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Progress in Computer Vision

B   1970       
developed subspecialty of AI, joining other specialized areas such as natural

language processing, robotics, knowledge representation, and reasoning (to name
just a few of them). In this chapter, I’ll describe some of the important advances in
computer vision during this period. Some of these were made in pursuit of specific
applications in several fields such as aerial reconnaissance, cartography, robotics,
medicine, document analysis, and surveillance.1

20.1 Beyond Line-Finding

In an earlier chapter, I described some filtering techniques for enhancing image
quality and for extracting edges and lines in images. But much more can be done to
extract properties of a scene using specific information about the conditions under
which images are obtained and general information about the properties of objects
likely to be in the scene.

20.1.1 Shape from Shading

In what has been called a “back-to-basics” movement, researchers began inves-
tigating how information about the physics and geometry of light reflection from
surfaces could be used to reveal three-dimensional properties of a scene from a single
two-dimensional image. A leader in this study was Berthold K. P. Horn (1943– ;
Fig. 20.1). His MIT Ph.D. dissertation derived mathematical methods for determin-
ing the shape of an object from its shading.2 Just as humans perceive an appropriately
shaded image of a circle as a sphere, a computer vision system can be made to do so
also. Making it do so, using information about the reflective properties of surfaces
and the geometry of the imaging process, is what Horn did.

The basic idea of Horn’s technique can be explained by referring to Fig. 20.2 in
which an infinitesimal piece of surface receives illumination from a light source at an
angle equal to i relative to the direction that points perpendicularly away from the
surface piece. Suppose a light sensor (such as a TV camera), at an angle g relative
to the direction of the light source and at an angle e relative to the direction of the
surface, gathers the light reflected from the surface. The amount of light gathered
from this surface patch depends on these three angles, the amount of illumination,
and the reflectance properties of the surface. (Horn assumed what we would call a

258
https://doi.org/10.1017/CBO9780511819346.024 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511819346.024


P1: KpB Trim: 6-1/8′′ × 9-1/4′′ Top margin: 1/2′′ Gutter margin: 3/4′′

smartpdf CUUS813/Nilsson ISBN: 978 0 521 11639 8 September 25, 2009 6:16

Progress in Computer Vision 259

Figure 20.1. Berthold Horn (left) and a shaded circle (right). (Photograph courtesy of
Berthold Horn.)

“matte” surface.) Because the amount of light gathered does vary in this manner,
the image appears “shaded.” Under certain circumstances, and with quite a bit of
mathematical manipulation, the direction of the surface can be calculated if the other
quantities are known. Then, by knowing the direction for many, many infinitesimal
pieces of surface, the overall shape of the surface can be calculated (under the
assumption that the surface is relatively smooth with no abrupt discontinuities).

Horn is now a professor of computer science and electrical engineering at MIT
and continues to work on several topics related to computer vision. His thesis elicited
a flurry of activity in the area of “shape from shading.”3 Several people extended the
idea of shape from shading to attempt to calculate shape based on things other than
shading, such as from multiple images (stereo), motion, texture, and contour. And,
as we shall see in the next few pages, important work was done in extracting more
than just the shape of objects.

Figure 20.2. Light incident on and reflected by a small piece of a surface. (Illustration used
with permission of Berthold Horn.)
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Figure 20.3. A 2 1
2 -D sketch. (From David

Marr and H. K. Nishihara, “Representation
and Recognition of the Spatial Organization
of Three-Dimensional Shapes,” Proceedings
of the Royal Society of London, Series B, Bio-
logical Sciences, Vol. 200, No. 1140, p. 274,
February 23, 1978.)

