
8 Future Direction

Deep learning has been extensively used in speaker recognition. It will continue to play
an important role in the foreseeable future, particularly in feature learning, end-to-end
systems, and domain-invariant speaker recognition.

8.1 Time-Domain Feature Learning

So far, state-of-the-art speaker recognition systems use handcrafted features inspired
by the human auditory systems. MFCC, PLP, and log-mel filterbank magnitude coeffi-
cients are some of the common handcrafted features. These features can be efficiently
extracted from waveforms using signal processing methods. In speech recognition, it has
been shown that deep neural networks can be trained to extract filter-bank like features
directly from speech waveforms using a long context window [255–258]. This type of
feature learning approach has the advantage that the feature extractor and the classifier
can be jointly training, resulting in end-to-end systems.

Because speech signals are nonstationary waveforms with short-time stationarity, it is
natural to apply a one-D convolutional neural network to process long-term waveform
segments (≈ 300ms), with a hop size of 10ms [259]. The waveform of an utterance
is partitioned into into long-term segments (310ms in [260]), each of which is further
partitioned into a short time frame. Denote {xn}Nn=1 as N consecutive samples in a long-
term segment of an utterance. Then, the short-term segment centered at time point t

within the long-term segment is

xt =
[
xt−(K1−1)/2, . . . ,xt, . . . ,xt+(K1−1)/2

]T
,

where K1 is the kernel width (50 samples in [260]). In the first convolutional layer, xt

is convolved with F1 FIR filters to give a matrix of size F1 × K1. Then, temporal max-
pooling is independently applied to the output sequences of the FIR filters. Figure 8.1
shows the operation of convolution and temporal max-pooling. In the remaining convo-
lutional layers, the kernel width is in the unit of the number of time frames (rectangular
blocks in Figure 8.1). For example, in [258], K2 = K3 = 7 and the frame shift (hopped
distance) is 1.

Comparing Figure 8.1 and Figure 5.5 reveals that the CNN architecture is similar to
the x-vector extractor. By changing the classes in Figure 8.1 to speaker labels and adding

266

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

8.1 Time-Domain Feature Learning 267

Figure 8.1 The convolution and max-pooling processes of a CNN for extracting features from
speech waveforms. Nonlinearity is applied after max-pooling.

a statistical pooling layer (for pooling over time) and an embedded layer (for x-vector
representation), it is possible to extract x-vectors from speech waveforms.

Another approach to extracting features from waveforms is to combine CNN, DNN,
and LSTM [261]. Specifically, 25–35ms of time-domain waveform is fed to a few CNN
layers that perform both time and frequency convolutions to reduce spectral variation.
Then, the output of the last CNN layer is fed to a few LSTM layers. Finally, the output
of the last LSTM layer is fed to a DNN. The process is repeated for every 10ms.
The idea is based on the CLDNN in [262]. But unlike [262], the CLDNN in [261]
receives raw waveforms as input. The advantage of using waveform as input is that
the fine structure of the time-domain signals can be captured. It was shown that these
networks have complementary modeling capabilities. Specifically, the CNN can reduce
frequency variations, the LSTM can model long-term temporal variations, and the DNN
can produce a higher-order representation that can be easily separated into distinct
classes.

The first layer in the raw-waveform CLDNN [261] is a time-convolutional layer over
the waveform. This layer can be considered as a finite impulse-response filterbank (such
as a gammatone filterbank) followed by nonlinear operations. Therefore, the outputs
of different convolutional nodes in the first layer correspond to different frequencies.
By convolving M time points in a moving window with P convolutional filters with

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

268 Future Direction

Figure 8.2 The architecture of CLDNN that accepts waveforms as input. The first
time-convolutional layer has P filters (feature maps) of length N . For each frame, the first
convolutional layer produces a vector yt , where t denotes the frame index. The elements in yt

are considered as frequency components, which are subject to frequency convolution and
max-pooling. The resulting vectors are fed to the LSTM, followed by a DNN.

length N , the output of the first convolutional layer has dimension P × (M − N + 1)
in time × frequency. These outputs are subjected to temporal pooling to produce P × 1
outputs. Performing pooling in time has the effect of suppressing phrase information and
making the feature representation in upper layers phase invariant. This convolutional and
pooling process effectively convert time-domain signals into frame-level feature vectors
of dimension P (yt in Figure 8.2). The window is shifted by 10ms for each frame-level
feature vector. Each yt is subject to frequency convolution to reduce spectral variation.

