDA

This section addresses a new variant of PLDA for speaker recognition where the man-
ifold learning is incorporated into the construction of PLDA. A subspace PLDA that
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carries out low-dimensional speaker recognition is presented. In what follows, we first
introduce the subspace method based on the stochastic neighbor embedding.

7.1.1 Stochastic Neighbor Embedding

In [245], an unsupervised learning method called stochastic neighbor embedding (SNE)
was proposed to learn the nonlinear manifold in high-dimensional feature space.
Assume that X = {xn} contains samples in a high-dimensional space. SNE aims to
estimate a low-dimensional representations Z = {zn} in the feature space, where
zn ∈ R

d preserves the pairwise similarity to xn ∈ R
D such that d < D. The joint

probability pnm of two samples xn and xm can be obtained from a Gaussian distribution

pnm = exp
(−‖xn − xm‖2

)∑
s

∑
t �=s exp

(−‖xs − xt‖2
) . (7.1)

The probability corresponding to pnm in the low-dimensional representation can also
be modeled by a Gaussian using the pairwise similarity among {zn}:

qnm = exp
(−‖zn − zm‖2

)∑
s

∑
t �=s exp

(−‖zs − zt‖2
) . (7.2)

It is meaningful that pnn and qnn are set to zero in Eqs. 7.1 and 7.2. In [252], a symmetric
SNE was realized by minimizing the KL-divergence between two sets of probability
densities: Pn = {pnm}Nm=1 and Qn = {qnm}Nm=1, i.e.,

min
Z

∑
n

DKL(Pn‖Qn) = min
Z

∑
n

∑
m

pnm log

(
pnm

qnm

)
. (7.3)

Nonlinear and nonparametric transformation can be used to preserve the neighbor
embeddings of all samples in the original and embedded spaces.

Maaten and Hinton [4] proposed the t-distributed SNE (t-SNE) in which the joint
distribution of two samples, zn and zm, in low-dimensional space is modeled by a
Student’s t-distribution:

qnm =
(
1 + ‖zn − zm‖2/ν

)− ν+1
2∑

s

∑
t �=s

(
1 + ‖zs − zt‖2/ν

)− ν+1
2

. (7.4)

In Eq. 7.4, ν means the degree of freedom. t-SNE can alleviate the crowding problem
in SNE. Figure 7.1 illustrates the concept of distribution construction based on neighbor
embeddings in the original data space and a new data space. The front-end processing
that uses t-SNE to reduce the dimensionality of i-vectors is performed for subspace
speaker recognition using PLDA scoring function [247]. In [249], the PLDA subspace
model was constructed by using the variational manifold learning. The stochastic gra-
dient variational Bayesian [114] procedure was implemented to build the latent vari-
able model with neighbor embeddings in PLDA subspace model. The performance of
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Figure 7.1 Illustration for joint distributions pnm and qnm calculated by neighboring samples
centered at xn and zn in original data space x (left) and embedded data space z (right),
respectively.

Figure 7.2 Graphical illustration for supervised manifold learning with an encoder (dash line) and
a decoder (solid line) given by parameters θenc and θdec, respectively. tnm denotes the target
value that indicates whether xn and xm belong to the same class. [Adapted from Variational
Manifold Learning for Speaker Recognition (Figure 2), J.T. Chien and C.W. Hsu, Proceedings
International Conference on Acoustics, Speech, and Signal Processing, pp. 4935–4939, 2017,
with permission of IEEE]

speaker recognition based on PLDA model was elevated due to the uncertainty modeling
of latent variables.

7.1.2 Variational Manifold Learning

In PLDA-based speaker recognition, the i-vector xn in a speaker session is modeled by
a latent variable representation based on a latent random vector zn. We present a neural
network variant of a PLDA model where the variational inference is performed. In
particular, this section addresses an approach to PLDA subspace representation, which
is called the variational manifold PLDA (denoted by VM-PLDA) [249]. This approach
aims to hold the property of neighbor embedding for low-dimensional latent representa-
tion zn which is extracted from the original i-vector xn. Figure 7.2 illustrates a graphical
representation of VM-PLDA. The underlying concept of this model is to implement
a variational autoencoder [114] for manifold learning in supervised mode. Encoder
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and decoder are allocated. As shown in this figure, dash lines show the encoder based
on the variational posterior q(zn|xn,θenc) with parameter θenc while solid lines show
the decoder based on the generative distribution p(xn|zn,θdec) with parameter θdec.
Similar to Section 2.3, we apply the approximate or variational inference to estimate
the variational parameter θenc in VB-E step and then calculate the model parameters
θdec in VB-M step. In the encoder, a Gaussian distribution is used to represent the
variational distribution given by the mean vector μ(xn) and the diagonal covariance
matrix σ2(xn)I

