
CHAPTER 4

Concept learning

H
AVING DISCUSSED A VARIETY of tasks in the preceding two chapters, we are now in an

excellent position to start discussing machine learning models and algorithms for learn-

ing them. This chapter and the next two are devoted to logical models, the hallmark

of which is that they use logical expressions to divide the instance space into segments

and hence construct grouping models. The goal is to find a segmentation such that

the data in each segment is more homogeneous, with respect to the task to be solved.

For instance, in classification we aim to find a segmentation such that the instances in

each segment are predominantly of one class, while in regression a good segmentation

is such that the target variable is a simple function of a small number of predictor vari-

ables. There are essentially two kinds of logical models: tree models and rule models.

Rule models consist of a collection of implications or if–then rules, where the if-part

defines a segment, and the then-part defines the behaviour of the model in this seg-

ment. Tree models are a restricted kind of rule model where the if-parts of the rules are

organised in a tree structure.

In this chapter we consider methods for learning logical expressions or concepts

from examples, which lies at the basis of both tree models and rule models. In concept

learning we only learn a description for the positive class, and label everything that

doesn’t satisfy that description as negative. We will pay particular attention to the gen-

erality ordering that plays an important role in logical models. In the next two chapters

104

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4. Concept learning 105

The simplest logical expressions are equalities of the form Feature=Value and,

for numerical features, inequalities of the form Feature<Value; these are called

literals. Complex Boolean expressions can be built using logical connectives:

conjunction ∧ , disjunction ∨ , negation ¬ and implication → . The following

equivalences hold (the left two are called the De Morgan laws):

¬(A ∧ B)≡¬A ∨ ¬B ¬¬A ≡ A

¬(A ∨ B)≡¬A ∧ ¬B A → B ≡¬A ∨ B

If Boolean expression A is true of instance x, we say that A covers x. The set

of instances covered by expression A is called its extension and denoted XA =
{x ∈X |A covers x}, where X denotes the instance space which acts as the uni-

verse of discourse (see Background 2.1 on p.51). There is a direct correspondence

between logical connectives and operations on sets: e.g., XA ∧ B = XA ∩XB ,

XA ∨ B = XA ∪XB and X¬A = X \ XA . If XA ⊇ XA′ , we say that A is at least

as general as A′, and if in addition XA
⊆XA′ we say that A is more general than

A′. This generality ordering is a partial order on logical expressions as defined in

Background 2.1. (More precisely: it is a partial order on the equivalence classes

of the relation of logical equivalence ≡.)

A clause is an implication P →Q such that P is a conjunction of literals and Q

is a disjunction of literals. Using the equivalences above we can rewrite such an

implication as

(A ∧ B)→ (C ∨D)≡¬(A ∧ B) ∨ (C ∨D)≡¬A ∨ ¬B ∨C ∨D

and hence a clause can equivalently be seen as a disjunction of literals or their

negations. Any logical expression can be rewritten as a conjunction of clauses;

this is referred to as conjunctive normal form (CNF). Alternatively, any logical ex-

pression can be written as a disjunction of conjunctions of literals or their nega-

tion; this is called disjunctive normal form (DNF). A rule is a clause A → B where

B is a single literal; this is also often referred to as a Horn clause, after the Ameri-

can logician Alfred Horn.

Background 4.1. Some logical concepts and notation.

we consider tree and rule models, which go considerably beyond concept learning as

they can handle multiple classes, probability estimation, regression, as well as cluster-

ing tasks.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

106 4. Concept learning

4.1 The hypothesis space

The simplest concept learning setting is where we restrict the logical expressions de-

scribing concepts to conjunctions of literals (see Background 4.1 for a review of impor-

tant definitions and notation from logic). The following example illustrates this.1

Example 4.1 (Learning conjunctive concepts). Suppose you come across a

number of sea animals that you suspect belong to the same species. You observe

their length in metres, whether they have gills, whether they have a prominent

beak, and whether they have few or many teeth. Using these features, the first

animal can described by the following conjunction:

Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

The next one has the same characteristics but is a metre longer, so you drop the

length condition and generalise the conjunction to

Gills= no ∧ Beak= yes ∧ Teeth=many

The third animal is again 3 metres long, has a beak, no gills and few teeth, so your

description becomes

Gills= no ∧ Beak= yes

All remaining animals satisfy this conjunction, and you finally decide they are

some kind of dolphin.

Despite the simplicity of this example, the space of possible concepts – usually

called the hypothesis space – is already fairly large. Let’s assume we have three different

lengths: 3, 4 and 5 metres, while the other three features have two values each. We then

have 3 ·2 ·2 ·2= 24 possible instances. How many conjunctive concepts are there using

these same features? We can answer this question if we treat the absence of a feature

as an additional ‘value’. This gives a total of 4 ·3 ·3 ·3 = 108 different concepts. While

this seems quite a lot, you should realise that the number of possible extensions – sets

of instances – is much larger: 224, which is more than 16 million! That is, if you pick

a random set of instances, the odds that you can’t find a conjunctive concept that ex-

actly describes those instances are well over 100 000 to 1. This is actually a good thing,

as it forces the learner to generalise beyond the training data and cover instances that it

hasn’t seen before. Figure 4.1 depicts this hypothesis space, making use of the general-

1Inspired by www.cwtstrandings.org.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.1 The hypothesis space 107

Length=3 & Gills=yes & Beak=yes & Teeth=many Length=3 & Gills=yes & Beak=yes & Teeth=fewLength=3 & Gills=yes & Beak=no & Teeth=many Length=3 & Gills=yes & Beak=no & Teeth=fewLength=3 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=3 & Gills=no & Beak=no & Teeth=many Length=3 & Gills=no & Beak=no & Teeth=fewLength=4 & Gills=yes & Beak=yes & Teeth=many Length=4 & Gills=yes & Beak=yes & Teeth=fewLength=4 & Gills=yes & Beak=no & Teeth=many Length=4 & Gills=yes & Beak=no & Teeth=fewLength=4 & Gills=no & Beak=yes & Teeth=many Length=4 & Gills=no & Beak=yes & Teeth=fewLength=4 & Gills=no & Beak=no & Teeth=many Length=4 & Gills=no & Beak=no & Teeth=fewLength=5 & Gills=yes & Beak=yes & Teeth=many Length=5 & Gills=yes & Beak=yes & Teeth=fewLength=5 & Gills=yes & Beak=no & Teeth=many Length=5 & Gills=yes & Beak=no & Teeth=fewLength=5 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=no & Beak=no & Teeth=many Length=5 & Gills=no & Beak=no & Teeth=few

