
5 Regularities in Words

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

72 Three Square Prefixes 181

72 Three Square Prefixes

The combinatorial analysis of square prefixes of a word leads to several
consequences useful to design algorithms related to periodicities.

Three non-empty words u, v and w satisfy the square-prefix condition if
u2 is a proper prefix of v2 and v2 a proper prefix of w2. For example, when
u = abaab, v = abaababa, w = abaababaabaabab, the prefix
condition is met:

abaababaab
abaababaabaababa
abaababaabaabababaababaabaabab

but u2 is not a prefix of v nor v2 a prefix of w, which otherwise would provide
a trivial example.

u u

v v

w w

Question. Show that if u2, v2 and w2 satisfy the square-prefix condition and
|w| ≤ 2|u| then u,v,w ∈ z2z∗ for some word z.

The conclusion implies in particular that u is not primitive. In fact, this
implication holds true if both the square-prefix condition and the inequality
|w| < |u| + |v| are met (Three-Square-Prefix Lemma). But the statement in
the above question has a stronger conclusion that says we are essentially in the
trivial situation where w2 = ak or the like.

Question. Give infinitely many examples of word triples that satisfy the
square-prefix condition and for which both |u|+|v| = |w| and u is primitive.

The next question provides a consequence of the Three-Square-Prefix
Lemma or of the first statement. The exact upper bound or even a tight bound
on the concerned quantity is still unknown.

Question. Show that less than 2|x| (distinct) primitively rooted squares can
be factors of a word x.

Another direct consequence of the Three-Square-Prefix Lemma is that a
word of length n has no more than log� n prefixes that are primitively rooted

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

182 Regularities in Words

squares. The golden mean � comes from the recurrence relation for Fibonacci
numbers in the second question.

Solution
Assume that |w| ≤ 2|u| as displayed in the picture.

u u

v v

w w

The condition in the first question implies that the three occurrences of u

at positions |u|, |v| and |w| pairwise overlap. Thus the word u has periods
|v| − |u| and |w| − |v| whose sum is no more than |u|, and then q = gcd(|v| −
|u|,|w| − |v|) is also a period of u due to the Periodicity Lemma. The word
z = u[0 . . p], where p is the (smallest) period of u, is a primitive word and as
such occurs in u only at positions kp for k = 0, . . . ,�|u|/p�. Period p is also
a divisor of q because q < |u|/2.

The word z occurs at position |u| on w2 and then at position |u| + |v| − |w|
on u. Since |u| + |v| − |w| and |w| − |v| are multiples of p, their sum |u| is,
and then u is an integer power of z; thus u ∈ z2z∗. The same holds for v and
w because |v| − |u| and |w| − |v| are multiples of p = |z|.

The infinite word s, limit of the sequence defined by s1 = aab, s2 =
aabaaba and si = si−1si−2 for i ≥ 3, contains an infinity of prefix triples that
answer the second question. The first triple lengths are (3,7,10), (7,10,17),
(10,17,27). The infinite Fibonacci word shows a similar behaviour.

To count the number of primitively rooted squares that are factors of a word
x, assign to each its rightmost starting position on x. If ever a position i is
assigned to three squares u2, v2 and w2 like in the picture below, due to the
statement of the first question, since u is primitive, the shortest square u2 is a
proper prefix of w. Then u2 reoccurs at position i + |w|, which contradicts the
fact that i is the rightmost starting position of u2. Therefore, no more than two
squares can be assigned to a given position. And since the last position of x

is not considered, the total number of primitively rooted square factors is less
than 2|x|.

x

u u u u
v v

w w

i i + |w|

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

73 Tight Bounds on Occurrences of Powers 183

Notes
The Three-Square-Prefix Lemma and consequences are by Crochemore and
Rytter [97] (see also [74, chapter 9] and [176, chapters 8 and 12]). The first
statement and variations on the lemma are by Bai et al. [22].

The problem of counting square factors and the present result are by
Fraenkel and Simpson [118]. Direct simple proofs are by Hickerson [141] and
Ilie [146]. Slightly improved upper bounds are by Ilie [147] and by Deza et al.
[103].

73 Tight Bounds on Occurrences of Powers

The problem considers lower bounds on the number of occurrences of integer
powers occurring in a word.

An integer power is a word in the form uk for some non-empty word u and
some integer k > 1. The size of the set of square factors (Problem 72) and the
number of runs (Problem 86) in a word are known to be linear in the length of
the word. This contrasts with the number of occurrences of integer powers that
does not satisfy this property.

To avoid trivial lower bounds we consider primitively rooted integer
powers, that is, powers of the form uk , where u is a primitive word (i.e., not
itself a power).

To start with, let us consider the word an. Though it contains a quadratic
number occurrences of squares, it contains exactly n − 1 occurrences of
primitively rooted squares (underlined below).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
a a a a a a a a a a a a a a a a a a

But if a few occurrences of a are changed to b in the word (see below) the
number of primitively rooted squares increases, although some occurrences of
short squares disappear (when n is large enough).

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

184 Regularities in Words

a a a a a b a a a a a b a a a a a b× × ×× ×

Consider the sequence of words defined by{
x0 = a5b,

xi+1 = (xi)
3b, for i ≥ 0.

Question. Show that xi contains asymptotically �(|xi | log |xi |) occurrences
of primitively rooted squares.

In fact, the property on squares also holds for powers of any integer
exponent k ≥ 2.

Question. For a given integer k ≥ 2, define a sequence of words yi , for
i ≥ 0, containing asymptotically �(|yi | log |yi |) occurrences of primitively
rooted kth powers.

Notice the bound is tight due to the upper bound on square prefixes in
Problem 72.

Solution
Consider the sequence of words xi of length �i and let ci be the number of
occurrences of primitively rooted squares in xi .

We have (looking at (x0)
3 in the above picture and accounting for the suffix

occurrence of bb in x1) {
�0 = 6, c0 = 4,
�1 = 19, c1 = 20.

Note that all short squares appear in each occurrence of a5b in x1 and that a5b
itself is a primitive word. The same property holds true by induction for all
squares occurring in xi . This produces the recurrence relations, for i > 0{

�1 = 19, c1 = �1 + 1,
�i+1 = 3�i + 1, ci+1 = 3ci + �i + 2.

Then, asymptotically we get �i+1 ≈ 3i�1, ci+1 > 3ic1 + i3i−1�1 and i ≈
log |xi+1|, which proves the statement of the first question.

When k is the exponent of considered powers, for some positive integer m,
we can define the sequence of words

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

74 Computing Runs on General Alphabets 185

{
y0 = amb,

yi+1 = (yi)
k+1b, for i > 0,

which induces{
�i+1 = (k + 1)�i + 1, ci+1 = (k + 1)ci + �i + 2,

and also leads to an �(|yi | log |yi |) lower bound on the number of occurrences
of primitively rooted kth powers.

Notes
The lower bound on primitively rooted squares holds for Fibonacci words
[64]. The proof uses the fact that Fibonacci words have no factors that are
4th powers. The bound has also been shown by Gusfield and Stoye [135].

The asymptotic lower bound for occurrences of kth power is shown in [72],
which inspired the present proof.

74 Computing Runs on General Alphabets

The goal of the problem is to design an algorithm for computing runs in a
word without any extra assumption on the alphabet. To say it differently, the
algorithm should use the equality model on letters, that is, use only =/�= letter
comparisons when necessary.

Problem 87 deals with computing runs on linear-sortable alphabets, a
necessary condition to obtain a linear-time algorithm.

A run in a word x is a maximal periodicity or a maximal occurrence of a
periodic factor of x. Formally, it is an interval of positions [i . . j] for which the
(smallest) period p of x[i . . j] satisfies 2p ≤ j − i + 1, and both x[i − 1] �=
x[i + p − 1] and x[j + 1] �= x[j − p + 1] when the inequalities make sense.
The centre of run [i . . j] is the position i + p.

To avoid reporting the same run twice, they can be filtered out according to
their centre. To do so, we say that a run is right centred in the product uv of
words if it starts at a position on u and has its centre on v. And we say it is left
centred in uv if its centre is on u and it ends in v.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

186 Regularities in Words

Question. Design a linear-time algorithm that finds right-centred runs
occurring in a product uv of two words.

[Hint: Use prefix tables, see Problem 22.]

Question. Design an algorithm that computes all the runs in a word of length
n in time O(n log n) in the equality model.

[Hint: Use a divide-and-conquer approach.]

Solution
To answer the first question, we can look for the sought runs in the increasing
order of their periods. As shown in the picture, given a potential period p of a
run, we just have to check how long the associated factor v[0 . . p−1] matches
to its left and to its right. These are longest common extensions (LCE) from
two positions, for instance r = lcp(v,v[p . . |v| − 1). If the sum of extension
lengths is at least the period a run is detected.

u v
0 p

� �
r� � �

w w w

The length r of the right extension is simply given by the prefix table of v.
The length � of the left extension is computed similarly with the prefix table of
z = uR#vRuR, where # does not appear in uv.

If the condition � ≤ p holds at line 6 in the algorithm below, the potential
run is centred on v, as required. The offset, position on x of one of its factors,
uv, is added to report runs as intervals of positions on x (instead of uv) in
Algorithm Runs below.

Right-Centred-Runs(u,v non-empty words,offset)

1 pref v ← Prefixes(v)

2 pref z ← Prefixes(uR#vRuR)

3 for p ← 1 to |v| − 1 do
4 r ← pref v[p]

5 � ← pref z[|u| + |v| − p + 1]

6 if � ≤ p and � + r ≥ p then
7 Output run [|u| − � . . |u| + p + r − 1] + offset

The design of Left-Centred-Runs to compute runs of uv centred on u

follows the same scheme and is done symmetrically.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

74 Computing Runs on General Alphabets 187

The running time of both algorithms depends on the complexity to compute
a prefix table. It is linear in the input length, as shown in Problem 22. Moreover,
only =/�= comparisons are used during the calculation.

Eventually, to compute all runs in a word x, the process divides x into two
words of similar length as in the algorithm below. Runs are obtained by calling
Runs(x,n,0). As a consequence of the running times of the two previous
algorithms, the whole computation runs in time O(n log n) in the comparison
model.

Runs(x non-empty word of length n,offset)

1 if n > 1 then
2 (u,v) ← (x[0 . . �n/2�],x[�n/2� + 1 . . n − 1])

3 Runs(u,�n/2� + 1,offset)

4 Runs(v,n − �n/2� − 1,offset + �n/2� + 1)

5 Right-Centred-Runs(u,v,offset)

6 Left-Centred-Runs(u,v,offset)

Note that some runs may be reported several times by the algorithm. This
happens when a long run in the first half of the word overflows on the second
half of it. Some filtering is needed to get a clean list of runs.