In Figure 8.2, raw waveforms are processed by CNN followed by LSTM rather than
directly processed by the LSTM. The advantage of the former is that each step in the
LSTM corresponds to one frame (typically 10 ms), whereas in the latter, each time
step corresponds to one time point (typically 0.125 ms). To model variations across
300ms, using the LSTM alone requires unrolling 2,400 time steps, which is not feasible
in practice. On the other hand, using the CNN+LSTM to model the same time span, we
only need to unroll 30 time steps.

To apply the architectures in Figures 8.1 and 8.2 for speaker recognition, we
may extract embedded feature vectors from the outputs of the convolutional filters.

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

8.2 Speaker Embedding from End-to-End Systems 269

As demonstrated in [259, 260], the first convolutional layer acts like a filter bank.
Therefore, it is reasonable to replace the MFCCs by the responses of the convolutional
filter.

8.2 Speaker Embedding from End-to-End Systems

Recent advances in deep learning has led to the use of deep neural networks for speaker
feature extraction. The main idea is to replace the commonly used i-vectors by creating
an embedded layer in a deep neural network and train the network in an end-to-end
manner. Speaker features are then extracted from the embedded layer.

In [263, 264], the authors proposed to use the Inception-Resnet-v1 architecture that
is commonly used in the computer vision community for such purpose. Specifically,
short segments of a spectrogram are presented to the input of an inception network,
as shown in Figures 8.3 and 8.4. At the embedding layer, utterance-level features are
obtained by averaging the activations across all of the short segments in the utterance.
The network is optimized by minimizing the triplet loss, as shown in Figure 8.3, using a
Euclidean distance metric. Because of the averaging operation, the feature dimension at
the embedding layer is fixed regardless of the length of the utterance. A similar strategy
has also been used in the VGGVox network that creates the Voxceleb2 dataset [265] and
the use of residual blocks in [266, 267]. Another example is the small footprint speaker
embedding in [268] in which knowledge distillation was used to reduce the performance
gap between large and small models.

To create fix-length embedding in the inception network, [263, 264] spatial pyramid
pooling (SPP) [269] was applied to a convolutional layer of the inception network.
Instead of using a sliding window as in conventional CNNs, SPP has bin size propor-

Figure 8.3 Training an inception-resnet-v1 to create an utterance-level embedded vector.

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

270 Future Direction

Figure 8.4 Given a test utterance, the inception network gives an utterance-level embedded
vector, whose distance to the embedded vector of the enrolled speaker is compared with a
decision threshold for decision making.

tional to the input feature size. As a result, the number of bins is fixed regardless of the
length of the spectrogram. The embedded feature vectors can then be scored by either
cosine-distance scoring or PLDA scoring.

8.3 VAE–GAN for Domain Adaptation

Adversarial learning [270] has been applied to create a domain-invariant space [266,
271–274], to reduce the language mismatch [275], channel mismatch [276], noise-
type mismatch [277], acoustic condition mismatch [278], and to map unlabeled speech
from one domain to another domain [279]. For instance, in [207], an encoder and
a discriminator network are adversarially trained to produce bottleneck features that
are robust against noise. Wang et al. [211] applied domain adversarial training (DAT)
[272] to generate speaker discriminative and domain-invariant feature representations by
incorporating a speaker classifier into an adversarial autoencoder, which outperforms
traditional DA approaches on the 2013 domain adaptation challenge. In [279], cycle-
GANs are used to map microphone speech in the SITW corpus to telephone speech and
the generated telephone speech are mapped back to microphone speech. The inputs to
the cycle-GANs are 11 frames of 40-dimensional filter bank features. The microphone-
to-telephone features were passed to an x-vector extractor trained by using telephone
speech.

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

8.3 VAE–GAN for Domain Adaptation 271

Although adversarial learning based unsupervised domain adaptation [207, 211] has
greatly boosted the performance of speaker verification systems under domain mismatch
conditions, the adversarial training may lead to non-Gaussian latent vectors, which do
not meet the Gaussianity requirement of the PLDA back end. One possible way to
make the x-vectors more Gaussian is to apply Gaussian constraint on the embedding
layer of the x-vector extractor during training [280]. The problem can also be overcome
by using variational autoencoders [237]. One desirable property of a VAE is that its
KL-divergence term can be considered as a regularizer that constrains the encoder to
produce latent vectors that follow a desired distribution. This property can be leveraged
to cause the encoder to produce Gasussian latent vectors, which will be amenable to
PLDA modeling.