Gills=yes & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=manyLength=3 & Gills=yes & Teeth=many Length=3 & Gills=yes & Beak=yes

Beak=yes & Teeth=many

Gills=no & Beak=yes & Teeth=manyLength=4 & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=yes & Teeth=many

Gills=yes & Beak=no & Teeth=manyLength=4 & Gills=yes & Teeth=many Length=5 & Gills=yes & Teeth=many

Gills=yes & Beak=yes

Gills=yes & Beak=yes & Teeth=fewLength=4 & Gills=yes & Beak=yes Length=5 & Gills=yes & Beak=yes

Teeth=many

Length=3 & Teeth=many Beak=no & Teeth=many Gills=no & Teeth=manyLength=4 & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yes Beak=yes & Teeth=fewGills=no & Beak=yesLength=4 & Beak=yes Length=5 & Beak=yes

true

Gills=yes Length=3 Teeth=fewBeak=no Gills=noLength=4 Length=5

Length=3 & Gills=yes Gills=yes & Teeth=fewGills=yes & Beak=noLength=4 & Gills=yes Length=5 & Gills=yes

Length=3 & Beak=no & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Beak=yes & Teeth=fewLength=3 & Gills=no & Beak=yes

Length=3 & Teeth=fewLength=3 & Beak=no Length=3 & Gills=no

Length=3 & Gills=yes & Teeth=fewLength=3 & Gills=yes & Beak=no Gills=no & Beak=yes & Teeth=fewLength=4 & Beak=yes & Teeth=few Length=5 & Beak=yes & Teeth=fewGills=yes & Beak=no & Teeth=fewLength=4 & Gills=yes & Teeth=few Length=5 & Gills=yes & Teeth=few

Beak=no & Teeth=few Gills=no & Teeth=fewLength=4 & Teeth=few Length=5 & Teeth=few

Length=3 & Beak=no & Teeth=few Length=3 & Gills=no & Teeth=fewGills=no & Beak=no & Teeth=manyLength=4 & Beak=no & Teeth=many Length=5 & Beak=no & Teeth=many Length=4 & Gills=yes & Beak=no Length=5 & Gills=yes & Beak=no

Gills=no & Beak=noLength=4 & Beak=no Length=5 & Beak=no

Length=3 & Gills=no & Beak=no Gills=no & Beak=no & Teeth=fewLength=4 & Beak=no & Teeth=few Length=5 & Beak=no & Teeth=fewLength=4 & Gills=no & Teeth=many Length=5 & Gills=no & Teeth=many Length=4 & Gills=no & Beak=yes Length=5 & Gills=no & Beak=yes

Length=4 & Gills=no Length=5 & Gills=no

Length=4 & Gills=no & Teeth=few Length=5 & Gills=no & Teeth=fewLength=4 & Gills=no & Beak=no Length=5 & Gills=no & Beak=no

Figure 4.1. The hypothesis space corresponding to Example 4.1. The bottom row corresponds to the 24 possible instances, which are complete conjunc-

tions with four literals each. The next row up are all 44 concepts with three literals each; then 30 concepts with two literals each; 9 concepts consisting

of a single literal; and the top concept is the empty conjunction which is always true and hence covers all possible instances. A connecting line is drawn

between concepts on consecutive layers if the higher one is more general than the lower one (i.e., the higher concept’s extension is a superset of the

lower’s).

https://doi.org/10.1017/CBO
9780511973000.006 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/CBO9780511973000.006

108 4. Concept learning

ity ordering (i.e., the subset relationship between concept extensions; see Background

4.1).

Least general generalisation

If we rule out all concepts that don’t cover at least one of the instances in Example 4.1,

the hypothesis space is reduced to 32 conjunctive concepts (Figure 4.2). Insisting that

any hypothesis cover all three instances reduces this further to only four concepts, the

least general one of which is the one found in the example – it is called their least gen-

eral generalisation (LGG). Algorithm 4.1 formalises the procedure, which is simply to

repeatedly apply a pairwise LGG operation (Algorithm 4.2) to an instance and the cur-

rent hypothesis, as they both have the same logical form. The structure of the hypoth-

esis space ensures that the result is independent of the order in which the instances are

processed.

Intuitively, the LGG of two instances is the nearest concept in the hypothesis space

where paths upward from both instances intersect. The fact that this point is unique

is a special property of many logical hypothesis spaces, and can be put to good use

in learning. More precisely, such a hypothesis space forms a lattice: a partial order in

which each two elements have a least upper bound (lub) and a greatest lower bound

(glb). So, the LGG of a set of instances is exactly the least upper bound of the instances

in that lattice. Furthermore, it is the greatest lower bound of the set of all generalisa-

tions of the instances: all possible generalisations are at least as general as the LGG.

In this very precise sense, the LGG is the most conservative generalisation that we can

learn from the data.

If we want to be a bit more adventurous, we could choose one of the more gen-

eral hypotheses, such as Gills= no or Beak= yes. However, we probably don’t want to

choose the most general hypothesis, which is simply that every animal is a dolphin,

Algorithm 4.1: LGG-Set(D) – find least general generalisation of a set of instances.

Input : data D .

Output : logical expression H .

1 x ←first instance from D ;

2 H ←x;

3 while instances left do

4 x ←next instance from D ;

5 H ←LGG(H , x) ; // e.g., LGG-Conj (Alg. 4.2) or LGG-Conj-ID (Alg. 4.3)

6 end

7 return H

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.1 The hypothesis space 109

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=few

Gills=no & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=few

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=few

true

Gills=no Length=3Length=4 Teeth=few

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=few

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=few

Figure 4.2. Part of the hypothesis space in Figure 4.1 containing only concepts that are more general than at least one of the three given instances

on the bottom row. Only four conjunctions, indicated in green at the top, are more general than all three instances; the least general of these is

Gills= no ∧ Beak= yes. It can be observed that the two left-most and right-most instances would be sufficient to learn that concept.

https://doi.org/10.1017/CBO
9780511973000.006 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/CBO9780511973000.006

110 4. Concept learning

as this would clearly be an over-generalisation. Negative examples are very useful to

prevent over-generalistion.

Example 4.2 (Negative examples). In Example 4.1 we observed the following

dolphins:

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

Suppose you next observe an animal that clearly doesn’t belong to the species –

a negative example. It is described by the following conjunction:

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

This negative example rules out some of the generalisations that were hitherto

still possible: in particular, it rules out the concept Beak= yes, as well as the

empty concept which postulates that everything is a dolphin.