q(zn|xn,θenc) = N (zn|μ(xn),σ2(xn)I), (7.5)

where i-vector xn is used as the input to a fully connected neural network with multiple
layers of weights θenc = Wenc for Gaussian parameters. In the decoder, the likelihood
of PLDA model using i-vector xn is used for data reconstruction based on the PLDA
parameters θdec = {m,V,�}

p(xn|zn,θdec) = N (xn|m + Vzn,�). (7.6)

More specifically, the neighbor embedding is measured and adopted as a learning
objective to conduct supervised manifold learning. This learning strategy focuses on
estimating low-dimensional representation of two samples, zn and zm, which sufficiently
reflect the neighbor relation of the same samples, xn and xm, in original i-vector space.
The corresponding class targets tn and tm are merged in supervised manifold learning.
For PLDA speaker recognition, the i-vectors within a specific speaker are represented by
the shared latent variable. Under this assumption, the joint probability of two samples
from the same speaker tn = tm is defined by pnn = 0 and pnm = 1 while the
probability is defined by pnm = 0 for the case of different speaker tn �= tm. We therefore
use these joint probabilities P = {pnm} to describe the target probabilities for the
associated low-dimensional representations zn and zm. Correspondingly, the Bernoulli
target value tnm � pnm is seen as an observation sample in supervised training. In
addition, t distribution shown in Eq. 7.4 is here adopted to characterize the neighbor
embedding distribution qnm in low-dimensional subspace. Using VM-PLDA model, the
variational parameters θenc in VB-E step and the model parameters θdec in VB-M step
are estimated by maximizing the variational lower bound to fulfill the hybrid learning
objective for both manifold learning and PLDA reconstruction. Gaussian distribution
N (zn|μ(xn),C(xn)) is used as a prior for latent variable zn which is incorporated to
estimate PLDA parameters θdec = {m,V,�}.

The learning objective of VM-PLDA is constructed as a joint log-likelihood of
observation data consisting of i-vectors and class targets log p(X,T ) where X =
{xn} and T = {tnm}. Supervised learning is performed. Following the fundamen-
tal in variational inference, the variational lower bound is derived on the basis of
a marginal likelihood with respect to the latent variables of different data pairs
Z = {zn,zm}, i.e.,
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log p(X,T ) = log
∫ ∏

m

∏
n

p(tnm|zn,zm)p(xn|zn)p(zn)dZ

≥
∑
m

[∑
n

EqnEqm[log p(tnm|zn,zm)]︸ ︷︷ ︸
manifold likelihood

+ Eqn[log p(xn|zn,θdec)]︸ ︷︷ ︸
PLDA likelihood

−DKL(q(zn|xn,θenc)‖p(zn))︸ ︷︷ ︸
Gaussian regularization (Lgau)

]

� L(θenc,θdec),

(7.7)

where Eqn means taking expectation with respect to zn|xn ∼ q(zn|xn,θenc). log p(X,T )
can be maximized by optimizing the variational lower bound or equivalently the
evidence lower bound (ELBO) L(θenc,θdec). It is interesting that VM-PLDA fulfills
a multi-objective programming for subspace learning and PLDA scoring. The optimal
subspace with the most likely neighbor embedding as indicated in the first term
of Eq. 7.7 and the smallest PLDA reconstruction error as indicated in the second
term of Eq. 7.7 is constructed. Meaningfully, the remaining term Lgau is seen as a
regularization in joint training that encourages the variational distribution q(zn|xn,θenc)
to be close to a prior with standard Gaussian

p(zn) = N (0,I). (7.8)

This regularization is imposed to reflect the Gaussian property in PLDA. The rain-
ing procedure of VM-PLDA is completed. In general, VM-PLDA is implemented to
pursue neighbor embedding and PLDA reconstruction in a stochastic latent variable
model where the single-player optimization is realized to estimate the variational neural
network for speaker recognition. We argue that the latent variables {zn,zm} may not be
so discriminative or competitive. Single-player optimization may be improved to the
two-player optimization that here means the adversarial learning based on the minimax
optimization. Discriminative latent variables are focused. In what follows, we address
the neural adversarial learning for speaker recognition.