20.1.2 The 2 1
2
-D Sketch

Even though a viewer sees only a two-dimensional image of a three-dimensional
scene, David Marr (augmenting Horn’s ideas) observed that, nevertheless, a viewer
is able to infer (and thus perceive) from image shading and other depth cues some of
the scene’s three-dimensional attributes, such as surface shapes, shapes occluding
other shapes, abrupt changes between smooth surfaces, and other depth information.
Marr called the representation of these attributes a “2 1

2 -D sketch” (because it was
not fully three dimensional). According to Marr’s theory of vision (described in his
book4), the next step of visual processing, after producing the primal sketch (see
p. 133) of blobs and edges, is to produce this 2 1

2 -D sketch. An example sketch is
shown in Fig. 20.3 in which arrows pointing perpendicularly away from surfaces are
superimposed on the primal sketch of an image from which they are inferred.

Finally, according to Marr, the information in the 2 1
2 -D sketch, along with stored

information about object shapes, would be used to locate specific objects in the image
and thus produce a 3-D model of the scene. I’ll describe what he had to say about
that process shortly.

20.1.3 Intrinsic Images

Two researchers at SRI, Jay Martin Tenenbaum (1943– ; Fig. 20.4) and Harry
Barrow (recently relocated from Edinburgh), developed some image-processing
techniques quite similar to those used in producing the 2 1

2 -D sketch.5 They noted
that the intensity value at each pixel of an image resulted from a tangled combination
of several factors, including properties of the ambient illumination and reflective and
geometric properties of objects in the scene. They thought that these factors could
be untangled to recover important three-dimensional information about the scene.

Barrow and Tenenbaum proposed that each of these factors (all of which influ-
enced intensity) could be represented by imaginary images that they called “intrinsic
images.” These images were to consist of a grid of “pixels” overlaying a projection
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Figure 20.4. Jay Martin Tenenbaum (left) and Harry Barrow (right). (Photographs courtesy
of J. Martin Tenenbaum and of Harry Barrow.)

of the scene and in registration with the intensity image. One intrinsic image, for
example, was an illumination image. It consisted of pixels whose values were the
amounts of illumination falling on the pixels of the projected scene. These values,
of course, were not known, but Barrow and Tenenbaum proposed that they could
be estimated from the intensity image and from the other intrinsic images.

As examples, I show a set of such intrinsic images in Fig. 20.5. The actual image of
intensity values is shown at the top. The known value of a pixel in that image depends
on the unknown values of pixels in the intrinsic images below. In fact, the values of
the pixels in all of the images, intrinsic and actual, are interdependent. The arrows
in the figure reflect that fact. (There should also be some arrows going up.) Based
on the values of pixels in some of the images, the values of others can be computed
by using known physical relationships, constraints among the images, and other
reasonable assumptions. These values, in turn, allow the computation of others. In
essence, these computations “propagate” pixel values throughout the set of intrinsic
images (much like how levels in the Blackboard architecture affect other levels).
As Barrow and Tenenbaum later summarized their method, “We envisaged this
recovery process as a set of interacting parallel local computations, more like solving
a system of simultaneous equations by relaxation than like a feed forward sequence
of stages.”6 Barrow and Tenenbaum also used some of their ideas about intrinsic
images to work on the problem of interpreting line drawings as three-dimensional
surfaces.7

Barrow and Tenenbaum intended their work to be useful not only in computer
vision but also as a potential model of “precognitive” vision processes in humans.
However, in a 1993 “retrospective” about their work they wrote8
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Figure 20.5. Intrinsic images. (Used with permission of Harry Barrow and Jay M. Tenen-
baum.)

Despite the maturity of computational vision and the rapid developments in neural systems,
we still have a long way to go before we can come close to our goal of understanding visual
perception. To do so we will need to draw upon what we have learned in many fields, including
neuroscience, neural networks, experimental psychology and computational vision.

20.2 Finding Objects in Scenes

20.2.1 Reasoning about Scenes

Even before the development of shape-from-shading and other methods for recover-
ing depth information from scenes, a number of researchers had worked on methods
for finding objects in scenes. I described many of these techniques in Section 9.3.
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During the early 1970s, Thomas Garvey completed a Stanford Ph.D. thesis on
a system for locating objects, such as desks, chairs, and wastebaskets, in images of
office scenes.9 As Garvey wrote in his summary,

The system uses information about the appearances of objects, about their interrelationships,
and about available sensors to produce a plan for locating specified objects in images of room
scenes.