The process is illustrated in Figure 4.3. We now have two hypotheses left, one which is

least general and the other most general.

Internal disjunction

You might be tempted to conclude from this and the previous example that we always

have a unique most general hypothesis, but that is not the case in general. To demon-

strate that, we are going to make our logical language slightly richer, by allowing a

restricted form of disjunction called internal disjunction. The idea is very simple: if

you observe one dolphin that is 3 metres long and another one of 4 metres, you may

want to add the condition ‘length is 3 or 4 metres’ to your concept. We will write this

as Length= [3,4], which logically means Length= 3 ∨ Length= 4. This of course only

makes sense for features that have more than two values: for instance, the internal

disjunction Teeth= [many, few] is always true and can be dropped.

Algorithm 4.2: LGG-Conj(x, y) – find least general conjunctive generalisation of

two conjunctions.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←conjunction of all literals common to x and y ;

2 return z

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.1 The hypothesis space 111

Length=3 & Gills=no & Beak=yes & Teeth=manyLength=4 & Gills=no & Beak=yes & Teeth=many Length=3 & Gills=no & Beak=yes & Teeth=fewLength=5 & Gills=yes & Beak=yes & Teeth=many

Gills=no & Beak=yes & Teeth=many Length=3 & Beak=yes & Teeth=manyLength=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many Gills=yes & Beak=yes & Teeth=many Length=5 & Beak=yes & Teeth=many

Gills=no & Teeth=many

Length=4 & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=4 & Gills=no & Beak=yes Gills=no & Beak=yes & Teeth=few

Teeth=many

Length=3 & Teeth=manyLength=4 & Teeth=many Gills=yes & Teeth=many Length=5 & Teeth=many

Beak=yes

Length=3 & Beak=yesLength=4 & Beak=yes Beak=yes & Teeth=fewGills=yes & Beak=yes Length=5 & Beak=yes

true

Gills=no Length=3Length=4 Teeth=fewGills=yes Length=5

Length=3 & Gills=noLength=4 & Gills=no Gills=no & Teeth=few

Length=3 & Beak=yes & Teeth=few

Length=3 & Teeth=few

Length=3 & Gills=no & Teeth=fewLength=5 & Gills=yes & Teeth=many Length=5 & Gills=yes & Beak=yes

Length=5 & Gills=yes

Figure 4.3. A negative example can rule out some of the generalisations of the LGG of the positive examples. Every concept which is connected by a red

path to a negative example covers that negative and is therefore ruled out as a hypothesis. Only two conjunctions cover all positives and no negatives:

Gills= no ∧ Beak= yes and Gills= no.

https://doi.org/10.1017/CBO
9780511973000.006 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/CBO9780511973000.006

112 4. Concept learning

Example 4.3 (Internal disjunction). Using the same three positive examples as

in Example 4.1, the second and third hypothesis are now

Length= [3,4] ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

and

Length= [3,4] ∧ Gills= no ∧ Beak= yes

We can drop any of the three conditions in the latter LGG without covering the

negative example from Example 4.2. Generalising further to single conditions,

we see that Length= [3,4] and Gills= no are still OK but Beak= yes is not, as it

covers the negative example.

Algorithm 4.3 details how we can calculate the LGG of two conjunctions employing

internal disjunction. The function Combine-ID(vx , vy) returns [vx , vy] if vx and vy are

constants, and their union if vx or vy are already sets of values: e.g., Combine-ID([3,4], [4,5])=
[3,4,5].

4.2 Paths through the hypothesis space

As we can clearly see in Figure 4.4, in this example we have not one but two most gen-

eral hypotheses. What we can also notice is that every concept between the least general

one and one of the most general ones is also a possible hypothesis, i.e., covers all the

positives and none of the negatives. Mathematically speaking we say that the set of

Algorithm 4.3: LGG-Conj-ID(x, y) – find least general conjunctive generalisation

of two conjunctions, employing internal disjunction.

Input : conjunctions x, y .

Output : conjunction z.

1 z ←true;

2 for each feature f do

3 if f = vx is a conjunct in x and f = vy is a conjunct in y then

4 add f = Combine-ID(vx , vy) to z ; // Combine-ID: see text

5 end

6 end

7 return z

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.2 Paths through the hypothesis space 113

Length=3 & Gills=no & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=manyLength=3 & Beak=yes & Teeth=many Length=3 & Gills=no & Teeth=many Length=3 & Gills=no & Beak=yes

Gills=no & Beak=yes & Teeth=manyLength=[3,4] & Beak=yes & Teeth=many Length=[3,4] & Gills=no & Teeth=many Length=[3,4] & Gills=no & Beak=yes

Beak=yes & Teeth=many

=yes & Teeth=many

Gills=no & Teeth=many

Length=[3,5] & Gills=no & Teeth=many

Gills=no & Beak=yes

Length=[3,5] & Gills=no & Beak=yes

Teeth=many

Length=[3,4] & Teeth=manyLength=[3,5] & Teeth=many

Beak=yes

Length=[3,4] & Beak=yesLength=[3,5] & Beak=yes

true

Gills=noLength=[3,4]Length=[3,5]

Length=[3,4] & Gills=no Length=[3,5] & Gills=no

Length=3 & Teeth=many Length=3 & Beak=yes

Length=3

Length=[3,4] & Gills=no & Beak=yes

Length=[3,4] & Beak=yes Length=[3,4] & Gills=no Gills=no & Beak=yes

Length=[3,4] Gills=no

Figure 4.4. (top) A snapshot of the expanded hypothesis space that arises when internal dis-

junction is used for the ‘Length’ feature. We now need one more generalisation step to travel

upwards from a completely specified example to the empty conjunction. (bottom) The version

space consists of one least general hypothesis, two most general hypotheses, and three in be-

tween.

hypotheses that agree with the data is a convex set, which basically means that we can

interpolate between any two members of the set, and if we find a concept that is less

general than one and more general than the other then that concept is also a member

of the set. This in turn means that we can describe the set of all possible hypotheses by

its least and most general members. This is summed up in the following definition.