7.2 Adversarial Manifold PLDA

This section addresses an adversarial manifold PLDA where the adversarial manifold
learning is presented for the construction of PLDA-based speaker recognition [119].
The auxiliary classifier GAN is introduced for this implementation. The background of
GAN has been addressed in Section 4.6.

7.2.1 Auxiliary Classifier GAN

For practical consideration, it is possible to improve the generation of the synthesized i-
vectors x̂ in GAN by incorporating auxiliary information such as class labels or speaker
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Figure 7.3 Procedure for calculation of adversarial loss Ladv and auxiliary classification loss Lac
in auxiliary classifier GAN. [Reprinted from Adversarial Learning and Augmentation for
Speaker Recognition (Figure 2), by J.T. Chien and K.T. Peng, Proceedings Odyssey 2018 The
Speaker and Language Recognition Workshop, pp. 342–348, with permission of ISCA]

identities c into the the generator and discriminator so that class conditional samples
[251] or speaker conditional i-vectors can be produced. For example, the auxiliary
classifier GAN (denoted by AC-GAN) [250] makes use of such an auxiliary information
to train the discriminator and generator. Specifically, the discriminator was implemented
and treated as an auxiliary neural network as decoder to output the class labels c given
training data x or synthesize data x̂. As shown in Figure 7.3, the generator receives a
class label c and a noise sample z as input and synthesizes a vector x̂ as output:

x̂ = G(z,c). (7.9)

We therefore incorporate the auxiliary classification (AC) loss as an additional loss
which consists of two terms. One is the class conditional distribution of class c measured
by the real i-vector x while the other is the same distribution but measured by the
synthesized i-vector x̂, namely,

Lac = −Ex∼p(x)[log p(c|x)] − Ex̂∼pgen(x)[log p(c|̂x)]. (7.10)

There are two posterior labels in the outputs of discriminator. One is the posterior for
the label of true or fake and the other is the posterior for the label of classes. AC-
GAN deals with a minimax optimization for estimation of discriminator and generator.
Both discriminator and generator are estimated by minimizing the AC loss in Eq. 7.10.
At the same time, the adversarial loss Ladv (as defined in Eq. 4.68) is included in
minimax optimization for AC-GAN. The discriminator parameters θdis are optimized
by maximizing Ladv, and the generator parameters θgen are optimized by minimizing
Ladv. The objectives Ladv and Lac are both included in multi-objective learning of
discriminator θdis as well as generator θgen. The AC loss Lac is introduced to learn
for the class information c while the adversarial loss Ladv is considered to implement
an adversarial generative network for speaker recognition.
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7.2.2 Adversarial Manifold Learning

As we know, speaker recognition system using a PLDA-based latent variable model
is considerably affected by the learned latent space Z. This space is constructed and
controlled by the encoder and decoder with parameters θenc and θdec, respectively. The
adversarial generative network (GAN) is implemented to enhance the discrimination
in latent variable space based on PLDA and develop the adversarial manifold PLDA
(denoted by AM-PLDA) for speaker recognition. An additional discriminator is merged
as displayed in Figure 7.4. The discriminator is characterized by a fully connected neural
network given by the parameter θdis = Wdis. The posterior output of discriminator is
denoted by D(zn,θdis) with the input of the latent code zn.

In implementation of AM-PLDA, a multi-objective learning, driven by minimax opti-
mization, is run to jointly estimate the discriminator parameters θdis = Wdis and the
generator parameters {θenc = Wenc,θdec = {m,V,�}} in a form of

min
{θenc,θdec}

max
θdis

{∑
n

[
−
∑
m

EqnEqm[log p(tnm|zn,zm)]︸ ︷︷ ︸
Lm

− Eqn[log p(xn|zn,θdec)]︸ ︷︷ ︸
Lrec

+ Epn [log D(zn,θdis)] + Eqn[log(1 −D(zn,θdis))]︸ ︷︷ ︸
Ladv

]}
.