Notes
The present technique to compute runs is presented in [84] together with other
solutions running in the same time according to the computational model. In
this model, the algorithm is optimal due to a result by Main and Lorentz [179],
who gave a �(n log n) lower bound for the detection of a square in a word.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

188 Regularities in Words

75 Testing Overlaps in a Binary Word

The goal of the problem is to design an efficient algorithm to test whether a
binary word contains an overlap factor. An overlap is a factor whose exponent
is larger than 2. A word contains an overlap if equivalently it has a factor of
the form auaua, where a is a letter and u is a word.

The Thue–Morse word μ∞(a) is an example of an infinite overlap-free
word. It is generated by the Thue–Morse morphism μ (defined by μ(a) = ab
and μ(b) = ba) that preserves overlap-freeness of words.

For a binary word x we define its decomposition uyv = x, formally a
triple (u,y,v): |u| is the smallest position on x of a longest factor y that
belongs to {ab,ba}+. The decomposition is called an RS-factorisation if u,v ∈
{ε,a,b,aa,bb}. RS-factorisations are transformed into words in {ab,ba}∗ by
the partial functions f or g as follows (c and d are letters and the bar function
exchanges letters a and b):

f (uyv) =

⎧⎪⎪⎨⎪⎪⎩
y if u = v = ε

c̄cy if u = c or cc and v = ε

ydd̄ if u = ε and v = d or dd

c̄cydd̄ if u = c or cc and v = d or dd

g(uyv) =
⎧⎨⎩

y if u = v = ε

c̄cy if u = c or cc and v = ε

ydd̄ if u = ε or c or cc and v = d or dd

OverlapFree(x non-empty binary word)

1 while |x| > 6 do � below c and d are letter variables

2 uyv ← RS − f actorisation(x)

3 if uyv is not an RS-factorisation then
4 return false

5 if [u = cc and (ccc or ccc̄ccc̄c prefix of uy)] or

[v = dd and (ddd or dd̄ddd̄dd suffix of uy)] then
6 return false

7 if (u = c or u = cc) and (v = d or v = dd) and

uyv is a square then
8 x ← μ−1(g(uyv))

9 else x ← μ−1(f (uyv))

10 return true

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

75 Testing Overlaps in a Binary Word 189

Question. Show that Algorithm OverlapFree runs in linear time for testing
if its binary input word is overlap free.

Solution
The proof of correctness of OverlapFree is out of the scope of the problem
but we give a few properties that are used to do it. The proof relies on the
property of decomposition of overlap-free words used in the algorithm. To
state it, let O and E be the sets

O = {aabb,bbaa,abaa,babb,aabab,bbaba},
E = {abba,baab,baba,abab,aabaa,bbabb}.
Let x be an overlap-free binary word. Then, if x has a prefix in O, x[j] �=
x[j − 1] for each odd position j satisfying 3 ≤ j ≤ |x| − 2. And, if x has a
prefix in E, x[j] �= x[j−1] for each even position j satisfying 4 ≤ j ≤ |x|−2.
Consequently, if the word is long enough, it has a long factor that belongs to
{ab,ba}+. Namely, if |x| > 6, x uniquely factorises into uyv, where u,v ∈
{ε,a,b,aa,bb} and y ∈ {ab,ba}+.

Iterating the decomposition, the word x uniquely factorises into

u1u2 . . . ur · μr−1(y) · vr . . . v2v1,

where |y| < 7 and us,vs ∈ {ε,μs−1(a),μs−1(b),μs−1(aa),μs−1(bb)}.
As for the running time of OverlapFree, note that instructions in the while

loop execute in time O(|x|). Since the length of x is essentially halved at each
step by the action of the Thue–Morse morphism, this results in a total linear-
time execution of the loop. The last test is done on a word of length at most 6,
and therefore takes constant time, which proves the whole algorithm runs in
time O(|x|).
Notes
Most properties of overlap-free words concerned by this problem have
been shown by Restivo and Salemi [207], who deduced the polynomial
growth of their number according to the length. The present algorithm is
by Kfoury [158], who proved tighter properties on overlap-free words and
eventually reduced slightly the previous bound on the number of overlap-free
words of a given length.

The present algorithm gives a direct solution to the question. A more generic
solution that requires more tools is given by Problem 87 with an algorithm that
computes all runs in a word. To detect overlap-freeness with it, it suffices to
check that the exponent of all runs is exactly 2 (it cannot be smaller by the run
definition). The latter algorithm also runs in linear time on binary words.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

190 Regularities in Words

76 Overlap-Free Game

The game relies on the notion of overlaps occurring in words. A word contains
an overlap (factor of exponent larger than 2) if one of its factors is of the form
avava for a letter a and a word v.

The overlap-free game of length n is played between two players, Ann and
Ben, on the alphabet A = {0,1,2,3}. Players extend an initially empty word
by alternately appending a letter to the word. The game ends when the length
of the emerging word is n.

We assume that Ben makes the first move and that n is even. Ann wins if
there is no overlap in the final word. Otherwise, Ben is the winner.

Ann’s winning strategy. Let d ∈ A be the letter Ann adds during the kth
move. If Ben just added the letter c, d is defined by

d = c ⊕ f[k],

where x ⊕ y = (x + y) mod 4 and f = f ∞(1) is the infinite square-free word
obtained by iterating the morphism f defined on {1,2,3}∗ by f (1) = 123,
f (2) = 13 and f (3) = 2 (see Problem 79). Word f and a series of moves
look like

f 1 2 3 1 3 2 1 2 · · ·
moves 0 1 2 0 0 3 2 3 3 2 3 1 1 2 1 3 · · ·

Question. Show that Ann always wins against Ben in the overlap-free game
of any even length n when using Ann’s strategy.

[Hint: The sum of letters of any odd-length factor of f is not divisible by 4.]

Solution
To answer the question we definitely use the fact the word f is square free but
also use here the crucial property stated in the hint.

Proof of the hint. Let α = |v|1, β = |v|2 and γ = |v|3 be the respective
number of occurrences of letters 1, 2 and 3 in v. Due to its morphic definition
the word f is composed of blocks 123, 13 and 2. Hence there is always a
single occurrence of 1 between any two (not adjacent) consecutive occurrences
of 3’s. This implies |α − γ | ≤ 1.

If |α − γ | = 1, α + 2β + 3γ is not divisible by 2 and consequently not
divisible by 4.

Otherwise α = γ and then β is odd because the length α + β + γ = |v| is
odd. This implies 2β mod 4 = 2. Hence α ⊕ 2β ⊕ 3γ = 2β mod 4 = 2, and
the sum of letters of v is not divisible by 4, which achieves the hint’s proof.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

76 Overlap-Free Game 191

Correctness of Ann’s strategy. We prove it by contradiction. Assume that at
some moment in the game the word w gets an overlap, which is then of the
form cvcvc for c ∈ A. Let us distinguish two cases.

Case |cv| is even. Choosing either u = cv or u = vc, the word w contains a
square uu for which |u| is even and its first letter is a Ben’s move in the game.
The square looks like

uu = b1a1b2a2 . . . bkak b1a1b2a2 . . . bkak,

where bi’s correspond to Ben’s moves and ai’s to Ann’s moves. Denoting x "
y = (x − y) mod 4, the word e1e2 . . . ek e1e2 . . . ek , where ei = (bi " ai) is a
square in f. So this case is impossible because f is square free.

Case |cv| is odd. As above, the word w contains a square uu for which |u| is
odd and its first letter corresponds to a Ben’s move. Observe that |u| > 1, since
the second letter is from Ann’s move and is different from Ben’s move.

We demonstrate the proof for |u| = 7, which clearly shows the pattern of
the general proof. Let u = b1a1 b2a2 b3a3 b4, where bi are Ben’s moves and
ai’s are Ann’s moves. The square is of the form

uu = b1a1 b2a2 b3a3 b4b1 a1b2 a2b3 a3b4.

Consequently f contains the factor e1e2e3e4e5e6e7, where
e1 = a1 " b1, e2 = a2 " b2, e3 = a3 " b3, e4 = b1 " b4,

e5 = b2 " a1, e6 = b3 " a2, e7 = b4 " a3.
We get

e1 ⊕ e2 ⊕ e3 ⊕ e4 ⊕ e5 ⊕ e6 ⊕ e7 = 0,

writing the sum as
(a1"b1)⊕ (b1"b4)⊕ (b4"a3)⊕ (a3"b3)⊕ (b3"a2)⊕ (a2"b2)⊕ (b2"a1).
But this is impossible because from the hint the sum of letters of an odd-length
factor of f is not divisible by 4.

To conclude, since no case is possible, w contains no overlap and Ann’s
strategy causes her to win.

Notes
The solution of the problem is a version of the Thue game strategy presented
in [132]. Note Ben has a simple winning strategy if the game is played with
only three letters and Ann sticks to a similar strategy.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

192 Regularities in Words

77 Anchored Squares

When searching, in a divide-and-conquer way, a word for square factor it
is natural to look for squares in the product of two square-free words. The
problem deals with the latter question and extends to a square-freeness test
running in O(n log n) time on a word of length n.

The method based on prefix tables (see Problem 74) achieves the same goal
but requires tables of size O(n) while the present solution needs only a few
variables in addition to input.

Let y and z be two square-free words. Algorithm Right tests if yz

contains a square centred in z only. Other squares in the product can be found
symmetrically.

The algorithm examines all possible periods of a square. Given a
period p (see picture), the algorithm computes the longest common suffix
u′ = z[j . . p − 1] between y and z[0 . . p − 1]. Then it checks if z[0 . . j − 1]
occurs at position p on z, scanning z from the right position k − 1 of the
potential square. If it is successful, a square is found.

y z
0 j p end k

u′ w v′ u′ w′ v′

Right(y,z non-empty square-free strings)

1 (p,end) ← (|z|,|z|)
2 while p > 0 do
3 j ← min{q : z[q . . p − 1] suffix of y}
4 if j = 0 then
5 return true

6 k ← p + j

7 if k < end then
8 end ← min{q : z[q . . k − 1] suffix of z[0 . . j − 1]}
9 if end = p then

10 return true

11 p ← max{j − 1,�p/2�}
12 return false

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

77 Anchored Squares 193

Question. Show both that Algorithm Right returns true if and only if the
word yz contains a square centred in z and that its running time is O(|z|)
with only constant extra space.

In Algorithm Right the role of variable end and instructions at lines 7
and 11 are crucial to get the running time announced in the question. Note
that it does not depend on the length of y.

Solution
Correctness of Right. This relies on the next statement, whose combinato-
rial proof is left to the reader. It is illustrated by the following picture, in which
u′ = z[j . . p−1] is the longest common suffix of y and z[0 . . p−1] computed
at line 3, and v′ is the longest common suffix of z[0 . . j − 1] and z[p . . k − 1]
possibly computed at line 8. A test in the algorithm can be added to discard an
empty u′, since it cannot lead to a square because z is square-free.

y z
0 j p end k

u′ w v′ u′ w′ v′

u v u v

Lemma 6 Let y and z be two square-free words and vuv be the shortest prefix
of z for which u is a suffix of y. Let u′ and v′ be as described above, and w and
w′, |w| = |w′|, as in the picture.