8.3.1 Variational Domain Adversarial Neural Network (VDANN)

By applying domain adversarial training (DAT), the domain adversarial neural networks
(DANN) in [211, 272] can create a latent space from which domain-invariant speaker
discriminative features can be obtained. It is possible to incorporate variational regular-
ization into the DAT to make the embedded features follow a Gaussian distribution so
that the Gaussian PLDA back end can be applied. The resulting network is referred to
as variational domain adversarial neural network (VDANN) [281].

Denote X = {X(r)}Rr=1 as a training set containing samples from R domains, where

X(r) = {x(r)
1 , . . . ,x(r)

Nr
} contains Nr samples from domain r . Also, denote y and d

as the speaker and domain labels in one-hot format, respectively. Variational autoen-
coders (VAE) were originally proposed to solve the variational approximate inference
problem (see Section 4.5). A VAE is trained by maximizing the evidence lower bound
(ELBO) [237]:

LELBO(θ,φ) =
R∑

r=1

Nr∑
i=1

{
−DKL

(
qφ(z|x(r)

i)
∥∥pθ(z)

)
+ E

qφ(z|x(r)
i)

[
log pθ

(
x(r)
i |z

)]}
, (8.1)

where qφ(z|x) is an approximate posterior to the intractable true posterior pθ(z|x) and
φ and θ are parameters of the encoder and decoder, respectively. The network param-
eterized by φ represents a recognition model that encodes input samples into the latent
space and the network parameterized by θ represents a generative model that transforms
the latent representations back to the original data space.

A VAE has a desirable property in that the first term in Eq. 8.1 can constrain the
variational posterior qφ(z|x) to be similar to the desired prior pθ(z). As a result, if
pθ(z) is a multivariate Gaussian distribution, the encoder will make the latent vectors to
follow a Gasussian distribution, which is amenable to PLDA modeling.

Suppose pθ(z) = N (z;0,I). Also assume that the true posterior follows a Gaussian
distribution with an approximate diagonal covariance matrix. Then, the approximate
posterior becomes

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

272 Future Direction

log qφ(z|xi) = logN
(

z;μ
i
,σ2

i I
)
, (8.2)

where the mean μ
i

and standard derivation σi are outputs of the encoder given input
xi , and they are parameterized by φ. Using the reparameterization trick (see Section
6.5.1), we obtain the lth latent sample zil = μi

+ σi � εl , where εl ∼ N (0,I) and � is
the Hadamard product. Substitute these terms into Eq. 8.1, we have the Gaussian VAE
loss [237]:

LVAE
(
θ,φ

) � −
R∑

r=1

Nr∑
i=1

⎧⎨⎩1

2

J∑
j=1

[
1 + log

(
σ(r)

ij

)2

−
(
μ(r)

ij

)2 −
(
σ

(r)

ij

)2
]
+ 1

L

L∑
l=1

log pθ

(
x(r)
i |zil

)}
, (8.3)

where J is the dimension of z and L denotes the number of latent samples. In practice,
we set L = 1.

Figure 8.5 shows the structure of the VDANN. It comprises a speaker predictor C, a
domain classifier D and a VAE, where the VAE comprises an encoder E and a decoder
G. The parameters of C, D, E, and G are denoted as θc, θd , φe, and θg , respectively.
Through adversarial training, a VDANN can form a domain-invariant space based on
training data from multiple domains. More precisely, by applying adversarial training

Figure 8.5 Structure of a VDANN. The dashed and solid arrows represent stochastic sampling
and network connections, respectively.

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

8.3 VAE–GAN for Domain Adaptation 273

on E while fixing θd and minimizing the cross-entropy loss of C with respect to φe will
make E to produce a domain-invariant but speaker discriminative representation.