(7.11)

Figure 7.4 Adversarial manifold PLDA consisting of an encoder, a decoder, and a discriminator.
A dashed line means sampling. Manifold loss is calculated from the neighbors of latent variables
{zn,zm}. [Reprinted from Adversarial Manifold Learning for Speaker Recognition (Figure 3), by
J.T. Chien and K.T. Peng, Proceedings ASRU, 2017, with permission of IEEE]
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Figure 7.5 Procedure for calculation of manifold loss, PLDA reconstruction loss, and adversarial
loss for adversarial manifold PLDA, which are displayed in different rectangles. [Adapted from
Adversarial Manifold Learning for Speaker Recognition (Figure 4), by J.T. Chien and K.T. Peng,
Proceedings ASRU, 2017, with permission of IEEE]

There are three loss functions in multi-objective learning that are the manifold loss
Lm, the PLDA reconstruction loss Lrec, and the adversarial loss Ladv. Adversarial
loss is seen as the negative cross entropy function, which is calculated by using
the class output posterior of discriminator D(zn,θdis) with the true distribution
p(zn) = N (0,I), and the class output posterior 1 − D(zn,θdis) with the fake or
variational distribution q(zn|xn,θenc). The system architecture of calculating different
objectives {Lm,Lrec,Ladv} is depicted in Figure 7.5. The adversarial manifold PLDA
is developed for speaker recognition. This AM-PLDA is seen as an extension of VM-
PLDA by replacing the regularization term in Eq. 7.7 using the adversarial loss. The loss
is calculated by a binary discriminator that judges if the latent variable zn comes from a
prior of standard Gaussian p(zn) = N (0,I) or from a variational posterior q(zn|xn,θenc)
using an encoder. In minimax optimization using Eq. 7.11, we maximize the hybrid
objective over the discriminator with parameters θdis (included in the third and fourth
terms) and minimize the hybrid objective over the encoder with parameters θenc

(included in the terms involving Eqn ) and the decoder with parameters θdec (included
in the second term). Importantly, PLDA scoring is treated as a model regularization
that is incorporated to mitigate the mode collapse problem in GAN model [253]. The
parameters of encoder θenc, discriminator θdis, and decoder θdec are jointly trained
via a two-player game. The optimal parameters are obtained to achieve the worst
performance in classification of latent code zn either sampled from q(zn|xn,θenc) or
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given by standard Gaussian prior p(zn). The adversarial learning is performed with
multi-objectives including manifold loss, cross-entropy loss, and reconstruction loss.
We realize a two-player game theory for speaker recognition where the multi-objectives
are maximized to estimate the discriminator and minimized to estimate the generator
including an encoder and a decoder.

Therefore, the expectation of the negative log likelihood with Bernoulli distri-
bution is calculated with respect to Z by using the samples zn,l and zm,s from
a pair of neighbors, zn and zm, which are obtained from the encoder distributions
q(zn|xn,θenc) and q(zm|xm,θenc), respectively. The manifold loss Lm in Eq. 7.11 is
implemented by

Lm =
∑
n

∑
m

∑
l

∑
s

[
tnm

ν + 1

2
log

(
1 + ‖zn,l − zm,s‖2/ν

)
− (1 − tnm) log

(
1 −

(
1 + ‖zn,l − zm,s‖2/ν

)− ν+1
2
)]

.

(7.12)

This AM-PLDA is seen as a neural network solution to the supervised t-SNE [254]
where the adversarial learning is merged. In addition, PLDA reconstruction error Lrec

in the second term of Eq. 7.11 is seen as an expectation of negative log-likelihood, which
is calculated by using the samples {zn,l}Ll=1 of latent variable zn:

Lrec = 1

2

N∑
n=1

L∑
l=1

[
log |2π�|

+ (xn − m − Vzn,l)
��−1(xn − m − Vzn,l)

]
.

(7.13)

where the decoder parameters θdec = {m,V,�} are applied.
There are twofold differences in comparison between VM-PLDA and AM-PLDA.