Definition 4.1 (Version space). A concept is complete if it covers all positive exam-

ples. A concept is consistent if it covers none of the negative examples. The version

space is the set of all complete and consistent concepts. This set is convex and is fully

defined by its least and most general elements. �

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

114 4. Concept learning

A: Length=3 & Gills=no & Beak=yes & Teeth=many

B: Length=[3,4] & Gills=no & Beak=yes & Teeth=many

C: Length=[3,4] & Gills=no & Beak=yes

E: Beak=yes

D: Length=[3,4] & Beak=yes

F: true

Negatives

P
o

s
it
iv

e
s

p
1

p
2

p
3

n1

A

B

C,D E,F

Figure 4.5. (left) A path in the hypothesis space of Figure 4.3 from one of the positive examples

(p1, see Example 4.2 on p.110) all the way up to the empty concept. Concept A covers a single

example; B covers one additional example; C and D are in the version space, and so cover all

three positives; E and F also cover the negative. (right) The corresponding coverage curve, with

ranking p1 – p2 – p3 – n1.

We can draw a useful connection between logical hypothesis spaces and the cover-

age plots introduced in Chapter 2. Suppose you were to follow a path in the hypothesis

space from a positive example, through a selection of its generalisations, all the way up

to the empty concept. The latter, by construction, covers all positives and all negatives,

and hence occupies the top-right point (Neg,Pos) in the coverage plot. The starting

point, being a single positive example, occupies the point (0,1) in the coverage plot.

In fact, it is customary to extend the hypothesis space with a bottom element which

doesn’t cover any examples and hence is less general than any other concept. Taking

that point as the starting point of the path means that we start in the bottom-left point

(0,0) in the coverage plot.

Moving upwards in the hypothesis space by generalisation means that the numbers

of covered positives and negatives can stay the same or increase, but never decrease.

In other words, an upward path through the hypothesis space corresponds to a cover-

age curve and hence to a ranking. Figure 4.5 illustrates this for the running example.

The chosen path is but one among many possible paths; however, notice that if a path,

like this one, includes elements of the version space, the corresponding coverage curve

passes through ‘ROC heaven’ (0,Pos) and AUC= 1. In other words, such paths are op-

timal. Concept learning can be seen as the search for an optimal path through the

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.2 Paths through the hypothesis space 115

hypothesis space.

What happens, you may ask, if the LGG of the positive examples covers one or more

negatives? In that case, any generalisation of the LGG will be inconsistent as well. Con-

versely, any consistent hypothesis will be incomplete. It follows that the version space

is empty in this case; we will say that the data is not conjunctively separable. The fol-

lowing example illustrates this.

Example 4.4 (Data that is not conjunctively separable). Suppose we have the

following five positive examples (the first three are the same as in Example 4.1):

p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many

p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many

n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many

n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

The least general complete hypothesis is Gills= no ∧ Beak= yes as before, but

this covers n5 and hence is inconsistent. There are seven most general consis-

tent hypotheses, none of which are complete:

Length= 3 (covers p1 and p3)

Length= [3,5] ∧ Gills= no (covers all positives except p2)

Length= [3,5] ∧ Teeth= few (covers p3 and p5)

Gills= no ∧ Teeth=many (covers p1, p2 and p4)

Gills= no ∧ Beak= no

Gills= yes ∧ Teeth= few

Beak= no ∧ Teeth= few

The last three of these do not cover any positive examples.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

116 4. Concept learning

Most general consistent hypotheses

As this example suggests, finding most general consistent hypotheses is considerably

more involved than finding least general complete ones. Essentially, the process is

one of enumeration. Algorithm 4.4 gives an algorithm which returns all most general

consistent specialisations of a given concept, where a minimal specialisation of a con-

cept is one that can be reached in one downward step in the hypothesis lattice (e.g.,

by adding a conjunct, or removing a value from an internal disjunction). Calling the

algorithm with C = true returns the most general consistent hypotheses.

Figure 4.6 shows a path through the hypothesis space of Example 4.4, and the corre-

sponding coverage curve. We see that the path goes through three consistent hypothe-

ses, which are consequently plotted on the y-axis of the coverage plot. The other three

hypotheses are complete, and therefore end up on the top of the graph; one of these is,

in fact, the LGG of the positives (D). The ranking corresponding to this coverage curve

is p3 – p5 – [p1,p4] – [p2,n5] – [n1–4]. This ranking commits half a ranking error out of

25, and so AUC = 0.98. We can choose one concept from the ranking by applying the

techniques discussed in Section 2.2. For instance, suppose that classification accuracy

is the criterion we want to optimise. In coverage space, accuracy isometrics have slope

1, and so we see immediately that concepts C and D (or E) both achieve the best ac-

curacy in Figure 4.6. If performance on the positives is more important we prefer the

complete but inconsistent concept D; if performance on the negatives is valued more

we choose the incomplete but consistent concept C.

Closed concepts

It is worthwhile to reflect on the fact that concepts D and E occupy the same point in

coverage space. What this means is that generalising D into E by dropping Beak= yes

does not change the coverage in terms of positive and negative examples. One could

Algorithm 4.4: MGConsistent(C , N) – find most general consistent specialisations

of a concept.

Input : concept C ; negative examples N .

Output : set of concepts S.

1 if C doesn’t cover any element from N then return {C };

2 S ←�;

3 for each minimal specialisation C ′ of C do

4 S ←S∪MGConsistent(C ′, N);

5 end

6 return S

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.2 Paths through the hypothesis space 117

A: Length=3 & Gills=no & Beak=yes & Teeth=few

B: Length=[3,5] & Gills=no & Beak=yes & Teeth=few

C: Length=[3,5] & Gills=no & Beak=yes

D: Gills=no & Beak=yes

E: Gills=no

F: true

Negatives

P
o

s
it
iv

e
s

p
3

p
5

p
1

-2
p

4

n5 n1-4

A

B

C

D,E F

Figure 4.6. (left) A path in the hypothesis space of Example 4.4. Concept A covers a single pos-

itive (p3); B covers one additional positive (p5); C covers all positives except p4; D is the LGG of

all five positive examples, but also covers a negative (n5), as does E. (right) The corresponding

coverage curve.

say that the data suggests that, in the context of concept E, the condition Beak= yes

is implicitly understood. A concept that includes all implicitly understood conditions

is called a closed concept. Essentially, a closed concept is the LGG of all examples that

it covers. For instance, D and E both cover all positives and n5; the LGG of those six

examples is Gills= no ∧ Beak= yes, which is D. Mathematically speaking we say that

the closure of E is D, which is also its own closure – hence the term ‘closed concept’.

This doesn’t mean that D and E are logically equivalent: on the contrary, since XD ⊂XE

– the extension of D is a proper subset of the extension of E – there exist instances in

X that are covered by E but not by D. However, none of these ‘witnesses’ are present

in the data, and thus, as far as the data is concerned, D and E are indistinguishable.

