Appendix B Vector and matrix formulas

This appendix lists some useful vector and matrix formulas. Note that these formulas
are selected for the purpose of deriving equations in this book in Bayesian speech and
language processing, and do not cover the whole field of vector and matrix formulas.

B.1 Trace
trla] = a,
trABC] = tr[BCA] = tr[CAB],
tr[A + B] = tr[A] + tr[B],
tr[AT] = tr[A],
tr[A(B + C)] = tr[AB + AC].
B.2 Transpose
(ABC)T = CTBTAT,
(A+B)T = AT + BT,
B.3 Derivative
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B.5 Woodbury matrix inversion 391
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Complete square
When A is a symmetric matrix,
XTAX —2xTb+c=x—-—w)TA (X —u) +v, (B.16)
where
u2A'p
vEc—bTA b, (B.17)

By using the above complete square formula, we can also derive the following formula
when matrices A and A, are symmetric:

x—=b)TA|(x—b) + x—b2)TAz(x — by)
=XT(A] +A2)x — 2xT (A1b; + Azb2) + b Aib; +bJ Asby
N e’ N——

éA éb éc
=x—wWT A +A)x—u) +v, (B.18)
where

u=(A; +A2) " '(Aib; + Asby),
v=DbJAb; +bJAsb; — (A1b; + Asb)T(A] + A2)7'(Arb + Aoby).  (B.19)

Woodbury matrix inversion

A+UCV) ' =A" A luCc '+ va~ Uy TvaL. (B.20)
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