First, VM-PLDA carries out a single-player optimization with a regularization term
based on the KL divergence that is minimized to regularize the variational pos-
terior q(z|x,θenc) to be close to a standard Gaussian prior p(z), as seen in Eq.
7.7. Differently, as explained in Eqs. 4.67 and 4.74, AM-PLDA implements a two-
player optimization with a maximum adversarial loss that is achieved to find an
optimized discriminator where the Jensen–Shannon (JS) divergence pgen(x) → p(x)
is minimum. The aspect of discriminator was ignored in latent variable representation
in the implementation of VM-PLDA. In addition, different from VM-PLDA, AM-
PLDA is viewed as an extension of adversarial autoencoder [122] for PLDA speaker
recognition where the latent variable of i-vector is encoded and then used to decode
for PLDA scoring. Learning representation is boosted by an adversarial training
procedure.

This chapter not only addresses the adversarial learning for PLDA subspace modeling
based on the adversarial manifold learning, but also presents the adversarial learning
for data augmentation. The adversarial augmentation learning is developed for PLDA
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speaker verification in the condition that the collected i-vectors are imbalanced among
various speakers.

7.3 Adversarial Augmentation PLDA

This section describes a specialized generative adversarial network (GAN) for data
augmentation [120]. The i-vectors generated by the network can be augmented to the
original training set to compensate the issues of imbalanced and insufficient data in
PLDA-based speaker verification. The neural network is trained to ensure that the
generated i-vectors reflect speaker behaviors or properties that are matching with
those of the real i-vectors. We will address how practical constraints are imposed to
perform the constrained optimization, so as to improve model capability for PLDA
speaker recognition. An adversarial augmentation PLDA (denoted by AA-PLDA) is
developed and implemented to generate new i-vectors for data augmentation. Similar to
AM-PLDA, this AA-PLDA also considers speaker identity to build a kind of speaker-
dependent i-vector generation model where the auxiliary classifier GAN (AC-GAN),
as mentioned in Section 7.2.1, is incorporated in i-vector augmentation. Namely, the
noise sample z and speaker label c are both merged in generator to find synthesized
i-vector, i.e.,

x̂ = G(z,c). (7.14)

Hereafter, the sample index n or m is neglected for notation simplicity.
In implementation of AA-PLDA for speaker recognition, the adversarial augmenta-

tion learning is performed by jointly optimizing an adversarial loss Ladv as given in
Eq. 4.68 as well as an auxiliary classification (AC) loss Lac as given in Eq. 7.10. AC
loss generally expresses the expectation of the negative logarithm of class conditional
likelihoods −Ex∼p(x)[log p(c|x)] and −Ex̂∼pgen(x)[log p(c|̂x)] measured by the original
i-vector and the synthesized i-vector, respectively. Nevertheless, it is insufficient to
directly realize AC-GAN for data augmentation in PLDA speaker recognition. Some
physical properties can be considered as constraints to compensate such an insufficiency.
We therefore incorporate a couple of constraints to characterize practical meanings to
generate new and informative i-vectors for PLDA speaker recognition. The cosine gen-
erative adversarial network and the PLDA generative adversarial network are accord-
ingly developed as the specialized generative models for synthesis of i-vectors in PLDA
speaker recognition.

7.3.1 Cosine Generative Adversarial Network

As we know, cosine distance is usually used as the scoring measure or similarity mea-
sure for i-vectors between target speaker and test speaker. This distance measure is an
alternative to PLDA scoring based on the likelihood ratio. A Cosine measure generally
works well as the scoring measure. A meaningful idea for implementing GAN for
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speaker recognition is to shape up the synthesized i-vector x̂ based on the cosine dis-
tance between the generated i-vector and real i-vector x. We introduce a regularization
loss that is formed by the negative cosine distance between synthesized i-vector x̂ and
original i-vector x

Lcosx = −Ex∼p(x),̂x∼pgen(x) [Dcos(x,̂x)|G] . (7.15)

This measure is affected by the generator with function G(z,c), which is characterized
by parameter θgen. We treat this measure as the regularization term and minimize it to
pursue distribution matching.