As can be seen in Figure 4.7, limiting attention to closed concepts can considerably

reduce the hypothesis space.

In this section we have looked at the problem of learning a single logical expression

that covers most or all positive examples and few or no negative examples. We have

seen that such concepts live in a hypothesis space ordered by generality, and learning

a concept can be understood as finding a good path through that hypothesis space.

Such a path has a natural interpretation as a ranker, which allows a connection with

coverage curves and ROC curves. On the other hand, insisting on a single conjunction

of feature-value literals is a strong limitation; in the next section we look at ways to

relax it.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

118 4. Concept learning

true

Teeth=manyBeak=yes Length=[3,4] Length=[3,5] Length=[4,5]

Beak=yes & Teeth=many Length=[3,4] & Teeth=many Length=[3,5] & Teeth=many Length=[4,5] & Teeth=many

Gills=no & Beak=yes & Teeth=many Length=[3,4] & Beak=yes & Teeth=many Length=[3,5] & Beak=yes & Teeth=many Length=[4,5] & Beak=yes & Teeth=many

Length=[3,4] & Gills=no & Beak=yes & Teeth=many Length=[3,5] & Gills=no & Beak=yes & Teeth=many Length=[4,5] & Gills=no & Beak=yes & Teeth=many

Length=3 & Gills=no & Beak=yes & Teeth=many Length=4 & Gills=no & Beak=yes & Teeth=many Length=5 & Gills=no & Beak=yes & Teeth=many

Length=4 & Beak=yes & Teeth=many

Length=4 & Gills=yes & Beak=yes & Teeth=many

Length=5 & Beak=yes & Teeth=many

Length=5 & Gills=yes & Beak=yes & Teeth=many

Length=[4,5] & Gills=yes & Beak=yes & Teeth=many

Length=4 & Teeth=many

Length=4 & Gills=yes & Teeth=many

Length=4 & Gills=yes & Beak=no & Teeth=many

Length=5 & Teeth=many

Length=5 & Gills=yes & Teeth=many

Length=5 & Gills=yes & Beak=no & Teeth=many

Length=[4,5] & Gills=yes & Teeth=many

Length=[4,5] & Gills=yes & Beak=no & Teeth=many

Gills=no & Beak=yes Length=[3,4] & Beak=yes Length=[3,5] & Beak=yes Length=[4,5] & Beak=yes

Length=[3,4] & Gills=no & Beak=yes Length=[3,5] & Gills=no & Beak=yes Length=[4,5] & Gills=no & Beak=yesGills=no & Beak=yes & Teeth=few

Length=3 & Gills=no & Beak=yes Length=4 & Gills=no & Beak=yesLength=[3,4] & Gills=no & Beak=yes & Teeth=few

Length=3 & Gills=no & Beak=yes & Teeth=few Length=4 & Gills=no & Beak=yes & Teeth=few

Length=[3,5] & Gills=no & Beak=yes & Teeth=few Length=5 & Gills=no & Beak=yes

Length=5 & Gills=no & Beak=yes & Teeth=few

Length=[4,5] & Gills=no & Beak=yes & Teeth=few

Length=4 & Beak=yes Length=5 & Beak=yes

Length=4 Length=5

Figure 4.7. The hypothesis space is reduced considerably if we restrict attention to closed concepts. There are three, rather than four, complete concepts

(in green), and two, rather than seven, most general consistent closed concepts (in orange). Notice that the latter are both specialisations of the LGG of the

positives, and hence it is possible to select a path that includes both the LGG and a most general consistent hypothesis.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/C

BO
97

80
51

19
73

00
0.

00
6

Pu
bl

is
he

d
on

lin
e

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/CBO9780511973000.006

4.3 Beyond conjunctive concepts 119

4.3 Beyond conjunctive concepts

Recall from Background 4.1 that a conjunctive normal form expression (CNF) is a con-

junction of disjunctions of literals, or equivalently, a conjunction of clauses. The con-

junctions of literals we have looked at until now are trivially in CNF where each disjunc-

tion consists of a single literal. CNF expressions are much more expressive, particularly

since literals can occur in several clauses. We will look at an algorithm for learning

Horn theories, where each clause A → B is a Horn clause, i.e., A is a conjunction of lit-

erals and B is a single literal. For ease of notation we will restrict attention to Boolean

features, and write F for F= true and ¬F for F= false. In the example below we adapt

the dolphins example to Boolean variables ManyTeeth (standing for Teeth=many),

Gills, Short (standing for Length= 3) and Beak.

When we looked at learning conjunctive concepts, the main intuition was that un-

covered positive examples led us to generalise by dropping literals from the conjunc-

tion, while covered negative examples require specialisation by adding literals. This

intuition still holds if we are learning Horn theories, but now we need to think ‘clauses’

rather than ‘literals’. Thus, if a Horn theory doesn’t cover a positive we need to drop all

clauses that violate the positive, where a clause A → B violates a positive if all literals

in the conjunction A are true in the example, and B is false.

Things get more interesting if we consider covered negatives, since then we need

to find one or more clauses to add to the theory in order to exclude the negative. For

example, suppose that our current hypothesis covers the negative

ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak

To exclude it, we can add the following Horn clause to our theory:

ManyTeeth ∧ Gills ∧ Short→ Beak

While there are other clauses that can exclude the negative (e.g., ManyTeeth→ Beak)

this is the most specific one, and hence least at risk of also excluding covered positives.

However, the most specific clause excluding a negative is only unique if the negative

has exactly one literal set to false. For example, if our covered negative is

ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak

then we have a choice between the following two Horn clauses:

ManyTeeth ∧ Gills→ Short

ManyTeeth ∧ Gills→ Beak

Notice that, the fewer literals are set to true in the negative example, the more general

the clauses excluding the negative are.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

120 4. Concept learning

The approach of Algorithm 4.5 is to add all of these clauses to the hypothesis. How-

ever, the algorithm applies two clever tricks. The first is that it maintains a list S of

negative examples, from which it periodically rebuilds the hypothesis. The second is

that, rather than simply adding new negative examples to the list, it tries to find neg-

atives with fewer literals set to true, since this will result in more general clauses. This

is possible if we assume we have access to a membership oracle Mb which can tell us

whether a particular example is a member of the concept we’re learning or not. So in

line 7 of the algorithm we form the intersection of a new negative x and an existing one

s ∈ S – i.e., an example with only those literals set to true which are true in both x and

s – and pass the result z to the membership oracle to check whether it belongs to the

target concept. The algorithm also assumes access to an equivalence oracle Eq which

either tells us that our current hypothesis h is logically equivalent to the target formula

f , or else produces a counter-example that can be either a false positive (it is covered

by h but not by f) or a false negative (it is covered by f but not by h).