Assume that vu is a proper prefix of wv′u′. Then, vu is a proper prefix of
wv′ or |vu| ≤ |wv′u′|/2. The word vuv is also a prefix of wv′u′w′.

The correctness follows from the conclusion of the lemma after checking
that u′ and v′ are correctly computed with indices j and end respectively. The
next value of p assigned at line 11 applies the first conclusion of the lemma.
The second conclusion is used at line 7 after the assignment of the variable k

to skip a useless computation of v′ when the condition is not met.

Running time of Right. The worst-case running time of Algorithm Right
relies on the maximum number of letter comparisons, which we evaluate. Let
p′ and p′′, p′ > p′′, be two consecutive values of the variable p during a run
of the algorithm; that is, p′ is the value of p when entering the while loop, and
p′′ is its value at the end of the loop execution.

If a test is added to discard an empty u′ we have p′′ = p′ − 1 after 1
comparison. Otherwise we have p′′ = max{j ′ − 1,�p′/2�}, where j ′ is the
value of j after execution of line 3. If j ′ − 1 is the maximum, the number of

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

194 Regularities in Words

comparisons at this line is p′ − p′′. Otherwise the number of comparisons is
no more than 2(p′ −p′′). Summing up on all the executions of the loop we get
no more than 2|z| letter comparisons at line 3.

Due to the role of the variable end , positive letter comparisons on letters
of z[p . . end − 1] at line 8 are all at different positions on z, which gives
a maximum of |z| comparisons. Besides, there is at most one negative
comparison for each value of p. Then no more than 2|z| letter comparisons
at line 8. Therefore the total number of letter comparisons is no more than
4|z|, yielding a O(|z|) running time.

Notes
The bound on the number of letter comparisons performed by Algorithm
Right on words y and z is 2|z| − 1 when y is a Zimin word (see Problem 43)
and z = #y for a letter # not appearing in y, for example when y =
abacabadabacaba.

The first design of Algorithm Right with the constant extra space feature is
by Main and Lorentz [179]. The slight improvement given here appears in [66].

A solution to the question using prefix tables or analogue tables, like
in Problem 74, is described in [74, 98]. The computation of j and of end
in Algorithm Right are often referred to as Longest Common Extensions
(LCEs). They can be found in constant time after some preprocessing when
the alphabet is linearly sortable; see, for example, the method designed by
Fischer and Heun in [115]. This latter type of solution is used in Problem 87.

Solutions of the question with a dual Algorithm Left lead to an algorithm
that tests the square-freeness of a word of length n and runs in O(n log n)

time using only constant extra space. The optimality is proved in [179]. On a
fixed-size alphabet, it also leads to a linear-time square-freeness test (see [67])
using a factorisation of the word similar to the factorisation by Lempel and Ziv
described in Chapter 6.

Extension to the computation in O(n log n) time of runs occurring in a word
of length n is treated in [84].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

78 Almost Square-Free Words 195

78 Almost Square-Free Words

Testing if a word that contains no short squares is square free can be done in a
more efficient and simpler way than with the methods treating ordinary words.
This is the object of the problem.

A word w is said to be almost square free if it does not contain any square
factor of length smaller than |w|/2. Such words have a useful property stated
in the observation, in which Occ(z,w) denotes the set of starting positions of
occurrences of z in the word w.

Observation 1. If z is a factor of length |w|/8 of an almost square-free word w,
then z is non-periodic (its smallest period is larger than |z|/2), |Occ(z,w)| < 8
and Occ(z,w) can be computed in linear time and constant space.

Under the hypothesis of the observation, the computation of Occ(z,w)

is realised, for example, by Algorithm NaiveSearch, a naive version of
Algorithm KMP.

NaiveSearch(z,w non-empty words)

1 (i,j) ← (0,0)

2 Occ(z,w) ← ∅
3 while j ≤ |w| − |z| do
4 while i < |z| and z[i] = w[j + i] do
5 i ← i + 1

6 if i = |z| then
7 Occ(z,w) ← Occ(z,w) ∪ {j}
8 (j,i) ← (j + max{1,�i/2�},0)

9 return Occ(z,w)

Question. Design an algorithm that checks in linear time with constant
space if an almost square-free word w is square free, assuming for simplicity
that |w| = 2k , k ≥ 3.

[Hint: Use a factorisation of w into short factors, and apply Algorithm
NaiveSearch and Observation 1.]

Solution
The idea of the solution is to factorise w into short blocks that a large square
cannot miss.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

196 Regularities in Words

To do so, let � = 2k−3 and zr = w[r · � . . r · � + � − 1] for r = 0,1, . . . ,7.
Let also Z = {z0,z1, . . . ,z7}.

Consider the operation TestSquare(p,q) that checks if there is a square of
length 2(q − p) in w containing positions p,q, p ≤ q. The operation is easily
performed in time O(n) and constant space using extensions to the left and to
the right like in Problem 74. Based on the operation, the following fact is a
straightforward observation.

Observation 2. If w is almost square free then it contains a square if and only if

∃z ∈ Z ∃p,q ∈ Occ(z,w) TestSquare(p,q) = True.

We know that the sets Z and Occ(z,w) are of constant size. Now the required
algorithm is a direct implementation of Observation 1 and of Observation
2, using a constant number of executions of Algorithms NaiveSearch and
TestSquare (the latter implements TestSquare(p,q)). Since each of them
works in linear time and constant space, this achieves the answer.

Notes
The above method easily extends to test if a word of length n = 2k that has no
square factor of length smaller than 23 is square free. This yields an algorithm
running in time O(n log n) and in constant space. The sketch is as follows.
For each m = 3,4, . . . ,k in this order, the algorithm checks if overlapping
segments of length 2m are square free assuming that they are almost square
free. The segments that overlap are chosen by intervals of length 2m−1. As
soon as a square is found the algorithm stops and reports its occurrence. Since
for a given m the total length of segments is O(n) this leads to an overall
O(n log n) running time.

The presented algorithm is adapted from a method by Main and Lorentz
[180].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

79 Binary Words with Few Squares 197

79 Binary Words with Few Squares

The goal of the problem is to exhibit binary words containing the fewest
number of (distinct) square factors.

A square is a word whose exponent is even; it is of the form u2 = uu for a
non-empty word u. The longest words on the binary alphabet {0,1} containing
no square as factor are 010 and 101. But there are square-free infinite words
on three-letter alphabets. One of them, on the alphabet {a,b,c}, is obtained by
iterating the morphism f defined by⎧⎪⎪⎨⎪⎪⎩

f (a) = abc

f (b) = ac

f (c) = b,

which gives the infinite square-free word

f = f ∞(a) = abcacbabcbacabcacbacabcb · · ·
despite the fact that f does not preserve square-freeness of words, since
f (aba) = abcacabc that contains the square (ca)2.

A cube is a word whose exponent is a multiple of 3.

Question. Show that no infinite binary word contains less than 3 squares.
Show that no infinite binary word that contains only 3 squares avoids cubes,
that is, is cube free.

Let g be the morphism from {a,b,c}∗ to {0,1}∗ defined by⎧⎪⎪⎨⎪⎪⎩
g(a) = 01001110001101

g(b) = 0011

g(c) = 000111.

Note that g(ab) contains the three squares, 02, 12 and 102, as well as the two
cubes 03 and 13.

Question. Show there are only three squares and two cubes occurring in
g = g(f ∞(a)).

[Hint: Consider distances between consecutive occurrences of 000.]

Solution
Checking the first assertion is a mere verification on the trie of binary words.
Similarly, a word containing exactly three squares and no cube has maximal
length 12, which can be checked with the next trie.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

198 Regularities in Words

001

0

0 1

0

1 0

0

1

1
0 0 1

1 0 0 1

0 1

1

1

0

0 1 0 0

1 1 1 0 0

1 0 0 1 1 0 0

1

To prove the property of g we consider occurrences of 000 in it. In fact,
distances between two consecutive occurrences are in {7,11,13,17}:

g(ac) = 01001110001101 000111 7
g(abc) = 01001110001101 0011 000111 11
g(ca) = 000111 01001110001101 13
g(cba) = 000111 0011 01001110001101 17.

Factors of g containing few occurrences of 000 have a bounded length;
then it can be checked directly they do not have more squares than expected.
We show it holds for other factors by contradiction.

Assume g contains a (large enough) square w2 with an even number of
occurrences of 000. Let us consider the two consecutive occurrences on each
side of the centre of the square and consider their distance is 7. This implies
the centre of the square is in the occurrence of 1101 inside g(ac). Since the
set {g(a),g(b),g(c)} is a prefix code, possibly taking a conjugate of the square
yields that it is of the form g(cvacva) for some word v ∈ {a,b,c}∗. This is a
contradiction since f ∞(a) is square free.

Cases in which the distance between consecutive occurrences of 000 is 11,
13 or 17 are dealt with similarly.

Assume now w2 contains an odd number of occurrences of 000. Then w

is of the form 0y00 or symmetrically 00y0 for a binary word y. Taking a
conjugate as above produces a square in f ∞(a), a contradiction.

Notes
The square-free word f is given with a different construction and a proof in
Problem 80 after a translation with the alphabetic morphism α defined by
α(1) = c, α(2) = b and α(3) = a.

The existence of an infinite binary word with only three squares and two
cubes was initially proved by Fraenkel and Simpson [117]. Simpler proofs are
by Rampersad et al. [205] and by Badkobeh [18] (see related questions in [19]).
The present proof with the morphism g is from [18].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

80 Building Long Square-Free Words 199

80 Building Long Square-Free Words

A word is square free if it does not contain any factor of the form uu for a
non-empty word u. Generating long square-free words is meaningful only for
alphabets of size at least three because the longest square-free words on a two-
letter alphabet like {a,b} are aba and bab.

The goal of the problem is to design an algorithm generating long square-
free words in an almost real-time way. Algorithm SquareFreeWord does it
using the function bin-parity(n) that denotes the parity (0 if even, 1 if odd) of
the number of 1’s in the binary representation of the natural number n. The
delay between computing two outputs is proportional to the evaluation of that
function.

SquareFreeWord

1 prev ← 0

2 for n ← 1 to ∞ do
3 � prev = max{i : i < n and bin-parity(i) = 0}
4 if bin-parity(n) = 0 then
5 output (n − prev)

6 prev ← n

The generated word α starts with: 321312321231 · · · .

Question. Show Algorithm SquareFreeWord constructs arbitrarily long
square-free words over the ternary alphabet {1,2,3}.

[Hint: The condition at line 4 holds only when n is the position of an
occurrence of a in the Thue–Morse word t.]