In related work, Barrow and Tenenbaum developed a system, called MSYS, for
reasoning about scenes “in which knowledge sources compete and cooperate until a
consistent explanation of the scene emerges by consensus.”10 MSYS analyzed images
of office scenes and attempted to find the most likely interpretation for the regions
in an image (desk top, back of chair, floor, doorway, and so on) given a number
of candidate interpretations and their probabilities. Knowing relationships between
regions (such as “chair backs are usually adjacent to chair seats”), MSYS tried to find
the most likely overall set of region interpretations.

An example of a scene considered by MSYS is shown in Fig. 20.6. Some of the
regions in the scene have been detected and labeled with possible interpretations.

As Barrow and Tenenbaum wrote, MSYS’s reasoning might proceed as follows:

Regions PIC, WBSKT, and CBACK cannot be WALL or DOOR, because their brightnesses
are much less than that along the top edge of the image vertically above them, which violates
[knowledge about the brightness of walls and doors]. Consequently, region PIC must be the
PICTURE, WBSKT must be WASTEBASKET, and CBACK must be CHAIRBACK.

Region LWALL and RWALL must then be WALL, since they are adjacent to region PIC,
and DOOR cannot be adjacent to PICTURE.

Region DR cannot be WALL because all regions labeled WALL are required to have the
same brightness. Therefore, region DR must be DOOR.

20.2.2 Using Templates and Models

Much of the early work on object recognition was based on using object “templates”
that could be matched against images. Martin A. Fischler and Robert A. Elschlager
elaborated this idea by using “stretchable templates” that permitted more powerful
matching techniques. They used these to find objects such as faces or particular
terrain features in photographs containing such objects.11 The process depended on
having a general representation for the object being sought and then a process for
matching that representation against the photograph. Their representations were
based on breaking an object down into a number of primitive parts and “specifying
an allowable range of spatial relations which these ‘primitive parts’ must satisfy for
the object to be present.” For the object to be present in a picture, “it is required
that [the] primitives occur (or at least that some significant subset of them occurs),
and also that they occur within a certain spatial relationship one to the other . . . ” As
Fischler and Elschlager pointed out, it is usually the case that determining whether
or not some of the parts occur depends on whether or not the whole object occurs,
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Figure 20.6. An MSYS scene with some regions detected and labeled. (Illustration used with
permission of SRI International.)

and vice versa. The main contribution of their paper was the development of a
dynamic-programming-style method for dealing with this circularity.

Earlier I had described David Marr’s work on processes for producing a primal
sketch and a 2 1

2 -D sketch. These were the first two stages in Marr’s theory of vision.
He argued that these stages could uncover important shape information without
specific knowledge of the shapes of objects likely to be in a scene. He had written:12

Most early visual processes extract information about the visible surfaces directly, without
particular regard to whether they happen to be part of a horse, or a man, or a tree. . . . As
for the question of what additional knowledge should be brought to bear, general knowledge
must be enough – general knowledge embedded in the early visual processes as general
constraints, together with the geometrical consequences of the fact that the surfaces co-exist
in three-dimensional space.

Specific knowledge about shapes, he argued, should be utilized in a third stage.
It is this stage that uses three-dimensional models of objects. He proposed using a
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Figure 20.7. An example of one of Marr’s 3-D model hierarchies. (From David Marr, Vision,
San Francisco: W. H. Freeman and Co., p. 306, 1982.)

hierarchy of models in which a gross model is decomposed into subparts and these
into subsubparts and so on. For example, the shape of a human might be modeled
as in Fig. 20.7. Each box corresponds to a 3-D model and its submodel. On the
left side of the box is an axis-oriented model; on the right side is how that model
is represented as submodels. (Directions of the axes can be adjusted to fit matching
parts of the image.)