In real implementation, the evaluation of similarity between original i-vector and syn-
thesized i-vector may be degraded since i-vectors are sometimes deteriorated by channel
factors and other variabilities. The representation capability for speaker identities may
be insufficient. One reasonable idea is to extend the evaluation of cosine similarity
between original i-vector and synthesized i-vector by measuring in i-vector raw space,
which is denoted by X rather than in i-vector feature space, which is denoted by Y. As
a result, the cosine loss as regularization loss is calculated by using the hidden feature
representations {y,̂y} to replace the i-vector representations {x,̂x}:

Lcosy = −Ex∼p(x),̂x∼pgen(x)
[
Dcos(y,̂y)|G,D

]
. (7.16)

Notably, this loss function is related to both generator G and discriminator D given
by the parameters θgen and θdis, respectively. In the implementation, the discriminator
D is modeled by a fully connected neural network and used as a binary classification
for input vector that is either original i-vector x or synthesized i-vector x̂. It is mean-
ingful to extract the hidden units in the last layer of discriminator and use them as the
training samples {y,̂y} to calculate the cosine loss Lcosy in feature space. We therefore
investigate the cosine distance in feature domain Y. Correspondingly, we implement
the adversarial augmentation PLDA (AA-PLDA) by using the so-called cosine GANs,
Cosx-GAN, and Cosy-GAN based on the cosine losses Cosx and Cosy, which are
measured in the spaces X and Y, respectively. As a result, there are two generative
models that are estimated according to individual multi-objectives for solving minimax
optimization problems as shown below

Cosx-GAN: Ladv + Lac + Lcosx (7.17)

Cosy-GAN: Ladv + Lac + Lcosy. (7.18)

Using AA-PLDA, we can carry out two variants of GAN, Cosx-GAN, and Cosy-
GAN, where the generator and discriminator are trained in accordance with four loss
functions including Ladv, Lac, Lcosx, and Lcosy. The calculation of these loss functions
is shown in Figure 7.6. Notably, the calculation of gradient of cosine distance with
respect to the synthesized i-vector x̂ is required for SGD parameter updating in Cosx-
GAN and Cosy-GAN. The approximation to this gradient can be derived by

∂

∂ x̂
Dcos(x,̂x) ≈ x

|x| |̂x| − Dcos(x,̂x)
x̂

|̂x|2 (7.19)
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7.3 Adversarial Augmentation PLDA 261

Figure 7.6 The loss functions in the minimax optimization procedure in the cosine GAN, where
Lcosx and Lcosy denote the cosine loss functions in i-vector space X and feature space Y,
respectively. [Reprinted from Adversarial Learning and Augmentation for Speaker Recognition
(Figure 3), by J.T. Chien and K.T. Peng, Proceedings Odyssey 2018 The Speaker and Language
Recognition Workshop, pp. 342–348, with permission of ISCA]

because

Dcos(x,̂x + d x̂) = x · x̂ + x · d x̂
|x| |̂x + d x̂|

≈ x · x̂ + x · dx̂

|x|
(

1 + x̂
|̂x|2 · dx̂

)
|̂x|

≈ x · x̂ + x · d x̂
|x| |̂x|

(
1 − x̂

|̂x|2 · dx̂
)

≈ x · x̂
|x| |̂x| +

(
x

|x| |̂x| −
x · x̂
|x| |̂x|

x̂

|̂x|2
)
· dx̂

= Dcos(x,̂x) +
(

x
|x| |̂x| − Dcos(x,̂x)

x̂

|̂x|2
)
· dx̂.

(7.20)

As illustrated in Algorithms 7 and 8, the learning procedures based on Cosx-GAN
and Cosy-GAN are implemented as two realizations of AC-GAN where the model
regularization based on the cosine similarity using original i-vector representation X
and feature spaceY is considered, respectively. The feedforward neural network param-
eters in generator θgen and discriminator θdis are accordingly estimated. The parameter
updating is performed by using SGD algorithm with momentum where minibatches of
i-vectors and noise samples are used. The empirical setting is to run three updating
steps (i.e., k = 3) for discriminator, and then run one updating step for generator at each
training iteration. In implementation of Cosx-GAN, the cosine loss in i-vector space
Lcosx is considered in updating the generator without updating the discriminator. We
do perform the minimax optimization with respect to discriminator and generator. It is

https://doi.org/10.1017/9781108552332.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.008


262 Dimension Reduction and Data Augmentation

Algorithm 7 Adversarial augmentation learning where Cosx-GAN is implemented
Initialize the parameters {θgen,θdis}
For number of training iterations