Solution
The question is related to the overlap-freeness of the Thue–Morse word t (it
contains no factor of the form cucuc for a letter c and a word u). Running
Algorithm SquareFreeWord up to n = 18 gives the output 321312321.
Assigning letter a to position n if the condition at line 4 holds and letter b if
not, we get the table below, where the third row gives the output n − prev(n)

if the condition holds, associated with the current value of n.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a b b a b a a b b a a b a b b a b a a
3 2 1 3 1 2 3 2 1

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

200 Regularities in Words

The algorithm exploits the following definition of t: t[n] = a if and only if
bin-parity(n) = 0. This equality is easily derived from other definitions of t in
Chapter 1.

Word α. The square-freeness of the word α computed by Algorithm Square-
FreeWord relies on the fact that t is overlap free.

Let τ be the morphism from {1,2,3}∗ to {a,b}∗ defined by τ(1) = a,
τ(2) = ab and τ(3) = abb. Note that t factorises uniquely on the suffix code
{a,ab,abb}. Algorithm SquareFreeWord outputs i when the factor τ(i)a is
virtually detected in t.

Assume by contradiction that the output word contains a (non-empty)
square factor uu. Then τ(uu) appears in t. But since both u = av for a word v

and the occurrence of τ(uu) is immediately followed by letter a, t contains the
overlap avava, a contradiction. Therefore the output word α is square free.

Note that a = h∞(3), where the morphism h, analogue to f in Problem 79,
is defined by: h(3) = 321, h(2) = 31 and h(1) = 2.

Notes
A proof of the Thue–Morse word overlap-freeness may be found in [175,
chapter 2]. The correctness of SquareFreeWord also follows combinatorial
proofs from the same chapter.

We give three alternative constructions of infinite square-free words β, γ ,
δ, omitting technical proofs:

• β[i] = c if t[i] = t[i + 1] and β[i] = t[i] otherwise.

• γ [i] = c if t[i − 1] = t[i] and γ [i] = t[i] otherwise.

• δ[0] = 0 and, for n > 0, δ[n] is

min{k ≥ 0 : k �= δ[�n/2�] and δ[0 . . n − 1] · k is square free}.
The word δ can be computed using the following formula:

if h(n) = 1 then δ[n] = 0
else if bin-parity(n) = 1 then δ[n] = 1
else δ[n] = 2,

where, for n > 0, h(n) is the parity of the length of the block of 0’s at the
end of the binary representation of n.

Despite different constructions the four defined words α, β, γ and δ are
essentially almost the same (after renaming letters and in some cases removing
the first letter). The number of square-free words of length n over a ternary
alphabet, sqf (n), is known to grow exponentially with n, as proved by
Brandenburg [42] and later tuned by several authors. The first values of sqf (n)

are listed in the table:

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

81 Testing Morphism Square-Freeness 201

n l 2 3 4 5 6 7 8 9 10 11 12 13

sqf (n) 3 6 12 18 30 42 60 78 108 144 204 264 342

n 14 15 16 17 18 19 20 21 22 23 24

sqf (n) 456 618 798 1044 1392 1830 2388 3180 4146 5418 7032

In contrast, the number of overlap-free binary words of length n over a binary
alphabet only grows polynomially, as shown by Restivo and Salemi [207] (see
Problem 75).

81 Testing Morphism Square-Freeness

Square-free morphisms are word morphisms that preserve word square-
freeness. These morphisms provide a useful method to generate by iteration
square free words. The problem aim is to give an effective characterisation
of square-free morphisms, which yields a linear-time test according to the
morphism length on a fixed-size alphabet.

A square free morphism h satisfies: h(x) is square free when x is. We
also say h is k-square free if the condition is satisfied for |x| ≤ k. In
general k-square-freeness does not imply square-freeness. For example, h1 is
a shortest square-free morphism from {a,b,c}∗ to itself, but h2 from {a,b,c}∗
to {a,b,c,d,e}∗ is not square free although it is 4-square free.⎧⎪⎨⎪⎩

h1(a) = abcab

h1(b) = acabcb

h1(c) = acbcacb

⎧⎪⎨⎪⎩
h2(a) = deabcbda

h2(b) = b

h2(c) = c.

The following characterisation is based on the notion of pre-square. Let z

be a factor of h(a), a ∈ A. Its occurrence at position i is called a pre-square
if there is a word y for which ay (resp. ya) is square free and z2 occurs in
h(ay) at position i (resp. in h(ya) with centre i). It is clear that if some h(a)

has a pre-square h is not a square-free morphism. The converse holds up to an
additional condition.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

202 Regularities in Words

Question. Show that a morphism h is square free if and only if it is 3-square
free and no h(a), a ∈ A, contains a pre-square factor.

[Hint: Discuss cases using the picture below that displays a square z2 in
h(x), where x = x[0 . . m].]

Question. Show that for uniform morphisms 3-square-freeness implies
square-freeness, and for morphisms on 3-letter alphabets 5-square-freeness
implies square-freeness.

Solution
Pre-square condition. To prove the statement in the first question we only
have to show that a non-square-free morphism breaks one of the two conditions
because the converse is obvious.

h(x[0]) h(x[1 . . j − 1]) h(x[j]) h(x[j + 1 . . m − 1]) h(x[m])

z z

α ᾱ u β β̄ v γ γ̄

Let x = x[0 . . m], for which h(x) contains a square z2. Possibly chopping
letters at the ends of x, we may assume the occurrence of z2 starts in h(x[0])
and ends in h(x[m]) (see picture).

Note that if h(a) is a prefix or a suffix of h(b), a �= b, the morphism is not
even 2-square free. Therefore we can assume {h(a) : a ∈ A} is a (uniquely
decipherable) prefix and suffix code.

Let α, ᾱ, β, β̄, γ and γ̄ be as displayed in the picture.
First, if ᾱ = β̄, by prefix codicity x[1 . . j − 1] = x[j + 1 . . m − 1], and

then β = γ . Since x is square free, x[0] �= x[j] and x[j] �= x[m]. Thus
x[0]x[j]x[m] is square free but h(x[0]x[j]x[m]) contains (ᾱβ)2: h is not 3-
square free.

Assume w.l.o.g. in the next cases that ᾱδ = β̄ for δ �= ε.
Second, if x[1] �= x[j], let i be the smallest index for which δ is a prefix of

h(x[1 . . i]). Then x[j]x[1 . . i] is square free but h(x[j]x[1 . . i]) contains δ2:
there is a pre-square in h(x[j]).

Third, if x[1] = x[j], h(x[j]) follows ᾱ in z then h(x[j . . m]) starts with
(βᾱ)2: there is a pre-square in h(x[j]).

Considering symmetric cases as above ends the proof.

Uniform morphism. When the morphism is uniform, it can just be remarked
that the pre-square condition of the first statement is equivalent to the 2-square-
free property, which is implied by the 3-square-free condition.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

82 Number of Square Factors in Labelled Trees 203

From a 3-letter alphabet. Let A be a 3-letter alphabet. Assume there is a pre-
square in h(a), a ∈ A, and that y extends the pre-square into a square in h(ay).
Possibly chopping a suffix of y, the letter a can only reappear as its last letter.
The word ay being square free on 3 letters, ya−1 is square free on 2 letters,
which implies its length is at most 3. Therefore |ay| ≤ 5, which resorts to the
5-square-free condition on h.

Example h2 shows the bound 5 is optimal.

Notes
A square-free morphism h provides an interesting tool to generate an infinite
square-free words: if h(a) is of the form ay for some letter a and a non-empty
word y, iterating h from a gives the square-free infinite word h∞(a). Note,
however, the morphism f of Problem 79 is not square-free but f ∞(a) is.
More is presented by Berstel and Reutenauer in Lothaire [175, chapter 2]; see
also [35].

The full proof of the first statement appears in [65] together with some
consequences of the result.

82 Number of Square Factors in Labelled Trees

It is known that the number of (distinct) square factors in a given word is linear
(see Problem 72). Unfortunately, the property does not hold for edge-labelled
trees.

The problem shows a surprising lower bound based on relatively simple
example trees.

Question. Prove that an edge-labelled binary tree of size n can contain
�(n4/3) (distinct) square factors.

[Hint: Consider comb trees.]

Solution
Denote by sq(T) the number of square factors along the branches of an edge-
labelled tree T . To prove the result we consider a special family of very simple

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

204 Regularities in Words

trees, called combs, that achieves the largest possible number of squares in
asymptotic terms.

A comb is a labelled tree that consists of a path called the spine with at most
one branch attached to each node of the spine. All spine-edges are labelled by
the letter a. Each branch is a path whose label starts with letter b followed by
a number of a’s. In the graphical example below the comb contains 14 square
factors:

• a2, (aa)2, (aaa)2,

• all cyclic rotations of: (ab)2, (aab)2 and (aaab)2,

• and the squares (abaaa)2 and (aaaba)2.

a a a a a a

b b b b

a a a a

a a a

a a

We show that there exists a family Tm of special combs that satisfy
sq(Tm) = �(|Tm|4/3). From this result one easily obtains sq(T) = �(n4/3)

for a tree T of size n.
We consider the integer m = k2 and define the set

Zm = {1, . . . ,k} ∪ {i.k : 1 ≤ i ≤ k}.
For example, Z9 = {1,2,3,6,9}.
Observation. For each integer d , 0 < d < m, there exist i,j ∈ Zm for which
i − j = d.

Proof Each number d , 0 < d < m, has a unique representation in the form
p
√

m − q where 0 < p,q ≤ √
m. Choosing i = p

√
m and j = q gives the

conclusion.

The special comb Tm is then defined as follows: Tm consists of a spine of
length m − 1 with vertices numbered from 1 to m and labelled by am−1 and
of branches labelled by bam attached to each vertex j ∈ Zm of the spine. The
picture displays the special comb T9 associated with Z9 = {1,2,3,6,9}, with
its spine and its five branches.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

82 Number of Square Factors in Labelled Trees 205

9

a a a a a a a a

b

a

a

b

a

a

b

a

a

b

a

a

b

a

a

Fact. Each tree Tm satisfies sq(Tm) = �(|Tm|4/3).

Proof The above observation implies that for every d, 0 < d < m, there are
two nodes i,j of degree 3 on the spine with i − j = d. Thus, Tm contains all
squares of the form (aibad−i)2 for 0 ≤ i ≤ d .

Altogether this gives �(m2) different squares. Since m = k2, the size of
Tm, its number of nodes, is k(m + 2) + (k − 1)(k + m + 1) = O(m

√
m).

Therefore, the number of squares in Tm is �(|Tm|4/3).

Notes
The above result is optimal because the upper bound on the number of squares
in labelled trees of size n is O(n4/3). The combinatorial proof of this bound is
much harder and can be found in [82].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

206 Regularities in Words

83 Counting Squares in Combs in Linear Time

A comb is a labelled tree that consists of a path called the spine with at most
one branch attached to each node of the spine. All spine-edges are labelled
with the letter a. Each branch is a path whose label starts with the letter b
followed by a number of a’s.