In this third stage, comparing models of this sort with shape information and
other 3-D information contained in the 2 1

2 -D sketch helps to identify and locate
objects in a scene. For Marr, vision was “the process of discovering from images what
is present in the world and where it is.”13

Marr was not the first to suggest the use of cylinders as models of parts of objects.
In a 1971 IEEE conference paper, Thomas O. Binford (1936– ) introduced the idea
of “generalized cylinders” (sometimes called “generalized cones”).14 A later paper
defined them as follows: “A generalized cone is defined by a planar cross section, a
space curve spine, and a sweeping rule. It represents the volume swept out by the
cross section [not necessarily a circular one] as it is translated along [an axis called a
spine], held at some constant angle to the spine, and transformed according to the
sweeping rule.”15

Binford had several Stanford Ph.D. students who used models to help identify
objects in scenes. Of these I might mention Gerald J. Agin,16 Ramakant Neva-
tia,17 and Rodney A. Brooks (1954– ),18 all of whom contributed to what came to
be called “model-based vision.” (Brooks later became a professor at MIT, where he
worked on other topics. His subsequent work will be discussed later.)

Brooks’s ACRONYM system19 used generalized cones to model several different
kinds of objects. ACRONYM used these models to help identify and locate objects in
images. Some examples of the kinds of generalized cones that can be used as building
blocks of models and model objects are shown in Fig. 20.8.

Other views regarding what vision is all about competed with those of Marr
and others who were attempting to use vision to reconstruct entire scenes. Some,
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Figure 20.8. Primitive generalized cones
and piston models constructed from general-
ized cones. (From Rodney A. Brooks, “Sym-
bolic Reasoning among 3-D Models and 2-D
Images,” Artificial Intelligence, Vol. 17, Nos.
1–3, pp. 285–348, 1981.)

especially those involved in robotics, claimed that the purpose of vision was to
perceive just what was required to guide action. Many of the vision routines in
Shakey were embedded in its action programs. Professor Yiannis Aloimonos at the
University of Maryland is one of the researchers advocating this “purposive” or
“interactive” approach. He claims that the goal of vision is action. When vision is
“considered in conjunction with action, it becomes easier.” He goes on to explain
that “the descriptions of space-time that the system needs to derive are not general
purpose, but are purposive. This means that these descriptions are good for restricted
sets of tasks, such as tasks related to navigation, manipulation and recognition.”20 In
the neuroscience community, to which Marr wanted to make a contribution, there
were Patricia S. Churchland, V. S. Ramachandran, and Terrence J. Sejnowski,
who later wrote “What is vision for? Is a perfect internal recreation of the three-
dimensional world really necessary? Biological and computational answers to these
questions lead to a conception of vision quite different from pure vision [as advocated
by Marr]. Interactive vision . . . includes vision with other sensory systems as partners
in helping to guide actions.”21

In any case, models still play an important role in computer vision. (However,
one prominent vision researcher told me that the “residue of model-based vision is
close to zero,”22 and another told me that “most current robotic systems use vision
hacks” instead of general-purpose, science-based scene-analysis methods.23)
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Figure 20.9. An illustration of IU goals. (Illustration used with permission of SAIC.)

20.3 DARPA’s Image Understanding Program

Much of the computer vision work in the United States was being funded by DARPA,
and there were concerns among vision researchers (as always) about continuing
support. Tenenbaum recalls attending a DARPA meeting in 1974 where the future
of computer vision research was being discussed. The program officer monitoring
DARPA-supported vision work, Air Force Major David L. Carlstrom, was at the
meeting and was interested in pulling together the various efforts in the field.
Because DARPA had been supporting work in this area for some years, Carlstrom
needed a new name that would indicate that DARPA was starting something new.
Tenenbaum told me that he recommended to Carlstrom that the new initiative
be called “the image understanding program.”24 (Recall that there was already an
ongoing DARPA-supported effort in speech understanding, so the phrase sounded
“DARPA-friendly.”)