Algorithm 4.5: Horn(Mb,Eq) – learn a conjunction of Horn clauses from member-

ship and equivalence oracles.

Input : equivalence oracle Eq; membership oracle Mb.

Output : Horn theory h equivalent to target formula f .

1 h ←true; // conjunction of Horn clauses, initially empty

2 S ←� ; // a list of negative examples, initially empty

3 while Eq(h) returns counter-example x do

4 if x violates at least one clause of h then // x is a false negative

5 specialise h by removing every clause that x violates

6 else // x is a false positive

7 find the first negative example s ∈ S such that (i) z = s∩x has fewer true

literals than s, and (ii) Mb(z) labels it as a negative;

8 if such an example exists then replace s in S with z, else append x to the

end of S;

9 h ←true;

10 for all s ∈ S do // rebuild h from S

11 p ←the conjunction of literals true in s;

12 Q ←the set of literals false in s;

13 for all q ∈Q do h ←h ∧ (p → q);

14 end

15 end

16 end

17 return h

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.3 Beyond conjunctive concepts 121

Example 4.5 (Learning a Horn theory). Suppose the target theory f is

(ManyTeeth ∧ Short→ Beak) ∧ (ManyTeeth ∧ Gills→ Short)

This theory has 12 positive examples: eight in which ManyTeeth is false; another

two in which ManyTeeth is true but both Gills and Short are false; and two more

in which ManyTeeth, Short and Beak are true. The negative examples, then, are

n1: ManyTeeth ∧ Gills ∧ Short ∧ ¬Beak
n2: ManyTeeth ∧ Gills ∧ ¬Short ∧ Beak

n3: ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
n4: ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak

S is initialised to the empty list and h to the empty conjunction. We call

the equivalence oracle which returns a counter-example which has to be a false

positive (since every example satisfies our initial hypothesis), say n1 which vi-

olates the first clause in f . There are no negative examples in S yet, so we add

n1 to S (step 8 of Algorithm 4.5). We then generate a new hypothesis from

S (steps 9–13): p is ManyTeeth ∧ Gills ∧ Short and Q is {Beak}, so h becomes

(ManyTeeth ∧ Gills ∧ Short→ Beak). Notice that this clause is implied by our tar-

get theory: if ManyTeeth and Gills are true then so is Short by the second clause

of f ; but then so is Beak by f ’s first clause. But we need more clauses to exclude

all the negatives.

Now, suppose the next counter-example is the false positive n2. We form the

intersection with n1 which was already in S to see if we can get a negative exam-

ple with fewer literals set to true (step 7). The result is equal to n3 so the mem-

bership oracle will confirm this as a negative, and we replace n1 in S with n3. We

then rebuild h from S which gives (p is ManyTeeth ∧ Gills and Q is {Short,Beak})

(ManyTeeth ∧ Gills→ Short) ∧ (ManyTeeth ∧ Gills→ Beak)

Finally, assume that n4 is the next false positive returned by the equivalence

oracle. The intersection with n3 on S is actually a positive example, so instead

of intersecting with n3 we append n4 to S and rebuild h. This gives the previous

two clauses from n3 plus the following two from n4:

(ManyTeeth ∧ Short→ Gills) ∧ (ManyTeeth ∧ Short→ Beak)

The first of this second pair will subsequently be removed by a false negative from

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

122 4. Concept learning

the equivalence oracle, leading to the final theory

(ManyTeeth ∧ Gills→ Short) ∧
(ManyTeeth ∧ Gills→ Beak) ∧

(ManyTeeth ∧ Short→ Beak)

which is logically equivalent (though not identical) to f .

The Horn algorithm combines a number of interesting new ideas. First, it is an

active learning algorithm: rather than learning from a provided data set, it constructs

its own training examples and asks the membership oracle to label them. Secondly, the

core of the algorithm is the list of cleverly chosen negative examples, from which the

hypothesis is periodically rebuilt. The intersection step is crucial here: if the algorithm

just remembered negatives, the hypothesis would consist of many specific clauses. It

can be shown that, in order to learn a theory consisting of m clauses and n Boolean

variables, the algorithm requires O(mn) equivalence queries and O(m2n) membership

queries. In addition, the runtime of the algorithm is quadratic in both m and n. While

this is probably prohibitive in practice, the Horn algorithm can be shown to always

successfully learn a Horn theory that is equivalent to the target theory. Furthermore,

if we don’t have access to an equivalence oracle the algorithm is still guaranteed to

‘almost always’ learn a Horn theory that is ‘mostly correct’. This will be made more

precise in Section 4.4.

Using first-order logic

Another way to move beyond conjunctive concepts defined by simple features is to

use a richer logical language. The languages we have been using so far are propo-

sitional: each literal is a proposition such as Gills= yes – standing for ‘the dolphin

has gills’ – from which larger expressions are built using logical connectives. First-

order predicate logic, or first-order logic for short, generalises this by building more

complex literals from predicates and terms. For example, a first-order literal could be

BodyPart(Dolphin42,PairOf(Gill)). Here, Dolphin42 and PairOf(Gill) are terms refer-

ring to objects: Dolphin42 is a constant, and PairOf(Gill) is a compound term consist-

ing of the function symbol PairOf and the term Gills. BodyPart is a binary predicate

forming a proposition (something that can be true or false) out of two terms. This

richer language brings with it a number of advantages:

� we can use terms such asDolphin42 to refer to individual objects we’re interested

in;

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.3 Beyond conjunctive concepts 123

� the structure of objects can be explicitly described; and

� we can introduce variables to refer to unspecified objects and quantify over them.

To illustrate the latter point, the first-order literal BodyPart(x,PairOf(Gill)) can be used

to refer to the set of all objects having a pair of gills; and the following expression ap-

plies universal quantification to state that everything with a pair of gills is a fish:

∀x : BodyPart(x,PairOf(Gill))→ Fish(x)

Since we modified the structure of literals, we need to revisit notions such as gener-

alisation and LGG. Remember that for propositional literals with internal disjunction

we used the function Combine-ID for merging two internal disjunctions: thus, for ex-

ample, LGG-Conj-ID(Length= [3,4],Length= [4,5]) returns Length= [3,4,5]. In order

to generalise first-order literals we use variables. Consider, for example, the two first-

order literalsBodyPart(Dolphin42,PairOf(Gill)) andBodyPart(Human123,PairOf(Leg)):

these generalise to BodyPart(x,PairOf(y)),signifying the set of objects that have a pair

of some unspecified body part. There is a well-defined algorithm for computing LGGs

of first-order literals called anti-unification, as it is the mathematical dual of the de-

ductive operation of unification.