The number of (distinct) squares occurring on branches of a comb T can be
superlinear (see Problem 82) but despite the lower bound it is possible to count
them in linear time according to the tree size. This is the goal of the problem.
This is done with a careful encoding of squares due to their global structure.

Question. Show how to compute in linear time the number of (distinct)
square factors on branches of a binary comb.

Solution
We focus only on non-unary squares because it is clear that the number of
unary squares (of period 1) in any labelled tree can be computed in linear time.

To get the expected running time a special encoding of all squares is
required. It is based on admissible pairs of nodes of the spine. Such a pair
(i,j) is called admissible if d ≤ p + q, where d is the distance between i and
j (|(j − i)|) and p,q are the numbers of occurrences of a’s on the branches
outgoing from i and from j respectively.

i ja a a a a a a a a

b

a

a

a

a

b

a

a

a

a

a

An essential part of a comb corresponds to an admissible pair of nodes (i,j)

on the spine, the edges between them, and the two outgoing branches whose
labels start with the letter b. All squares in each such essential part can be seen
as a package of squares (set of conjugates of a single factor) represented by an
interval.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

83 Counting Squares in Combs in Linear Time 207

The above picture shows an admissible pair (i,j) with d = 7, p = 4
and q = 5. The non-unary squares generated by the essential part of the tree
corresponding to this pair are (a2ba5)2, (a3ba4)2 and (a4ba3)2 illustrated by
the dotted lines.

More generally the set of squares corresponding to a pair (i,j) is of the form
{akbakad−kbad−k : k ∈ [i′,j ′])}, where [i′,j ′] ⊆ [i,j]. The set can then be
represented by the pair (d,[i′,j ′]). In the above example (7,[2,4]) represents
the set of squares {(a2ba5)2, (a3ba4)2, (a4ba3)2}.
Fact. The number of admissible pairs in a comb T is linear according to the
comb size.

Proof Observe that if (i,j) is an admissible pair with distance d and p,q the
numbers of a’s on the branches outgoing from i and j , then d ≤ 2 max{p,q}.
Hence for a given node on the spine it is enough to consider nodes on the spine
at distance at most k to the left and to the right from this node, where k is the
number of a’s on the branch outgoing from this node.

The total number of considered nodes is thus bounded by the total length of
outgoing branches, which is O(|T |).

Fact. The number of (distinct) square factors in a comb T can be computed in
linear time.

Proof To achieve linear running time, we group admissible pairs into sets
associated with the same distance d between the nodes of pair. For each pair
(i,j) the set of squares generated by this pair corresponds to an interval.
These intervals (for distinct pairs) are not necessarily disjoint; however, we
can make a union of all intervals in linear time. The resulting set is again a
union of intervals and its total size can be easily computed. The sets of squares
corresponding to distinct groups are disjoint. We sum the numbers for each
group and get the final result. This completes the proof.

Despite the fact that we can have super-linearly many distinct squares, in
addition to unary squares, all of the other squares can be reported as a union of
linearly many disjoint sets of the form

{akbakad−kbad−k : k ∈ [i′,j ′]}.

Notes
The present algorithm is adapted from the algorithm by Kociumaka et al. [164].
So far it is not known if squares can be counted in linear time for general trees.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

208 Regularities in Words

84 Cubic Runs

Cubic runs constitute a particular case of runs for which bounds are easier to
evaluate. As runs they encompass different types of periodic factors in a word
but to a lesser extent.

A cubic run in a word x is a maximal periodicity in x whose length is at
least three times its period. More accurately, it is an interval [i . . j] of positions
on x whose associated factor u = x[i . . j] satisfies |u| ≥ 3per(u) and that is
not extensible to the left nor to the right with the same period. Cubic runs in
aaaabaabaababababbb are underlined in the picture.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a a a a b a a b a a b a b a b a b b b

We consider an ordering < on the alphabet and define special positions of
a run [i . . j] in x as follows. Let p be the period of x[i . . j] and let w be
the alphabetically smallest conjugate (rotation) of x[i . . i + p − 1]. Then k

is a special position of the run if x[i . . j] contains a square ww centred at k.
Special positions are shown in boldface in the above picture.

u u u v

w w

0 i i + p k j

Question. Show that a cubic run has at least one special position and that
two different cubic runs share no special position.

[Hint: Use the fact that the smallest conjugate of a primitive word, a Lyndon
word, is border free.]

Question. Show both that the number of cubic runs in a word of length n is
smaller than n/2 and that, for infinitely many n, it is at least 0.4n.

[Hint: Consider the inverse alphabet ordering <−1 and count cubic runs in
words xm = (u2a3v2b3w2c3)m, where u = a3b3, v = b3c3 and w = c3a3.]

Solution
At least one special position in each cubic run. Let [i . . j] be a cubic run,
p = per(x[i . . j]) and w the smallest conjugate of x[i . . i + p − 1].

If p = 1 it is clear that all positions in the run except the first position are
special, which shows there are at least two special positions for this type of
cubic run.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

84 Cubic Runs 209

If p > 1 the square x[i . . i + 2p − 1] contains at least one occurrence
of w, which is followed immediately by another occurrence of w in the run.
Therefore there is at least 1 special position in this type of cubic run.

Different cubic runs share no special position. Assume some position k is
the centre of occurrences of ww and of w′w′ associated with two different
cubic runs. Due to the maximality condition, the runs, being different, have
different periods. If for example w′ is the shorter it is then a border of w. But
since w is primitive (due to the definition of p) and a smallest conjugate, it is
a Lyndon word, which is known to be border free, a contradiction. Thus two
different cubic runs cannot share a special position.

Less than n/2 cubic runs. We have already seen that cubic runs with period 1
have at least two special positions. For the other cubic runs first note the
associated prefix period contains at least two different letters. Then a second
special position can be found using the inverse alphabet ordering (or the
greatest conjugate of the prefix period) and, as above, this position is not shared
by any other run.

Since position 0 on x cannot be special, the total number of special positions
in a word of length n is less than n, which implies less than n/2 cubic runs.

Lower bound. Observe that for any m > 0, the word xm contains at least
18m − 1 cubic runs:

xm = (a3b3a3b3 a3 b3c3b3c3 b3 c3a3c3a3 c3)m.

Indeed, there are 15m cubic runs of period 1 whose associated factors are a3,
b3 or c3; 2m cubic runs of period 6 with factors (a3b3)3 and (b3c3)3; and
m − 1 cubic runs of the form (c3a3)3.

Note that for m > 2 the whole word xm forms an additional cubic run.
Hence, in this case the word xm has length 45m and contains at least 18m

cubic runs. Thus, for m > 2, the number of cubic runs in xm is not less than
0.4|xm| = 0.4n.

Notes
Slightly improved lower and upper bounds on the number of cubic runs in a
word are shown in [85, 86].

Using an argument similar to the one above, Harju and Kärki in [137]
introduced the notion of frame, square whose root is border-free, and derive
upper and lower bounds on the number of frames in binary words, bounds that
are close to the above bounds.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

210 Regularities in Words

85 Short Square and Local Period

The notion of local periods in words provides a more accurate structure of its
repetitiveness than its global period. The notion is central to that of critical
positions (see Problem 41) and their applications.

Finding the local period at a given position i on a word x is the question
of the problem. The local period �per(i) is the period of a shortest non-empty
square ww centred at position i and possibly overflowing x to the left or to the
right (or both).

u v
i

w w

Question. Show how to compute all non-empty squares centred at a given
position i on x in time O(|x|).

0 1 2 3 4 5 6 7 8 9 10 11 12 13

b a a b a a b a b a a b a a

For x = baabaababaabaa, squares centred at 7 are (abaab)2, (ab)2

and the empty square. There is no non-empty square centred at 6 or 9, for
example.

Question. If there exists a shortest non-empty square of period p centred at
position i on x, show how to find it in time O(p).

[Hint: Double the length of the search area.]
Here are a few local periods for the above example word: �per(7) = 2

period of (ab)2, �per(1) = 3 period of (aab)2, �per(6) = 8 period of
(babaabaa)2 and �per(9) = 5 period of (aabab)2.

Question. Design an algorithm to compute the local period p at position i

on x in time O(p).

[Hint: Mind the situation where there is no square centred at i.]

Solution
Squares Let u = x[0 . . i − 1], v = x[i . . |x| − 1] and # a letter not in x.

uv #

w w

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

85 Short Square and Local Period 211

The borders w of v#u produce the squares centred at i on x. If the mere
concatenation vu is used instead of v#u, only its borders no longer than
min{|u|,|v|} produce the sought squares.

Thus squares can be found with the border table of v#u whose computation
take linear time (see Problem 19) like the whole process.

Shortest square. Given a length �, 0 < � ≤ min{|u|,|v|}, a square of period
p no more than � can be found as above considering borders of x[i . . i + � −
1]#x[i − � . . i − 1] instead of v#u. Running � from 1 to at most 4p allows the
detection of a square of period p.

x[i − � . . i − 1]x[i . . i + � − 1] #

w w

The whole process takes time

O(�{� : � = 1,2,4, . . . ,2e, with p ≤ 2e < 2p}) = O(p).

Local period. If there is a non-empty square centred at i, the local period at i

is the period of the shortest such square.
If there is no non-empty square centred at i, the square ww whose period

is the local period at i may overflow to the left or to the right (or both). The
picture below shows overflows to the left.

u v
i

w w

u

u v
i

w w

u

To detect an overflow to the left, v is searched online for u with, for
example, Algorithm KMP whose output is to be adapted to cope with the
situation displayed in the bottom picture. This produces a potential local period
p1. Checking symmetrically for an overflow to the right by searching uR for
vR gives another potential local period p2. Eventually the sought local period
is the minimum of the two.

The whole computation then runs in time O(p), which answers the
question.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

212 Regularities in Words

Notes
The computation of a border table is treated in Problem 19 and works on
general alphabets, similarly to Algorithm KMP described in Problem 26. See
also textbooks on Stringology [74, 96, 98, 134, 228] and other textbooks on
algorithms.

On fixed-size alphabets the computation of all local periods of a word can
be done in linear time [106] using a factorisation of the word similar to its
Lempel–Ziv factorisation; see Chapter 6.

86 The Number of Runs

A run is a maximal periodicity occurring in a word. Formally, a run in x

is an interval [i . . j] of positions on x whose associated factor x[i . . j] is
periodic (i.e., its smallest period p satisfies 2p ≤ |x[i . . j]| = (j − i + 1))
and the periodicity does not extend to the right nor to the left (i.e., x[i −
1 . . j] and x[i . . j + 1] have larger periods when defined). The eight runs in
abaababbababb are underlined in the picture.