In 1976, DARPA launched its Image Understanding (IU) program. It grew to be a
major effort composed of the leading research laboratories doing work in this area as
well as “teams” pairing a university with a company. The individual labs participating
were those at MIT, Stanford, University of Rochester, SRI, and Honeywell. The
university/industry teams were USC–Hughes Research Laboratories, University
of Maryland–Westinghouse, Inc., Purdue University–Honeywell, Inc., and CMU–
Control Data Corporation.

Regular workshops were held to report progress. The proceedings of one held in
April 1977 stated the goals of the program: “The Image Understanding Program
is planned to be a five year research effort to develop the technology required for
automatic and semiautomatic interpretation and analysis of military photographs and
related images.”25 DARPA’s ultimate goal for the IU program was well captured by
the illustration on the cover of that proceedings, shown in Fig. 20.9.
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As the diagram implies, military commanders would like computer vision systems
to be able to analyze a photograph and to produce a written description of its
important components and their relationships.

Some of the computer vision research that I have already described, such as
work on the 2 1

2 -D sketch, intrinsic images, generalized cylinders, and ACRONYM,
was supported by the IU Program. But there was always some tension between
DARPA’s goals and those of people doing computer vision research. DARPA wanted
the program to produce “field-able” systems. J. C. R. Licklider emphasized this point
at a preliminary IU workshop in March 1975:26

At the end of the five year period the technology developed must be in a state in which it
can be utilized by the DoD components to solve their specific problems without requiring a
significant research effort to figure our how to apply the technology to the specific problems.
For this reason, the program must result in a demonstration at the end of the five year period
that an important DoD problem has been solved.

Air Force Major Larry Druffel at DARPA assumed leadership of the IU program
in 1978. In November 1978, he advised “The prudent approach is to consolidate
those techniques which are sufficiently mature to transfer to DoD agencies.”27 By
1979, the program’s goals had expanded to include cartography and mapping. A
“memorandum of understanding” (MOU) between DARPA and the Defense Map-
ping Agency (DMA) was concluded to support automatic mapping efforts through
the development of a DARPA/DMA “testbed.” In November 1979, Druffel wrote28

Plans are progressing for a demonstration system to evaluate the maturity of IU technol-
ogy by automating mapping, charting, and geodesy functions. While focussing on specific
cartographic photointerpretation functions, the system should offer the entire image exploita-
tion community an opportunity to assess the future application of Image Understanding
methodologies to their specific problem.

The “five-year” program did not end in 1981. It continued under the DARPA
leadership of Navy Commander Ron Ohlander, Air Force Lt. Col. Robert L. Simp-
son Jr., and others until approximately 2001. In 1985 Simpson summarized some of
its accomplishments:29

Originally conceived as a five year program in 1975 by Lt. Col. David Carlstrom, the first
several years of IU established the strong base of low-level vision techniques and knowledge-
based subsystems that began to differentiate computer vision from what is usually called
“image processing.” In the late 1970s and early 1980s, under the direction of Lt. Col. Larry
Druffel, the program saw the development of model-based vision systems such as ACRONYM
and demonstration of IU techniques in more meaningful concept demonstrations such as the
DARPA/DMA image understanding testbed. These demonstrations and their potential for
future military use warranted the continuation of the IU program beyond its initial five year
lifespan. Under Cmd. Ron Ohlander, IU technology continued to mature to the point that
the DARPA Strategic Computing Program could justify a major application, the autonomous
land vehicle.

As Ohlander said, the IU program was extended beyond its projected five-year
lifetime. It is said that even as early as 1984, DARPA had spent over $4 million
on this effort.30 One potential application was computer vision for robot-controlled
military vehicles – a component of DARPA’s “Strategic Computing” program. I’ll
describe that application and others in more detail in later chapters.
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As a growing subspecialty of artificial intelligence, papers on computer vision
began to appear in new journals devoted to the subject, including Computer Vision
and Image Understanding and IEEE Transactions on Pattern Analysis and Machine
Intelligence. The field’s textbooks around this time included Pattern Classification
and Scene Analysis31 and two books titled Computer Vision.32
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