Example 4.6 (Unification and anti-unification). Consider the following terms:

BodyPart(x,PairOf(Gill)) describing the objects that have a pair of

gills;

BodyPart(Dolphin42,PairOf(y)) describing the body parts that Dolphin42 has

a pair of.

The following two terms are their unification and anti-unification, respectively:

BodyPart(Dolphin42,PairOf(Gill)) describingDolphin42 as having a pair of gills;

BodyPart(x,PairOf(y)) describing the objects that have a pair of un-

specified body parts.

So we see that in first-order logic literals already have quite a rich structure, owing

to the use of variables. We will revisit this in Section 6.4 when we discuss how to learn

classification rules in first-order logic.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

124 4. Concept learning

4.4 Learnability

In this chapter we have seen several hypothesis languages for concept learning, includ-

ing conjunctions of literals (possibly with internal disjunction), conjunctions of Horn

clauses, and clauses in first-order logic. It is intuitively clear that these languages dif-

fer in expressivity: for example, a conjunction of literals is also a conjunction of Horn

clauses with empty if-part, so Horn theories are strictly more expressive than conjunc-

tive concepts. The downside of a more expressive concept language is that it may be

harder to learn. The field of computational learning theory studies exactly this ques-

tion of learnability.

To kick things off we need a learning model: a clear statement of what we mean if

we say that a concept language is learnable. One of the most common learning models

is the model of probably approximately correct (PAC) learning. PAC-learnability means

that there exists a learning algorithm that gets it mostly right, most of the time. The

model makes an allowance for mistakes on non-typical examples: hence the ‘mostly

right’ or ‘approximately correct’. The model also makes an allowance for sometimes

getting it completely wrong, for example when the training data contains lots of non-

typical examples: hence the ‘most of the time’ or ‘probably’. We assume that typical-

ity of examples is determined by some unspecified probability distribution D , and we

evaluate the error rate errD of a hypothesis with respect to this distribution D . More

formally, for arbitrary allowable error rate ε < 1/2 and failure rate δ < 1/2 we require

a PAC-learning algorithm to output with probability at least 1−δ a hypothesis h such

that errD < ε.

Let’s assume for the moment that our data is noise-free, and that the target hypoth-

esis is chosen from our hypothesis language. Furthermore, we assume our learner al-

ways outputs a hypothesis that is complete and consistent with the training sample.

There is a possibility that this zero training error is misleading, and that the hypothesis

is actually a ‘bad’ one, having a true error over the instance space that is larger than

ε. We just want to make sure that this happens with probability less than δ. I will now

show that this can be guaranteed by choosing the training sample large enough. Sup-

pose our hypothesis space H contains a single bad hypothesis, then the probability it

is complete and consistent on m independently sampled training examples is at most

(1−ε)m . Since 1−ε≤ e−ε for any 0≤ ε≤ 1, we have that this probability is at most e−mε.

We want this to be at most δ, which can be achieved by setting m ≥ 1
ε ln 1

δ . Now, H may

contain several bad hypotheses, say k ≤ |H |; then the probability that at least one of

them is complete and consistent on m independently sampled training examples is at

most k(1−ε)m ≤ |H |(1−ε)m ≤ |H |e−mε, which is at most δ if

m ≥ 1

ε

(
ln |H |+ ln

1

δ

)
(4.1)

This is called the sample complexity of a complete and consistent learner. The good

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.4 Learnability 125

news is that it is linear in 1/ε and logarithmic in 1/δ. Notice that this suggests that it is

exponentially cheaper to reduce the failure rate than it is to reduce the error. Any learn-

ing algorithm that takes time polynomial in 1/ε and 1/δ to process a single training ex-

ample will therefore also take polynomial training time, another requirement for PAC-

learnability. However, finding a complete and consistent hypothesis is not tractable in

many hypothesis languages.

Notice that the term ln |H | arose because in the worst case almost all hypotheses

in H are bad. However, in practice this means that the bound in Equation 4.1 is overly

pessimistic. Still, it allows us to see that concept languages whose size is exponential in

some parameter n are PAC-learnable. For example, the number of conjunctions over

n Boolean variables is 3n , since each variable can occur unnegated, negated or not at

all. Consequently, the sample complexity is (1/ε) (n ln3+ ln(1/δ)). For example, if we

set δ = 0.05 and ε = 0.1 then the sample complexity is approximately 10(n · 1.1+3) =
11n + 30. For our dolphin example with n = 4 this is clearly pessimistic, since there

are only 24 = 16 distinct examples! For larger n this is more realistic. Notice also that

the PAC model is distribution-free: the learner is not given any information about the

instance distribution D . This is another source for pessimism in the bound on the

sample complexity.

We may not always be able to output a complete and consistent hypothesis: for

instance, this may be computationally intractable, the target hypothesis may not be

representable in our hypothesis language, or the examples may be noisy. A reasonable

strategy would be to choose the hypothesis with lowest training error. A ‘bad’ hypoth-

esis is then one whose true error exceeds the training error by at least ε. Using some

results from probability theory, we find that this probability is at most e−2mε2
. As a re-

sult, the 1/ε factor in Equation 4.1 is replaced by 1/2ε2: for ε= 0.1 we thus need 5 times

as many training examples compared to the previous case.

It has already been mentioned that the |H | term is a weak point in the above analy-

sis. What we need is a measure that doesn’t just count the size of the hypothesis space,

but rather gives its expressivity or capacity in terms of classification. Such a measure

does in fact exist and is called the VC-dimension after its inventors Vladimir Vapnik and

Alexey Chervonenkis. We will illustrate the main idea by means of an example.