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

We consider an ordering < on a word alphabet and the corresponding
lexicographic ordering denoted < as well. We also consider the lexicographic
ordering <̃, called the reverse ordering, inferred by the inverse alphabet
ordering <−1. Each run [i . . j] is associated with its greatest suffix according
to one of the two orderings as follows. Let p = per(x[i . . j]). If j + 1 < n

and x[j + 1] > x[j − p + 1] we assign to the run the position k for which
x[k . . j] is the greatest proper suffix of x[i . . j] according to <. Otherwise, k

is the starting position of the greatest proper suffix of x[i . . j] according to <̃.
The position k assigned this way to a run is called its special position. These
positions are intimately linked to Lyndon words (defined in Chapter 1), subject
of the first question. The thick lines below show the greatest suffixes associated
with runs in abaababbababb.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

86 The Number of Runs 213

0 1 2 3 4 5 6 7 8 9 10 11 12

a b a a b a b b a b a b b

Question. Show that, if the special position k of a run of period p is defined
according to <̃ (resp. <), x[k . . k + p − 1] is the longest Lyndon factor of x

starting at position k according to < (resp. <̃).

[Hint: The special position k of a run [i . . j] of period p satisfies k ≤ i+p;
see Problem 40.]

Question. Show two distinct runs have no special position in common and
deduce that the number of runs in a word is smaller than its length.

Solution
Special position. Let [i . . j] be a run of period p with special position k. To
answer the first question, note that x[k . . k +p − 1] is a Lyndon word because
it is smaller than all its proper suffixes according to <. Consider a longer factor
x[k . . j ′] for k + p ≤ j ′ ≤ j . It has period p which is smaller than its length;
equivalently it is not border free, which shows it is not a Lyndon word for any
of the two orderings.

r r r s a

u u v

i k k + p j + 1

There is nothing else to prove if j + 1 = |x|. Assume then that j ′ > j and
a = x[j + 1]. The picture displays the greatest suffix of x[i . . j] according to
<̃, that is, x[k . . j] = uev of period |u| in which v is a proper prefix of u. Since
x[j + 1] < x[j − p + 1], we get x[k + p . . j + 1] < x[k . . j − p + 1], which
leads to x[k + p . . j ′] < x[k . . j ′] and shows that x[k . . j ′] is not a Lyndon
word according to <.

Therefore, x[k . . k + p − 1] is the longest Lyndon factor of x starting at
position k. Note the roles of the two orderings are perfectly symmetric.

Number of runs. Let us answer the second question by contradiction,
assuming two runs share the same special position k. The position cannot be
defined with the same ordering for the two runs due to the above result. Being
defined by the two different orderings, the only possibility is that only one run
has period 1. But then x[k − 1] = x[k], which is impossible for the special
position k on a non-unary run.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

214 Regularities in Words

Since position 0 cannot be a special position, at most n− 1 positions can be
special positions of runs in a word of length n. The previous result then implies
that there are less that n runs, as stated.

Notes
The concept of a run, also called a maximal periodicity or the maximal
occurrence of a repetition, coined by Iliopoulos et al. [149] when analysing
repetitions in Fibonacci words, has been introduced to represent in a succinct
manner all occurrences of repetitions in a word. It is known that there are only
O(n) of them in a word of length n from Kolpakov and Kucherov [167], who
proved it in a non-constructive way.

The first explicit bound was later on provided by Rytter [214]. Several
improvements on the upper bound can be found in [77, 80, 102, 203]. Kolpakov
and Kucherov conjectured that this number is in fact smaller than n, which has
been proved by Bannai et al. [26]. The present proof, very similar to their proof,
appears in [91]. Fischer et al. [116] gave a tighter upper bound of 22n/23 on
the number of runs.

With the above notations, remark that if k + 2p ≤ j , k + p can also be
considered a special position with the same property. In particular, a run whose
associated word starts with a cube has at least two special positions. This gives
an upper bound of n/2 for the maximum number of cubic runs in a word of
length n (see Problem 84 and more in [25] and [86]).

87 Computing Runs on Sorted Alphabet

The aim of the problem is to show that all runs (maximal periodicities) in a
word drawn from a linearly sortable alphabet can be computed in linear time.

The solution is based on the results of Problem 86, where it is shown that a
run possesses a special position from which starts a longest Lyndon factor of
the whole word. Tracking the longest Lyndon factors has to be done according
to the alphabet ordering < but also to its inverse <−1. When a longest Lyndon
factor is located, simple extensions from two positions to the right and to the
left (like in Problem 74) can confirm the starting position of the Lyndon factor
is a special position of a run whose period is the length of the Lyndon factor.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

87 Computing Runs on Sorted Alphabet 215

To do so we first define the Lyndon table Lyn of a (non-empty) word x. For
a position i on x, i = 0, . . . ,|x| − 1, Lyn[i] is the length of the longest Lyndon
factor starting at i:

Lyn[i] = max{� : x[i . . i + � − 1] is a Lyndon word}.
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[i] a b b a b a b a a b a b b a b a
Lyn[i] 3 1 1 2 1 2 1 8 5 1 3 1 1 2 1 1

Question. Show that Algorithm LongestLyndon correctly computes the
table Lyn.

LongestLyndon(x non-empty word of length n)

1 for i ← n − 1 downto 0 do
2 (Lyn[i],j) ← (1,i + 1)

3 while j < n and x[i . . j − 1] < x[j . . j + Lyn[j] − 1] do
4 (Lyn[i],j) ← (Lyn[i] + Lyn[j],j + Lyn[j])

5 return Lyn

Question. Extend Algorithm LongestLyndon to compute all runs occur-
ring in a word.

[Hint: Use the longest common extensions like in Problem 74.]

Question. What is the total running time of the algorithm if a comparison
of two factors is done with the help of the ranks of their associated suffixes
in the alphabetic order and if the longest common extension techniques are
used?

Solution
Proofs rely on the following well-known properties of Lyndon words that
may be found in [175]. First, if u and v are Lyndon words and u < v then
uv is also a Lyndon word (and u < uv < v). Second, each non-empty
word factorises uniquely as u0u1u2 · · · , where each ui is a Lyndon word and
u0 ≥ u1 ≥ u2 ≥ · · · . In addition, u0 is the longest Lyndon prefix of the word.
The factorisation can be computed using the Lyn table of the word to jump
from a factor to the next one. But the table contains more information than the
factorisation.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

216 Regularities in Words

The factorisation of the above example word abbababaababbaba is
abb · ab · ab · aababbab · a, corresponding to the subsequence 3, 2, 2,
8, 1 of values in its Lyndon table.

Correctness of LongestLyndon. The invariant of the for loop, when
processing position i, is: Lyn[k] is computed for k = i + 1, . . . ,n − 1 and
u[i + 1 . . j − 1] · u[j . . j + Lyn[j] − 1] · · · , where j = i + 1 + Lyn[i + 1], is
the Lyndon factorisation of x[i + 1 . . n − 1].

u v

i j j + Lyn[j]

��
Lyn[i]

��
Lyn[j]

The current factor u starting at position i, initially x[i], is compared to its
next factor v. If u < v, u is replaced by uv and the comparison continues with
the successor of uv. The while loop stops when the current factor u becomes
no smaller than its next factor. It is clear when the loop stops that u is the
longest Lyndon factor starting at i and then Lyn[i] = |u|. It is also clear that
we get the Lyndon factorisation of x[i . . n − 1], which achieves the proof of
the invariant and of the correctness of LongestLyndon.

Computing runs. To compute all runs in the word x, we just check for each
position i if it is the special position of a run whose word period is x[i . . i +
Lyn[i] − 1]. This is done by computing lengths � and r of longest common
extensions (LCEs) of the period to the left and to the right and by checking if
� + r ≥ Lyn[i]. If the inequality holds a run is reported.

Runs(x non-empty word of length n)

1 for i ← n − 1 downto 0 do
2 (Lyn[i],j) ← (1,i + 1)

3 while j < n and x[i . . j − 1] < x[j . . j + Lyn[j] − 1] do
4 (Lyn[i],j) ← (Lyn[i] + Lyn[j],j + Lyn[j])

5 � ← |lcs(x[0 . . i − 1],x[0 . . i + Lyn[i] − 1])|
6 r ← |lcp(x[i . . |x| − 1],x[i + Lyn[i] . . |x| − 1])|
7 if � + r ≥ Lyn[i] then
8 output run [i − � . . i + Lyn[i] + r − 1]

More precisely, � is the length of the longest common suffix of x[0 . . i − 1]
and x[0 . . i + Lyn[i] − 1], while r is the length of the longest common prefix
of x[i . . |x| − 1] and x[i + Lyn[i] . . |x| − 1]. They are set to null if i = 0 and
if i + Lyn[i] = n respectively.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

87 Computing Runs on Sorted Alphabet 217

The above process has to be repeated for the ordering <̃ associated with the
inverse alphabet ordering.

Running time of Runs. First note that the number of word comparisons
performed at line 3 by Runs is less than 2|x|. Indeed there is at most
one negative comparison at each step. And there are less than |x| positive
comparisons because each reduces the number of factors of the Lyndon
factorisation of x. Therefore, to get a linear-time algorithm we have to discuss
how to compare words and to compute LCE.

Comparison of words at line 3 of algorithms can be realised using ranks of
suffixes due to the next property.

Property. Let u be a Lyndon word and v · v1 · v2 . . . vm be the Lyndon
factorisation of a word w. Then u < v if and only if uw < w.

Proof Assume u < v. If u << v then uw << vv1v2 . . . vm = w. Otherwise u

is a proper prefix v. Let e > 0 be the largest integer for which v = uez. Since
v is a Lyndon word, z is not empty and we have ue < z. Since u is not a prefix
of z (by definition of e) nor z a prefix of u (because v is border free) we have
u << z. This implies ue+1 << uez = v and then uw < w.

Conversely, assume v ≤ u. If v << u we obviously have w < uw. It remains
to consider the situation where v is a prefix of u. If it is a proper prefix, u writes
vz for a non-empty word z. We have v < z because u is a Lyndon word. The
word z cannot be a prefix of t = v1v2 · · · vm because v would not be the longest
Lyndon prefix of w, a contradiction with a property of the factorisation. Thus,
either t ≤ z or z << t . In the first case, if t is a prefix of z, w = vt is a prefix
of u and then of uw, that is, w < uw. In the second case, for some suffix z′ of
z and some factor vk of t we have z′ << vk . The factorisation implies vk ≤ v.
Therefore, the suffix z′ of u is smaller than its prefix v, a contradiction with the
fact that u is a Lyndon word.

For each starting position i of a suffix of x, i = 0, . . . ,|x| − 1, let Rank[i]
be the rank of the suffix x[i . . |x| − 1] in the increasing alphabetic list of all
non-empty suffixes of x (ranks range from 0 to |x| − 1).