For k steps
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn}Ni=n from p(z)
update the discriminator θdis by descending the stochastic gradient

1
N

∑N
n=1 ∇θdis (−Ladv + Lac)

End For
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn}Nn=1 from p(z)
update the generator θgen by descending the stochastic gradient

1
N

∑N
n=1 ∇θgen (Ladv + Lac + Lcosx)

End For

Algorithm 8 Adversarial augmentation learning where Cosy-GAN is implemented
Initialize the parameters {θgen,θdis}
For number of training iterations

For k steps
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn}Ni=n from p(z)
update the discriminator θdis by descending the stochastic gradient

1
N

∑N
i=1 ∇θdis (−Ladv + Lac + Lcosy)

End For
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn}Nn=1 from p(z)
update the generator θgen by descending the stochastic gradient

1
N

∑N
i=1 ∇θgen (Ladv + Lac + Lcosy)

End For

because the gradients of adversarial loss function Ladv in updating discriminator and
generator have different signs. On the other hand, Cosy-GAN is implemented by using
the cosine loss function Lcosy, which depends both on the parameters of discriminator
and generator.

7.3.2 PLDA Generative Adversarial Network

In this subsection, we further explore how to incorporate PLDA constraint in adversarial
augmentation learning for speaker recognition. Here, the property of PLDA is suffi-
ciently reflected or represented as the constraint or regularization in GAN training. The
variational autoencoder (VAE) [237, 249] is considered to move forward an advanced
solution where different regularization terms are derived and forced to artificially syn-
thesize i-vectors with good-quality PLDA speaker recognition is performed by using
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real i-vectors as well as synthesized i-vectors. The resulting PLDA GAN is different
from the cosine GAN mentioned in Section 7.3.1. Cosine GAN uses a fully connected
neural network to extract deterministic latent features y to calculate the cosine loss
function Lcosy. An extension of combining cosine GAN and PLDA scoring is to carry
out the so-called PLDA-Cos-GAN where the stochastic or variational neural network
is introduced with the regularization terms from cosine similarity and some others. The
variational distribution is used as the encoder to find the stochastic latent variable of x or
x̂ based on a Gaussian distribution driven by mean vector μ(x) = {μd (x)} and diagonal
covariance matrix σ2(x)I = diag{σ2

d (x)} using feedforward neural network parameters
θenc, i.e.,

y ∼ q(y|x) = N (μ(x),σ2(x)I). (7.21)

The adversarial augmentation learning is developed through variational learning where
a decoder with PLDA parameters θdec = {m,V,�}. Such a decoder was similarly
adopted in the variational manifold learning as mentioned in Section 7.1.2 and the
adversarial manifold learning as addressed in Section 7.2.2. According to the variational
inference, we minimize the negative evidence lower bound (ELBO) based on negative
log-likelihood using a collection of i-vectors x = {xn} [30, 249]:

− log p(x) = −
∫

q(y|x) log(p(x))dy

= −
∫

q(y|x) log

(
p(y,x)

q(y|x)

)
dy −

∫
q(y|x) log

(
q(y|x)

p(y|x)

)
dy

≤ −
∫

q(y|x) log(p(x|y))dy −
∫

q(y|x) log

(
p(y)

q(y|x)

)
dy

= −Eq(y|x)[log p(x|y)]︸ ︷︷ ︸
Lrec

+DKL(q(y|x)‖p(y))︸ ︷︷ ︸
Lgau

.

(7.22)

We can see that the PLDA reconstruction loss Lrec and the Gaussian regularization
Lgau are simultaneously minimized. In this learning objective, the conditional likelihood
function

p(x|y) = N (m + Vy,�) (7.23)

and the standard Gaussian prior p(y) = N (0,I) are used. To implement Eq. (7.22), we
calculate the PLDA scoring or PLDA loss Lrec by using Eq. (7.13) and also calculate
the Gaussian regularization term Lgau, which is derived as

DKL(N (μ,σ2)‖N (0,I)) = 1

2

∑
d

[
μ2

d + σ2
d + log(σ2

d ) − 1
]

. (7.24)

We therefore develop a so-called PLDA-GAN, which is a special realization of adver-
sarial autoencoder [122] for speaker recognition based on the PLDA scoring.