The VDANN is trained by minimizing the following loss function:

LVDANN(θc,θd,φe,θg) = LC(θc,φe) − αLD(θd,φe) + βLVAE(φe,θg), (8.4)

where

LC(θc,φe) =
R∑

r=1

Epdata(x(r))

{
−

K∑
k=1

y
(r)
k log C

(
E
(

x(r)
))

k

}
, (8.5)

LD(θd,φe) =
R∑

r=1

Epdata(x(r))

{
− log D

(
E
(

x(r)
))

r

}
, (8.6)

and LVAE has a form similar to Eq. 8.3. The only exception is that the parameters of
the encoder and decoder are changed to φe and θg , respectively. The subscript k in
the categorical cross-entropy loss of the speaker classifier C in Eq. 8.5 represents the
kth output of the classifier. α and β are hyperparameters controling the contribution of
different losses that shape the features produced by E.

For each minibatch in the training process, the weights in D are optimized by min-
imizing the domain classification loss. Then, its weights are frozen when training the
remaining part of the VDANN. To incorporate speaker information into E, the speaker
cross-entropy loss as computed at the output of C is minimized. Meanwhile, the domain
classification loss is maximized to ensure that E can create a domain-invariant space.
The VAE loss is also minimized to make the embedded features to follow a Gaussian
distribution. In summary, the training process of VDANN can be expressed by the
following minimax operation:

min
θc,φe,θg

max
θd

LVDANN(θc,θd,φe,θg). (8.7)

This minimax optimization process can be divided into two operations:

θ̂d = argmax
θd

LVDANN(θ̂c,θd,φ̂e, θ̂g), (8.8)(
θ̂c,φ̂e, θ̂g

)
= argmin

θc,φe,θg

LVDANN(θc, θ̂d,φe,θg), (8.9)

where symbols with a hat (e.g., θ̂c) on the right-hand side of Eq. 8.8 and Eq. 8.9 mean
that they are fixed during the optimization process. After training, embedded features
can be extracted from the last (linear) hidden layer of the encoder E (denoted by μ
in Figure 8.5). Because the approximate variational posterior is regularized to follow a
Gaussian distribution, features extracted from the encoder will tend be Gaussian.

8.3.2 Relationship with Domain Adversarial Neural Network (DANN)

DANNs have been used for reducing the mismatch between the source and target
domains, where data from the source domain have speaker labels while training data

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

274 Future Direction

(a) (b)

(c)

Figure 8.6 Quantile-quantile (Q–Q) plots of the eleventh component of (a) x-vectors, (b)
DANN-transformed x-vectors, and (c) VDANN-transformed x-vectors. The vertical and
horizontal axes correspond to the samples under test and the samples drawn from a standard
normal distribution, respectively. The straight line represents the situation of perfectly Gaussian.
The p-values above the graphs were obtained from Shapiro–Wilk tests in which p > 0.05 means
failing to reject the null hypothesis that the test samples come from a Gaussian distribution.

from the target domain are unlabeled. In that case R = 2 in Eq. 8.5. For example, Wang
et al. [211] proposed a DANN comprising a feature extractor E, a speaker predictor C

and a domain classifier D. Note that the DANN in [211] is a special case of VDANN,
because by setting β = 0 in Eq. 8.4, we obtain the loss function of DANNs:

LDANN(θc,θd,φe) = LC(θc,φe) − αLD(θd,φe), (8.10)

where θc, θd , and φe are the parameters for C, D, E, respectively and α controls the
trade-off between the two objectives. LC and LD are identical to Eq. 8.5 and Eq. 8.6,
respectively. The parameters of DANN are optimized by:

θ̂d = argmax
θd

LDANN

(
θ̂c,θd,φ̂e

)
, (8.11)(

θ̂c,φ̂e

)
= argmin

θc,φe

LDANN

(
θc, θ̂d,φe

)
. (8.12)

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

8.3 VAE–GAN for Domain Adaptation 275

Because there is no extra constraint on the distribution of the embedded features,
adversarial training may lead to non-Gaussian embedded vectors, which is not desirable
for the PLDA back end.

8.3.3 Gaussianality Analysis

Figure 8.6 shows the normal Q–Q plots of the three dimensions of x-vectors and
the x-vectors transformed by a DANN and a VDANN. Obviously, the distribution of
the x-vectors transformed by the VDANN is closer to a Gaussian distribution than the
others. This suggests that the VAE loss can make the embedded vectors z’s and the
hidden layer outputs μ to follow a Gaussian distribution. The p-values obtained from
Shapiro–Wilk tests [282] also suggest that the distribution of VDANN-transformed
vectors is the closest to the standard Gaussian.

https://doi.org/10.1017/9781108552332.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781108552332.009