Due to the property, the inequality x[i . . j − 1] < x[j . . j + Lyn[j] − 1] at
line 3 of the two previous algorithms rewrites Rank[i] < Rank[j].

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x[i] a b b a b a b a a b a b b a b a
Lyn[i] 3 1 1 2 1 2 1 8 5 1 3 1 1 2 1 1

Rank[i] 7 15 12 4 11 3 9 1 5 13 6 14 10 2 8 0

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

218 Regularities in Words

Note the Lyndon factorisation can be recovered by following the longest
decreasing sequence of ranks from the first rank. It is (7,4,3,1,0) in the above
example, corresponding to positions (0,3,5,7,15) on x and its factorisation
abb · ab · ab · aababbab · a.

As for the running time, when the table Rank of suffix ranks is precomputed,
the comparison of words at line 3 can be realised in constant time. It is known
that the table of ranks, inverse of the sorted list of suffixes (Suffix array), can
be computed in linear time under the hypothesis that the alphabet is linearly
sortable.

Instructions at lines 5–6 can executed as LCE queries and as such computed
in constant time after a linear-time preprocessing under the same hypothesis
(see, e.g., [115]). Therefore the whole algorithm Runs works in linear time
when the alphabet is linearly sortable.

Notes
Algorithm LongestLyndon can be slightly changed to compute the Lyndon
forest of a word. The forest comprises the list of Lyndon trees corresponding
to factors of the Lyndon factorisation of the word.

The Lyndon tree of a Lyndon word is associated recursively with the (right)
standard factorisation of a Lyndon word w not reduced to a single letter: w can
be written uv, where v is chosen either as the smallest proper non-empty suffix
of w or as the longest proper Lyndon suffix of w, which yields the same suffix.
The word u is then also a Lyndon word and u < v (see [175]).

The structure of a Lyndon tree has been shown to be the same as that of the
Cartesian tree of ranks of suffixes by Hohlweg and Reutenauer [142]. Algo-
rithm LongestLyndon proceeds like a right-to-left construction of a Cartesian
tree (https://en.wikipedia.org/wiki/Cartesian_tree).

The relation between Suffix arrays and Lyndon factorisations is examined
by Mantaci et al. in [184]

Franek et al. ([119]) present several algorithms to compute the Lyndon
table.

The reader can refer to the review by Fischer and Heun [115] concerning
LCE queries. More advanced techniques to implement them over a general
alphabet and to compute runs can be found in [83, 128] and references therein.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://en.wikipedia.org/wiki/Cartesian_tree
https://doi.org/10.1017/9781108835831.006

88 Periodicity and Factor Complexity 219

88 Periodicity and Factor Complexity

The property stated in the problem provides a useful condition to detect the
periodicity of infinite words.

An infinite word x (indices run through natural numbers) is said to be
ultimately periodic or simply u-periodic if it can be written yz∞ for some
(finite) words y and z, z �= ε.

Let Fx(n) denote the number of (distinct) factors of length n occurring in the
infinite word x. The function Fx is called the factor (or subword) complexity
function of x.

Question. Show that an infinite word x is u-periodic if and only if Fx is
bounded by a constant.

Solution
If x is u-periodic it can be written yz∞, where z is primitive and either
y is empty or y and z end with two distinct letters. With this normalised
representation of x, we get Fx(n) = |yz| for every length n ≥ |yz|, which
shows that Fx is bounded by a constant.

Conversely, assume that Fx is bounded by an integer constant m > 0. Since
Fx(�) ≤ Fx(�+1) for every length �, the bound implies that Fx(n) = Fx(n+1)

for some length n. This implies that all occurrences of each length-n factor v

are followed by the same letter bv in x. Consequently, we can consider the next
factor function next defined on non-empty factors u of length n+ 1 as follows:
next(u) = vbv where u = av for a letter a.

Let w be the prefix of length n of the infinite word x. There exist p and s

such that nexts(w) = nexts+p(w), since there are only finitely many factors
of length n. Thus, x is u-periodic with period p starting from position s. This
completes the proof.

Notes
The u-periodicity of x is also equivalent to the condition Fx(n) ≤ n for some
length n.

The set of boundary infinite words x for which Fx(n) = n + 1, for every n,
is known as the set of infinite Sturmian words. They are non-u-periodic infinite
words with the minimal factor complexity. In particular, the infinite Fibonacci
word has this property.

More on the subject is in the book by Allouche and Shallit [7] and in the
tutorial by Berstel and Karhumäki [34].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

220 Regularities in Words

89 Periodicity of Morphic Words

The problem shows that it is possible to test whether an infinite word generated
by a (finite) morphism is periodic.

An infinite morphic word is obtained by iterating a morphism θ from A+ to
itself, where A = {a,b, . . .} is a finite alphabet. To do so, we assume that θ is
prolongable over the letter a, that is, θ(a) = au for u ∈ A+. Then � = θ∞(a)

exists and is auθ(u)θ2(u) · · · . The infinite word � is a fixed point of θ , that is,
θ(�) = �.

The infinite word � is periodic if it can be written z∞ for some (finite)
words z, z �= ε.

To avoid unnecessary complications we assume that the morphism θ is both
irreducible, which means that any letter is accessible from any letter (for any
c,d ∈ A the letter d appears in θk(c) for some integer k), and is elementary,
which means it is not the product η ◦ ζ of two morphisms ζ : A+ −→ B+ and
η : B+ −→ A+, where B is an alphabet smaller than A. The second condition
implies that θ is injective on A∗ and on A∞.

Question. For an irreducible and elementary morphism θ prolongable over
letter a, design an algorithm that checks if � = θ∞(a) is periodic and that
runs in time O(�{|θ(b)| : b ∈ A}).

[Hint: � is periodic if and only if it has no bispecial letter, that is,
occurrences of each letter in � are all followed by a unique letter.]

The morphism ρ defined by ρ(a) = ab, ρ(b) = ca and ρ(c) = bc
complies with the conditions and produces the periodic word ρ∞(a) =
abcabcabc · · · = (abc)∞. None of the letter is bispecial.

On the contrary, Fibonacci morphism φ, defined by φ(a) = ab and
φ(b) = a, also satisfies the conditions but generates the non- (ultimately)
periodic Fibonacci word φ∞(a) = abaababa · · · . In it letter a is bispecial,
since its occurrences are followed either by a or by b, while occurrences of
letter b are all followed by a.

Solution
The decision algorithm builds on the combinatorial property: � is periodic if
and only if it has no bispecial letter. Intuitively, if � has an infinite number of
bispecial factors, its factor complexity is not bounded and it is not ultimately
periodic (see Problem 88).

If the condition holds, that is, if � contains no bispecial letter, each letter
is fully determined by the letter occurring before it. And since all letters of

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

89 Periodicity of Morphic Words 221

the alphabet appear in � the period word corresponds to a permutation of the
alphabet. Thus the period of � is |A|.

Conversely, let us assume that � contains a bispecial letter and prove it is
not periodic.

Let b be a bispecial letter, that is, bc and bd appear in �, for two distinct
letters c and d. Due to the irreducibility of θ , the letter a appears in θk(b)

for some k. Since θ is injective, θk(bc) �= θk(bd). Let i and j be starting
positions of θk(bc) and θk(bd) on �. Since θ is injective on A∞, �[i . .∞) �=
�[j . .∞). Their longest common prefix v is then bispecial and contains the
letter a.

We show more generally that for any bispecial factor v of �, v containing
the letter a, there exists a longer factor with the same property.

Let i and j be two positions on � with �[i . . i + m] = vc and �[j . . j +
m] = vd, and c and d be distinct letters. Let y = �[i . .∞) and z = �[j . .∞).
Then, again from the injectivity of θ on A∞, we get θ(y) �= θ(z). Let θ(v)u

be the longest common prefix of θ(y) and θ(z). So there exist two letters e and
f , e �= f , for which θ(v)ue and θ(v)uf are factors of �. Since v contains a,
|θ(v)u| > |v|.

Repeating the argument, we get an infinite sequence of bispecial factors
of �. For each such v of length n we have F�(n + 1) > F�(n) (F�(n) is the
number of factors of length n occurring in �) because any (length-n) word has
a prolongation in � and v has two. This implies that limi→∞ F�(i) = ∞ and
shows (see Problem 88) that � is not periodic, not even ultimately periodic.

The algorithm derived from the combinatorial property consists in testing
if � contains a bispecial letter, which can be implemented to run in time
O(�{|θ(b)| : b ∈ A}).
Notes
The present proof of the combinatorial property is derived from the original
proof by Pansiot [201] and can be found in the book by Kůrka [171, chapter 4].
The notion of an elementary morphism is from Rozenberg and Salomaa [209].
The decidability of the ultimate periodicity for non-elementary morphic words
is also proved in [201].

A common property on morphisms is primitivity, an analogue to primitivity
of integer matrices, a property stronger than irreducibility (the exponent k is
the same for all pairs of letters). But a weaker condition can lead to the same
conclusion, like when all letters appear in θk(a) for some k > 0. With such
a condition, the above proof applies to the following morphism ξ that is not
irreducible and produces � = ξ∞(a) = abcdabcd · · · = (abcd)∞. The
same word is produced by the irreducible morphism ψ .

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

222 Regularities in Words

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ξ(a) = abcda

ξ(b) = b

ξ(c) = c

ξ(d) = d

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ(a) = abcd

ψ(b) = b

ψ(c) = c

ψ(d) = dabcd

More on the topic appears in the section ‘Shift Spaces’ of [8].

90 Simple Anti-powers

A dual notion of periodicity or local periodicity is that of anti-powers, which
is introduced in the problem.

A word u ∈ {1,2, . . . ,k}+ is an anti-power if each of its letters appear
exactly once in it. It is a permutation of a subset of the alphabet, that is,
alph (u) = |u|.
Question. Show how to locate in time O(n) anti-powers of length k

occurring in a word x ∈ {1,2, . . . ,k}n.

For example, 13542 and 54231 occur in 341354231332 ∈
{1,2, . . . ,5}+ at positions 2 and 4 and are its only anti-powers of length
5.

Solution
The problem can be extended to locate the longest anti-power ending at any
position j on x. To do so, let antip[j] be

max{|u| : u antipower suffix of x[0 . . j]}.
The table corresponding to the word 341354231332 shows its two anti-

powers of length 5 13542 and 54231 ending respectively at positions 6 and
8 since antip[6] = antip[8] = 5.

j 0 1 2 3 4 5 6 7 8 9 10 11

x[j] 3 4 1 3 5 4 2 3 1 3 3 2

antip[j] 1 2 3 3 4 4 5 4 5 2 1 2

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

90 Simple Anti-powers 223

The computation of table antip associated with x solves the question
because an anti-power of length k ends at position j on x if antip[j] = k.
Algorithm AntiPowers computes antip for a word in {1,2, . . . ,k}+.