Using PLDA-Cos-GAN, there are five loss terms derived in adversarial augmentation
learning for speaker recognition. The original i-vector x and the synthesized i-vector
x̂ from the generator are merged in calculation of these five loss functions. The

https://doi.org/10.1017/9781108552332.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.008
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Figure 7.7 The loss functions in the minimax optimization procedure in the PLDA-Cos-GAN,
where Lgau and Lrec denote the loss functions for Gaussian regularization and PLDA
reconstruction, respectively. [Reprinted from Adversarial Learning and Augmentation for
Speaker Recognition (Figure 4), by J.T. Chien and K.T. Peng, Proceedings Odyssey 2018 The
Speaker and Language Recognition Workshop, pp. 342–348, with permission of ISCA]

training of encoder, discriminator, and decoder in PLDA-Cos-GAN is based on
the loss functions {Lgau,Lcosy}, {Ladv,Lac}, and Lrec, respectively, as illustrated in
Figure 7.7. When calculating the objectives Ladv, Lac, Lcosy, and Lrec, the samples
of variational Gaussian distribution q(y|x) are used. The key difference between
Cosy-GAN and PLDA-Cos-GAN is the calculation of cosine loss Lcosy. Cosy-GAN
calculates this term from last layer of discriminator while PLDA-Cos-GAN calculates
this loss by using encoder. In addition, the hidden variable y is random in PLDA-
Cos-GAN while the latent code y is deterministic in Cosy-GAN. Using PLDA-Cos-
GAN, the parameters of decoder θdec based on PLDA model and the parameters
of generator, encoder, and discriminator using the fully connected neural network
{θgen,θenc,θdis} are jointly estimated according to minimax optimization. The training
procedure for different PLDA-Cos-GAN parameters is formulated and implemented in
Algorithm 9. The updating of individual parameters is performed by taking derivatives
for those related loss terms. z and y are stochastic and used as the latent codes for
generator and decoder, respectively. In Algorithm 9, we introduce regularization
parameter λ to adjust the tradeoff between different loss functions. This hyperpa-
rameter can be chosen by using a validation set in accordance with some selection
criterion.
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Algorithm 9 Adversarial augmentation learning for PLDA-Cos-GAN
Initialize the parameters {θgen,θenc,θdec,θdis}
For number of training iterations

For k steps
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn,yn}Nn=1 from {p(z),p(y)}
update the discriminator θdis by descending the stochastic gradient

1
N

∑N
n=1 ∇θdisλ(−Ladv + Lac)

update the encoder θenc by descending the stochastic gradient
1
N

∑N
n=1 ∇θenc (λ(Ladv + Lac − Lcosy) + Lrec + Lgau)

update the decoder θdec by descending the stochastic gradient
1
N

∑N
n=1 ∇θdec (Lrec)

End For
sample a minibatch of i-vectors {xn}Nn=1 from p(x)
sample a minibatch of noise examples {zn,yn}Nn=1 from {p(z),p(y)}
update the generator θgen by descending the stochastic gradient

1
N

∑N
n=1 ∇θgen (λ(Ladv + Lac − Lcosy) + Lrec)

End For

7.4 Concluding Remarks

We have presented two deep adversarial learning approaches to PLDA speaker recog-
nition. The generative adversarial networks were implemented in different model archi-
tectures to cope with various problems for speaker verification. A two-player game
was formulated and handled by a learning procedure where the PLDA parameters and
fully connected neural network parameters were optimized to build the decoder, gen-
erator, encoder, and discriminator. An adversarially learned latent representation for
PLDA reconstruction or scoring was obtained by solving a minimax optimization with
multiple objectives. For an integrated work, we might carry out a hybrid adversarial
manifold learning and adversarial augmentation learning that jointly optimized multi-
objectives to meet neighbor embedding, classification accuracy, PLDA reconstruction,
and adversarial training for speaker recognition. We considered various regularization
terms including cosine distance, Gaussianity, and PLDA scoring to benefit the training
procedure. A theoretical solution to deep machine learning was presented to carry out
state-of-the-art speaker recognition system. We integrated different learning models in
this chapter including stochastic neighbor embedding, variational autoencoder, genera-
tive adversarial network, and conditional adversarial neural network.
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