Example 4.7 (Shattering a set of instances). Consider the following instances:

m = ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ ¬Beak
g = ¬ManyTeeth ∧ Gills ∧ ¬Short ∧ ¬Beak
s = ¬ManyTeeth ∧ ¬Gills ∧ Short ∧ ¬Beak

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

126 4. Concept learning

b = ¬ManyTeeth ∧ ¬Gills ∧ ¬Short ∧ Beak

There are 16 different subsets of the set {m, g , s,b}. Can each of them be rep-

resented by its own conjunctive concept? The answer is yes: for every instance

we want to exclude, we add the corresponding negated literal to the conjunc-

tion. Thus, {m, s} is represented by ¬Gills ∧ ¬Beak, {g , s,b} is represented by

¬ManyTeeth, {s} is represented by¬ManyTeeth ∧ ¬Gills ∧ ¬Beak, and so on. We

say that this set of four instances is shattered by the hypothesis language of con-

junctive concepts.

The VC-dimension is the size of the largest set of instances that can be shattered

by a particular hypothesis language or model class. The previous example shows that

the VC-dimension of conjunctive concepts over d Boolean literals is at least d . It is in

fact equal to d , although this is harder to prove (since it involves showing that no set

of d +1 instances can be shattered). This measures the capacity of the model class for

representing concepts or binary classifiers. As another example, the VC-dimension of

a linear classifier in d dimensions is d +1: a threshold on the real line can shatter two

points but not three (since the middle point cannot be separated from the other two by

a single threshold); a straight line in a two-dimensional space can shatter three points

but not four; and so on.

The VC-dimension can be used to bound the difference between sample error and

true error of a hypothesis (which is the step where |H | appeared in our previous argu-

ments). Consequently, it can also be used to derive a bound on the sample complexity

of a complete and consistent learner in terms of the VC-dimension D rather than |H |:

m ≥ 1

ε
max

(
8D log2

13

ε
,4 log2

2

δ

)
(4.2)

We see that the bound is linear in D , where previously it was logarithmic in |H |. This is

natural, since to shatter D points we need at least 2D hypotheses, and so log2 |H | ≥D .

Furthermore, it is still logarithmic in 1/δ, but linear times logarithmic in 1/ε. Plug-

ging in our previous values of δ = 0.05 and ε = 0.1, we obtain a sample complexity of

max(562 ·D,213).

We conclude that the VC-dimension allows us to derive the sample complexity of

infinite concept classes, as long as they have finite VC-dimension. It is furthermore

worth mentioning a classical result from computational learning theory which says

that a concept class is PAC-learnable if and only if its VC-dimension is finite.

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

4.5 Concept learning: Summary and further reading 127

4.5 Concept learning: Summary and further reading

In this chapter we looked at methods for inductive concept learning: the process of

constructing a logical expression defining a set of objects from examples. This problem

was a focus of early work in artificial intelligence (Winston, 1970; Vere, 1975; Banerji,

1980), following the seminal work by psychologists Bruner, Goodnow and Austin (1956)

and Hunt, Marin and Stone (1966).

� In Section 4.1 we considered the structure of the hypothesis space: the set of pos-

sible concepts. Every hypothesis has an extension (the set of instances it covers),

and thus relationships between extensions such as subset relationships carry

over to the hypothesis space. This gives the hypothesis space a lattice structure:

a partial order with least upper bounds and greatest lower bounds. In particular,

the LGG is the least upper bound of a set of instances, and is the most conser-

vative generalisation that we can learn from the data. The concept was defined

in the context of first-order logic by Plotkin (1971), who showed that it was the

mathematical dual of the deductive operation of unification. We can extend the

hypothesis language with internal disjunction among values of a feature, which

creates a larger hypothesis space that still has a lattice structure. Internal dis-

junction is a common staple of attribute-value languages for learning following

the work of Michalski (1973). For further pointers regarding hypothesis language

and hypothesis space the reader is referred to (Blockeel, 2010a,b).

� Section 4.2 defined complete and consistent hypotheses as concepts that cover

all positive examples and no negative examples. The set of complete and consis-

tent concepts is called the version space, a notion introduced by Mitchell (1977).

The version space can be summarised by its least general and most general mem-

bers, since any concept between one least general hypothesis and another most

general one is also complete and consistent. Alternatively, we can describe the

version space by all paths from a least general to a most general hypothesis. Such

upward paths give rise to a coverage curve which describes the extension of each

concept on the path in terms of covered positives and negatives. Concept learn-

ing can then be seen as finding an upward path that goes through ROC heaven.

Syntactically different concepts can have the same extension in a particular data

set: a closed concept is the most specific one of these (technically, the LGG of

the instances in its extension). The notion is studied in formal concept anal-

ysis (Ganter and Wille, 1999) and was introduced in a data mining context by

Pasquier, Bastide, Taouil and Lakhal (1999); Garriga, Kralj and Lavrač (2008) in-

vestigate its usefulness for labelled data.

� In Section 4.3 we discussed the Horn algorithm for learning concepts described

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

128 4. Concept learning

by conjunctions of Horn rules, first published in Angluin et al. (1992). The al-

gorithm makes use of a membership oracle, which can be seen as an early form

of active learning (Cohn, 2010; Dasgupta, 2010). Horn theories are superficially

similar to classification rule models which will be studied in Chapter 6. However,

there is an important difference, since those classification rules have the target

variable in the then-part of the rule, while the Horn clauses we are looking at here

can have any literal in the then-part. In fact, in this chapter the target variable is

not part of the logical language at all. This setting is sometimes called learning

from interpretations, since examples are truth-value assignments to our theory.

The classification rule setting is called learning from entailment, since in order

to find out whether a particular rule covers an example we need to apply logical

inference. De Raedt (1997) explains and explores the differences between these

two settings. Further introductions to first-order logic and its use in learning are

given by Flach (2010a) and De Raedt (2010).

� Section 4.4 briefly reviewed some basic concepts and results in learnability the-

ory. My account partly followed Mitchell (1997, Chapter 7); another excellent

introduction is given by Zeugmann (2010). PAC-learnability, which allows an er-

ror rate of ε and a failure rate of δ, was introduced in a seminal paper by Valiant

(1984). Haussler (1988) derived the sample complexity for complete and consis-

tent learners (Equation 4.1), which is linear in 1/ε and logarithmic in 1/δ and the

size of the hypothesis space. The VC-dimension as a measure of the capacity of

a hypothesis language was introduced by Vapnik and Chervonenkis (1971) in or-

der to quantify the difference between training error and true error. This allows a

statement of the sample complexity in terms of the VC-dimension (Equation 4.2)

which is due to Blumer, Ehrenfeucht, Haussler and Warmuth (1989). This same

paper proved that a model class is PAC-learnable if and only if its VC-dimension

is finite.

�

https://doi.org/10.1017/CBO9780511973000.006 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511973000.006