AntiPowers(x ∈ {1,2, . . . ,k}+)

1 for each a ∈ {1,2, . . . ,k} do
2 pp[a] ← −1

3 pp[x[0]] ← 0

4 antip[0] ← 1

5 for j ← 1 to |x| − 1 do
6 a ← x[j]

7 if j − pp[a] > antip[j − 1] then
8 antip[j] ← antip[j − 1] + 1

9 else antip[j] ← j − pp[a]

10 pp[a] ← j

11 return antip

Algorithm AntiPowers computes the table sequentially and uses an
auxiliary array pp to do it. The array indexed by letters stores at a given step
the previous position pp[a] of occurrences of each letter a met so far.

x
0 pp[a] j n − 1

a a
��

antip[j − 1]
x a

��
antip[j]

The correctness of AntiPowers is rather straightforward. Indeed, if the
current letter a at position j does not occur in the longest anti-power ending at
position j−1, the length of the anti-power ending at j is one unit more (line 8).
Otherwise, as illustrated by the picture, x[pp[a] + 1 . . j − 1] is an anti-power
not containing a, which gives the length j − pp[a] of the longest anti-power
ending at j (line 9).

It is clear that the running time of AntiPowers is O(n).

Notes
The notion of an anti-power introduced by Fici et al. [113] refers to a word that
is a concatenation of blocks of the same length but pairwise distinct. Authors
show that every infinite word contains anti-powers of any anti-exponent
(number of block). In [20], Badkobeh et al. design an optimal algorithm to
locate these anti-powers with a specified anti-exponent. The above algorithm
is the first step of their solution. See also [165].

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

224 Regularities in Words

91 Palindromic Concatenation of Palindromes

Palindromes constitute another type of regularity different from periodicity.
They appear naturally in data folding when the process requires segments of
data to be matched like in some genomic sequences. The problem deals with
palindromes occurring in a product of palindromes.

Given a finite set of words X, computing the number of all palindromes in
X2 can be easily done in n · |X| time, where n is the total length of words in X.
However, there is a much simpler and more efficient method when X is itself
a set of palindromes.

Question. Given a finite set X of binary palindromes whose total length is
n, design an algorithm computing the number of (distinct) palindromes in X2

and running in time O(n + |X|2).
[Hint: When x and y are palindromes, xy is also a palindrome if and only

if xy = yx.]

Solution
The algorithm below is based on the crucial combinatorial property stated in
the hint. Let us start proving it.

Let x and y be palindromes. If xy is a palindrome then we have x · y =
(x · y)R = yR · xR = y · x.

Conversely, if xy = yx then x and y have the same primitive root
(consequence of Lemma 2), which is also palindromic. Consequently it follows
that xy = (xy)R.

From the property, the algorithm reduces to considering words in X that
have the same primitive root. We execute the following algorithm:

• Compute the root of each word.

• After roots are lexicographically sorted, split them into groups with the
same root.

• In each group Y , compute the number of palindromes in Y 2. As the roots are
the same we only need to compute the size of the set {|u| + |v| : u,v ∈ Y },
which can be done in O(|Y |2) time.

The last step can be performed in time |Y |2 for each group, and altogether in
time O(|X|2) since the sum of sizes of Y ’s is |X|. Sorting and computing the
roots takes O(n) time on a fixed-size alphabet. Consequently the algorithm
works in the required O(n + |X|2) time.

Notes
The problem appeared in the 13th Polish Olympiad in Informatics, 2006.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

92 Palindrome Trees 225

92 Palindrome Trees

The notion of a palindrome forest P(x) provides a structural representation
of all palindromes occurring in a word x. The data structure is used to
perform different operations on the set of palindromic factors, such as to access
efficiently to the longest palindrome ending at a given position on x or to count
the number of occurrences of each palindrome in x.

The forest consists of a collection of trees in which each represents all
palindromic factors in a similar way as a Suffix tree represents all factors.
Suffix links are also part of the structure to get an efficient construction.
However, palindrome forests are simpler than Suffix trees, since each edge
is labelled by a single letter.

Each node of P(x) is a palindrome occurring in x. From a node z, there
is an edge z

a−→ aza labelled by the letter a if aza is a palindrome in x.
The empty word ε is the root of the tree for even palindromes. And each letter
occurring in w is the root of a tree for odd palindromes having the letter at
their centre. The picture shows the forest P(ababbababaab) that comprises
three palindrome trees.

ε

aa bb

baab abba

babbab

ababbaba

a

bab

ababa

b

aba

babab

a b

b a

b

a

b

a

a

b

Each node of the trees can be represented by an interval [i . . j] of positions
corresponding to an occurrence of the palindrome x[i . . j]. The palindrome is
also fully determined by the path from the root to the node.

Question. Assume the alphabet is of constant size. Show how to construct
the palindrome forest of a word in linear time according to the word length.

[Hint: Use suffix links.]

Solution
Algorithm PalindromeForest builds the palindrome forest of its input
word x. The main trick of the construction is to augment the structure with

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

226 Regularities in Words

suffix links defined as follows. For a non-empty palindrome u its suffix link
points to the longest palindrome that is a proper suffix of u. It is denoted
by palsuf (u) and may be the empty word. A suf-ancestor of u is any node
accessible from u, including u itself, by iterating suffix links.

Assume u is a palindromic suffix of x[0 . . i − 1]. Let upward(u,x[i]) be
either the lowest suf-ancestor v of u for which x[i]vx[i] is a suffix of w[0 . . i]
or the empty word ε.

To build the forest of x, the algorithm processes the word online. Initially,
the forest consists of the roots of its trees, that is, nodes ε and a, for letters a

occurring in x. Suffix links on nodes are maintained during the process, and
the variable u of the algorithm stores the longest palindrome that is a suffix of
the prefix of x read so far.

Inside the main for loop, the computation of the next value of u that includes
the current letter x[i] is done with the crucial help of upward at lines 4–7. The
rest of the step at lines 9–15 consists in updating the forest in case a new node
has to be added.

PalindromeForest(x non-empty word)

1 initialise the forest P
2 u ← x[0]

3 for i ← 1 to |x| − 1 do
4 v ← upward(u,x[i])

5 if v = ε and x[i − 1] �= x[i] then
6 u ← x[i]

7 else u ← x[i]vx[i]

8 if u �∈ P then

9 add node u and edge v
x[i]−→ u to P

10 v ← upward(palsuf (v),x[i])

11 if v = ε then
12 if x[i − 1] �= x[i] then
13 palsuf (u) ← x[i]

14 else palsuf (u) ← ε

15 else palsuf (u) ← x[i]vx[i]

16 return P

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

93 Unavoidable Patterns 227

The algorithm works in linear time mostly because the number of steps in
computing upward shortens proportionally the depth of u and of palsuf (v) in
the forest. In addition, each of these two depths increases by at most one unit
in each iteration.

Notes
The tree structure of palindromes has been investigated by Rubinchik and Shur
in [210], where it is called an eertree. It has been later used in the design of
several algorithms related to palindromes.

93 Unavoidable Patterns

Patterns of the problem are defined with a specific alphabet of variables in
addition to the finite alphabet A = {a,b, . . .}. Variables are from the infinite
alphabet V = {α1,α2, . . .}. A pattern is a word whose letters are variables.
A typical pattern is α1α1: it appears in a word that contains a square. The aim
of the problem is to produce unavoidable patterns.

A word w ∈ A+ is said to contain a pattern P ∈ V∗ if ψ(P) is a factor w for
some morphism ψ : alph (P)+ → A+. If not, w is said to avoid P . A pattern
is avoidable if there are infinitely many words of A+ avoiding it, which is
equivalent (because A is finite) to the existence of an infinite word in A∞ whose
finite factors avoid it. For example, α1α1 is avoidable if the alphabet has at least
three letters, but is unavoidable on a binary alphabet (see Problem 79).

Zimin patterns Zn are standard examples of unavoidable patterns. They are
defined, for n > 0, by

Z0 = ε and Zn = Zn−1 · αn · Zn−1.

In particular, a word contains the Zimin pattern Zn if it contains a factor
whose Zimin type is at least n (see Problem 43). For example, the word
aaaaabaabbaaaabaabb contains Z3 since its factor aaabaabbaaaabaa
is the image of Z3 = α1α2α1α3α1α2α1 by the morphism ψ defined by

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

228 Regularities in Words

⎧⎪⎪⎨⎪⎪⎩
ψ(α1) = aa

ψ(α2) = ab

ψ(α3) = bba

Question. Show that Zimin patterns Zn, n > 0, are unavoidable.

Solution
Let k be the size of the alphabet A. Define the sequence of lengths, for n > 1,
by

�1 = 1 and �n = (�n−1 + 1) · k�n−1 + �n−1 − 1,

and consider the following observation before answering the question.

Observation. Any word of length �n, n > 1, in A∗ has a factor of the form
uvu, where |u| = �n−1 and |v| > 0.

Proof Any word w of length �n contains (�n−1 + 2) · k�n−1 factors of length
�n−1. Since the number of distinct factors of length �n−1 is at most k�n−1

there is a word u of length �n−1 having at least �n−1 + 2 occurrences in w.
Consequently there are two occurrences at distance at least �n−1 + 1 and there
should be a non-empty word v between these occurrences. The word uvu is a
factor of the required form.

To answer the question, it is enough to show that each word of length �n,
n > 0, contains the Zimin pattern Zn.

The proof is by induction on n. Obviously each non-empty word contains
the pattern Z1. Assuming that each word of length �n−1 contains Zn−1 we are
to show that any word w of length �n contains Zn. Due to the above observation
w contains a factor of the form uvu, where |u| = �n−1 and |v| > 0.

By the inductive hypothesis u contains Zn−1, hence u = u1u2u3, where
u2 = ψ(Zn−1) for a morphism ψ : {α1,α2, . . . ,αn−1}+ → A+. Then w

contains the factor u2·z·u2, where z = u3vu1. Extending ψ by setting ψ(αn) =
z, w contains a morphic image of Zn. This completes the proof.

Notes
Denote by f (n) the length of a longest binary word not containing Zn. Due to
the unavoidability result f (n) is finite. However, finiteness here almost meets
infinity, since for instance f (8) ≥ 2(216) = 265536 (see [48]). Even for short
patterns values of f (n) may be large; for example, there are binary words of
length 10482 avoiding Z4.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

93 Unavoidable Patterns 229

Pattern unavoidability is decidable as proved by Zimin (see [176,
chapter 3]). An algorithm can be based on Zimin words, since it is known
that a pattern P containing n variables is unavoidable if and only if it is
contained in Zn. In other words, Zimin words are unavoidable patterns and
they contain all unavoidable patterns.

However, the existence of a deterministic polynomial-time algorithm for the
pattern avoidability problem is still an open question. It is only known that the
problem is in the NP class of complexity.

https://doi.org/10.1017/9781108835831.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781108835831.006

